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Interactive robotics for human impedance estimation in a rhythmic task

Vincent FORTINEAU1,2, Maria MAKAROV1, Pedro RODRIGUEZ-AYERBE1, Isabelle A. SIEGLER2

Abstract— This paper presents an experimental robotic setup
dedicated to human arm endpoint impedance measurement
in a cyclic task with physical interactions. Understanding
human endpoint impedance adaptation during a cyclic task in
interaction with the environment can provide insights for the
design of innovative robot controllers for collaborative robotics
both in manufacturing and service contexts. The ball bouncing
benchmark task, classical in human movement science, is
selected here for its simplicity, yet representativeness of hand-
eye synchronization and intermittent physical interactions. For
a better control over the environmental conditions, the task
is performed in a simulated environment, where the paddle
is actuated by the human participant by interacting with an
admittance-controlled collaborative robotic arm. First experi-
mental feasibility and identification results are presented.

I. INTRODUCTION

In the longtime research topic of human motor control [1],
recent developments benefit from computational approaches
and concepts closely related to the automatic control field.
The central nervous system (CNS) and the intrinsic bio-
mechanical properties of humans limbs allow coordinated and
efficient movements during interaction with their environment
[2]. Especially, humans excel in physical interactions with
environments with a wide range of physical properties,
potentially unknown beforehand [1], [2]. Humans are capable
of adapting the dynamic properties of their limbs [3] to
increase performances during the learning of a new task [4],
and reach stable and desired behaviour. Understanding and
reproducing some properties of how humans interact with
their environment during various tasks is thus relevant for
the design of innovative robot control strategies.

The mechanical impedance of human limbs extends beyond
stiffness and has been studied for decades under the control
prism [7], and is still an active research topic [8]. The
notion of impedance relates kinematics to forces, allowing the
modeling of human movements during physical interactions.
Very simple models, such as mass-spring-damper (KBI) or
Hill type muscle models, have been shown to describe the
human behaviour [6]. These models do not intended to explain
the complete human motor control, but rather reproduce some
of its aspects. More complete models [10], [21] are required
to understand the human CNS.

Human movements can be separated in categories for better
modelling. The differences between rhythmic and discrete
movements on the side of human motor control were defined
and discussed in [11]. This paper focuses on rhythmic tasks.
Elbow joint kinematic and dynamic properties during cyclic
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task without load were studied in [5]. They were able to
connect the maximum frequency with the magnitude of the
movement, and then with the arm stiffness, observing both
stiffness and frequency increase together. They proposed a
relation between the joint stiffness and the muscular activity,
stating in corroboration with previous studies [7], that humans
can intentionally control their arm stiffness notably thanks to
the co-contraction of agonist and antagonist muscles.

On one hand, the studies on human motor control are
essential for better interactions between humans and robots
[9], and on another hand they inspire new robotic designs for
cobots or to try to reproduce human performances. A bio-
inspired torque-stiffness control strategy for dynamic walking
was proposed in [12], where central pattern generators (CPG)
shape the variations of a robot joint stiffness. This approach
was shown to improve the energy efficiency of the task
compared to a torque control strategy alone.

In previous work at the intersection of robotics, control and
human movement sciences [13], [14], the authors studied the
human CNS during cyclic movements in a ball bouncing task
in a purely kinematic simulated environment. They were able
to reproduce human-like performances using a CPG-based
control structure. The Matsuoka oscillator played the role
of the CPG, taking the kinematic data of the ball as input
to control both amplitude and frequency of the elbow joint
angle of a simulated human arm.

This paper proposes a robotic experimental set-up to
identify the human impedance by means of an interactive
robot. The experience is designed to identify the human
arm endpoint impedance variations during a cyclic task,
requiring eye-hand coordination, i.e. the ball bouncing task.
Compared to the previous works [13], [14] on the same task,
the modeling objective thus goes beyond the kinematic level,
and concentrates now on the interaction forces.

The rhythmic ball bouncing task and human impedance
model are recalled in Section II. How interactive robotics
may be used to identify human impedance is then detailed
in Section III. The experimental implementation details are
given in Section IV, and preliminary results using this
implementation are presented in Section V.

II. TASK DESCRIPTION AND IMPEDANCE ESTIMATION

The modeling of the ball bouncing task and the assumptions
regarding the human impedance are briefly recalled.

A. The ball bouncing task

1) Ball kinematics: The ball bouncing task is a well known
task in Human Movement Science, in which subjects, often
experts, are asked to bounce a ball to reach a target height
h.The task is depicted on Fig. 1. Between impacts k and
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Fig. 1: Paddle (solid blue line) and ball (red dotted line) trajectories during
the ball bouncing task with target height h (black dashed line).

k+1 at times tk and tk+1, the motion of the ball is described
by the ballistic equation (1), with z(t) the ball position, ż+k
the post-impact velocity of the ball at tk, zk the ball impact
position at tk, t the time elapsed since the last impact k and
g the gravitational acceleration.

z(t) = −0.5gt2 + ż+k t+ zk (1)

The impact of the ball on the paddle is modeled by (2), using a
restitution coefficient α in a simplified manner, as described in
[13]. Paddle position is denoted p, mb and mp are respectively
the ball and the paddle masses, and ż−k = ż+k−1 − gt is the
velocity of the ball before the impact k.

ż+k =
mp

(
(1 + α)ṗk − αż−k

)
+mbż

−
k

mp +mb
(2)

2) Ball bouncing feasibility domain: Several characteristic
constants can be derived from the previous equations. The
time of apex between impacts k and k + 1 is ta = ż+k /g,
and the frequency of the task f = 1/(2ta), that is f =
g/(2ż+k ), allowing to link the ball apex height za, the post-
impact velocity and the frequency: za − zk = (ż+k )

2/(2g) =
ż+k /(4f).

Results found in [5] pointed out that for an amplitude
of cyclic movements of the elbow joint, around 1.25 rad,
the maximum frequency was 2Hz, growing up until 8.4Hz
for almost null amplitudes. Since the ball bouncing task
requires an active synchronization between the movements
of both the arm and ball, smaller frequencies and magnitudes
should be considered to avoid designing an almost impossible
task, or a task requiring complex arm motions. However, the
task frequency should be high enough to yield a rhythmic
behaviour. The overall objective being to reproduce this
rhythmic task using interactive robotics, feasible conditions
can be deduced from the previous equations and post-impact
velocities similar to those considered in [27].

B. Human impedance in a rhythmic task

In a cyclic task performed by a human arm, its endpoint
impedance defines the dynamic behavior of the arm when
it is deviated by an external perturbation from the nominal
trajectory which it would follow without the perturbation,

called virtual trajectory in [15]. The KBI model (3) for the
mechanical impedance relating forces to motion is considered:

δf = Iδẍ+Bδẋ+Kδx, (3)

where δx is the difference between the virtual and the
perturbed trajectory of the human hand and δf the difference
between the virtual and perturbed interaction force. K, B
and I are respectively the stiffness (in Nm−1), damping
(in Nsm−1) and mass (in kg) Rn×n matrices, n being the
number of Cartesian DOF.

The introduction of perturbations is thus necessary for
impedance identification. Perturbations can have various
durations, but for a task in movement, they usually last
few hundreds of milliseconds [16], [22], [26], and can be
injected either as forces/torques or positions perturbations.
The magnitude of the perturbations remains low, since most
common impedance models of human limbs are linearizations
[23], that hold for small movements δx. Typical force
perturbations range around 4N [22], [25], or for position
perturbations, below 1 cm [16].

This paper does not intend to differentiate the contribution
of reflexes from intrinsic properties of the human arm, like it
was done in [21], but rather try to observe the global behaviour
of the arm. To that purpose, the simplified KBI model (3)
for the human arm behaviour is proposed at the endpoint
level, without coupling between the different axes, that is
with diagonal parameter matrices. Considering that the ball
bouncing task is reduced to the vertical z-axis, the identified
impedance reduces here to a single degree of freedom:

δfz = Izδẍz +Bzδẋz +Kzδxz, (4)

Moreover, since this model cannot account for voluntary
action, the latter should be discriminated by experimental
design and data post-treatment (see Section V-B).

III. INTERACTIVE ROBOTICS AS A TOOL FOR HUMAN
IMPEDANCE ESTIMATION

This section presents the proposed methodology for the
use of interactive robotics to help the analysis of human
impedance during rhythmic tasks.

A. Methodology

The ball bouncing task takes place in a simulated environ-
ment in which experimental conditions (gravity, restitution
coefficient...) are easier to control. The paddle vertical position
is connected to the robot’s endpoint position along the z
axis (Fig. 2). The robot is operated by the human thanks
to a handle connected to its end-effector with an interface
including a force/torque (f/t) sensor (see Section IV-A for
further details). A scaling factor can be applied between real
robot movement and the simulated environment to adjust the
simulated kinematics.

As shown in Fig. 2, the simulated environment projected
on a screen comprises: i) a paddle, only moving along the
vertical axis, ii) a ball, also locked in a 1 DOF movement,
iii) a target height h, (red dashed line). The goal is to reach
a human cyclic behaviour, while bouncing the ball at a target



height in the simulated environment. Since the considered
bouncing task is uni-dimensional, a planar 3 DOF robot
evolving in the vertical plane (Oxz) is sufficient for the task.
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Fig. 2: Proposed interactive system for impedance estimation: a human
interacts with the 3 DOF robot thanks to a handle. qi are the joint positions
of the robot, θ is the endpoint orientation, z is the endpoint position along
the z axis, represented here after a perturbation responsible for the hand
deviation from it’s nominal trajectory denoted by zv , the virtual position.

B. Interactive robot control

The complete control scheme is shown in Fig. 3. The robot
block represents the robot arm dynamics with its inner joint
currents and velocities loops. The control inputs to the robot
are therefore joint reference velocities q̇d. The represented
controller is composed of three control loops described below.

a) Main control loop: With respect to the ball bouncing
task, the robot’s apparent dynamics should be minimized to
be as transparent as possible to the user. To this end, the main
control loop realizes a Cartesian admittance control along the
z-axis based on the interaction forces fe, following a similar
methodology to [17], [18]. Namely, Cz is a single-input single-
output (SISO) proportional-integral (PI) controller with gains
Kp and Ki. Note that the inverse Jacobian Ĵ(q)−1 ∈ R3×3,
is well defined in the particular case considered here, since
the robot is maintained outside it’s singular configurations by
a secondary joint-space position controller. The tuning of the
admittance control parameters is presented in Section IV-B.

b) Secondary control loop about x0: Since the studied
ball bouncing task only occurs on the z-axis, the robot motion
along the x-axis should be minimized. To avoid the coupling
effects in Cartesian space as much as possible, the main
admittance controlled is realized at the endpoint level in
the Cartesian space, only using the force along the z-axis.
However, errors between the estimated and real Jacobian, as
well as tracking errors in the velocity loops may generate
small but undesired movements along the x-axis. To alleviate
this effect, an additional control loop is used to maintain the
robot endpoint position about a constant x0 position, using a
Cartesian proportional control of gain Kx.

c) Secondary control loop about q0: A last sub-task is
implemented to avoid unforeseen joint reversal and provide
the robot a more predictable movement. The related secondary
controller is therefore a simple joint position proportional

control of gain K2 about a given configuration q0, which
generates an additional joint speed reference q̇2. Since this
task should not interfere with the main one along the z-
axis, it is projected to the main task’s null space using the
methodology described in [19], [20], and exploiting the fact
that a 3 DOF manipulator is redundant for the realization of
the main task. The Jacobian of the main task J1 is equivalent
to the second row of the global Jacobian J ∈ R3×3. The
projected joint speed reference q̇p2 obtained by projection (5),
is designed to have no effect on the z-axis motion.

q̇p2 =N2(q)q̇2 =N2(q)K2 (q0 − q) (5)

N2(q) = I −J1(q)
I+J1(q) (6)

where the pseudo-inverse is defined by AI+ =

I−1At
(
AI−1At

)−1
with I ∈ R3×3 the identity matrix.

These three combined controllers provide the robot arm
with the behaviour of a mass sliding along a vertical line.

C. Human impedance estimation

1) Perturbation inputs: To estimate the arm endpoint
impedance of a human during a co-manipulation, as described
in Section II-B, perturbations need to be introduced in the
task. To obtain brief perturbations (< 50ms), the inner
velocity control loop is bypassed and the robot is torque-
controlled during the perturbation window. In this time frame,
the outer-loop control of the robot is considered constant,
since it has a response time longer than 50ms. Therefore,
the last torque input τ 0 before the perturbation is added to
the perturbation torque corresponding to an endpoint force
fp and transformed to the joint level using the transposed
Jacobian. The resulting input torque for the robot inner loop
is given by τ = J(q)tfp + τ 0.

For the considered task, fp has only a component along the
z-axis. For the impedance identification, these perturbations
are introduced at pseudo-random instants of the paddle cycle.
In future experiments, the instants of the perturbation will be
more finely controlled, but still need to have some randomness
to prevent the participants to anticipate the perturbations. Their
magnitude is constant in a trial, but their sign is random.

2) Virtual trajectory and force: The considered impedance
estimation method is based on the fact that the perturbations
induce deviations δf and δx (cf (3)) from the virtual trajec-
tories, which would have taken place without perturbations.
By essence unknown, these virtual trajectories both in hand
positions and forces need to be reconstructed. In the literature,
the average previous unperturbed trajectories were used in
[25], while [26] fitted the cyclic patterns of previous data
to a sinusoidal expression. A prediction algorithm with an
unbiased error estimation, lesser than 1cm after 200ms, was
proposed in [16]. Since the impedance evaluation is done
offline, the trajectory of the arm after the perturbation is
available. Looking at the arm unperturbed trajectory given
in Fig. 6, it can be observed that the movement can be
approached using cubic splines. Fig. 6 presents an example
of an estimated virtual trajectory against a real perturbed
trajectory. More details about this spline-based reconstruction
and it’s influence on the results are given in Section V-B.
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Fig. 3: Block diagram of the interactive robot control for a guided task on a 1 dimensional trajectory along the z axis. fe represents the interaction forces
in the robot base frame, q the robot joint positions, τ the joint torques and x the robot’s endpoint Cartesian coordinates. Cz = Kp + Ki

s
is a proportional

integral (PI) controller responsible for the interactive admittance control.

3) Parameters estimation: Based on (4), the impedance
parameter vector ξ = [Kz Bz Iz]

T can be estimated by
linear mean squares, solving the overdetermined system of
equations resulting from the evaluation of (7) on a perturbed
trajectory. Residuals are denoted ρ.

δfz =
[
δxz δẋz δẍz

]
ξ + ρ (7)

The identification being performed offline, centered differ-
ences can be used to obtain δẋz and δẍz .

IV. EXPERIMENTAL IMPLEMENTATION

This section details the specific hardware and software
choices that were made for the implementation of the
methodology presented in Section III.

A. Apparatus

The robot used in this study is the KUKATM youBot arm.
Low-level joint current and velocity PI control loops are
embedded into the motor servo controller modules, with
control gains adjusted compared to the factory settings. Higher
level control loops (position, force) are implemented using
ROS. A rate of approximately 1 kHz for the higher level
control loops is achieved. The first and the last joints of the
5 DOF robotic arm are not required for the experiment and
are thus maintained at fixed positions through joint position
control. On Fig. 2, q1, q2, q3 refer to respectively the 2nd, 3rd

and 4th joints of the robotic arm.
External sensors integrated to this setup are the ATITM

Mini45 6 axis f/t sensor and the Optitrack V120:Trio motion
capture camera (mocap). Measurements from the f/t sensor are
acquired at 1 kHz, and are used in real time for the admittance
control loop (Fig. 2). The camera measurements have a rate
of 120Hz and are used in this study only for offline analysis
purposes. The acquired mocap position corresponds to the
robot handle position held by the human hand.

To compute the interaction forces used in Fig. 3, the f/t
sensor measurements are debiased and transformed into the
robot base frame, and the effect of gravity on the sensor is
compensated. The obtained interaction forces are low-pass
filtered at 30Hz using a 4th order Butterworth digital filter,

and only the vertical force component fz is used in closed-
loop.

For the offline analysis and impedance estimation, unfiltered
interaction forces are considered and post-treated differently
from the control loop. Force and mocap positions are
interpolated at 1 kHz and low-pass filtered at 25Hz using
the same zero-phase fourth order Butterworth filter. These
post-treated forces and mocap positions correspond to the
notations fz and xz in (4).

B. Admittance control gains tuning

The admittance control gains are subject to the classical
performance-robustness trade-off. To improve transparency
and reduce the apparent robot dynamics, higher gains are
desired. At the same time, considering that large scale
experiments involve several participants, the admittance
control loop need to be robust enough to remain stable when
in contact with a large range of stiffnesses (i.e. participants
hand/arm co-contractions), which limits the control gains. It is
known that a robot inertia cannot be completely compensated,
and its reduction is limited by the stability [18].

To ensure safe and robust co-manipulation, a stability map
was experimentally determined, under two different conditions.
The first condition corresponds to a manipulation performed
under the worst possible environment, that is, moving the
robot in rhythm with intentionally strong co-contraction
of both the human hand and arm. The second condition
corresponds to a nominal ball bouncing manipulation with
lower co-contractions of the arm. In each condition, the
resulting closed-loop behavior was sorted according to
the following four categories: i) Unstable, impracticable,
ii) Critical, barely practicable, iii) Badly damped, practicable
but uncomfortable, iv) Well damped, or with no oscillation,
comfortable. Conceptual behavior of the closed-loop signals
is shown on Fig. 4b. The results of the stability map are
displayed in Fig. 4a, the shaped bullets indicating the tested
(Kp,Ki) pairs for the first condition, and the green hatched
area indicating the comfortable (iv) category for the second
condition among which the gains used in experiments were
selected. The comfortable stability region highlighted in
the second test condition is larger that the co-contracted



test condition as it can be expected. More detailed stability
analysis is planned in future work.
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Fig. 4: (a) Experimental stability mapping depending on the admittance
control gains. Condition 1: co-manipulation with intentionally high co-
contractions of both hand and arm (shapes). Condition 2: co-manipulation
with normal co-contractions of both hand and arm during ball bouncing
(green hatched area for comfortable manipulation (iv)). The gains used in
the experimental set up are indicated with a star. (b) Categories of typical
force responses.

V. FIRST EXPERIMENTAL RESULTS

This section presents preliminary results demonstrating the
feasibility of the task under the proposed protocol and first
insights into impedance identification. More measurements
need to be conducted for consolidated and statistically
significant results. Future experiments are planned to include
several expert participants to achieve longer stable rhythmic
movements, with randomized but controlled timing of the
perturbations. A calibration with a known mass-spring-damper
system is also to be included.

A. Feasibility of the ball bouncing task

The domain of validity of the task was presented in
Section II-A.2. It has been demonstrated feasible with a
robot, through two experiments, considering the conditions
given in Table I.

f (Hz) h (m)a g (ms−2) ż+k (ms−1)a α zk (m)a

[0.9;1.7] [0.8;1.0] 9.81 [1.32;3.34] 0.6 0
aIn the simulated environment.

TABLE I: Tested conditions

Fig. 5 shows a part of a bouncing session with perturbations,
during a co-manipulation with the robot. The experiment was
conducted by the authors themselves. A cyclic behaviour is
effectively obtained. It is important to underline that a novice
participant needs to perform training experiments to be able to
reach the expert level. Participants already practicing juggling
tasks are more comfortable with the proposed protocol.

B. Impedance estimation - first results

1) Time window selection for estimation: As mentioned in
[22], and reminded in Section II-B, voluntary reactions need to
be discarded, because they cannot be properly modeled by (3).
Voluntary reactions response time is typically of 100ms. Yet,
at a 1 kHz rate, [22] found that using only 100ms of data after
the perturbation did not bring satisfying results. Therefore,
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Fig. 5: Ball bouncing task in the simulated environment. The paddle vertical
position (solid blue line) reflects the collaborative robot endpoint position.
The ball position (solid red line), and the target height (dashed red line)
are depicted. All the data are expressed in the coordinates of the simulated
environment. Perturbation timings are indicated with arrows.

they assumed that voluntary actions were not dominant in the
first 200ms, and used that time window for the evaluation.
In the present work, a time window testim of 200ms was
selected for the estimation, based on the literature, and on
the direct observation that this time window concentrated the
main perturbation effects during the task (see Fig. 6).

In these preliminary experiments, perturbations were in-
duced at randomly chosen instants. For meaningful com-
parisons and averaging of the estimated parameters, only
np = 11 perturbations not too close to paddle position peaks
are selected in the presented results.

2) Virtual trajectories parameters selection: The virtual
trajectories were obtained using cubic spline interpolation in
MATLAB. The interpolation was done at 1 kHz, to estimate
the virtual trajectory on testim after a perturbation onset
tp, using data immediately before and after the interval
of interest to be reconstructed. To evaluate the quality
of this reconstruction, it was applied both on perturbed
and non-perturbed cycles (see Fig. 6 for an example). An
additional parameter, a delay δt between the beginning of the
reconstructed interval with respect to tp was introduced for
comparison purposes. This delay parameter was found to have
non negligible influence on the parameter estimation results.
Especially, for 0 ≤ δt ≤ 5ms, negative parameters were
obtained with lower determination coefficient R2 (≤ 0.9) for
the linear fit. Incrementally increasing δt to 20ms shows, for
the perturbed intervals, a convergence of the mean estimated
parameters to constant mean values with significantly reduced
relative standard deviations and a dramatically improved mean
R2 of 0.96, against no significant changes on non-perturbed
intervals where R2 remains smaller that 0.6.
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Fig. 6: Position trajectory reconstruction, with and without perturbation.
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Fig. 7: Force deviations δfz (N) from the virtual trajectory: comparison
between perturbed (bold lines) and non-perturbed (thin lines) cycles, on
200ms intervals. δfz used in identification (solid blue lines) are compared
to the reconstructions δf̂z (orange dashed lines) based on the identified
impedance parameters.

3) Parameters estimation: In [3], [22]–[24] endpoint
parameters for the stiffness were found with a magnitude
ranging between 40 and 700Nm−1, under static and moving
configurations, with and without load for the human arm. Pre-
liminary results from the authors’ trials show most promising
results using 200ms for the impedance identification, with
20 ≥ δt ≥ 10ms, possibly to abide by latency in the system.
The stiffnesses Kz found are higher than those mentioned
above, with an average of 1140Nm−1 and relative standard
deviation of 27% on the np perturbed intervals. Further
experiments are to be conducted. Reconstructed forces using
the identified parameters seem to explain most of the relation
between force and movement on perturbed intervals (Fig. 7).

VI. CONCLUSIONS

The presented first results demonstrate the feasibility of
using interactive robotics for human impedance estimation.
Several aspects of the proposed procedure can however be
improved. The use of cubic splines for trajectory estimation
yields acceptable results for both the positions and velocities,
but since cubic splines are C2, poorly estimated accelera-
tions were obtained. Using similar trajectory reconstruction
techniques as those described in [16] could improve both
virtual trajectory and force estimations. Other techniques than
the presented least squares could be considered to improve
the KBI model identification, for example based on linear
dynamic system identification methods.

Finally, larger-scale data acquisition on a statistically
significant number of experiments with several participants
is expected to provide more in-depth insights on the possible
cyclic variations of the human endpoint impedance, during a
task with physical interaction. Understanding these variations
could be used for bio-mimetic rhythmic control design for
collaborative robots in interaction with their environment.
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