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Abstract

Most of the speech processing applications use triangular filters spaced in mel-scale
for feature extraction. In this paper, we propose a new data-driven filter design method
which optimizes filter parameters from a given speech data. First, we introduce a frame-
selection based approach for developing speech-signal-based frequency warping scale.
Then, we propose a new method for computing the filter frequency responses by us-
ing principal component analysis (PCA). The main advantage of the proposed method
over the recently introduced deep learning based methods is that it requires very lim-
ited amount of unlabeled speech-data. We demonstrate that the proposed filterbank has
more speaker discriminative power than commonly used mel filterbank as well as existing
data-driven filterbank. We conduct automatic speaker verification (ASV) experiments
with different corpora using various classifier back-ends. We show that the acoustic fea-
tures created with proposed filterbank are better than existing mel-frequency cepstral
coefficients (MFCCs) and speech-signal-based frequency cepstral coefficients (SFCCs) in
most cases. In the experiments with VoxCeleb1 and popular i-vector back-end, we ob-
serve 9.75% relative improvement in equal error rate (EER) over MFCCs. Similarly,
the relative improvement is 4.43% with recently introduced x-vector system. We obtain
further improvement using fusion of the proposed method with standard MFCC-based
approach.

Keywords: Mel scale, Frequency warping function, Pitch, Speech-signal-based scale,
Principal component analysis (PCA), NIST speaker recognition evaluation (SRE),
VoxCeleb1,

1. Introduction

Speech is a short-term stationary signal [1] which contains information related to
the spoken content, speaker’s identity, speaker’s emotion, spoken language, etc. The
speaker recognition technology recognizes persons from their speech [2]. The automatic
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speaker verification (ASV) is one of the important tasks in speaker recognition where
two voice signals are compared by machine for deciding whether they are produced by
the same speaker or not. The ASV technology finds its application in voice biometrics
for authentication tasks in both logical and physical access scenarios [3, 4] and also help
in the judicial system to compare an unknown speaker’s voice with a known suspect’s
voice [5, 6]. The performance of the ASV system is reliable in controlled conditions;
however, in the real-world situations, the performance is considerably degraded due to
the variations in intrinsic factors (speaker’s emotion, health, age, etc.) and extrinsic
factors (background noise, channel, room impulse response, etc.) [7]. To achieve a good
performance in practical applications, the ASV system should be robust against these
unwanted variations.

A typical ASV system consists of three main modules: frame-level feature extrac-
tor, segment-level feature (embedding) extractor, and classifier. The frame-level feature
extraction unit converts raw speech waveform into a sequence of acoustic feature vec-
tors [2, 8]. Most of the ASV studies use short-term spectral features which are based on
the knowledge of speech production and perception model. Some studies use high-level
features as complementary information which represent other speaking characteristics
such as, speaking rate and pronunciation style [9]. The classifier module further param-
eterizes the features into statistical models [2]. For efficient use of the ASV systems in
different real-world applications, we need a feature extraction method which should be
robust to unwanted variations in the speech signal and computationally inexpensive [2].
Improving the robustness of acoustic feature usually reduces the effort from classifier
for improving the ASV system performance. The scope of this work is limited to the
development of a new robust feature extraction algorithm for real-world applications.

Among all the existing cepstral features, mel-frequency cepstral coefficients (MFCCs)
are the most popular and widely used for the ASV as well as other speech process-
ing tasks such as automatic speech recognition [10], speaker diarization [11], spoofing
countermeasures [12], etc. The recently introduced x-vector based ASV system, which
drew attention in previous NIST speaker recognition evaluations [13, 14, 15], also uses
MFCCs as acoustic features. The MFCC computation process involves mel scale inte-
gration followed by logarithmic compression and discrete cosine transform (DCT). The
MFCCs are very popular for the following reasons. First, the computation process uti-
lizes mel filterbank analysis, which is partially inspired by the processing of the audio
signal by the human auditory system. Second, the computation process involves fast
Fourier transform (FFT) and matrix multiplication which makes it more computation-
ally efficient compared to other methods such as linear prediction cepstral coefficients
(LPCCs) or line spectral frequencies (LSFs) [16]. Third, MFCCs are also suitable for
different feature-level compensation methods such as relative spectral (RASTA) process-
ing [17], cepstral mean and variance normalization (CMVN), and feature warping [18].
Though the MFCCs are relatively more robust compared to other cepstral features such
as linear frequency cepstral coefficients (LFCCs) or LPCCs, the ASV performance with
MFCCs are severely degraded in real-world conditions due to the mismatch of acoustic
conditions in enrollment (or speaker registration) and verification (or speaker authen-
tication) phase [19, 20]. To overcome some of the shortcomings of MFCCs, various
acoustic features like frequency domain linear prediction (FDLP) [21], cochlear frequency
cepstral coefficients (CFCCs) [22], power-normalized cepstral coefficients (PNCCs) [23],
mean Hilbert envelope coefficients (MHECs) [24], Gammatone frequency cepstral coeffi-
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cients (GFCCs) [25], constant-Q cepstral coefficients (CQCCs) [26], time-varying linear
prediction (TVLP) [27], and locally-normalized cepstral coefficients (LNCCs) [28] were
proposed. All these features even though achieve better performance in noisy condi-
tion, they require a large number of user-defined parameters. These parameters further
need to be manually tuned for different environmental conditions. The overall process
seems to be difficult for a system-developer. Also, improving feature robustness beyond
a certain level is extremely difficult, especially for a wide range of degradation [21, 24].
Besides, most of those features are also computationally more expensive than MFCCs.
The MFCCs, on the other hand, have lesser number of free parameters. This study devel-
ops a data-driven feature extraction method which follows the same principle as MFCC
but derives the parameters from the speech data itself. Unlike the feature extraction
methods discussed before, which require “hand-crafted” parameters, the feature extrac-
tion method with parameters computed in a data-driven procedure reduces the effort
needed for manual fine-tuning. The data-driven methods also show the improvement in
robustness when large corpora are used in training strong discriminative models [29].

The data-driven acoustic feature extraction methods use speech data to compute
the parameters of the feature extraction algorithm. We classify those methods into two
broad categories. One of them uses discriminative approaches such as the artificial neural
network (ANN) or linear discriminant analysis (LDA). These methods require labeled
speech data. The other type does not apply the discriminative approach but utilizes
some speech science knowledge during parameter estimation. In other words, they learn
the feature extraction parameters directly from the speech data without using any class
label information. Some of the popular data-driven speech feature extraction methods
are discussed in Table 1. Most of the methods are discriminative in nature, and they are
generally investigated for automatic speech recognition (ASR) tasks. In ASV research,
data-driven feature extraction methods have drawn relatively less attention [30].

In this work, we perform detailed analysis of a data-driven feature extraction method
for ASV which utilizes only audio-data for computing the desired parameters, in con-
trast to most of the data-driven techniques that require additional metadata such as
speech (e.g., phoneme) or speaker information. We select speech-signal-based frequency
cepstral coefficient (SFCC), and this feature has demonstrated promising performance
in speech and speaker recognition applications [20, 45]. The method is also very similar
to MFCC; however, in contrast to MFCC which applies handcrafted mel scale, SFCC
utilizes a frequency warping scale that is computed by a data-driven approach. Since
the filterbank parameters are computed prior to the feature extraction step, its effective
computational time is same as that of MFCCs, and thus considerably lower than other
recently proposed features such as FDLP, MHEC or CQCC. The current study extends
our preliminary study [45] which introduced the basic data-driven frequency warping [20]
in speaker recognition. In this work, we further improve this method by optimizing the
scale and by computing the other parameters in a data-driven manner. By performing
separability analysis with F-ratio, we have demonstrated that the proposed features are
more speaker discriminative than standard MFCCs. Our ASV experiments conducted
with different ASV systems agree with this analysis. The major contributions of this
work are summarized below.

• We improve the basic data-driven scale with frame selection. With comprehensive
analysis and experimental results, we demonstrate that selective use of speech-
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Table 1: Selected works on data-driven feature extraction methods for various speech applications (ASR:
Automatic speech recognition, ASV: Automatic speaker verification, SAD: Speech activity detection).

Work Methodology Task

[31]
Neural network is trained with speech features of larger temporal context and
used to create data-driven features called TempoRAl Patterns (TRAPs).

ASR

[32]
This work investigates data-driven temporal filter with oriented principal
component analysis (OPCA) that reduces channel variability.

ASV

[33]
The filterbank is derived from phonetically labeled speech data using LDA.

ASR

[34]
Data-driven LDA is applied on the logarithmic critical-band power spectrum
of speech.

ASR

[35]

This method uses TRAP followed by TANDEM. The TRAP estimator pro-
vides multiple evidences in terms of posterior probabilities from frequency-
localized overlapping time-frequency regions of speech signal computed with
the help of data-driven transformation of contextual information. Next, TAN-
DEM converts the frequency-localized evidences to features.

ASR

[36]
Data-driven temporal filters are designed using PCA, LDA and minimum
classification error (MCE) framework.

ASR

[37]
Speech segments are created using a data-driven and automatic language
independent speech processing (ALISP).

ASV

[38]
This work uses F-ratio to adjust the center and edge frequencies of the filter-
bank and the F-ratio is computed for speaker separability.

ASV

[20]
Data-driven frequency warping is obtained by dividing the long-term average
spectrum (LTAS) into subbands of equal energies.

ASR

[39]
A multi-layer perceptron (MLP) is trained to classify speech and non-speech
frames. The outputs of the MLP are used as posterior features.

SAD

[40]

Combination of convolutional neural network (CNN) and long short-term
memory (LSTM) is used to learn neural network parameters to classify the
context-dependent state labels.

ASR

[41]
CNN is used to learn time-domain filter parameters and the network is trained
to classify the context-dependent state labels.

ASR

[42]
The filterbank is learned in an unsupervised manner using convolutional re-
stricted Boltzmann machine (ConvRBM) with clean and noisy audio data.

ASR

[43]
The triangular mel filter is approximated using Gaussian function and the
parameters of this pseudo filter are learned using DNN.

ASR

[44]

Computational steps of mel-frequency spectral coefficients (MFSCs) are im-
plemented with neural network where the parameters are learned using con-
volution layers with a goal of maximizing phone recognition accuracy.

ASR

[30]

A CNN-based architecture SincNet is introduced which learns the lower and
upper cut-off frequencies of the subband filters. Each filter is approximated
with the help of a pair of Sinc functions in time-domain and its parameters
are tuned by maximizing speaker classification accuracy.

ASV

frames helps to create more reliable frequency warping scale.

• We introduce a data-driven way for computing filter responses as an alternative
to the auditory motivated triangular filters. Our proposed method computes the
filterbank response in an unsupervised way with a smaller amount of speech data
in contrast to the discriminative approaches that require class labels and a larger
amount of speech data.

• We evaluate the proposed features with a state-of-the-art x-vector based ASV sys-
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tem which currently utilizes either MFCCs or log-mel energy features.

The rest of the paper is organized as follows. Section 2 explains the baseline cepstral
feature extraction methods for both mel and data-driven scale. The next section presents
the proposed method for improving the data-driven scale. We propose the data-driven
approach of computing filter responses in Section 4. We discuss the experimental setup
in Section 5, and we show the results in Section 6. Finally, we conclude in Section 7 with
a discussion on limitations of this study and possible future directions.

2. Cepstral features based on filterbank

A general block diagram of cepstral feature extraction methods using a filterbank
is shown in Fig. 1. After pre-processing steps such as framing and windowing, the
short-term power spectrum of speech frames is multiplied with a filterbank frequency
response. Then, cepstral features are created by performing DCT on log-energies of
filterbank output. In MFCC computation, we place the triangular-shaped filters in the
mel scale. However, for SFCCs, triangular filters are placed in data-driven speech-signal-
based scale. In the following sub-sections, we briefly describe these two feature extraction
methods.

Figure 1: Block diagram of a typical cepstral feature extraction method.

2.1. MFCCs: fixed mel scale

The MFCC feature extraction scheme introduced in [46] provides a straightforward
way to compute cepstral features. Since then, it had been the state-of-the-art in different
speech-based applications including speaker recognition [47]. It uses the mel scale [48]
based triangular filterbank for the creation of cepstral features. There are several alter-
natives to mel scale representations [49]. The most commonly used equation to convert
linear frequency f to mel frequency fmel is

fmel = 2595 log10

(
1 +

f

700

)
. (1)

In the mel scale domain, the frequency axis is divided into equidistant points. By
considering those points as filter edge-frequencies, the filters are placed by keeping 50%
overlap with the adjacent one [50]. In the MFCC computation step, the pre-emphasized
speech signal is first segmented into frames of 20-30 ms typically with an overlap of 50%.
After that, we perform the short-time Fourier transform (STFT) of the speech frames.
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Then, we compute filterbank energies by using mel filterbank. Finally, DCT is performed
over logarithm of filterbank energies to get cepstral features. The detailed procedure to
compute MFCCs can be found in [19, 51].

2.2. SFCCs: data-driven scale

The SFCC is a data-driven cepstral feature extraction method which computes the
non-linear scale from the training speech. This scale was initially proposed for speech
recognition [20] and later has been successfully applied in speaker recognition [45]. The
SFCC extraction method replaces the mel scale with a data-driven scale, and the rest
of the process is the same as the MFCC computation process. The following paragraph
describes the steps required to get data-driven scale.

The scale computation involves the computation of long-term average power spectrum
(LTAS) of speech data. The LTAS per speech utterance is computed first by averaging
the short-term power spectrum over all the frames in the utterance. Then, average LTAS
is computed over all the speech utterances present in a corpus for computating the scale.
In the next step, the logarithm of LTAS is divided into equal area intervals to compute
the filter edge frequencies.

The derivation of the speech-based data-driven scale is described in the following
steps.

1. Computation of LTAS: Let u be a speech utterance of Nl frames. Its LTAS is
expressed as,

P [k] =
1

Nl

Nl∑
i=1

Xi[k], (2)

where Xi[k] is the energy spectrum and k is the index of frequency bin.
2. Computation of average LTAS: The average LTAS is computed as the ensem-

ble average of LTAS of all speech utterances in a corpus, and it is defined as,

P̄ [k] =
1

Ns

Ns∑
i=1

P [k], (3)

where Ns is the total number of speech utterances in a corpus.
3. Computation of cumulative log power spectrum: Now, if we want to place

Q filters, we divide the log P̄ [k] into frequency subbands of Q equal areas. We compute
the area of the j-th band as,

Aj =

kj
h∑

k=kj
l

log P̄ [k], (4)

where j = 1, 2, 3, ...,Q . Here kjl and kjh are the lower and upper band for j-th filter
and they are selected in such a manner that A1 = A2 = A3 = . . . = AQ. We also consider
the lower edge frequency of the first filter as 0 Hz and the higher edge frequency of the

6



last filter as the Nyquist frequency. In practice, it is not possible to get Ais exactly equal
in numerical values, and they are made approximately equal.

4. Computation of warping scale: Finally, the scale is computed by interpolating
the filterbank center frequencies to their mapped values which are obtained with the help
of the following equation [20],

W

[
kjl + kjh

2

]
=

j

Q
, (5)

where j = 1, 2, 3, ...,Q .
Eq. (5) gives the required frequency points to design filters in the filterbank structure.

The cepstral features computed with this scale is referred to as SFCCs. This scale used
in SFCC computation is shown in Fig. 3 along with standard mel, ERB, and Bark scale
as well as the scale proposed in Section 3.

To compute this scale, we do not require speaker labels for the corpus, unlike most
of the methods listed in Table 1. During this scale computation, all the speech frames
are used which are selected by a speech activity detection (SAD) method. This includes
all types of speech frames showing different spectral characteristics; however, we do not
necessarily need the entire speech corpus as LTAS can be obtained with a small subset
of available data. In the next section, we consider a frame selection technique to select
useful frames for better ASV performance.

3. Data-driven frequency warping using selected frames

The frame selection strategy is used in speaker recognition task for fast implementa-
tion in real-time application [52, 53]. In this work, we select a subset of speech frames
for developing warping scale.

The conventional mel scale is a psychophysical scale for pitch perception. This exper-
imental scale was first formulated with the help of a perceptual test by playing tones of
fixed frequency to the listeners [48]. The participants were asked to tune the frequency
of another adjustable tone according to the perceived half-value of the fixed tone. All the
tones were played at a constant loudness of 60 dB. The scale was formulated by fitting
a curve that maps the numerical value of linear frequency to the perceived value.

We note that the mel scale development is originally a subjective method which might
be biased to the selected listeners [54]. Therefore, instead of subjective criterion, in data-
driven method, we replace human being with the objective criterion of equal energy of
voice signal. During this process, we consider all types of speech data irrespective of
the voice production mechanism. This crude selection of speech frames include unvoiced
speech frames created with random noise passing through a narrow constriction of the
vocal tract. This unvoiced frames have no harmonic structure and closely resemble the
uniform distribution of noise spectra [1]. Therefore, we propose to select only the voiced
frames having pitch information for our data-driven scale formulation process.

Fig. 2 shows the spectrogram and pitch contour of the speech signal, which is taken
from the NIST SRE 2001 corpus.

Fig. 3 shows the normalized plot of both auditory and data-driven scales. We observe
that the data-driven scales have lower resolution at the both ends of the frequency band,
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Figure 2: Illustration of (a) spectrogram and (b) pitch contour of a speech signal taken from NIST SRE
2001 speech corpus. We compute the pitch values using the pitch estimation filter robust to high levels
of noise (PEFAC) method as studied in [55].

Figure 3: The frequency warping function for Mel, ERB, Bark, SFCC, and proposed scale.

and higher resolution everywhere else. This is expected as the speech files for NIST
SRE 2001 are collected over telephone channel with a frequency range of 300− 3700 Hz.
Therefore, we hypothesize that the filterbank placed according to the newly derived
scale will help to capture more relevant information than mel filterbank or standard
data-driven filterbank.
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Figure 4: Figure showing proposed data-driven method for computing frequency response of a filter.
Here the matrix Pr contains log power spectrum of all the frames corresponding to the r-th subband.

4. Computation of data-driven filter shape using PCA

In traditional MFCCs and SFCCs, we use filters with triangular-shaped frequency
responses which closely approximate the auditory filters in cochlea. Other shapes like
Gaussian [56] and trapezoidal [57] are also used in speech feature extraction process. The
shape of the filters in filterbank assigns non-uniform weights to the subband frequencies.

In this work, the idea is to design the subband filter response so that the output of this
filter, computed as the energy, will represent the subband frequency components in a most
effective way. In other words, we need to reduce the dimension of the subband frequency
components to a single data point. We employ principal component analysis (PCA)
which is appropriate for finding the most “expressive” representation of the data [58].
Previously, PCA is applied to design the data-driven filterbank with mel scale for robust
speech recognition [36, 59]. We propose to apply PCA on the log-power spectrum of
each frequency band separately for constructing the filters. The PCA basis with highest
eigenvalue, known as “first basis”, is used to create the filter frequency response. Since
speech signal is a highly correlated process [60], the subband covariance matrix will be
positive. Hence all the elements of its eigenvector with highest eigenvalue, i.e., the first
basis of PCA, will be non-negative according to the Perron-Frobenius theorem [61]. The
steps to find the filter shape are summarized below:

1. Computation of subband covariance matrix: Let P r
i [k] be the log power

spectrum of k-th frequency component for r-th subband and i-th speech frame. Then
the subband covariance matrix corresponding to the r-th subband is given as:
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Sr =
1

Nf − 1

kr∑
i=1

(P r
i [k]− m̄[k])(P r

i [k]− m̄[k])>, (6)

where Nf is the number of frames, kr is the number of frequency bins in r-th subband
and m̄[k] is the mean subband power spectrum given by,

m̄[k] =
1

Nf

Nf∑
i=1

P r
i [k]. (7)

2. Computation of first PCA basis: We apply singular value decomposition
(SVD) [62] to compute the PCA basis of subband covariance matrix. Using SVD, we
can write,

Sr = UVU>, (8)

where U is the kr×kr orthogonal matrix containing eigenvectors of Sr in each column,
and the diagonal elements of the kr × kr matrix V contain the singular values. The first
column of U, i.e., the first principal component is used to create the r-th filter. We apply
zero-padding to get the filter frequency response for the entire band. The computation
of PCA-based filter response is illustrated in Fig. 4.

The filter shape computed in the above process treats all the frequency components
within a subband in an identical manner. However, considering the subbands have over-
lap with the adjacent bands, we apply tapering function to the power spectrum that
assigns higher weights to the frequency components near center frequencies and lower
weights to the components near edge frequencies. We use Hamming window on the
power spectrum data before performing PCA. We also normalize the frequency response
to make the highest magnitude unity similar to the mel filters. Fig. 5 illustrates the
filters for different frequency warping scale.

In order to analyze the separability of different features, we compute F-ratio [63]. For
this analysis, we used 131 speakers from POLYCOST corpus [64]. In Table 2, we showed
the F-ratio of log-energies of different feature extraction methods with 20 filters. This
demonstrates that the proposed methods have more filters that have higher discriminative
characteristics. We also showed the average F-ratio which indicates that the proposed
features are better than the MFCC for most cases.

5. Experimental setup

5.1. Corpora for experiments

We evaluated our proposed method in NIST (SRE 2001 and SRE 2002) and VoxCeleb
(VoxCeleb1) speech corpora [65, 66, 7]. In addition, we evaluate the performance in noisy
conditions. Initially, we conducted experiments on NIST SRE 2001 corpus to optimize
different parameters. Then, we used those parameters to evaluate the ASV system in
the NIST SRE 2002 corpus for both clean and noisy conditions.
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Figure 5: Data-driven filterbank frequency responses using PCA. The filters are shown for different
scales: (a) mel, (b) speech-based, and (c) speech-based with pitch. The next three (d, e and f) shows
the filter shapes for three scales when Hamming window is applied on the log-power spectrum. The last
three (g, h, and i) are for normalized frequency responses. In all cases, the filters are derived from the
development set of NIST SRE 2001 corpus.

We use VoxCeleb1 corpus consisting large number of speakers for real-world condi-
tions [7]. This corpus consists of voices of 1251 celebrities collected from the YouTube
videos. Out of them, 40 speakers are used for evaluation purpose. The sampling rate of
each utterance is of 16 kHz, and average utterance length is 8 seconds. The corpora used
in our experiments are summarized in Table 3.

We use the development data for scale computation. The same data is used to train
the model parameters and hyper-parameters, i.e., for computing the parameters for UBM,
PLDA and T-matrix when required. The enrollment and the test sentences are corrupted
with noises where SNRs range from 0 to 40 dB and type of noise is randomly chosen from
five noises (white, pink, babble, volvo and factory). We took noise files from NOISEX-92
corpus.
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Table 2: F-ratios of log-energies for MFCC features and for three kinds of SFCC features denoted by
M1, M2 and M3. M1 indicates the baseline SFCC feature where the scale is computed with all the
speech frames. M2 indicates SFCC features when the scale is computed taking speech frames having
pitch using pitch estimation algorithm. Finally, M3 indicates the SFCC features when the scale is same
as M2 but triangular filters are replaced with window-based PCA filters. The last row shows the average
ratio for all the cases.

Filter No. MFCC
SFCC

M1 M2 M3

1 0.5677 0.4107 0.4103 0.4149

2 0.4241 0.3270 0.3262 0.3281

3 0.3417 0.2864 0.2862 0.2864

4 0.2403 0.2855 0.2856 0.2860

5 0.2015 0.2965 0.2968 0.2961

6 0.2135 0.3018 0.3022 0.3012

7 0.2521 0.3209 0.3217 0.3209

8 0.2607 0.3405 0.3412 0.3410

9 0.2870 0.3564 0.3571 0.3565

10 0.3088 0.3773 0.3780 0.3774

11 0.3252 0.3758 0.3753 0.3749

12 0.3407 0.3775 0.3785 0.3781

13 0.3281 0.4093 0.4110 0.4110

14 0.3511 0.4396 0.4408 0.4404

15 0.3966 0.4596 0.4598 0.4593

16 0.4280 0.4469 0.4460 0.4454

17 0.4160 0.4477 0.4487 0.4484

18 0.4557 0.4842 0.4853 0.4861

19 0.4990 0.5164 0.5176 0.5173

20 0.5696 0.5746 0.5757 0.5845

Avg. 0.3604 0.3917 0.3922 0.3927

5.2. Feature extraction

We extracted the acoustic features from speech frames of 20 ms with 10 ms overlap.
For experiments with GMM-UBM and i-vector system, we used 20 filters. We extracted
19 coefficients after discarding the first coefficient. Finally, a 57-dimensional feature vec-
tor [67] is formulated after appending delta and double-delta coefficients. The MFCCs are
filtered with RASTA processing [17] to remove slowly varying channel effect. Finally, we
perform cepstral mean and variance normalization (CMVN) after applying bi-Gaussian
modelling based SAD [19]. We use identical pre-processing and post-processing steps for
all the features.

5.3. Classifier details

We use three different ASV systems: GMM-UBM, i-vector and DNN-based x-vector.
First, we use simple GMM-UBM classifier for conducting experiments with NIST SRE
2001 and NIST SRE 2002 corpora. Then, we evaluate our proposed feature on VoxCeleb1
corpus using i-vector and x-vector system. In order to make the work self-contained, we
briefly describe all the classifiers as follows.
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Table 3: Summary of the corpora for speaker verification experiments.

Corpus
No. of Target Test Total True Impostor

speakers models segments trials trials trials

NIST SRE 2001 174 174 2038 22418 2038 20380

NIST SRE 2002 330 330 3570 39270 2983 36287

VoxCeleb1 40 4715 4713 37720 18860 18860

5.3.1. GMM-UBM system

In the GMM-UBM system, the feature distribution of the target speakers and the
cohort models are represented with a mixture of Gaussian densities [68]. The cohort
model, also known as universal background model (UBM) in this context, is trained with
several hours of speech data. The UBM is represented as λubm = {wi, µi,Σi}Ci=1 where
C is the number of Gaussian mixture components, and wi is the weight, µi is the mean,
and Σi is the covariance matrix of the i-th component. The parameter wi satisfies the
constrain

∑C
i=1 wi = 1. The enrollment speech model (λenroll) are derived from the UBM

using maximum-a-posteriori (MAP) adaptation with the target speaker’s feature.
During test, we calculate ASV score of the test utterance, Xtest = {x1,x2, . . . ,xT }

as the log-likelihood ratio (LLR), given by the following equation:

ΛGMM−UBM(Xtest, λenroll) = logP (Xtest|λenroll)− logP (Xtest|λubm). (9)

Finally, if the ASV score is greater than or equal to a decision threshold, θ, the test
speech is considered as spoken by the correct speaker, otherwise an imposter.

In our experiments, we use the development section of NIST SRE 2001 corpus, which
consists of six hours of speech data, to train gender-independent UBM of 512 mixture
components. We use 10 iterations of expectation-maximization (EM) algorithm to esti-
mate the UBM parameters. The target speaker models are created by adapting only the
mean vectors of UBM with relevance factor 14.

5.3.2. i-vector system

In i-vector method, the GMM concatenated means of the adapted GMM, known as
GMM-supervector, is projected into a low dimensional space called as total variability
(TV) space [69] as,

M = m + Tw, (10)

where T, m and M are the low-rank total variability matrix, the speaker and chan-
nel independent supervector (taken from UBM supervector) and the GMM supervector
representation of the speech utterance, respectively. Here the w is called as i-vectors.
In order to compute the i-vector representation of a speech utterance, Xutt, we estimate
the posterior mean of the i-vector given the centered first-order Baum-Welch statistics
as,

wutt = (I + T>Σ−1NT)−1T>Σ−1F, (11)
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where N is matrix consisting of the zero-order Baum-Welch statistics as the diagonal
elements; F is a vector whose elements are first-order Baum-Welch statistics; and Σ is
the residual variability, commonly created from the UBM covariances.

The extracted i-vectors contain channel information. In order to compensate the
effect of channel, probabilistic linear discriminant analysis (PLDA) is used to compute
the similarity between i-vectors of enrollment and test [70]. We use Gaussian PLDA
(GPLDA) in our experiment which models the within-class covariance by a full-rank
matrix.

The ASV score using PLDA is computed as the likelihood score given as,

ΛPLDA(wenroll,wtest) = log
p(wenroll,wtest|Hs)

p(wenroll|Hd)p(wtest|Hd)
, (12)

where wenroll and wtest are correspondingly the i-vectors of enrollment and test sen-
tences. Here Hs and Hd represent two hypotheses whether two i-vectors are from the
same speaker (Hs) or not (Hd).

In our experiment with i-vector system, we have randomly selected 20, 000 and 50, 000
speech files from VoxCeleb1 dev set for training the UBM and T-matrix, respectively.
The PLDA is trained with entire dev set consisting 148, 642 files from 1211 speakers. We
also apply linear discriminant analysis (LDA) to improve the speaker discriminativeness
of i-vectors with the same data as used in PLDA training. We fix the number of mixture
components to 512 and i-vector dimension to 400. The i-vectors are projected to 250
dimensions using LDA. We perform whitening and length normalization on i-vectors
before training GPLDA with 200 dimensional speaker subspace.

5.3.3. x-vector system

The x-vector system uses deep neural network to learn the speech representation in a
supervised manner unlike the unsupervised linear method used in i-vector approach [47].
The neural network consists of time-delay neural network (TDNN) along with statistical
pooling followed by fully connected layers. This architecture captures information from
a large temporal context from the frame-level speech feature sequences [71]. The TDNN
is a fixed-size convolutional neural network (CNN) that share weights along the temporal
dimension and it is regarded as 1D convolution (Conv1D) or temporal convolution [72].
The x-vector system is trained for speaker classification task at segment level. Finally,
the x-vectors are computed from the output of the first fully connected layer.

In our x-vector system implementation, we use five TDNN layers and three fully
connected layers as used in [47]. The details of the neural network configuration is
shown in Table 4.

We implemented the x-vector system with Python library Keras [73] using Tensor-
Flow [74] as backend. We use rectified linear unit (ReLU) [75] and batch normaliza-
tion [76] for all the five TDNN and two fully connected layers. We apply dropout with
probability 0.05 only on the two fully connected layers. The parameters of the neural
network are initialized with Xavier normal method [77]. The neural network is trained
using Adam optimizer [78] with learning rate 0.001, β1 = 0.9, β2 = 0.999 and without
weight decay. We train the neural network using speech segments of 1 seconds. We use
20-dimensional MFCCs computed with 20 filters. The MFCCs after dropping non-speech
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Table 4: Description of the layers in x-vector architecture.

Layer Details

TDNN-1 Conv1D (#filter = 256, kernel size = 5, dilation rate =1)

TDNN-2 Conv1D (#filter = 256, kernel size = 3, dilation rate =2)

TDNN-3 Conv1D (#filter = 256, kernel size = 3, dilation rate =3)

TDNN-4 Conv1D (#filter = 256, kernel size = 1, dilation rate =1)

TDNN-5 Conv1D (#filter = 1024, kernel size = 1, dilation rate =1)

Statistics pooling Computation of mean and standard deviation

FC1 Fully connected layer (256 nodes)

FC2 Fully connected layer (256 nodes)

Softmax Softmax layer with 1211 outputs

frames with SAD are processed with utterance-dependent cepstral mean normalization
(CMN). The x-vector systems are trained with batch size of 100. We use the minimum
validation loss as the stopping criteria. We consider entire VoxCeleb1 dev set consisting
1211 speakers (same data as i-vector extractor training). We used data augmentation as
used in standard x-vector system [47]. We extract 256-dimensional embeddings from the
fully connected layers (after batch normalization but before applying ReLU).

Table 5: Parameters of the cost function for NIST SREs and VoxCeleb1 corpora.

Corpus Cmiss Cfa Ptar

NIST SRE 2001 and 2002 10 1 0.01

VoxCeleb1 1 1 0.01

5.4. Performance evaluation

We evaluate ASV system performance with commonly used evaluation metrics: equal
error rate (EER) and minimum detection cost function (minDCF) computed from the
detection error trade-off (DET) curve [2, 79]. The EER is the point in DET curve where
the false alarm rate (FAR) and false rejection rate (FRR) are equal. On the other hand,
minDCF is computed by formulating a weighted cost function after assigning costs to
the error rates followed by minimization of the weighted cost function. The cost function
is defined as,

Cdet = Cmiss × Pmiss(θ)× Ptar + Cfa × Pfa(θ)× (1− Ptar), (13)

where Cmiss and Cfa are the cost of miss and false acceptance, respectively, Pmiss(θ)
and Pfa(θ) are the probabilities of miss and false acceptance at decision threshold θ,
and Ptar is the prior target probability. The values of Cmiss, Cfa and Ptar are chosen
according to the evaluation plan of the respective corpus [7, 65, 66] and their values are
shown in Table 5.

15



6. Results and discussion

6.1. Experiments on NIST SREs with GMM-UBM system

We evaluate the ASV performances on NIST SREs using GMM-UBM classifier. First,
we assess the performance with MFCC and baseline SFCC features for subsequent com-
parison with the proposed features on NIST SRE 2001 corpus. For SFCC methods, we
compute the scale using the development section of NIST SRE 2001 corpus. Table 6
shows the comparison between baseline MFCC, SFCC and proposed one (best one se-
lected among pitch estimation methods mentioned) which indicates that the proposed
one performs better than MFCC and SFCC in terms of both the evaluation metrics.

Table 6: Comparison of ASV system performances in terms of EER (in %) and minDCF×100 for MFCC,
SFCC, and the proposed features on NIST SRE 2001 corpus using GMM-UBM backend.

Feature EER(in %) minDCF×100

MFCC 7.70 3.39

SFCC (Baseline) 7.51 3.28

SFCC (Scale with pitch)

[80] 7.61 3.27

[81] 7.45 3.40

[82] 7.31 3.23

[83] 7.22 3.26

[55] 7.21 3.24

We also perform the experiment with data-driven filter shapes created with PCA-
based method. In Table 7, we have shown the ASV performance for different scales
where the filter is computed with PCA on the development data. We observe that the
ASV performance is relatively poor compared to the results with fixed triangular based
filters. Interestingly, the proposed scale based features are better than mel scale based
features. The pitch based ASV system yields lowest EER amongst all the three systems.

We further apply tapering window (here Hamming) on the subband spectrum before
performing PCA. The results are reported in Table 8. We observe noticeable improvement
compared to the results of untaperd case in Table 7. Interestingly, the performance
obtained with the data-driven filter shapes are sometimes better than the performance
with triangular filters. For instance, in case of MFCCs, the minDCFs (× 100) of the
triangular and data-driven filters are 3.39 (Table 6) and 3.35 (Table 8). Similarly, the
EER for pitch-based system reduces to 7.11% from 7.21% when windowed and PCA-
based data-driven filter is used instead of triangular filters. However, we do not observe
improvement in EER with after normalizing the filter response magnitudes though we
observe a reduction in cost function values.

We also conduct experiment with NIST SRE 2002 corpus to evaluate the generaliza-
tion ability of the proposed data-driven approach. In this case, the same development
data from the subset of NIST SRE 2001 corpus is used for computing the parameters
of data-driven feature extractor. The results are summarized in Table 9. We observe
that with triangular filter, mel-scaled filterbank always obtain lower EER and minDCF
than the data-driven scale based methods. The reason for this performance is due to
domain-mismatch as the scale is computed on the speech files from a different corpus,
i.e., NIST SRE 2001. However, we notice that the warping scale based on the selected
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Table 7: Comparison of ASV performances with PCA-based data-driven filters using different scales.
Results are shown in terms of EER (in %) and minDCF×100 on NIST SRE 2001 corpus using GMM-
UBM back-end.

Scale EER(in %) minDCF×100

Mel 8.69 3.86

Speech-based 8.39 3.61

Speech-based with pitch 8.38 3.66

Table 8: Same as Table 7 but with tapering Window applied on the subbands before applying PCA. We
also report the performance with magnitude normalized filters in the last row.

Scale EER(in %) minDCF×100

Mel 7.70 3.35

Speech-based 7.25 3.27

Speech-based with pitch 7.11 3.23

Speech-based with pitch (Normalized) 7.41 3.22

Table 9: Comparison of ASV performances with fixed (i.e, mel scale with triangular filter) and various
data-driven features on NIST SRE 2002 corpus. Performances are shown in terms of EER (in %) and
minDCF ×100 using GMM-UBM backend. Here, the scale is computed using development set of NIST
SRE 2001 corpus.

Filter Shape Scale EER (in %) minDCF ×100

Triangular

Mel 8.76 4.07

Speech-based 9.15 4.45

Speech-based with pitch 9.12 4.28

PCA

Mel 9.65 4.33

Speech-based 9.92 4.55

Speech-based with pitch 9.96 4.57

Window+PCA

Mel 8.42 4.04

Speech-based 9.15 4.34

Speech-based with pitch 8.75 4.25

Window+PCA+Norm.

Mel 8.48 4.03

Speech-based 9.29 4.29

Speech-based with pitch 8.91 4.33

Table 10: Comparison of ASV system performances in noisy conditions. Results are shown in terms of
EER (in %) and minDCF×100 on additive noise-corrupted NIST SRE 2002 corpus with GMM-UBM as
backend.

Methods EER(in %) minDCF×100

MFCC (Baseline) 18.27 8.04

Speech-based with triangular filter 16.63 7.64

Speech-based (pitch) with window & PCA-based filter 16.02 7.56

frames from pitch show improvement over the condition where the scale is computed on
all the speech frames (i.e., baseline SFCCs). The DET curves of ASV results of selected
features are illustrated in Fig. 6 and 7.
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Figure 6: The DET curves ASV system performance using different feature extraction methods on NIST
SRE 2001 corpus with GMM-UBM as backend.

Table 11: Comparison of ASV performances on VoxCeleb1 corpus with i-vector system. Results are
shown in terms of EER (in %) and minDCF×100 for features based on different scales. The scale is
computed on the development set of the VoxCeleb1 corpus.

Scale EER(in %) minDCF×100

Mel 9.95 0.747

Speech-based 9.71 0.786

Speech-based with pitch 9.52 0.721

Speech-based (pitch) with window & PCA-based filter 8.98 0.744

Table 12: Comparison of ASV performances when in-domain and out of domain (Librispeech and TIMIT)
are used for computing scale of data-driven filter. Results are shown in terms of EER (in %) and
minDCF×100 on VoxCeleb1 test set using i-vector and PLDA backend.

Corpus for scale computation EER(in %) minDCF×100

VoxCeleb1 (in-domain) 9.52 0.721

Librispeech 10.40 0.812

TIMIT 9.99 0.730

Even though we do not observe improvement with the data-driven scales, the perfor-
mances of mel scale based are improved with window and PCA based data-driven filters.
We can conclude that scale selection is more sensitive to the corpus selection whereas
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Figure 7: Same as Fig.6 but for NIST SRE 2002 corpus.

filter-responses computed from one dataset generalize well to other datasets.
Finally, the results on noisy conditions are shown in Table 10 and the corresponding

DET in Fig. 8. Here, we have found that the propose data-driven features are more
robust compared to the baseline MFCCs. The best performance in terms of EER is
obtained with data-driven feature where scale is computed from the selected frames with
pitch values and the filter shape is computed with windowed spectrum and PCA.

6.2. Experiments on VoxCeleb1

6.2.1. Performance evaluation with i-vector system

In our experiments with i-vector system on VoxCeleb1, first we compute the scale on
the entire development set consisting of 1211 speakers and report the results for different
scales in Table 11. We observe that the performance with feature using frame selection
based scale yields better performance in terms of both EER and minDCF. We obtain
more than 4.30% and 3.48% relative reduction for EER and minDCF, respectively. Fig. 9
shows the DET curve of the ASV system using VoxCeleb1 corpus. From this curve, we
find that the proposed features perform better than the other features in ASV task.

In Table 11, the scales are computed with entire development data which is com-
putationally expensive, especially for PCA-based filter shape computation. In the next
experiment, we examined the effect of amount of data for scale computation on the per-
formance of ASV system where we chose a small subset of speech utterances from the
entire set of 148642 files. We conducted the ASV experiments 10 times where every
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Figure 8: The DET curves of ASV systems based on different feature extraction methods on noise-
corrupted version of NIST SRE 2002 corpus using GMM-UBM as backend.

Table 13: Comparison of ASV performances with x-vector representation. Results are shown in terms
of EER (in %) and minDCF×100 on VoxCeleb1 test set.

Methods
Embeddings from FC1 Embeddings from FC2

EER (in %) minDCF×100 EER (in %) minDCF×100

MFCC 5.13 0.468 5.19 0.480

Proposed SFCC 5.03 0.468 4.96 0.502

Score Fusion 4.45 0.421 4.56 0.446

time 0.1% of the speech data are randomly selected. The ASV performances for this
randomly chosen small subsets are shown in Fig. 10. The figure also shows the perfor-
mance with baseline MFCCs and proposed method with full speech data. We observe
that filterbank parameters computed with 0.1% of the data shows lower EER than base-
line MFCCs. However, we do not observe improvements in minDCF. Interestingly, the
ASV performance with 100% of the data for scale computation only gives about 1% rel-
ative improvement (in terms of EER) over 0.1% data. To compare the performance with
out of domain data, we also conduct experiment where the data for scale formulation
is taken from corpus other than VoxCeleb1 in-domain data. We took speech data from
Librispeech [84] and TIMIT [85] for this purpose. We use the same VoxCeleb1 data for
computing parameters of UBM, T-matrix, LDA and PLDA. The results reported in Ta-
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Figure 9: The DET curves ASV systems based on different data-driven feature extraction methods on
VoxCeleb1 corpus with i-vector and PLDA-based scoring as backend.

ble 12 indicates that out of domain data considerably degrades the ASV performances.
We conclude that the proposed method should be applicable where limited in-domain
data is available.

6.2.2. Performance evaluation with x-vector system

For experiments with x-vector system, we chose baseline MFCCs and the proposed
data-driven feature extraction in which the warping scale and the filter parameters are
computed with development data from the VoxCeleb1 corpus. The results of x-vector sys-
tem with PLDA scoring are summarized in Table 13. In the state-of-the-art x-vector
system also, the proposed features are better than conventionally used MFCCs in terms
of EER. We showed the results when the embeddings are computed from the output of
FC1 and FC2. The improvement is observed for both cases. We did not find improve-
ment in terms of minDCF; however, the proposed features are better than MFCCs in
most of the operating points as shown in the DET curve in Fig.11.

Finally, we perform experiments with fused system where scores of MFCC and pro-
posed SFCC are combined with equal weights [86]. The performance is substantially
improved with fusion. In EER, we obtained relative improvement of 13.26% and 12.14%
over baseline MFCC, respectively for x-vector embeddings computed from FC1 and FC2.
This confirms the complementarity of proposed data-driven filterbank with mel filter-
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Figure 10: Error bar plot showing ASV performance on VoxCeleb1 where 0.1% of the total speech data
are randomly selected for computing filterbank parameters. The results are shown on VoxCeleb1 corpus
with i-vector back-end. The dotted horizontal line indicates the performance with baseline MFCCs and
continuous horizontal line denotes the performance with proposed method where 100% speech data are
used for computing the filterbank parameters.
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Figure 11: The DET curves of results of ASV system among MFCC, Proposed feature extraction methods
and score level fusion on VoxCeleb1 corpus using x-vector system where (a) using FC1 and (b) using
FC2.

bank.
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7. Conclusion

The filterbanks in most of the acoustic feature extraction modules are either hand-
crafted with some auditory knowledge or learned over a large dataset with some objec-
tives. In this work, we proposed to compute the MFCC filterbank in a data-driven way.
We improved the data-driven frequency warping scale by considering voiced frames hav-
ing pitch information. We demonstrated the superiority of the newly designed warping
scale for ASV tasks. We also computed frequency responses of the filters in a data-
driven manner from the subband power spectrum using PCA. We showed that both these
schemes reduce the speaker recognition error rates. We observed improvements in both
matched and mismatch conditions. The proposed feature extraction method is compati-
ble with the state-of-the-art x-vector systems and shows improvement over MFCC-based
ASV systems. The proposed method is computationally less expensive than DNN-based
data-driven methods. Also, it computes the filterbank parameters (i.e., filter edge fre-
quencies & frequency response) with a small amount of speech data without additional
metadata as opposed to the supervised methods which require a large amount of la-
beled data. We further improved the ASV performance by simple score fusion with an
MFCC-based system.

Even though the acoustic features computed with the proposed data-driven filters
show improvement over MFCCs, the performance of the proposed features substantially
degrades if in-domain audio-data is not available. However, domain-mismatch remains
an open challenge for other data-driven feature extractors, too. In future, we plan to
explore the data-augmentation methods for addressing the domain mismatch issue. We
can compute the filterbank from the augmented speech data and observe its robustness.
The objective of this work was not to optimize the number of filters and the amount
of overlaps with the adjacent filters. The present work can also be extended in that
direction. In this work, we develop the filterbank in a task-independent manner but its
application is limited to ASV in the current study. We also plan to adopt the proposed
data-driven filterbank for other potential speech processing tasks, such as language and
emotion recognition.
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