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Abstract

A kinetic theory describing chemical reactions on crystal surfaces is introduced.
Kinetic equations are used to model physisorbed-gas particles and chemisorbed par-
ticles interacting with fixed potentials and colliding with phonons. The phonons are
assumed to be at equilibrium and the physisorbed-gas and chemisorbed species equa-
tions are coupled to similar kinetic equations describing crystal atoms on the surface.
An arbitrary number of surface species and heterogeneous chemical reactions are
considered, covering Langmuir-Hinshelwood as well as Eley-Rideal mechanisms and
the species may be polyatomic. A kinetic entropy is introduced for the coupled sys-
tem and the H theorem is established. Using a fluid scaling and a Chapman-Enskog
method, fluid boundary conditions are derived from the kinetic model and involve
complex surface chemistry as well as surface tangential multicomponent diffusion.

Keywords : Kinetic theory; Gas-surface interaction; Surface reactions; Chapman-
Enskog; Fluid boundary conditions.

1 Introduction

Chemical reactions often occur at solid or liquid surfaces like in hypersonic reentry [1, 2,
3, 4, 5, 6], engine combustion [7], condensation and evaporation [8, 9, 10], or chemical
vapor deposition [11, 12]. Although the description of reactive surfaces using molecular
simulations [13, 14, 15] or macroscopic fluid models [16, 17, 18] has been highly successful,
there is still a need to develop kinetic models at the mesoscopic scale. These models may
be used in particular to derive fluid boundary conditions at reactive interfaces using the
Chapman-Enskog method.

Kinetic gas-surface models involving chemical reactions have traditionally been in-
vestigated by using Maxwell type boundary conditions with boundary partial densities
typically given by chemical equilibrium conditions, avoiding the complexities of gas sur-
face interactions. More refined models of gas-solid interfaces based on physical grounds
involve kinetic equations for gas particles interacting with a potential field and colliding
with phonons that describe the fluctuating part of the surface [19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31]. These models have been used to study condensation and evap-
oration, particle trapping, phonon drag, surface homogenization, or scattering kernels
[19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. Such physical models have recently
been extended to cover the situation of a single-species chemisorption [32, 33]. In this
work, a kinetic model for complex chemical reaction networks on crystal surfaces—also
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involving polyatomic species—is investigated expanding previous work [32, 33] as well as
preliminary results [34].

An arbitrary number of heterogeneous chemical reactions, physisorbed-gas species or
chemisorbed species—that may be monatomic or polyatomic—are considered. The crys-
tal is assumed to be monatomic for the sake of simplicity and the surface atoms may
either be free sites or else bonded to chemisorbed species. The kinetic Boltzmann equa-
tions take into account the interaction of gas particles with average surface potentials as
well as with phonons [20, 23, 27, 29, 30]. The potential fields are generated by fixed crys-
tal particles and the phonons describe the fluctuating part of the surface. The phonons
are assumed to be at equilibrium in this work for the sake of simplicity [20, 22, 24, 25]
although a kinetic equation for phonons could also be considered [19, 35, 36, 37]. The
physisorbed-gas, chemisorbed and crystal species kinetic equations are all coupled by
chemistry source terms. The surface chemistry will be assumed to be slow enough so
that the crystal surface essentially remains at physical equilibrium and only its chemical
composition is out of equilibrium.

Using the atomic site formalism of heterogeneous chemistry, the chemical reactions
are written in the form

∑

j∈Fr

Mj ⇄

∑

k∈Br

Mk, r ∈ R, (1.1)

where Mi is the symbol of the ith species that may either be a physisorbed-gas particle, a
chemisorbed particle, a crystal free site particle or a bonded crystal particle, r denotes the
reaction index and R the reaction indexing set. The sets Fr and Br denote respectively
the indices of reactants and products of the rth reaction. The chemical reactions are
described by using the atom site formalism that takes into account the crystal atoms,
even though macroscopically it may also be described by using the open site formalism
that formally hides the crystal atoms [17, 33]. The surface chemical reaction mechanism is
arbitrarily complex and covers adsorption, desorption, Langmuir-Hinshelwood as well as
Eley-Rideal reaction types. We first assume for the sake of simplicity that the chemisorbed
molecules only occupy one crystal site on the surface, that is, that adsorption processes
are monosite. The extension to the situation of multisite adsorption is then addressed
separately in an extra section. The system is assumed to be isothermal and the phonon
are consistently assumed to be at physical equilibrium as well as surface crystal atoms.
A modified kinetic entropy is introduced for the coupled system of kinetic equations and
an H theorem is established.

A Chapman-Enskog type expansion is introduced with a fluid scaling of the kinetic
equations. A multiscale asymptotic analysis is performed and the Stefan convection ve-
locity associated with overall mass production at the surface is naturally assumed to be
small. The inner structure of the physisorbate, the chemisorbate, and the crystal layers
are analyzed at zeroth order and closely related to interaction potentials. The gas species
diffusive fluxes and the Stefan gas flow at the surface then results from the physisorbed-gas
particles production by surface chemistry. The chemisorbed particles are also governed
at zeroth order by differential equations with surface chemistry source terms. The tra-
ditional species fluid boundary conditions for reactive surfaces are recovered and involve
heterogeneous chemistry production rates [16, 17, 18]. The dynamic boundary conditions
associated with the pressure tensor and the heat flux at the interface are also addressed.
We also establish the validity of the simpler open site formalism in order to describe the
macroscopic equations. With this formalism the crystal free site atoms as well as the
crystal atoms bonded to chemisorbed particles are removed and replaced by an open site
symbol that is massless and atomless.
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The inner structure of the physisorbate, the chemisorbate, and the free site layers are
further analyzed at first order. The linearized systems of differential-integral equations
that govern the perturbed distribution functions are found to differ from traditional half
space problems. The corresponding first order species fluid boundary conditions also
include extra terms associated with multicomponent tangential surface diffusion fluxes
that are investigated in the physisorbate and the chemisorbate. Finally, the extension
to multisite adsorption processes is investigated and the corresponding modified surface
equations and multicomponent diffusion fluxes are presented.

The kinetic model is presented in Section 2 and the asymptotic framework in Section 3.
Zeroth order expansions and species boundary conditions are investigated in Section 4
and the momentum and energy boundary conditions in Section 5. First order expansions
are considered in Section 6 and the extension to the situation of multisite adsorption is
addressed in Section 7.

2 A kinetic model

A kinetic model describing multicomponent gases nearby reactive crystal surfaces is pre-
sented. The kinetic equations involve monatomic or polyatomic particles interacting with
surface potential fields and colliding with phonons, [19, 20, 21, 22, 23, 32, 33, 34]. This
complex chemistry collisional formalism for surface reactions is new to the best of the
authors’ knowledge.

2.1 Kinetic equations for physisorbed-gas species

We consider a mixture of monatomic or polyatomic species indexed by Sg = {1, . . . ,ng}
where ng denotes the number of physisorbed-gas species. The particules may approach the
surface and be physisorbed but may also be chemisorbed by forming chemical bonds with
the crystal atoms. The chemisorbed species are different chemical species and are indexed
by Sc = {ng + 1, . . . ,ng + nc} where nc denotes the number of chemisorbed species. We
also consider the free sites crystal particles on the surface indexed by Ss = {ng+nc+ns},
where ns = 1 is the number of free site species, and the index of the free sites ng+nc+ns

will sometimes be denoted by ‘s’ for the sake of simplicity. Moreover, the crystal particles
bonded to the chemisorbed particles are indexed by Sb = {ng + nc + ns + 1, . . . ,ng +
nc + ns + nb} where nb denotes the number of bulk species. It is first assumed in this
work that the chemisorbed species only occupy one atom site on the crystal surface so
that there are as many bulk species as chemisorbed species nb = nc. The more complex
situation of multisite adsorption, where a chemisorbed species may be bonded to multiple
crystal atoms, is addressed separately in Section 7. The resulting species indexing set S
for heterogeneous chemistry is finally denoted by

S = Sg ∪ Sc ∪ Ss ∪ Sb = {1, . . . ,n}, (2.1)

where n = ng + nc + ns + nb is the total number of reactive species at the surface.
The Boltzmann equations governing physisorbed-gas species are in the form [19, 20,

21, 22, 23, 32, 33, 34]

∂tfi + ci ·∂xfi −
1

m i
∂xwi·∂ci

fi =
∑

j∈Sg

Jij(fi, fj) + Ji,ph(fi) + Ci, i ∈ Sg, (2.2)

where ∂t denotes the time derivative operator, i ∈ Sg the species index, fi(t,x, ci, i)
the ith species distribution function, ci the ith species particle velocity, i the energy
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quantum state of the ith species, ∂x the space derivative operator, m i the particle mass,
wi the interaction potential between fixed crystal particles and the particles of the ith
species, ∂ci

the velocity derivative operator, Jij the collision operator between the ith
and the jth physisorbed-gas species, Ji,ph the particle-phonon collision operator, and Ci
the chemistry source term. The solid surface is denoted by Σ and assumed to be planar
located at z = 0 with the spatial coordinates written x = (x, y, z)t and ez denotes the
base vector in the normal direction oriented towards the gas. The coordinate vector x is
also written x = (x , z)t where x = (x, y)t is the two dimensional vector of tangential
coordinates. Similarly the particle velocity ci is written ci = (ci , ciz)

t where ci denotes
the tangential two-dimentional velocity vector and ciz the normal velocity.

The particle collision operator Jij is in the traditional form [38, 39, 40, 41, 42, 43, 44]

Jij(fi, fj) =
∑

i
′∈Qi

j,j′∈Qj

∫ (
f ′if

′
j

aiiajj
aii′ajj′

− fifj

)
Wiji

′
j
′

ij dcjdc
′
idc

′
j, i, j ∈ Sg, (2.3)

where, in a direct collision, cj denotes the velocity of the collision partner, i and j the
energy quantum state before collision, c′i and c

′
j the velocities after collision, i

′ and j
′ the

energy states after collision, aii the degeneracy of the ith quantum state, Qi the indexing
set of the quantum energy states of the ith species, Wiji

′
j
′

ij the transition probability of
nonreactive collisions averaged over degeneracies and f ′i = fi(t,x, c

′
i, i

′). Only collision
operators Jij between physisorbed-gas species i, j ∈ Sg, are taken into account. The
following reciprocity relations are satisfied by the transition probabilities [38, 39, 40, 41,
42, 43, 44]

aiiajjW
iji

′
j
′

ij = aii′ajj′W
i
′
j
′
ij

ij . (2.4)

The collision terms Jij may be written equivalently in terms of collision cross sections
[38, 39, 40, 41, 42, 43, 44].

The phonon collision operator Ji,ph will be investigated in Section 2.5 and the reactive
operator Ci in Section 2.6. These collision operators Ji,ph and Ci for i ∈ Sg both vanish
far from the surface as well as the potentials wi in such a way that letting z → ∞ in
equation (2.2) yields the kinetic equations in the gas phase

∂tfgi + ci ·∂xfgi =
∑

j∈Sg

Jij(fgi, fgj), i ∈ Sg, (2.5)

where fgi(t,x, ci, i) denotes the gas distribution function of the ith species. The ki-
netic equation (2.5) is the standard Boltzmann equation for a mixture of monatomic or
polyatomic gases and there is thus a single kinetic framework describing both gas and
physisorbed mixtures, the gas equations being recovered far from the surface. No chemi-
cal reactions are considered in the gas phase for the sake of simplicity although they may
be included in the model.

2.2 Kinetic equations for chemisorbed and crystal species

The distribution functions for the chemisorbed, the free sites and the bulk species are
assumed to be governed by the kinetic equations [32, 33, 34].

∂tfi + ci ·∂xfi −
1

m i
∂xwi·∂csfi = Ji,ph(fi) + Ci i ∈ Sc ∪ Ss ∪ Sb, (2.6)

where fi(t,x, ci, i) denotes the ith species distribution function, ci the particle velocity, i
the energy quantum state, wi the interaction potential with fixed crystal particles (interior
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crystal particles for the crystal surface species), m i the particle mass, Ji,ph the particle-
phonon collision operator and Ci the reactive source term. Since the crystal is monatomic,
the crystal free site species as well as the bulk species—the crystal species that are bonded
to chemisorbed species—are monatomic. The phonon collision operator Ji,ph will be
investigated in Section 2.5 and the reactive operator Ci in Section 2.6. For the chemisorbed
species, Equations (2.6) are analogous to that used for physisorbed species—using the
corresponding chemisorption potential—and have a similar physical interpretation. They
are also in the form derived by Bogoliubov and Bogoliubov [45] as well as in the form of a
one-particle equation of the BBGKY hierarchy, as discussed in a quasi steady framework
by Cercignani [46], and analogous to kinetic equations describing lattice gases introduced
by Bogdanov et al. [23]. For the crystal species, the kinetic equations are further similar
to that of the chemisorbed species equation since for crystal growth phenomena the
chemisorbed layers are crystal layers. The equilibrium distributions associated with (2.6)
are the appropriate Maxwellian distributions constrained by the crystal potentials wi

in agreement with statistical physics at equilibrium [47, 48, 49, 50, 51]. For the bulk
species, the phonon collision term may also be interpreted as an overall relaxation operator
encompassing phenomena of different origins.

The surface layer Σ is the last layer of crystal atoms located around z = 0 and is
constituted by free site particles as well as bulk crystal particles bonded to chemisorbed
species with distribution fσ = fs+

∑
i∈Sb

fi. We introduce for convenience the standard or

unperturbed surface layer distribution function f eσ that is solution of the kinetic equation

∂tf
e
σ + cσ ·∂xf

e
σ − 1

m σ
∂xwσ·∂cσf

e
σ = Jσ,ph(f

e
σ), (2.7)

wherewσ = wi for any i ∈ Ss∪Sb denotes the interaction potential between fixed internal
crystal particles and crystal surface particles, m σ the particles mass, and Jσ,ph the crystal
particle-phonon collision operator. The standard surface distribution function f eσ is that
of an unperturbed crystal surface layer. The probability 1− θ to find an open site on the
surface layer Σ is defined as the ratio

1− θ =
fs
f eσ
. (2.8)

The quantity θ is usually termed the coverage and represents the probability that a site
is occupied by a chemisorbed particle in the monolayer chemisorbate. The probability of
free sites 1− θ is defined here as a kinetic variable and will be shown to only depend on
time t and tangential coordinate x at zeroth order.

2.3 Summed potentials

The interaction potentials summed over fixed crystal particles wi, i ∈ S, are assumed

to only depend on the normal coordinate z for the sake of simplicity. These potentials
are written in the form wi = wi(z/δ), where δ is a characteristic range of the surface
potential also characteristic of the range of gas-phonon interaction and ζ = z/δ is the
corresponding rescaled normal coordinate. The potentials for the physisorbed-gas species
are such that

lim
ζ→0

wi(ζ) = +∞, lim
ζ→+∞

wi(ζ) = 0, i ∈ Sg. (2.9)

These potentials go to zero in the gas phase and explode at ζ = 0, repelling all particles
from the crystal surface. On the other hand, the potentials for the surface species are
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such that

lim
ζ→ζ−i

wi(ζ) = +∞, lim
ζ→ζ+i

wi(ζ) = +∞, i ∈ Sc ∪ Ss ∪ Sb, (2.10)

where ζ−i and ζ+i are fixed ζ coordinates, so that for any i ∈ Sc ∪ Ss ∪ Sb the ith species
is localized over (ζ−i , ζ

+
i ). For the sake of simplicity, the crystal surface particles are

assumed to have the same potential wj = wσ with j ∈ Ss ∪ Sb, and are thus localized
over the same interval (ζ−j , ζ

+
j ) = (ζ−σ , ζ

+
σ ). We also assume that for any chemisorbed

species i ∈ Sc we have ζ−σ < ζ−i ≤ 0 < ζ+σ < ζ+i . These interaction potentials usually
involve an attractive zone and a repulsing zone as Lennard-Jones potentials integrated
over all crystal particles as illustrated in Figure 1. The potentials of physisorbed-gas
particles and the corresponding chemisorbed particles may also be interpreted as slices
of potential energy surfaces [33].

Physisorbed-gas

Chemisorbed
Surface

P
ot
en
ti
al

en
er
gy

ζ

Figure 1: Typical surface interaction potentials as function of the distance from surface
in arbitrary units.

Since the summed potentials only depend on z, periodic potential variations parallel to
the surface are neither taken into account for chemisorbed species nor for crystal species.
Similarly, lateral interactions between chemisorbed species, usually of van de Waals type,
are not taken into account. The surface potential wi, i ∈ S, are also assumed to be
independent of the presence of chemisorbed species for the sake of simplicity—and thus
independent of the coverage θ—so that in particular wσ = wi for i ∈ Ss ∪ Sb. In the
same vein, dense gas effects between physisorbed species [52] are not considered in the
kinetic model as well as sublimation or deposition reactions of crystal atoms [11, 12].
These simplifications are notably feasible when the chemisorbed species are of relatively
small size, and the surface mole fractions are small so that the coverage of the surface θ
is low.

Physisorption interaction potentials may be evaluated from standard potentials sum-
med over lattices whereas chemisorption potentials are generally associated with quantum
chemistry models [15, 53]. Experimental methods may be used to evaluate such adsorp-
tion potentials but quantum mechanical simulations using the density functional theory
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is the most reliable tool for a detailed description of adsorption and surface reaction
[15, 54, 55, 56, 57, 58, 59, 60]. An alternative procedure may be the semi-empirical
Reaxff method that has already been used in order to describe surface chemical reac-
tions [61, 62]. Physisorption and chemisorption potentials may then be extracted from
quantum simulations of adsorption phenomena.

2.4 Maxwellians

The species distribution functions at physical equilibrium are given by f ei = nimi where ni
denotes the number of particle per unit volume, mi the wall Maxwellian of the ith species
and the superscript e stands for physical equilibrium. The wall Maxwellian distribution
is in the form

mi =
( m i

2πkBTw

)3/2 aii
z
int
i

exp
(
−m i|ci|2

2kBTw
− eii

kBTw

)
, i ∈ S, (2.11)

where m i denotes the mass of the ith species, kB the Boltzmann constant, Tw the wall
temperature, aii the degeneracy of the ith state, zinti the internal partition function of the
ith species, and eii the energy of the ith species in the ith state. The internal partition
function z

int
i of the ith species is given by

z
int
i =

∑

i∈Qi

aii exp
(
− eii

kBTw

)
. (2.12)

We introduce for convenience the modified Maxwellian distributions

mi = mi exp(−wi/kBTw), i ∈ S, (2.13)

that may be written

mi =
( m i

2πkBTw

)3/2 aii
z
int
i

exp
(
−m i|ci|2

2kBTw
− eii +wi

kBTw

)
. (2.14)

These modified Maxwellian distributions mi, i ∈ S, will play a role in the analysis of the
reactive surface layer. With the inclusion of the interaction potential wi, the distribution
mi is indeed such that

∂tmi = 0, ci·∂xmi −
1

m i
∂xwi·∂ci

mi = 0, i ∈ S, (2.15)

and it will also be later established that Ji,ph(mi) = 0. These modified Maxwellian
distributions mi, i ∈ S, thus appear as natural solutions of thin layer kinetic equations in
a potential field with phonon interactions or equivalently as natural solutions of the steady
nonreactive kinetic equations. Decomposing between parallel and normal directions with
respect to Σ we may further write

∂tmi = 0, ∂ mi = 0, ciz ∂zmi −
1

m i
∂zwi ∂cizmi = 0, i ∈ S, (2.16)

where ∂ denotes the tangential spatial derivative operator, ciz the normal velocity of the
ith species, ∂z the normal spatial derivative, and ∂ciz the differential operator with respect
to ciz. The modified Maxwellian distributions also play a key role in the expression of
the reactive collision term Ci and in the kinetic entropy.
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Considering further the unperturbed surface layer distribution f eσ, it will be estab-
lished in the following that

f eσ = nσmσ, (2.17)

where nσ denotes the number density of the surface layer and mσ the Maxellian distri-
bution defined as (2.11). The number of surface molecules par unit volume nσ will be
shown to be in the form

nσ = nσ exp
(
− wσ

kBTw

)
, (2.18)

where nσ is a constant characteristic of the crystal and its orientation so that f eσ = nσmσ

with mσ defined as (2.13). From (2.17) and (2.18) the standard distribution f eσ is indeed
solution of (2.7) and we have ∂tf

e
σ = 0, cσ ·∂xf

e
σ − 1

m σ
∂xwσ·∂cf

e
σ = 0, and Jσ,ph(f

e
σ) = 0

as for the modified Maxwellian distributions. One may also define the number density
per unit surface

ñσ =

∫
nσ dz = nσ

∫
exp
(
− wσ

kBTw

)
dz, (2.19)

that represents the number of surface atoms per unit surface and is also characteristic of
the crystal surface. A similar notation is introduced for any surface species with

ni =

∫
fi dci, ñi =

∫
ni dz, i ∈ Sc ∪ Ss ∪ Sb, (2.20)

so that ñi represents the number of particles of species i per unit surface, keeping in mind
that chemisorbed species and surface crystal species are localized in space.

2.5 Phonon collision operators

The operator Ji,ph describing collisions between particles of species i and phonons is in
the general form [19, 35, 36, 37]

Ji,ph =
∑

i
′∈Qi

∫ ((
fph(q) + 1

)
fi(c

′
i, i

′)
aii
aii′

− fph(q)fi(ci, i)
)
W

i,i′

i,ph dc
′
idq, (2.21)

where fph(q) denotes the phonon distribution function, i ∈ S the species index, q the
phonon wave vector or quasi-momentum, ci and c

′
i the particle velocities before and after

the interaction, i and i
′ the quantum energy states before and after the interaction, and

W
i,i′

i,ph a transition probability average over degeneracies. Note that the dependence on t
and x of the distribution functions has been left implicit to simplify notation and that
the phonon collision operator is presented in more details in Appendix A. The dilute
approximation has been used for fi in order to simplify (2.21) and the appearing of the
additional factor 1 in the gain term is a typical quantum effect [19, 35, 36, 37]. The

transition probabilities satisfy reciprocity relations aiiW
i,i′

i,ph = aii′W
i
′,i
i,ph similar to that

of nonreactive collision terms. The operator (2.21) corresponds to collisions such that
m ici = m ic

′
i + q + b where b is a vector of the reciprocal crystal lattice and there is

another operator associated with collisions such that m ici + q = m ic
′
i + b that leads to

the same type of simplified source term Ji,ph and the corresponding details are omitted.
The equilibrium relation between distribution functions corresponding to (2.21) reads

(
f eph(q) + 1

)
f ei (c

′
i, i

′)
aii
aii′

= f eph(q)f
e
i (ci, i), (2.22)

where the superscript e stands for physical equilibrium. The equilibrium distribution for
the phonons f eph is the Bose-Einstein distribution and the equilibrium distribution for the
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ith species f ei is given by f ei = nimi where ni denotes the number of particles per unit
volume, and mi the wall Maxwellian distribution for any i ∈ S, [35, 36, 37]. Dividing
then the integrand in the collision term (2.21) by the factor

(
f eph(q)+1

)
mi(c

′
i, i

′)aii/aii′ =
f eph(q)mi(ci, i) and further assuming that phonons are at equilibrium f eph = fph, it is
obtained that

Ji,ph(fi) =
∑

i
′∈Qi

∫( fi(c′i, i′)
mi(c′i, i

′)
− fi(ci, i)

mi(ci, i)

)
W

i,i′

i,phdc
′
i, (2.23)

where Wi,i′

i,ph = mi(ci, i)
∫
f eph(q)W

i,i′

i,phdq denotes the resulting transition probability. The
assumption that phonons are at equilibrium is often used in the literature [20, 22, 24, 25]
and the Boltzmann equilibrium distribution for internal energies is also due to the inter-

action with phonons. The transition probability W
i,i′

i,ph satisfies the reciprocity relation

W
i,i′

i,ph = W
i
′,i
i,ph and is nonzero only in the neighborhood of the surface [19, 20]. The op-

erators Ji,ph are sometimes simplified as Ji,ph(fi) = −(fi − nimi)/τi where the relaxation
time τi only depends on the reduced normal coordinate ζ [20, 22, 24, 25].

2.6 Reactive collision operators

The rth surface chemical reaction is written in the form (1.1) where Fr and Br denote
the indices for the reactants and products counted with their order of multiplicity and
R is the set of reaction indices. The letters Fr and Br are mnemonics for forward and
backward directions and we denote by f

r and b
r the indices of the quantum energy

states of the reactants and products. We also denote by νfwir and νbkir the stoichiometric
coefficients of the ith species in the rth reaction in the forward and backward directions,
that is, the multiplicity of species i in Fr and Br, respectively, and by νir = νbkir − νfwir
the overall stoichiometric coefficient of the ith species in the rth reaction. With the
atomic site convention, the reacting species are the physisorbed-gas species indexed by
Sg, the chemisorbed species indexed by Sc, the crystal free site species indexed by Ss
and the bulk species indexed by Sb, that is, the crystal molecules are included in the
reaction mechanism. All particles involved in reactive collisions are thus properly taken
into account in the symbolic description of the chemical reaction (1.1) so that it may be
used in a kinetic framework [32, 33, 34].

The surface reactions (1.1) conserve the atoms associated with gaseous species, the
number of sites as well as the crystal atoms [42, 17, 63, 64]. More specifically, denoting
by Ag the sets of atoms associated with physisorbed-gas or chemisorbed particles and by
ail the number of lth atoms in the ith species, then the stoichiometric coefficients satisfy

∑

i∈S

ailνir = 0, r ∈ R, l ∈ Ag, (2.24)

where we have set ail = 0 for i ∈ Ss ∪ Sb and l ∈ Ag. In addition, the conservation of
crystal atoms reads ∑

i∈Sb

νir + νsr = 0, r ∈ R, (2.25)

and that of surface sites ∑

i∈Sc

νir + νsr = 0, r ∈ R. (2.26)

It is then convenient to extend the gas atom indexing set Ag into A = Ag ∪ {S,C} where
C denotes the crystal atom, S is a symbol for the site atom, and to define aiS = 1 if
i ∈ Sc ∪ Ss, aiS = 0 if i ∈ Sg ∪ Sb, and aiC = 1 if i ∈ Ss ∪ Sb, aiC = 0 if i ∈ Sg ∪ Sc, so
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that the conservation of all atoms (2.24)–(2.26) reads
∑

i∈S ailνir = 0 for any r ∈ R and
any l ∈ A and includes site conservation.

There is another symbolic way of describing heterogeneous chemical reactions where
all the crystal molecules Mi for i ∈ Ss ∪ Sb are removed and where the free sites species
Mng+nc+1 is replaced by an open site symbol O that is massless and atomless [16, 17].
These two symbolic descriptions of surface chemical reactions are equally valid for a
macroscopic description of surface chemistry but only the atomic site convention is useful
in order to describe reactive collisions.

The reactive collision term for the ith species may be decomposed into

Ci(f) =
∑

r∈R

Cr
i (f), (2.27)

where Cr
i (f) represents the contribution of the rth reaction. The reactive collision term

Cr
i (f) associated with (1.1) is written as for gas phase reactions [65, 66, 63, 42, 43]

Cr
i (f) = νfwir

∑

f
r
i
, br

∫ (
Wb

r
f
r

B
r
F
r

∏

k∈Br

fk −Wf
r
b
r

F
r
B
r

∏

j∈Fr

fj

) ∏

j∈Fr
i

dcj
∏

k∈Br

dck

− νbkir
∑

f
r,br

i

∫ (
Wb

r
f
r

B
r
F
r

∏

k∈Br

fk −Wf
r
b
r

F
r
B
r

∏

j∈Fr

fj

) ∏

j∈Fr

dcj
∏

k∈Br
i

dck, (2.28)

where Wf
r
b
r

F
r
B
r denotes the transition probability that a collision between the reactants Fr

with energies fr lead to the products Br with energies br, Fr
i the subset of Fr where the

index i has been removed once with similar notation for Br
i , f

r
i
and b

r
i
. The summation

over f
r in (2.28) represents the sum over all quantum indices j for all j ∈ Fr with

similar conventions for f
r
i
, br, and b

r
i
. The distributions fk are given by fk = fk when

k ∈ Sg ∪ Ss ∪ Sc and fk = fσ when k ∈ Sb. The surface distribution fσ need to be used
for bulk species since the chemisorbed molecules may collide with any atom of the crystal
surface [33]. The following reciprocity relations hold between transition probabilities
[65, 66, 63, 42, 43]

Wb
r
f
r

B
r
F
r

∏

j∈Fr

βjj = Wf
r
b
r

F
r
B
r

∏

k∈Br

βkk, (2.29)

where βii = h3
p
/(aiim

3
i ) and hp is the Planck constant, and generalize the relation (2.4)

between nonreactive transition probabilities. The collision term (2.28) is similar to typical
reactive terms associated with gas phase chemical reactions [63, 42, 43] and naturally
involves collisions between physisorbed-gas particles, chemisorbed particles, crystal free
sites particles and crystal bulk particles. The operator Ci is local in space as typical
collision operators and the distribution functions are three dimensional in space. Reactive
transition probabilities for surface reactions may generally be extracted from quantum
mechanical simulations using the density functional theory [15, 55, 56, 57, 58, 59, 60, 61,
62].

In order to simplify the reactive source term, we further observe that, at chemical

equilibrium, the statistical equilibrium relation holds

Wf
r
b
r

F
r
B
r

∏

j∈Fr

fcej = Wb
r
f
r

B
r
F
r

∏

k∈Br

fcek , (2.30)

where the chemical equilibrium distributions fcei , i ∈ S, are given by fcei = ncei mi, when
i ∈ Sg ∪Ss ∪Sc with ncei denoting the chemical equilibrium value of ni, and by fcei = fei =
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f eσ = nσmσ for i ∈ Sb since nceσ = neσ = nσ remains constant in time. The superscript ce

denotes chemical equilibrium whereas the superscript e denotes physical equilibrium.
Using then the equilibrium relation (2.30), we may write the reactive source term as

Cr
i (f) = νfwir

∑

f
r
i
,br

∫ (∏

k∈Br

fk

fcek
−
∏

j∈Fr

fj

fcej

)
Wf

r
b
r

F
r
B
r

∏

j∈Fr

fcej

∏

j∈Fr
i

dcj
∏

k∈Br

dck

− νbkir
∑

f
r,br

i

∫ (∏

k∈Br

fk

fcek
−
∏

j∈Fr

fj

fcej

)
Wf

r
b
r

F
r
B
r

∏

j∈Fr

fcej

∏

j∈Fr

dcj
∏

k∈Br
i

dck. (2.31)

In order to simplify the reaction collision terms, we now assume that the surface distribu-
tion fk = fσ involved for the bulk species k ∈ Sb remains at physical equilibrium fσ = f eσ.
However, the surface distribution at physical equilibrium coincide with that at chemical
equilibrium f eσ = f ceσ . The chemical production rates are then in the form

Cr
i (f) = νfwir

∑

f
r
i
, br

∫ (∏

k∈Br

fk
f cek

−
∏

j∈Fr

fj
f cej

)
Wf

r
b
r

F
r
B
r

∏

j∈Fr

fcej

∏

j∈Fr
i

dcj
∏

k∈Br

dck

− νbkir
∑

f
r,br

i

∫ (∏

k∈Br

fk
f cek

−
∏

j∈Fr

fj
f cej

)
Wf

r
b
r

F
r
B
r

∏

j∈Fr

fcej

∏

j∈Fr

dcj
∏

k∈Br
i

dck, (2.32)

where the overbar indexing sets Fr and Br are obtained by removing any occurence of
the bulk species in Fr and Br.

On the other hand, at chemical equilibrium, we have equality of the chemical poten-
tials according to the chemical reaction (1.1)

∑

j∈Fr

µcej =
∑

k∈Br

µcek , r ∈ R, (2.33)

where µcei denotes the chemical potential of the ith species at chemical equilibrium. This
relation may also be written

∑

i∈S

νfwir µ
ce
i =

∑

i∈S

νbkir µ
ce
i , r ∈ R. (2.34)

The chemical potentials, that take into account the interaction potentials wi, are in the
form

µi = µini +
wi

kBTw
, (2.35)

where µini is the intrinsic species chemical potential [48, 49, 50]. The intrinsic chemical
potential is given by the usual formula µini = gi/kBT = log(ni/zi) where gi denotes the
Gibbs function of the ith species, zi the partition function per unit volume and ni is
the local number density with the influence of the force field [48, 49, 50]. For the bulk
species i ∈ Sb we also have the chemical potential µini = log(nσ/zi) since collision may
occur with any crystal particle on the surface. These effective chemical potentials µi for
i ∈ Sb yields activity coefficients for bulk species that are constants in agreement with
heterogeneous surface chemistry [16]. The partition functions are in the form zi = z

tr
i z

int
i

where z
tr
i is the translational partition function of the ith species par unit volume and

z
int
i the internal energy partition function. The translational partition functions are given
by z

tr
i = Λ−3

i where Λi = hp/(2πkBm iTw)
1/2 denotes the thermal de Broglie wavelength

of the ith species and hp the Planck constant.
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After some algebra, using the equilibrium condition (2.33), the atom conservation
relations (2.25)(2.26) as well as

fk
f cek

=
1

exp(µcek )

fk
mkzk

, k ∈ Sg ∪ Sc ∪ Ss = S\Sb, (2.36)

the source term is obtained in the form

Cr
i (f) = νfwir

∑

f
r
i
,br

∫ (∏

k∈Br

γk
zk

−
∏

j∈Fr

γj
zj

)
Ŵf

r
b
r

F
r
B
r

∏

j∈Fr
i

dcj
∏

k∈Br

dck

− νbkir
∑

f
r,br

i

∫ (∏

k∈Br

γk
zk

−
∏

j∈Fr

γj
zj

)
Ŵf

r
b
r

F
r
B
r

∏

j∈Fr

dcj
∏

k∈Br
i

dck, (2.37)

where

γk =
fk
mk

k ∈ Sg ∪ Sc ∪ Ss = S\Sb, γk = nσ, k ∈ Sb, (2.38)

and

Ŵf
r
b
r

F
r
B
r = Wf

r
b
r

F
r
B
r

∏

j∈Fr

1

βjj
exp
(
−m j|cj |2

2kBTw
− ejj +wj

kBTw

)
, (2.39)

are rescaled transition probabilities such that Ŵf
r
b
r

F
r
B
r = Ŵb

r
f
r

B
r
F
r .

2.7 Collisional invariants

Collision invariants in kinetic models are closely related with macroscopic conserva-
tion laws. Since the model involves different types of collisions, represented by differ-
ent collision integral operators, as well as different type of particles, several collisional
invariants may be introduced. We generally define the functions ψl associated with
particle numbers ψl = (δil)i∈S , l ∈ S, where δil denotes the Kronecker symbol, mo-
mentum in three dimensions ψn+ν = (m iciν)i∈S , ν ∈ {1, 2, 3}, as well as total energy
ψn+4 = (12m i|ci|2 + eii +wi)i∈S .

Mass, momentum, and energy is conserved in binary collisions between physisorbed-
gas particles, associated with the collision operators Jij , i, j ∈ Sg, so that ψl for l ∈
Sg, and l = n + 1,n + 2,n + 3,n + 4 are collisional invariants of the physisorbed-gas
mixture. Moreover, for the physisorbed-gas species, only the first ng components of these
invariants are relevant and we may define ψl

g = (δil)i∈Sg , l ∈ Sg, ψ
n+ν
g = (m iciν)i∈Sg ,

ν ∈ {1, 2, 3}, as well as ψn+4
g = (12m i|ci|2+eii+wi)i∈Sg . The fluid governing equations in

the physisorbate-gas are then obtained by taking moments of Boltzmann equations (2.2)
using the physisorbed-gas scalar product

〈〈ξ, ζ〉〉 =
∑

i∈Sg

i∈Qi

∫
ξi ⊙ ζi dci, (2.40)

where ξ = (ξi)i∈Sg , ζ = (ζi)i∈Sg and ξi ⊙ ζi is the maximum contracted product between
tensors ξi and ζi.

We further define the atoms invariants as ψ̃l = (ail)i∈S , l ∈ A, where ail denotes the
number of atoms of type l in the molecule of type i for i ∈ S and l ∈ A, and A the set of
all atoms associated with gas particles, crystal atoms and surface site [63]. Since atoms,
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momentum, and energy are conserved in reactive collisions, the invariants of the chemical
operators Ci, i ∈ S, are then ψ̃l, l ∈ A, and ψl for l = n+ 1,n + 2,n + 3,n+ 4.

On the other hand, contrarily to particle-particle collision operators, momentum and
energy are not conserved by the collision operators with phonons Ji,ph, since it may be
given to phonons that are assumed to be at equilibrium. The operators Ji,ph only conserve
the number of particles with the invariant ψl = (δil)i∈S for l ∈ S. Incidentally, when a
kinetic equation is used to describe the phonons, energy is conserved during collisions
between phonons and particles but not necessarily momentum because of the umklapp
process [35].

2.8 Kinetic entropy

The kinetic entropies compatible with the phonon collision operators Ji,ph are slightly
different from the traditional expressions. The origin of this modification is that phonons
are assumed to be at equilibrium and the collision terms Ji,ph for i ∈ S have been
simplified accordingly. However, since phonons are interacting with gas particles as well
as chemisorbed particles, there should be a phonon entropy increase associated with this
interaction. Such an increase of phonon entropy having being discarded, it is natural that
the corresponding terms are missing in the total entropy production. In order to solve
this technical difficulty, modified entropies have to be introduced [67, 68]. The modified
entropies are generally not anymore required when phonons kinetic equations are taken
into account [36, 37]. These modified entropies are further enriched in this work in order
to take into account the species interaction potentials wi, i ∈ S, as well as the entropy
associated with chemisorbed and crystal species.

The kinetic entropies per unit volume associated with the physisorbed-gas particles,
the chemisorbed particles, and free sites are defined by

Skin
i = −kB

∑

i∈Qi

∫
fi
(
log(fi/mizi)− 1

)
dci, i ∈ Sg ∪ Sc ∪ Ss = S\Sb, (2.41)

the entropies associated with the bulk species by

Skin
i = −kB

∫
fi log(nσ/zi) dci, i ∈ Sb, (2.42)

and the total entropy by

Skin =
∑

i∈S

Skin
i . (2.43)

Multiplying the Boltzmann equation (2.2) by log(fi/mizi), integrating with respect
to dci, and summing over i ∈ Qi for i ∈ Sg ∪ Sc ∪ Ss = S\Sb, multiplying the kinetic
equation (2.6) by log(nσ/zi), integrating with respect to dci, for i ∈ Sb, and adding the
resulting balance laws, and using (2.15), we obtain a balance equation for Skin in the
form

∂tSkin + ∂x·F
kin = vkin, (2.44)

where F
kin is the kinetic entropy flux

F
kin = −kB

∑

i∈S\Sb

i∈Qi

∫
cifi

(
log(fi/mizi)− 1

)
dci − kB

∑

i∈Sb

∫
cifi log(nσ/zi) dci, (2.45)
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and vkin denotes the kinetic entropy source term. This entropy source term vkin may be
split as vkin = vJ + vph + vC where

vJ =− kB
∑

i,j∈Sg

i∈Qi

∫
Jij(fi, fj) log(fi/mizi) dci, (2.46)

vph =− kB
∑

i∈S\Sb

i∈Qi

∫
Ji,ph(fi) log(fi/mizi) dci − kB

∑

i∈Sb

∫
Ji,ph(fi) log(nσ/zi) dci, (2.47)

and

vC = −kB
∑

i∈S\Sb

i∈Qi

∫
Ci log(fi/mizi) dci − kB

∑

i∈Sb

∫
Ci log(nσ/zi) dci. (2.48)

We now investigate the sign of entropy production terms and first consider the produc-
tion vJ arising from the non reactive operators Jij , i, j ∈ Sg associated with physisorbed-
gas particles. We note that the factors log(fi/mizi) may be simplified as log fi since(
log(mizi)

)
i∈Sg

is a collisional invariant. The resulting entropy production vJ thus coin-

cides with the traditional expression and using standard arguments from kinetic theory,
it is obtained that

vJ =
kB
4

∑

i,j∈Sg

∑

i,i′∈Qi

j,j′∈Qj

∫
Υ
(
fifj, f

′
if

′
j

aiiajj
aii′ajj′

)
Wiji

′
j
′

ij dcidcjdc
′
idc

′
j , (2.49)

where Υ denotes the nonnegative function Υ(x, y) = (x − y)(log x − log y). Considering
next the entropy production vph due to the interaction with phonons, we note that the
factors log(fi/mizi) may be simplified into log(fi/mi) since log zi is independent of ci
whereas the factors log(nσ/zs) yields zero contributions since they are independent of the
species velocities. Using standard arguments from kinetic theory, it is then obtained after
some algebra that

vph =
kB
2

∑

i∈S\Sb

∑

i,i′∈Qi

∫
Υ
(
fi/mi, f

′
i/m

′
i

)
Wi,ph dci dc

′
i. (2.50)

Note that the bulk species contributions in the above sum vanish since the surface is as-
sumed to be at physical equilibrium. Considering finally entropy production vC associated
with reactive collisions, it is obtained after some algebra that

vC = kB
∑

r∈R

∑

f
r ,br

∫
Υ
( ∏

j∈Fr

γj
zj
,
∏

k∈Br

γk
zk
,

)
Ŵf

r
b
r

F
r
B
r

∏

j∈Fr

dcj
∏

k∈Br

dck, (2.51)

where the reduced distributions γk are given in (2.38). Since the function Υ only takes
nonnegative values, we conclude that all quantities vJ , vph, and vC are nonnegative terms.
All collisions, nonreactive or reactive, thus lead to nonnegative entropy production. The
Boltzmann equations (2.2) and (2.6) are thus compatible with the Boltzmann H theorem
and lead to a dissipative structure of the reactive surface at the molecular level.
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3 Multiscale framework

In order to investigate reactive fluid boundary conditions, a fluid scaling of the kinetic
equations (2.2) is introduced along with a multiscale framework. Introducing a kinetic

scaling would be of high scientific interest but lay beyond the scope of the present work.

3.1 Fluid scaling

We denote by T ⋆ a characteristic temperature, n⋆ a characteristic number density, m⋆

a characteristic particle mass, and τ⋆ a characteristic collision time. We write v⋆ =
(kBT

⋆/m⋆)1/2 the characteristic thermal velocity, f⋆ = n⋆/v⋆3 the characteristic particle
distribution, λ⋆ = τ⋆v⋆ the characteristic mean free path, W⋆ = 1/(n⋆τ⋆v⋆6) the charac-
teristic transition probability for inert collisions. We also denote by τ⋆f a characteristic
fluid time with l⋆ = τ⋆f v

⋆ the corresponding fluid length. We also introduce a charac-
teristic time for phonon interaction τ⋆ph that is easily related to characteristic transition

probabilities W⋆
i,ph with 1/τ⋆ph = W⋆

i,phv
⋆6 for i ∈ S, as well as a typical length δ⋆ charac-

teristic of the range of the surface potential, that is, the distance normal to the surface
where the quantities wi and Wi,ph, are significant.

Dividing the kinetic equations by n⋆/τ⋆f v
⋆3, the resulting rescaled kinetic equations

involve—after some algebra—the dimensionless parameters

ǫκ =
τ⋆

τ⋆f
=
λ⋆

l⋆
, ǫph =

τ⋆ph
τ⋆f
, ǫ =

δ⋆

l⋆
. (3.1)

The characteristic times and lengths at the solid/gas interface are generally such that
τ⋆ph ≤ τ⋆ ≪ τ⋆f and δ⋆ ≤ λ⋆ ≪ l⋆ and ǫκ represents the species Knudsen number [20].
Since our aim is to derive fluid boundary conditions, it is assumed in this work that the
small parameters ǫκ, ǫph, and ǫ are of the same asymptotic order of magnitude in the
sense

ǫκ = ακ ǫ ǫph = αph ǫ, (3.2)

where αph and ακ are positive constants. From a physical point of view, it means that
particle collisions and phonons interactions are considered to be fast in comparison with
fluid time and that both the mean free path λ⋆ and the surface potential characteristic
range δ⋆ are considered to be small in comparison with the fluid length l⋆. Note that it
is incidentally assumed that all species have comparable masses, collision frequencies and
phonon interaction frequencies. This scaling may be seen as the simplest fluid scaling for
the reactive surface layer model and it is a natural choice since we want to study fluid
boundary conditions at a reactive interface.

Keeping in mind that the potential wi only depends on z, the kinetic equation gov-
erning fi is obtained in the form

∂tfi + ci ·∂ fi + ciz ∂zfi−
1

m i
∂zwi ∂cizfi =

1

ακǫ

∑

j∈Sg

Jij(fi, fj)

+
1

αphǫ
Ji,ph(fi) + Ci, i ∈ S, (3.3)

where fi denotes the distribution function, ci the tangential velocity of the ith species
with ci = (ci , ciz)

t, ∂ the tangential spatial derivative operator, ciz the normal velocity
of the ith species, ∂z the normal spatial derivative, ∂ciz the differential operator with
respect to ciz, Jij the particles collision operator that are only nonzero for i, j ∈ Sg, Ji,ph
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the phonon collision operator and Ci the chemistry source term. The chemistry operators
Ci, i ∈ S, are therefore assumed to be slow in comparison with the inert collision operators
Jij , i, j ∈ Sg, and Ji,ph, i ∈ S. These equations may be interpreted either as rescaled
equations with rescaled quantities denoted as unscaled quantities, or, equivalently, as
original unscaled equations where ǫ is a formal expansion parameter numerically equal to
unity [39, 40].

3.2 Standard expansion in the gas

The kinetic equations in the gas, obtained from (3.3) by letting i ∈ Sg, wi = 0, Ji,ph = 0,
Ci = 0, read

∂tfgi + ci ·∂ fgi + ciz ∂zfgi =
1

ακǫ

∑

j∈Sg

Jij(fgi, fgj), i ∈ Sg. (3.4)

These equations coincide with the traditional scaling of the Chapman-Enskog method
using the formal expansion parameter ακǫ. The standard Enskog expansion of the dis-
tribution functions fgi, i ∈ Sg, valid in the gas is thus in the form

fgi(t,x , z, ci, i) = f̂
(0)
gi (t,x , z, ci, i) + ακǫ f̂

(1)
gi (t,x , z, ci, i) +O(ǫ2). (3.5)

At zeroth order, it is obtained that

∑

j∈Sg

Jij(f̂
(0)
gi , f̂

(0)
gj ) = 0, (3.6)

and from the H theorem, it is found that log f̂
(0)
gi is a collisional invariant so that f̂

(0)
gi is

a Maxwellian distribution. This Maxwellian in the gas phase is in the form

f̂
(0)
gi = ngi

( m i

2πkBTg

)3/2 aii
z
int
i

exp
(
−m i|ci − vg|2

2kBTg
− eii

kBTg

)
, (3.7)

where ngi is the local gas number density, m i the particle mass, vg the local gas velocity,
and Tg the local gas temperature with

ngi =
∑

i∈Qi

∫
fgi dci, ρgvg =

∑

i∈Sg

i∈Qi

∫
m icifgi dci, (3.8)

Eg(Tg) =
∑

i∈Sg

i∈Qi

∫(
1
2m i|ci − vg|2 + eii

)
fgi dci. (3.9)

The internal partition function z
int
i of the ith species in the gas is given by

z
int
i (Tg) =

∑

i∈Qi

aii exp
(
− eii

kBTg

)
. (3.10)

We have denoted by ρg =
∑

i∈Sg
m ingi the gas mixture mass density, ng =

∑
i∈Sg

ngi the

gas mixture number density, Eg = 3
2ngkBTg +

∑
i∈Sg

ngiei the internal energy of the gas
mixture per unit volume, and

ei =
∑

i∈Qi

aii
z
int
i

eii exp
(
− eii

kBTg

)
, (3.11)

16



the average energy of the ith species. The standard expansion (3.5) of the distribution
function fgi then yields the outer expansion of the ith physisorbed-gas distribution fi.

At first order, the distribution f̂
(1)
g = (f̂

(1)
gi )i∈Sg is written in the form

f̂
(1)
gi = φ̂

(1)
gi f̂

(0)
gi , (3.12)

and the first order perturbation φ̂
(1)
g = (φ̂

(1)
gi )i∈Sg is solution of the system of Boltzmann

linearized integral equation [38, 39, 40, 41, 42, 43, 44]

Îgi(φ̂(1)g ) = −
(
∂t log f̂

(0)
gi + ci·∂x log f̂

(0)
gi

)
, i ∈ Sg, (3.13)

completed by the Enskog constraints 〈〈f̂ (1)g , ψl
g〉〉 = 0 for 1 ≤ l ≤ ng +4. The gas collision

invariants ψl
g are associated with species number ψl

g = (δli)i∈Sg , l ∈ Sg, momentum

ψ
ng+ν
g = (m iciν)i∈Sg , ν ∈ {1, 2, 3}, and total energy ψ

ng+4
g = (12m i|ci|2 + eii)i∈Sg . The

integral operator Îg = (Îgi)i∈Sg denotes the traditional linearized collision operator acting
on ϕ = (ϕi)i∈Sg with components

Îgi(ϕ) = − 1

f̂
(0)
gi

∑

j∈Sg

(
Jij(f̂

(0)
gi , f̂

(0)
gj ϕj) + Jij(f̂

(0)
gi ϕi, f̂

(0)
gj )

)
, (3.14)

and the time derivative terms ∂tf̂
(0)
gi in the integral equations (3.13) are evaluated from

Euler equations [38, 39, 40, 41, 42, 43, 44].

After lengthy algebra, φ̂
(1)
gi is found in the form [38, 39, 40, 41, 42, 43, 44]

φ̂
(1)
gi = −φ̂η

gi:∂xvg − 1
3 φ̂

κ
gi∂x·vg −

∑

j∈Sg

φ̂
Dj

gi ·∂xpgj − φ̂λ̂
gi·∂x(1/kBTg), (3.15)

where pgj denotes the partial pressure of the jth species in the gas, φ̂η
gi, i ∈ Sg, are

traceless symmetric matrices, φ̂λ̂
gi, i ∈ Sg, are vectors, φ̂

Dj

gi , i, j ∈ Sg, are vectors and φ̂κgi,

i ∈ Sg, are scalars. The coefficients φ̂η
g = (φ̂η

gi)i∈Sg , φ̂
κ
g = (φ̂κgi)i∈Sg , φ̂

λ̂
g = (φ̂λ̂

gi)i∈Sg , and

φ̂
Dj
g = (φ̂

Dj

gi )i∈Sg , for j ∈ Sg, are solutions of systems of tensorial integral equations in
the form [38, 39, 40, 41, 42, 43, 44]

Îgi(φ̂η
g) =

m i

kBTg

(
(ci − vg)⊗(ci − vg)− 1

3 |ci − vg|
2I
)
, i ∈ Sg, (3.16)

Îgi(φ̂κg) =
2cint

cvkBTg

(
1
2m i|ci − vg|2 −

3kBTg
2

)
+

2ctrv
cvkBTg

(
ei − eii

)
, i ∈ Sg, (3.17)

Îgi(φ̂λ̂
g) =

(5kBTg
2

− 1
2m i|ci − vg|2 + ei − eii

)
(ci − vg), i ∈ Sg, (3.18)

Îgi(φ̂Dj
g ) =

1

pgi
(δij − ygi)(ci − vg), i, j ∈ Sg, (3.19)

with the Enskog constraints 〈〈f̂ (0)g φ̂
η
g, ψl

g〉〉 = 0, 〈〈f̂ (0)g φ̂κg , ψ
l
g〉〉 = 0, 〈〈f̂ (0)g φ̂λ̂

g , ψ
l
g〉〉 = 0, and

〈〈f̂ (0)g φ̂
Dj
g , ψl

g〉〉 = 0, for j ∈ Sg and 1 ≤ l ≤ ng + 4. In these equations, I denotes the

three dimensional identity tensor, ctrv = 3
2kB the translational constant-volume specific

heat per molecule, cint =
∑

i∈Sg
xgic

int
i the mixture internal heat capacity per molecule,

cinti = dei/dTg the internal heat capacity of the ith species, cv = ctrv +cint the mixture heat
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capacity at constant-volume per molecule, ei the average internal energy of the ith gaseous
species, xgi = ngi/ng the mole fraction of the ith species in the gas and ygi = ρgi/ρg the
mass fraction of the ith species in the gas with ρgi = m ingi. The fluid shear viscosity η,

volume viscosity κ, partial thermal conductivity λ̂, multicomponent diffusion coefficients
Dij, i, j ∈ Sg, and the Soret coefficients θthi , i ∈ Sg, may then be expressed in terms of

the perturbed distributions φ̂η
g, φ̂κg , φ̂

λ̂
g , and φ̂

Dj
g , j ∈ Sg [38, 39, 40, 41, 42, 43, 44]

3.3 Corrected expansion near the surface

Since we investigate a fluid interacting with a solid surface, it is natural to assume that
the fluid velocity is of first order vg(t,x , z) = O(ǫ) in the neighborhood of the surface.
In addition, for the sake of simplicity, we also assume that the tangential gas velocity
vg = vg− vgzez vanishes at the surface z = 0. The gas velocity at the solid-gas interface
z = 0 is thus in the form

vg(t,x , 0) = ǫvgz(t,x )ez, (3.20)

where vgz(t,x ) denotes the normal component of the rescaled velocity vg/ǫ at z = 0.
The normal velocity at the wall vg = ǫvgzez represents the Stefan flow. When a surface
exchanges mass with a fluid, there is indeed an induced normal convection velocity—
termed the Stefan velocity—that compensates for mass fluid production. Assuming that
this velocity is small near the solid interface is natural and assuming that vg = vg−vgzez
vanishes at the interface is the classical adherence condition [69, 70]. The model could
be generalized in order to take into account a first order slip velocity vg (t,x , 0) = O(ǫ)
at the surface z = 0 but such an extension lays beyond the scope of the present work.

The fluid convection velocity near the planar surface vg being of first order in ǫ, the
outer expansion (3.5) need to be corrected near the surface. All terms proportional to
the velocity vg must be shifted by one order in the outer expansion near z = 0. The
corrected expansion of the species distribution functions fgi valid in the gas phase near
the surface are denoted in the form

fgi = f
(0)
gi + ǫf

(1)
gi + ǫ2f

(2)
gi +O(ǫ3). (3.21)

The second order term f
(2)
gi will play no role but need to be taken into account formally

in some of the expansions.

After some algebra, it is obtained from (3.5)–(3.19) that f
(0)
gi is the zero velocity

Maxwellian distribution

f
(0)
gi = ngi

( m i

2πkBTg

)3/2 aii
z
int
i

exp
(
−m i|ci|2

2kBTg
− eii

kBTg

)
, (3.22)

where all quantities like z
int or Tg are evaluated at z = 0. The modified integral operator

Ig = (Igi)i∈Sg operating on ϕ = (ϕ)i∈Sg is found to be the linearized collision operator

around the zero velocity Maxwellians f
(0)
gi

Igi(ϕ) = −
∑

j∈Sg

1

f
(0)
gi

(
Jij(f

(0)
gi , f

(0)
gj ϕj) + Jij(f

(0)
gi ϕi, f

(0)
gj )

)
. (3.23)

The modified first order term f
(1)
gi is also in the form

f
(1)
gi =

(m icizvgz
kBTg

+ ακφ
(1)
gi

)
f
(0)
gi , (3.24)

18



with vgz(t,x , 0) = ǫvgz(t,x ) and φ
(1)
gi given by

φ
(1)
gi = −φη

gi:∂xvg − 1
3φ

κ
gi∂x·vg −

∑

j∈Sg

φ
Dj

gi ·∂xpgj − φλ̂
gi·∂x(1/kBTg). (3.25)

The tensor function φη
g = (φη

gi)i∈Sg is solution of the equation system

Igi(φη
g) =

m i

kBTg

(
ci⊗ci − 1

3 |ci|
2I
)
, i ∈ Sg,

with 〈〈f (0)g φη
g, ψ

l
g〉〉 = 0, 1 ≤ l ≤ ng + 4, and the scalar type function φκg = (φκgi)i∈Sg is

solution of the equation system

Igi(φκg ) =
2cint

cvkBTg

(
1
2m i|ci|2 −

3kBTg
2

)
+

2ctrv
cvkBTg

(
ei − eii

)
, i ∈ Sg,

with 〈〈f (0)g φκg , ψ
l
g〉〉 = 0, 1 ≤ l ≤ ng +4. The vector function φ

Dj
g = (φ

Dj

gi )i∈Sg , j ∈ Sg, are
the solutions of the integral equation systems

Igi(φDj
g ) =

1

pgi
(δij − ygi)ci, i, j ∈ Sg, (3.26)

with the Enskog constraints 〈〈f (0)g φ
Dj
g , ψl

g〉〉 = 0 for j ∈ Sg and 1 ≤ l ≤ ng + 4. Finally,

the vector function φλ̂
g = (φλ̂

gi)i∈Sg is the solution of the integral equation system

Igi(φλ̂
g) =

(5kBTg
2

− 1
2m i|ci|2 + ei − eii

)
ci, i ∈ Sg, (3.27)

with the Enskog constraints 〈〈f (0)g φλ̂
g , ψ

l
g〉〉 = 0, 1 ≤ l ≤ ng + 4.

Since vg = O(ǫ) near the interface we further deduce that ∂xvg = O(ǫ) at zeroth
order, and from the isothermal assumption we also have ∂xTg = O(ǫ) so that the main

terms in (3.25) are the diffusion terms. More specifically, at zeroth order, φ
(1)
gi is reduced

to φ
(1)
gi = −∑j∈Sg

φ
Dj

gi ·∂xpgj . Moreover, from the species mass conservation equation of

the ith species [42]
∂tngi + ∂x·(ngivg) + ∂x·Fi = 0,

where Fi = ǫ
∑

i∈Qi

∫
(ci − vg)φ(1)gi f

(0)
gi dci is the particle diffusion flux of the ith species

in the gas, we also note that
∂tngi(t,x , 0) = O(ǫ), (3.28)

in such a way that ngi is slowly varying in time near the surface.

3.4 Multiscale expansion

The surface potentials wi, i ∈ S, depend on the reactive surface layer coordinate denoted
by

ζ =
z

ǫ
. (3.29)

The problem thus appears to be multiscale since it involves the normal coordinate z as
well as the inner layer coordinate ζ = z/ǫ. The physisorbed-gas distributions fi, i ∈ Sg,
are expanded in the multiscale form

fi =
∑

j

ǫjf
(j)
gi (t,x , z, ci, i) +

∑

j

ǫjf
(j)
lci (t,x , ζ, ci, i), i ∈ Sg, (3.30)
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where
∑

j ǫ
jf

(j)
gi (t,x , z, ci, i) is the outer expansion and

∑
j ǫ

j f
(j)
lci (t,x , ζ, ci, i) the surface

layer corrector expansion. The surface layer correctors f
(j)
lci (t,x , ζ, ci, i), j ≥ 0, must

converge to zero as ζ → ∞ in such a way that the outer gas expansion (3.21), evaluated
in Section 3.2, is recovered in the gas phase.

The inner expansions fi, i ∈ Sg, of the distributions fi, i ∈ Sg, in the physisorbate are

next obtained by first expanding in terms of ζ the outer expansions
∑

j ǫ
jf

(j)
gi (t,x , z, ci, i)

using z = ǫζ and then adding the layer corrector expansions. The inner expansion
fgi = fgi(t,x , ζ, ci, i) = fgi(t,x , ǫζ, ci, i) of fgi is written in the form

fgi(t,x , ζ, ci, i) =
∑

j

ǫjf
(j)
gi (t,x , ζ, ci, i), (3.31)

and it is found notably that f
(0)
gi (t,x , ζ, ci, i) = f

(0)
gi (t,x , 0, ci, i) and f

(1)
gi (t,x , ζ, ci, i) =

f
(1)
gi (t,x , 0, ci, i) + ζ(∂zf

(0)
gi )(t,x , 0, ci, i). These relations may we written

f
(0)
gi = f

(0)
gi , f

(1)
gi = f

(1)
gi + ζ∂zf

(0)
gi , i ∈ Sg, (3.32)

where for any function A = A(t,x , z, ci, i) we write A(t,x , ci, i) = A(t,x , 0, ci, i) its
restriction for z = 0. The inner expansion of the distribution of the ith species fi in the
physisorbate then reads

fi =
∑

j

ǫjf
(j)
i (t,x , ζ, ci, i), (3.33)

where
f
(j)
i = f

(j)
gi + f

(j)
lci , j ≥ 0. (3.34)

The inner distribution coefficient f
(j)
i thus involve a polynomial f

(j)
gi in terms of ζ arising

from the Taylor expansion of the f
(k)
gi , k ≥ 1, and a thin layer corrector f

(j)
lci .

The chemisorbed, free site, bulk and surface distributions are expanded in the simpler
form

fi =
∑

j

ǫjf
(j)
i (t,x , ζ, ci, i), i ∈ Sc ∪ Ss ∪ Sb ∪ {σ}, (3.35)

since such distributions are localized in the adsorption layer and only involve the inner
layer coordinate ζ.

3.5 Inner layer kinetic equations

Since ζ is the proper normal coordinate of the reactive surface layer, the rescaled equations
governing the physisorbed inner distributions fi and involving ζ derivatives, obtained from
(3.3), are in the form

∂tfi + ci ·∂ fi +
1

ǫ
ciz ∂ζ fi−

1

ǫ

1

m i
∂ζwi ∂ciz fi =

1

ακǫ

∑

j∈Sg

Jij(fi, fj)

+
1

αphǫ
Ji,ph(fi) + Ci, i ∈ Sg. (3.36)

Similarly, since fgi satisfies the Boltzmann equation (2.5), we may perform the change of
variable from z to ζ so that the inner expansion fgi of fgi satisfies the kinetic equation

∂tfgi + ci ·∂ fgi +
1

ǫ
ciz ∂ζ fgi =

1

ακǫ

∑

j∈Sg

Jij(fgi, fgj), i ∈ Sg. (3.37)
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Substituting the inner expansion fgi of fgi into (3.37) and equating the powers of ǫ, we

also obtain kinetic equations satisfied by the expansion coefficients f
(j)
gi for j ≥ 0. At the

order ǫ−1, we obtain that

ciz ∂ζ f
(0)
gi =

1

ακ

∑

j∈Sg

Jij(f
(0)
gi , f

(0)
gj ), i ∈ Sg,

and each of these terms vanish since f
(0)
gi = f

(0)
gi = f

(0)
gi (t,x , 0, ci, i) is independent of ζ

and f
(0)
gi is Maxwellian so that Jij

(
f
(0)
gi , f

(0)
gj

)
= 0 for any i, j ∈ Sg.

At the next order ǫ0, letting Ξ
(1)
g = (Ξ

(1)
gi )i∈Sg , with Ξ

(1)
gi = f

(1)
gi /f

(0)
gi , we obtain that

ciz ∂ζΞ
(1)
gi + Igi(Ξ(1)

g )/ακ = −
(
∂t log f

(0)
gi + ci ·∂ log f

(0)
gi

)
, (3.38)

and
Ξ
(1)
gi =

m icizvgz

kBT g

+ ακφ
(1)
gi + ζ∂z log f

(0)
gi , i ∈ Sg,

since f
(1)
gi = f

(1)
gi + ζ∂zf

(0)
gi , f

(1)
gi =

(
m icizvgz

kBT g
+ακφ

(1)
gi

)
f
(0)
gi and f

(0)
gi = f

(0)
gi . Using now that

both (m iciz)i∈Sg and
(
∂z log f

(0)
gi

)
i∈Sg

are collisional invariants and are in the nullspace

of the operator Ig, we deduce that Ig(Ξ(1)
g )/ακ = Ig

(
φ
(1)
g

)
, and since ∂ζΞ

(1)
g = ∂z log f

(0)
gi

we obtain that (3.38) coincides with

Igi(φ(1)g ) = −
(
∂t log f

(0)
gi + ci ·∂ log f

(0)
gi + ciz ∂z log f

(0)
gi

)
,

that is simply the linearized Boltzmann equation written at z = 0.
Subtracting equation (3.37) from (3.36) for i ∈ Sg, we also obtain the equation

∂t(fi − fgi) + ci ·∂ (fi − fgi) +
1

ǫ
ciz ∂ζ(fi − fgi)−

1

ǫ

1

m i
∂ζwi ∂ciz fi =

1

ακǫ

∑

j∈Sg

{
Jij(fi, fj)− Jij(fgi, fgj)

}
+

1

αphǫ
Ji,ph(fi) + Ci, i ∈ Sg, (3.39)

that will be convenient in order to investigate the inner structure of the reactive surface
layer. The advantage of (3.39) is that all terms go to zero when ζ goes to infinity, avoiding
all integrability technicalities.

Finally, for the localized surface species, we obtain a similar rescaled equation using
the proper normal coordinate ζ

∂tfi + ci ·∂ fi +
1

ǫ
ciz ∂ζfi−

1

ǫ

1

m i
∂ζwi ∂cizfi =

1

αphǫ
Ji,ph(fi) + Ci, i ∈ Sc ∪ Ss ∪ Sb. (3.40)

4 Zeroth order expansions in the adsorbate

Zeroth order expansions are investigated in the reactive surface layer and next the corre-
sponding fluid boundary conditions.
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4.1 Zeroth order expansion for physisorbed-gas species

In the physisorbate, using (3.36), the ith species equation is found in the form

ciz ∂ζf
(0)
i − 1

m i
∂ζwi ∂ciz f

(0)
i =

1

ακ

∑

j∈Sg

Jij(f
(0)
i , f

(0)
i ) +

1

αph
Ji,ph(f

(0)
i ), i ∈ Sg. (4.1)

Using (2.15) we may rewrite (4.1) in the form

mi

(
ciz ∂ζ(f

(0)
i /mi)−

1

m i
∂ζwi ∂ciz(f

(0)
i /mi)

)
=

1

ακ

∑

j∈Sg

Jij(f
(0)
i , f

(0)
j )+

1

αph
Ji,ph(f

(0)
i ), (4.2)

We multiply (4.2) by log(f
(0)
i /mi), make use of ∂A

(
A(logA− 1)

)
= logA, reintegrate the

mi factor inside the spatial and velocity derivatives using (2.15), integrate over ζ ∈ (0,∞),

ci ∈ R
3, and then sum over i ∈ Sg and i ∈ Qi. Using that f

(0)
i → f

(0)
gi as ζ → ∞, since

the corrector f
(0)
lci goes to zero as ζ → ∞, we note that the first term in the left of (4.2)

yields after integration a null contribution for any i ∈ Sg or i ∈ Qi at the gas boundary
since

lim
ζ→∞

∫
cizf

(0)
i

(
log(f

(0)
i /mi)− 1

)
dci =

∫
cizf

(0)
gi

(
log(f

(0)
gi /mi)− 1

)
dci = 0,

keeping in mind that f
(0)
gi and mi are even in the normal velocity. Similarly, keeping in

mind that f
(0)
i → 0 as ζ → 0 since the surface repulsive potential repel all physisorbed-gas

particles, we also obtain a zero contribution of the first term at the surface boundary since

lim
ζ→0

∫
cizf

(0)
i

(
log(f

(0)
i /mi)− 1

)
dci = 0.

The second terms of the left of (4.2) also yields a null contribution for any i ∈ Sg or
i ∈ Qi after integration since it is in divergence form

−∂ciz
( 1

m i
∂ζwi f

(0)
i

(
log(f

(0)
i /mi)− 1

))
,

and f
(0)
i

(
log(f

(0)
i /mi)− 1

)
goes to zero as |ci| → ∞. We have thus established that

1

ακ

∑

i,j∈Sg

i∈Qi

∫
Jij(f

(0)
i , f

(0)
j ) log(f

(0)
i /mi) dcidζ

+
1

αph

∑

i∈Sg

i∈Qi

∫
Ji,ph(f

(0)
i ) log(f

(0)
i /mi) dcidζ = 0. (4.3)

Such entropy production type terms have been investigated up to the scaling factor −kB
in (2.46)(2.47) and have nonpositive integrands. Such integrands thus vanish so that

f
(0)
i is a Maxwellian from Jij(f

(0)
i , f

(0)
j ) = 0 and is at temperature Tw with zero average

velocity since Ji,ph(f
(0)
i ) = 0. Writting this Maxwellian for convenience as

f
(0)
i = ni exp

(
− wi

kBTw

)
mi, (4.4)
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where mi is given by (2.11), and substituting this identity in (4.1) yields that ∂ζni = 0 so
that ni is independent of ζ. The constant ni is identified by letting ζ → ∞ in (4.4) and
it is obtained that ni(t,x ) = ngi(t,x , 0) so that

ni = ngi, (4.5)

where for any quantity A = A(t,x , z, ci, i) we denote by A(t,x , ci, i) = A(t,x , 0, ci, i)
its restriction for z = 0. It has thus been established that

f
(0)
i = nimi = ngimi = nimi, i ∈ Sg. (4.6)

and the number of physisorbed-gas particles of the ith species per unit volume ni can be
written

ni(t,x , ζ) = ngi(t,x ) exp
(
−wi(ζ)

kBTw

)
, i ∈ Sg. (4.7)

This expression establishes that, in the physisorbate, the ith species is naturally dis-
tributed like exp

(
−wi/kBTw

)
as was expected based of physical grounds [20, 48]. More-

over the ith species in the physisorbate is at equilibrium with the bath of the ith gas
particles having number density ngi(t,x ) = ngi(t,x , 0) and arising from the gas phase.

Since f
(0)
lci = f

(0)
i − f

(0)
gi we also obtain that for any i ∈ Sg

f
(0)
lci = ngi

( m i

2πkBTw

)3/2 aii
z
int
i

exp
(
−m i|ci|2

kBTw
− eii

kBTw

){
exp
(
− wi

kBTw

)
− 1
}
. (4.8)

The layer corrector f
(0)
lci thus converges to zero as ζ → ∞ as the potential wi, and the

excess molecular density in the physisorbate ni−ngi is naturally distributed as the positive
values of the function exp

(
−wi/kBTw

)
− 1.

As a final remark, we note that the kinematic boundary condition [69, 70]

Tg(t,x , 0) = Tw, (4.9)

has been established by writting that the gas Maxwellian distribution is at equilibrium

with phonons, using Ji,ph(f
(0)
i ) = 0. We also recover the relations vg(t,x , 0)·ex = 0 and

vg(t,x , 0)·ey = 0. In contrast, the dynamic boundary conditions for mass, momentum
or energy will be obtained as moments of the kinetic equations. The model could also be
generalized by taking into account a first order temperature difference Tg − Tw = O(ǫ)
but such an extension lays beyond the scope of the present work.

4.2 Zeroth order expansion for chemisorbed and crystal species

For the chemisorbed species as well as the crystal species, the kinetic equation (3.40)
yields that

ciz ∂ζ f
(0)
i − 1

m i
∂ζwi∂ciz f

(0)
i =

1

αph
Ji,ph(f

(0)
i ), i ∈ Sc ∪ Ss ∪ Sb, (4.10)

Multiplying by log(f
(0)
i /mi), and proceeding as for the physisorbate it is obtained that

ciz ∂ζ

(
f
(0)
i

(
log(f

(0)
i /mi)− 1

))
− 1

m i
∂ζwi ∂ciz

(
f
(0)
i

(
log(f

(0)
i /mi)− 1

))
=

1

αph
Ji,ph(f

(0)
i ) log(f

(0)
i /mi).
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Integrating over ζ ∈ (ζ−i , ζ
+
i ) and ci ∈ R

3, summing over i ∈ Qi, using that f
(0)
i goes to

zero as ζ → ζ−i and as ζ → ζ+i , the particles being repelled by the potential, and that

f
(0)
i goes to zero as |ci| goes to infinity, it is obtained that

1

αph

∑

i∈Qi

∫
Ji,ph(f

(0)
i ) log(f

(0)
i /mi) dcidζ = 0.

From the expression of the entropy source (2.47) established for the H theorem, it is

deduced that f
(0)
i is a Maxwellian at temperature Tw and with zero average velocity.

Writting this Maxwellian for convenience in the form

f
(0)
i = ni exp

(
− wi

kBTw

)
mi, i ∈ Sc ∪ Ss ∪ Sb, (4.11)

where mi is given by equation (2.11), and substituting this identity in (4.10), it is obtained
that ∂ζni = 0 and ni is independent of ζ.

The number densities in the chemisorbate and crystal last layer are thus in the form

ni(t,x , ζ) = ni(t,x ) exp
(
−wi(ζ)

kBTw

)
, i ∈ Sc ∪ Ss ∪ Sb, (4.12)

and the ith species is distributed as the function exp
(
−wi/kBTw), as was expected based

on physical grounds, so that it is localized since wi goes to infinity as ζ → ζ−i or ζ → ζ+i .
We may also introduce the number of chemisorbed particles per unit surface

ñi(t,x ) =

∫
ni dz, i ∈ Sc,

that is related to ni(t,x ) via a configuration integral

ñi = ni

∫
exp
(
− wi

kBTw

)
dz, i ∈ Sc ∪ Ss ∪ Sb.

We have thus established that f
(0)
i may be written

f
(0)
i = nimi = ñim̃i, (4.13)

where the rescaled maxwellian m̃i is given by m̃i = mi/
∫
exp
(
− wi

kBTw

)
dz. Finally, both

ni and ñi are independent of the gas phase values ngj(t,x ), j ∈ Sg, at variance with the
physisorbate species that is at equilibrium with the bath of gas. Note also incidentally
that, with the exponential dependence of ni on the potential −wi/kBTw, all terms in the

general form ∂ζwi f
(0)
i involved in the kinetic equations (4.10) go to zero as ζ → ζ−i or as

ζ → ζ+i .
Proceeding similarly for the standard surface distribution that is solution of (2.7)

it is recovered that f eσ = feσ is given by (2.17) with a number density of the surface
layer nσ in the form (2.18), so that the surface atoms are spatially distributed as the
function exp

(
−wσ/kBTw). The quantities nσ(t,x , ζ) and nσ(t,x ) are characteristic of

the crystal surface and its orientation and related to the number of surface atoms per
unit surface ñσ(t,x ) =

∫
nσ dz, defined as in (2.19), that also depends on the crystal

and its orientation. We may thus write that f eσ = feσ = nσmσ = ñσm̃σ where m̃σ =
mσ/

∫
exp
(
− wσ

kBTw

)
dz.
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From the structure of the free site distribution f
(0)
s and that of the equilibrium crystal

layer standard distribution f eσ = feσ given by (2.17), and since ws = wσ, we deduce that

at zeroth order the probability of free site f
(0)
s /feσ simplifies into

f
(0)
s

feσ
=

ns

nσ
=
ñs
ñσ
, (4.14)

and therefore only depends on time and tangential coordinate. The zeroth order coverage
θ̃(t,x ) is then obtained as

θ̃(t,x ) = 1− ns

nσ
= 1− ñs

ñσ
,

and is thus independent of ζ. Since the chemisorbate is assumed to be monolayer and
the adsorption process is monosite, we have the natural constraints

∑

i∈Sc

ñi + ñs = ñσ,
∑

i∈Sb

ñi + ñs = ñσ. (4.15)

Defining ñc =
∑

i∈Sc
ñi and ñb =

∑
i∈Sb

ñi as the number of chemisorbed species per
unit surface or bulk species per unit surface we thus have ñc+ ñs = ñb + ñs = ñσ in such
a way that ñc = ñb = θ̃ ñσ and ñs = (1 − θ̃)ñσ. Moreover, for each chemisorbed species
i ∈ Sc, there exists a unique bulk species b(i) ∈ Sb, to form a chemical pair, and then
ñi = ñb(i).

4.3 Species mass boundary conditions

The zeroth order mass conservation equations are obtained by taking the scalar product
of kinetic equations by the mass collisional invariants and keeping only zeroth order
terms. Taking the scalar product of Boltzmann equations with the mass invariants is
equivalent to integrating each Boltzmann equation with respect to the velocity variable
and summing over the quantum energy states.

In the physisorbate, using the difference equation (3.39) for convenience, it is obtained
that

∑

i∈Qi

∂t

∫
(f

(0)
i − f

(0)
gi ) dci +

∑

i∈Qi

∂ζ

∫
ciz(f

(1)
i − f

(1)
gi )dci =

∑

i∈Qi

∫
C(0)
i dci, (4.16)

where C(0)
i denotes the chemical production terms evaluated with the Maxwellian distri-

butions f
(0)
i , i ∈ S. We have used here that

∫
ci f

(0)
i dci =

∫
ci f

(0)
gi dci = 0 and that the

mass collisional invariants ψl
g, 1 ≤ l ≤ ng, are orthogonal to the collision operators Jij

and Ji,ph. Moreover, since ∂tngi(0) = O(ǫ) from (3.28), the first term vanishes at zeroth
order and we obtain that

∑

i∈Qi

∂ζ

∫
ciz(f

(1)
i − f

(1)
gi )dci =

∑

i∈Qi

∫
C(0)
i dci.

In order to integrate over ζ ∈ (0,∞), we need to determine the limits of f
(1)
i − f

(1)
gi at

both ends of the interval. Noting that f
(1)
i − f

(1)
gi = f

(1)
lci , we first obtain that f

(1)
i − f

(1)
gi

goes to zero as ζ → ∞. Moreover, f
(1)
i goes to zero as ζ → 0, since there are not anymore

physisorbed-gas particles at the surface, and using f
(1)
gi = f

(1)
gi + ζ∂z log f

(0)
gi , we next

25



obtain that f
(1)
i − f

(1)
gi goes to −f (1)gi as ζ → 0. Integrating with respect to ζ over (0,∞)

thus yields

∑

i∈Qi

∫
cizf

(1)
gi dci =

∑

i∈Qi

∫
C(0)
i dcidζ. (4.17)

Using next the relation f
(1)
gi =

(
m icizvgz

kBTg
+ ακφ

(1)
gi

)
f
(0)
gi the total particle flux of the ith

species in the gas may be written

∑

i∈Qi

ǫ

∫
cizf

(1)
gi dci = ngivgz + Fzi,

where vgz = ǫvgz and Fzi = ǫ
∫
cizακφ

(1)
gi f

(0)
gi dci denotes the normal diffusion flux of the

ith species, and the overbar symbol means that it is evaluated at z = 0. Denoting for

short by w
(0)
i the zeroth order number of particles of the ith species produced by unit

surface and unit time by surface chemistry

w
(0)
i =

∑

i∈Qi

∫
C(0)
i dcidz, (4.18)

where the integral of the production terms is performed over z, the boundary condition
for the ith gaseous species finally reads

ngivgz + Fzi = w
(0)
i . (4.19)

The species diffusion flux may also be expressed as Fi = ngiV i where V i denotes the
mass based species diffusion velocity that is in the form

V i = −
∑

j∈Sg

Dijdj − θthi ∂x log Tg, i ∈ Sg, (4.20)

and where dj = ∂xxgj denotes the diffusion driving force of the jth species in the gas
and xgj = ngj/ng the mole fraction of the jth species [38, 39, 40, 41, 42, 43, 44]. These
boundary conditions (4.19) exactly correspond to that used at a reactive surface in mul-
ticomponent flow models [16, 17, 18, 42].

We may further multiply (4.19) by m i and sum over the gas species and use the mass
constraint between the particle fluxes

∑
i∈Sg

m iFi = 0 to get that

ρgvgz =
∑

i∈Sg

m iw
(0)
i , (4.21)

where ρg =
∑

i∈Sg
m ingi is the gas mass density at the solid boundary z = 0. In particular,

the Stefan mass flux towards the gas phase ρgvgz is due to the overall mass production

of physisorbed-gas species by the surface chemistry
∑

i∈Sg
m iw

(0)
i . Using the total mass

conservation in chemical reactions
∑

i∈S m iw
(0)
i = 0 and the conservation of the number

of sites m sw
(0)
s +

∑
i∈Sb

m iw
(0)
i = 0, we obtain that

∑
i∈Sg

m iw
(0)
i = −∑i∈Sc

m iw
(0)
i is

the rate of total mass exchange between the gas and the surface due to chemisorption
processes.
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The integrated mass conservation equation (3.40) in the chemisorbate may be obtained
with a similar procedure and yields that

∂tni

∫
exp
(
− wi

kBTw

)
dζ =

∑

i∈Qi

∫
C(0)
i dcidζ, (4.22)

where C(0)
i denotes—as for physisorbed species—the zeroth order chemical production

rate. Defining the molecular production rate w
(0)
i for any species as in (4.18), and using

the z variable instead of ζ, the equation (4.22) may be rewritten

∂tñi = w
(0)
i , i ∈ Sc ∪ Ss ∪ Sb, (4.23)

where ñi = ni
∫
exp
(
−wi/kBTw

)
dz represents the total amount of chemisorbate available

in the layer per unit surface and may be interpreted as the natural surface number density

of the chemisorbate.
In summary, it has been established that

ngivgz + Fzi = w
(0)
i , i ∈ Sg, ρgvgz =

∑

i∈Sg

m iw
(0)
i ,

∂tñi = w
(0)
i , i ∈ Sc ∪ Ss ∪ Sb.

We have therefore recovered the species fluid boundary conditions at a reactive surface
including chemisorbed species and crystal species [16, 17, 18, 42].

4.4 Surface chemical production rates

The integrated surface chemistry term w
(0)
i =

∑
i∈Qi

∫
C(0)
i dcidz evaluated with the layer

distributions f
(0)
i , i ∈ S, is obtained in the form

w
(0)
i =

∑

r∈R

(νbkir − νfwir )χr, (4.24)

where χr denotes the rate of progress of the rth surface reaction. Letting then for short

nk = nk when k ∈ S\Sb and nk = nσ when k ∈ Sb, we have at zeroth order γ
(0)
k = nk for

any k ∈ S, where γ
(0)
k = f

(0)
k /mk and γk has been introduced in (2.38). Using the kinetic

expression (2.37), the macroscopic rate χr is found in the form

χr = Kr

( ∏

j∈Fr

nj
zj

−
∏

k∈Br

nk
zk

)
, (4.25)

where Kr is the overall reaction constant of the rth reaction through the layer

Kr =
∑

f
r,br

∫
Ŵf

r
b
r

F
r
B
r

∏

j∈Fr

dcj
∏

k∈Br

dck dz. (4.26)

The rate of progress χr may also be rewritten

χr = Kr

(∏

i∈S

(ni
zi

)νfwir −
∏

i∈S

(ni
zi

)νbkir

)
,

making use of the reaction stoichiometric coefficients.
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The surface chemistry rate χr may also be naturally rewritten by using the surface
species number densities (4.12). To this aim, the partition function of any surface species
z̃i is defined with a configuration integral [53]

z̃i = zi

∫
exp
(
− wi

kBTw

)
dz, i ∈ Sc ∪ Ss ∪ Sb. (4.27)

We then note that for any chemisorbed or free site species

ni
zi

=
ni

zi
=
ñi
z̃i
, i ∈ Sc ∪ Ss. (4.28)

Letting then for the gaseous species ñi = ni = ngi and z̃i = zi, i ∈ Sg, for the chemisorbed
and free sites ñi = ñi, i ∈ Sc ∪ Ss, and for the bulk species ñi = ñσ, i ∈ Sb, then the rate
of progress may then be evaluated in the form

χr = Kr

(∏

i∈S

(
ñi
z̃i

)νfwir

−
∏

i∈S

(
ñi
z̃i

)νbkir

)
. (4.29)

These expresssions are fully compatible with the atomic site formalism of heterogeneous
chemistry. The traditional mass conservation equations as well as surface chemical pro-
duction rates have thus been recovered from the kinetic model. From the expression of
the rates of progress, we also recover the Langmuir-Hinshelwood and Eley-Rideal kinetics
as well as the Langmuir isotherms at equilibrium [17, 32, 33, 34].

It is also possible to write the rate of progress in a form compatible with the open site
convention by excluding the crystal species. To this aim, the rates of progress is rewritten
as

χr = K′
r

( ∏

k∈Sg∪Sc

ñ
νfw
kr

k (1− θ̃)ν
fw
sr − 1

Ke
r

∏

k∈Sg∪Sc

ñ
νbk
kr

k (1− θ̃)ν
bk
sr

)
, (4.30)

where K′
r and Ke

r are the proper direct and equilibrium constants

K′
r = Krñ ν̄

σ

∏

i∈S

z̃
−νfwir
i , Ke

r =
∏

i∈S

z̃
−νir
i ,

and
ν̄ =

∑

i∈Sb

νfwir + νfwsr =
∑

i∈Sb

νbkir + νbksr .

These expresssions are fully compatible with the open site formalism with the elimination
of the crystal species and with the free atom species, formally replaced by an open site
symbol O, is taken into account with a simple coverage probability θ̃.

We may further factorize the product (1 − θ̃)ν̄ in the rates of progress (4.30), using

that ν̄ =
∑

i∈Sb
νfwir + νfwsr =

∑
i∈Sb

νbkir + νbksr . The factors (1 − θ̃)ν
fw
sr and (1 − θ̃)ν

bk
sr are

then incorporated in the corresponding products over the chemisorbed species using the
modified number densities ñi/(1 − θ̃) for i ∈ Sc. Further assuming that the formation
energies of bulk species are equal, keeping in mind that they correspond to a typical
bond energy with the crystal, we obtain that the bulk species partition functions are
equal z̃i = z̃b, for i ∈ Sb, where z̃b denotes their common value. It is then possible to
rewrite the rates of progress in a form that fully eliminates all crystal species, including
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the open site. To this aim, we introduce the following modified chemical potential of
chemisorbed species

µ̃i = log
( ñi

z̃
′
i(1− θ̃)

)
, i ∈ Sc, (4.31)

where z̃
′
i = z̃iz̃b/z̃s is a partition function of the ith chemisorbed species taking into ac-

count the crystal bond energy. This modified potential includes the 1−θ̃ factor associated
with the free site density in agreement with statistical mechanics for low coverage that

exclude crystal species [53, 49]. Letting also naturally for the gas species

µ̃i = log
( ñi
z̃i

)
= log

(ngi
zi

)
, i ∈ Sg, (4.32)

the rate of progress is then obtained in a general form associated with statistical mechan-
ics [71, 72, 42]

χr = K′′
r

(
exp
( ∑

k∈Sg∪Sc

νfwkr µ̃k

)
− exp

( ∑

k∈Sg∪Sc

νbkkr µ̃k

))
, (4.33)

where K′′
r is positive. The various expressions of the production rate derived with the

atomic site formalism (4.29), the open site formalism (4.30), and the mechanistic for-
malism using the modified potentials (4.31) thus gradually eliminate the crystal surface
species. However, even though the saturation factor 1 − θ̃ is sometimes integrated into
the chemical potential of the chemisorbed species µ̃i, it still originates from the surface
free crystal atom species.

5 Momentum and thermal boundary conditions

We investigate in this section the normal momentum, tangential momentum, and energy
dynamic boundary conditions at zeroth order, completing the mass dynamic boundary
conditions obtained in previous sections. These dynamic boundary conditions are ob-
tained by taking appropriate moments of the kinetic equations whereas the kinematic
boundary conditions have been obtained by identifying Maxwellian distributions.

5.1 Normal momentum boundary conditions

We multiply by m iciz and ǫ the difference equation (3.39), integrate with respect to the
particle velocity ci, sum over i ∈ Sg and i ∈ Qi, and keep all terms of order ǫ0 or ǫ1.

Keeping in mind that both f
(0)
i and f

(0)
gi are even with respect to ciz, as well as with

respect to ci , the resulting equation is in the form

∑

i∈Sg

i∈Qi

∂ζ

∫
m ic

2
iz(f

(0)
i + ǫf

(1)
i − f

(0)
gi − ǫf

(1)
gi ) dci −

∑

i∈Sg

i∈Qi

∫
∂ζwi ciz∂ciz(f

(0)
i + ǫf

(1)
i ) dci

−
∑

i∈Sg

i∈Qi

1

αph

∫
m icizJi,ph(f

(0)
i + ǫf

(1)
i ) dci = ǫ

∑

i∈Sg

i∈Qi

∫
m icizC

(0)
i dci.

Integrating with respect to ζ, keeping in mind that f
(0)
lci = f

(0)
i − f

(0)
gi and f

(1)
lci = f

(1)
i − f

(1)
gi

go to zero as ζ → ∞, that f
(0)
i and f

(1)
i go to zero as ζ → 0, and that f

(0)
gi and f

(1)
gi go
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respectively to f
(0)
gi and f

(1)
gi as ζ → 0, yields a normal momentum balance associated

with the physorbate-gas species

∑

i∈Sg

i∈Qi

∫
m ic

2
iz(f

(0)
gi + ǫf

(1)
gi ) dci −

∑

i∈Sg

i∈Qi

∫
∂ζwi ciz∂ciz(f

(0)
i + ǫf

(1)
i ) dcidζ

=
1

αph

∑

i∈Sg

i∈Qi

∫
m icizJi,ph(f

(0)
i + ǫf

(1)
i ) dcidζ + ǫ

∑

i∈Sg

i∈Qi

∫
m icizC

(0)
i dcidζ. (5.1)

A direct calculation yields

∑

i∈Sg

i∈Qi

∫
m ic

2
izf

(0)
gi dci =

∑

i∈Sg

pgi = pg,

where pgi = ngikBTg denotes the gas pressure of the ith species, pg =
∑

i∈Sg
pgi the gas

pressure and pg the gas pressure at z = 0. Using the definition of the viscous tensor Πg

in the gas and the properties of the Navier-Stokes correctors φgi, i ∈ Sg, it is established
[38, 39, 40, 41, 42, 43, 44] that

ǫ
∑

i∈Sg

i∈Qi

m i

∫
ci⊗cif (1)gi dci =Πg, (5.2)

where Πg is the viscous tensor at z = 0. The viscous tensor may also be expanded in
terms of the macroscopic variable gradients and shown to be in the form

Πg = −ǫκ∂x·vgI − ǫη
(
∂xvg + (∂xvg)

t − 2
3∂x·vgI

)
, (5.3)

where κ denotes the volume viscosity and η the shear viscosity. Use has been made that

the term proportional to m icizf
(0)
gi as well as that associated with φλ̂

gi·∂x(1/kBTg) and

φ
Dj

gi ·∂xpgj in f
(1)
gi yield null contributions in m i

∫
ci⊗cif (1)gi dci. Defining naturally the

pressure tensor in the gas by
P

g = pgI +Πg, (5.4)

and considering the zz components of (5.2), we thus have

∑

i∈Sg

i∈Qi

∫
m ic

2
iz(f

(0)
gi + ǫf

(1)
gi ) dci = pg +Πgzz = Pg

zz,

where Πgzz is the zz component of Πg.
In order to eliminate the reactive source term in the right hand side of (5.1), we form

the normal momentum balance of the surface species for i ∈ Sc ∪Ss ∪Sb that are similar
except for the absence of a flux coming from the gas. Denoting for short by SΣ the surface
species indexing set

SΣ = Sc ∪ Ss ∪ Sb,
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the resulting momentum balance associated with surface species is in the form

−
∑

i∈SΣ

i∈Qi

∫
∂ζwi ciz∂ciz(f

(0)
i + ǫf

(1)
i ) dcidζ =

∑

i∈S
Σ

i∈Qi

1

αph

∫
m icizJi,ph(f

(0)
i + ǫf

(1)
i ) dcidζ + ǫ

∑

i∈S
Σ

i∈Qi

∫
m icizC

(0)
i dcidζ. (5.5)

Adding the momentum balance equations (5.1) and (5.5), using momentum conservation
in chemical reactions ∑

i∈S
i∈Qi

∫
m icizC

(0)
i dcidζ = 0,

and integrating by part with respect to the normal velocity variable the potential terms

−
∑

i∈S
i∈Qi

∫
∂ζwi ciz∂ciz(f

(0)
i + ǫf

(1)
i ) dcidζ =

∑

i∈S
i∈Qi

∫
∂ζwi (f

(0)
i + ǫf

(1)
i ) dcidζ,

it is obtained that

pg +Πgzz = −
∑

i∈S
i∈Qi

∫
∂ζwi (f

(0)
i + ǫf

(1)
i ) dcidζ +

∑

i∈S
i∈Qi

1

αph

∫
m icizJi,ph(f

(0)
i + ǫf

(1)
i ) dcidζ.

The solid crystal pressure tensor—opposite of the crystal Cauchy tensor—at the surface
is then naturally defined as

Pso
zz = −

∑

i∈S
i∈Qi

∫
∂ζwi (f

(0)
i + ǫf

(1)
i ) dcidζ +

∑

i∈S
i∈Qi

1

αph

∫
m icizJi,ph(f

(0)
i + ǫf

(1)
i ) dcidζ.

This expression may be simplified by using

(∂ζwi)ni(ζ) = −pgi∂ζ
(
exp(−wi/kBTw)

)
, i ∈ Sg,

where ni are the zeroth order number densities, and

(∂ζwi)ni(ζ) = −nikBTw∂ζ
(
exp(−wi/kBTw)

)
, i ∈ SΣ = Sc ∪ Ss ∪ Sb,

and integrating with respect to ζ, in such a way that

Pso
zz = pg −

∑

i∈S
i∈Qi

ǫ

∫
∂ζwif

(1)
i dcidζ +

∑

i∈S
i∈Qi

ǫ

αph

∫
m icizJi,ph(f

(1)
i ) dcidζ.

The first two terms of the right hand side represent the total force per unit surface acting
on the physisorbate, chemisorbate, and surface layer, whereas the third term represents
the gain in momentum by the species due to the interaction with phonons per unit surface
and time and also represents a force per unit surface. Since all zeroth order terms vanish
except the pressure term acting on the physisorbate, it appears that it is dominant term.
We may finally write the resulting boundary condition in the form

Pg
zz = Pso

zz , (5.6)

that is the traditional momentum boundary condition, the contribution of the normal
velocity term being of higher order.
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5.2 Tangential momentum boundary conditions

We multiply by m ici and ǫ the difference equation (3.39), integrate with respect to the
particle velocity ci, sum with respect to i ∈ Sg and i ∈ Qi, and keep all terms of order ǫ0

and ǫ1. Keeping in mind that both f
(0)
i and f

(0)
gi are even with respect to ciz and ci and

that the phonon interaction operators vanish for Maxwellians, the resulting equation is
in the form

∑

i∈Sg

i∈Qi

ǫ∂ ·

∫
m ici ⊗ci (f

(0)
i − f

(0)
gi )dci +

∑

i∈Sg

i∈Qi

ǫ ∂ζ

∫
m icizci (f

(1)
i − f

(1)
gi ) dci =

ǫ

αph

∑

i∈Sg

i∈Qi

∫
m ici Ji,ph(f

(1)
i ) dci + ǫ

∑

i∈Sg

i∈Qi

∫
m ici C(0)

i dci.

We may then integrate with respect to ζ and use that f
(0)
i and f

(1)
i go to zero as ζ → 0,

f
(0)
i − f

(0)
gi and f

(1)
i − f

(1)
gi go to zero as ζ → ∞, f

(0)
gi → f

(0)
gi and f

(1)
gi → f

(1)
gi as ζ → 0 to get

that
∑

i∈Sg

ǫ∂ pgi

∫ {
exp
(
− wi

kBTw

)
− 1
}
dζ + ǫ

∑

i∈Sg

i∈Qi

∫
m icizci f

(1)
gi dci =

ǫ

αph

∑

i∈Sg

i∈Qi

∫
m ici Ji,ph(f

(1)
i ) dcidζ +

∑

i∈Sg

i∈Qi

ǫ

∫
m ici C(0)

i dcidζ.

The second term may be evaluated as Πg z by using (5.2) in the z directions, where
Πg z denotes the tangential components of Πg·ez. In order to eliminate the reactive
source term, we may again form the overall layer tangential momentum balance of the
surface species. The resulting equations are obtained in the form

0 =
ǫ

αph

∑

i∈S
Σ

i∈Qi

∫
m ici Ji,ph(f

(1)
i ) dcidζ +

∑

i∈S
Σ

i∈Qi

ǫ

∫
m ici C(0)

i dcidζ.

Adding all the species tangential momentum balance and using the conservation of mo-
mentum in the chemical collision operators yields

Πg z =
∑

i∈S
i∈Qi

ǫ

αph

∫
m ici Ji,ph(f

(1)
i ) dcidζ +

∑

i∈Sg

ǫ∂ pgi

∫ {
1− exp

(
− wi

kBTw

)}
dζ.

It is then natural to define the tangential component of the normal stress in the solid as

P
so
z =

∑

i∈S
i∈Qi

ǫ

αph

∫
m ici Ji,ph(f

(1)
i ) dcidζ +

∑

i∈Sg

ǫ∂ pgi

∫ {
1− exp

(
− wi

kBTw

)}
dζ,

since it represents the gain in tangential momentum by the surface species due to in-
teraction with phonon per unit surface and time and thus represents a tangential force
per unit surface. We thus finally obtain the equality of the tangential component of the
normall stress or pressure tensor

P
g
z =Πg z = P

so
z, (5.7)
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and only first order terms remain. Note that when there is one single species, then the
second term of Pso

z is O(ǫ2) and may be discarded since ∂ pg = O(ǫ) from the momentum
conservation equation.

5.3 Thermal boundary condition

We multiply by 1
2m i|ci|2 + eii +wi and ǫ the kinetic equation (3.36) for i ∈ Sg, multiply

by 1
2m i|ci|2 + eii and ǫ the gas kinetic equation (3.37), and form the difference equation.

Integrating then with respect to the particle velocity, summing over i ∈ Sg and i ∈ Qi,
and keeping all terms of order ǫ0 and ǫ1, it is obtained that

∑

i∈Sg

i∈Qi

∂ζ

∫
ciz

{
(12m i|ci|2 + eii +wi)(f

(0)
i + ǫf

(1)
i )− (12m i|ci|2 + eii)(f

(0)
gi + ǫf

(1)
gi )
}
dci =

∑

i∈Sg

i∈Qi

1

αph

∫
(12m i|ci|2 + eii +wi)Ji,ph(ǫf

(1)
i ) dci

+
∑

i∈Sg

i∈Qi

ǫ

∫
(12m i|ci|2 + eii +wi)C(0)

i dci.

Use has been made that ∂tngi = O(ǫ), in order to suppress the time derivative term. In

addition, since f
(0)
i and f

(0)
gi are even in ci , the integrals containing f

(0)
i and f

(0)
gi on the

left hand side vanish, and since constants are orthogonal to the collision operators, the
terms associated with eii +wi in the first integral on the right-hand side have vanishing
contribution. Integrating the resulting equation with respect to ζ, it is obtained that

∑

i∈Sg

i∈Qi

ǫ

∫
ciz(

1
2m i|ci|2 + eii)f

(1)
gi dci =

ǫ

αph

∑

i∈Sg

i∈Qi

∫
1
2m i|ci|2Ji,ph(f(1)i ) dcidζ

+
∑

i∈Sg

i∈Qi

ǫ

∫
(12m i|ci|2 + eii +wi)C(0)

i dcidζ. (5.8)

Using the definition of the heat flux in the gas, specialized in the normal direction, the

moment associated with f
(1)
gi is evaluated in the form

ǫ
∑

i∈Sg

i∈Qi

∫
ciz(

1
2m i|ci|2 + eii)f

(1)
gi dci =

∑

i∈Sg

(
5
2kBT g + ei

)
ngivgz +Qz.

The heat flux may also be written

Q = −ǫλ̂∂xTg − p
∑

i∈S

ǫθthi di +
∑

i∈Sg

(
5
2kBTg + ei

)
Fi,

where λ̂ is the partial thermal conductivity, θi the ith species thermal diffusion coefficient
and di = (∂xpgi)/pg the diffusion driving force of the ith species.

In order to eliminate the reactive source term in the right hand side of (5.8), pro-
ceeding as for the momentum balance equations, we may use the thermal balance of the
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surface species. The resulting equations are in the form

∑

i∈SΣ

i∈Qi

ǫ ∂t

∫
(12m i|ci|2 + ei +wi)f

(0)
i dcidζ =

∑

i∈SΣ

i∈Qi

ǫ

αph

∫
1
2m i|ci|2Ji,ph(f(1)i ) dcidζ

+
∑

i∈S
Σ

i∈Qi

ǫ

∫
(12m i|ci|2 + ei +wi)C(0)

i dcidζ.

Letting then for i ∈ Sc ∪ Ss ∪ Sb

ẽi = ei +

∫
wi exp

(
−wi/kBTw

)
dζ
/ ∫

exp
(
−wi/kBTw

)
dζ, (5.9)

adding the energy balance of all the species and using the conservation of energy in
chemical reactions yields

∑

i∈Sg

(
5
2kBT g + ei

)
ngivgz +Qz +

∑

i∈S
Σ

∂t
(
(32kBT g + ẽi)ñi

)
=

∑

i∈S
i∈Qi

ǫ

αph

∫
1
2m i|ci|2Ji,ph(f(1)i ) dcidζ.

The solid heat flux at the surface is defined as

Qso
z =

∑

i∈S
i∈Qi

ǫ

αph

∫
1
2m i|ci|2Ji,ph(f(1)i ) dcidζ,

since it represents the gain in kinetic energy of the species due to interaction with phonons
per unit surface and time and represents a heat flux. We have thus established that

∑

i∈Sg

(
5
2kBT g + ei

)
ngivgz +Qz +

∑

i∈S
Σ

∂t
(
(32kBTw + ẽi)ñi

)
= Qso

z , (5.10)

and we may also use that ∂tñi is directly expressed in terms of the surface reaction rate.
This relation corresponds to that generally used for thermal balances at reactive surfaces
[17, 42]. Incidentally, the heat flux in the solid cannot be expressed in terms of the
temperature gradient in the solid because phonon kinetic equations are not taken into
account [35].

6 First order expansions and multicomponent diffusion

First order expansions are investigated as well as multicomponent diffusion in the ph-
ysisorbate and the chemisorbate layers.

6.1 Simplified phonon interaction operator

In order to simplify the analysis of first order equations in the reactive surface layer it is
assumed that the phonon collision operators are in the relaxation form

1

αph
Ji,ph(ϕi) = − 1

τi,ph

(
ϕi − 〈ϕi〉mi

)
, i ∈ S, (6.1)
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where the relaxation times τi,ph = τi,ph(ζ) are independent of the velocity ci and where
〈ϕi〉 denotes for short the integral over the velocity and the sum over the quantum num-
bers

〈ϕi〉 =
∑

i∈Qi

∫
ϕi dci, i ∈ S.

Such an assumption introduced by Borman et al. [19, 20] simplifies the analysis at first
order as well as the derivation of the corresponding species fluid equations. Since there
is no interaction with phonons far from the surface Σ, we also have for the physisorbate
species

lim
ζ→∞

τi,ph(ζ) = +∞, i ∈ Sg. (6.2)

A natural further simplifying assumption, concerning the chemisorbed, free site and bulk
species, is that the corresponding relaxation times are constants independent of ζ, keeping
in mind that the surface and chemisorbed layers are thin layers

τi,ph = constant, i ∈ Sc ∪ Ss ∪ Sb. (6.3)

We then have τi,ph(ζ) = τi,ph = constant for ζ ∈ (ζ−i , ζ
+
i ) whereas τi,ph(ζ) = +∞ out-

side of this interval. The dynamics associated with phonon interactions has thus been
simplified in the form of simple relaxation operators.

6.2 First order expansion in the gas as a thin layer

A prerequisite to the study of physisorbate diffusive processes is to investigate first order
gas kinetic equations in the thin layer form (3.38). We indeed already know the correct

first order integral equations that must be recovered. More specifically, at zeroth order,

we have φ
(1)
gi = −∑j∈Sg

φ
Dj

gi ·∂xpgj and from (3.26) we also have

Igi(φ(1)g ) = −
∑

j∈Sg

1

pgi
(δij − ygi)ci·∂xpgj . (6.4)

These equations are exactly the integral equations obtained by letting vg = 0 in the
traditional first order integral equations for diffusion processes in the gas.

Keeping in mind that Ξ
(1)
gi = f

(1)
gi /f

(0)
gi and Ξ

(1)
g = (Ξ

(1)
gi )i∈Sg , the first order equations

in the thin layer form (3.38) are

ciz ∂ζΞ
(1)
gi + Igi(Ξ(1)

g )/ακ = −
(
∂t log f

(0)
gi + ci ·∂ log f

(0)
gi

)
, i ∈ Sg, (6.5)

where f
(0)
gi = f

(0)
gi and

Ξ
(1)
gi =

m icizvgz

kBT g

+ ακφ
(1)
gi + ζ∂z log f

(0)
gi , i ∈ Sg.

We first observe that the left hand side of (6.5) does contain the required ith gas species
integral operator Igi. Moreover, using ∂xTg = O(ǫ) and ∂xvg = O(ǫ), the tangential gra-

dient terms of the right hand side yields −ci ·∂ log f
(0)
gi = −ci ·∂ log pgi involving the

pressure gradients in the tangential direction. However, the pressure normal derivatives
present in (6.4) are missing in the right hand side of (6.5). We thus proceed as in Sec-

tion 3.5 and transfer the term ciz∂ζΞ
(1)
gi = ciz∂z log f

(0)
gi = ciz∂z log pgi from the left hand

side to the right hand side. A full pressure gradient term ci·∂x log pgi then appears with
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tangential derivative as well as normal derivatives in the right hand side. By subtracting

ζ∂z log f
(0)
gi from Ξ

(1)
gi , the corresponding first order distribution f

(1)
gi − ζ∂zf

(0)
gi also has a

finite limit as ζ → ∞.
In order to complete the right hand side, we also need the terms arising usually

through the derivative ∂t log f
(0)
gi as in the gas phase. However, since ∂tvg = O(ǫ),

∂tngi = O(ǫ), and ∂tTg = O(ǫ), the derivative ∂t log f
(0)
gi is found to be O(ǫ). Ignoring

formally that ∂tvg = O(ǫ), the velocity term ∂tvg in ∂t log f
(0)
gi should yield contribu-

tions with the total pressure gradient term as in the gas phase. We would then evaluate

∂vg log f
(0)
gi ·(∂tvg + vg·∂xvg) as −m ici·∂xpg/ρgkBTg using Euler momentum equation

∂tvg + vg·∂xvg = −∂xpg/ρg, and the proper right hand side (6.4) would then be recov-

ered. In our situation, however, since the mixture velocity is absent from f
(0)
gi = f

(0)
gi , we

have to proceed differently. Since ∂tvg = O(ǫ) we observe that the momentum equation

is then an equilibrium relation at zeroth order, without any time derivative term, in the
form −∂xpg/ρg = O(ǫ). We may thus subtract the equilibrium O(ǫ) term −∂xpg/ρg
multiplied by the proper factor m ici/kBTg to recover the exact right hand side of first
order equations for diffusive processes (6.4). The resulting equations are then well posed
with a right hand side in the range of the gas collision operator, that is, orthogonal to
the collision invariants. The only difference with the traditional situation is that instead
of using Euler unsteady equations, we have used here Euler equilibrium relations in order
to form the proper right hand side

− 1

pgi
ci·∂xpgi +

m ici

kBTg
·
∂xpg
ρg

, i ∈ Sg.

Collecting previous results, we introduce the modified first order unknowns

Φ
(1)
gi =

m icizvgz

kBT g

+ ακφ
(1)
gi = Ξ

(1)
gi − ζ∂z log f

(0)
gi , i ∈ Sg, (6.6)

the correct right hand sides

Ψ
(1)
gi = −

∑

l∈Sg

1

pgi
(δil − ygi)

(
∂ pgl·ci + ∂zpglciz

)
, i ∈ Sg, (6.7)

and defining the operator Hg = (Hgi)i∈Sg by

Hgi(ϕ) = ciz ∂ζϕ+
1

ακ
Igi(ϕ), i ∈ Sg, (6.8)

the correct first order linearized equations written in the thin layer form read

Hgi(Φ
(1)
g ) = Ψ

(1)
gi , i ∈ Sg. (6.9)

We have thus recovered with (6.7) the full three dimensional pressure gradient evaluated

at z = 0. The solution must also ensure the Enskog constraints 〈〈f (0)g Φ
(1)
g , ψl

g〉〉 = 0 for

1 ≤ l ≤ ng + 4 that reduces to the single constraint 〈〈f (0)g Φ
(1)
g , (m ici)i∈Sg〉〉 = 0 for vector

systems. It is further natural to write the coupled equations in vector form by letting

Hg = (Hgi)i∈Sg , Φ(1)
g = (Φ

(1)
gi )i∈Sg , Ψ(1)

g = (Ψ
(1)
gi )i∈Sg ,

in such a way that
Hg(Φ

(1)
g ) = Ψ(1)

g ,
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with the Enskog constraints 〈〈f (0)g Φ
(1)
g , ψl

g〉〉 = 0 for 1 ≤ l ≤ ng + 4.
Since (m iciz)i∈Sg is a collisional invariant, it is in the nullspace of the linearized

operator Ig = (Igi)i∈Sg and moreover Φ
(1)
g is independent of ζ so that Hgi(Φ

(1)
g ) =

Igi(Φ(1)
g )/ακ = Igi(φ(1)g ). We thus have recovered the classical linearized gas integral

equations for diffusion processes (6.4).
In summary, we have first obtained a pressure normal gradient term by transferring

the term ciz∂ζ(ζ∂z log f
(0)
gi ) = ciz∂z log f

(0)
gi from the left to the right hand side. We then

have obtained the total pressure gradient—usually arising through the time derivative
∂tvg of the velocity—by adding the proper linear combinations of the momentum equi-
librium condition—the fluid mechanical equilibrium equation—in order to finally obtain
the proper integral equations. It is interesting then to establish a short cut that allows to
derive the proper diffusion integral equations. To this aim, we note that the contribution
of the momentum equilibrium condition may be obtained by adding an extra term simply
proportional to the momentum collisional invariant (m ici)i∈Sg to the right hand side and

by taking the scalar product with (m icif
(0)
gi )i∈Sg . We may thus simply write as a shortcut

that
Igi(Φ(1)

g ) = −ci·∂x log pgi + m ici·L,

and take the scalar product of the equation with (m jcjf
(0)
gj )j∈Sg to get that

L =
∂xpg

ρgkBT g

,

in order to recover the proper right hand side for a well posed system of integral equations
(6.7). This is the convenient method that will be used to investigate the physisorbate
layer’s diffusion processes. Finally, the distribution function at zeroth order may further
be decomposed along the species partial pressure gradients [38, 39, 40, 41, 42, 43, 44] as
also summarized in Appendix B.

6.3 First order expansion in the physisorbate

From equation (3.36) and the inner expansion (3.33), the first order equation in the
physisorbate is obtained in the form

∂tf
(0)
i + ci ·∂ f

(0)
i + ciz ∂ζ f

(1)
i − 1

m i
∂ζwi ∂ciz f

(1)
i − 1

ακ

∑

j∈Sg

(
Jij(f

(0)
i , f

(1)
j ) + Jij(f

(1)
i , f

(0)
j )
)

+
1

τi,ph

(
f
(1)
i − 〈f(1)i 〉mi

)
= C(0)

i , i ∈ Sg. (6.10)

Following the procedure already used in Section 6.2 for first order gas equations writ-

ten in the thin layer form, we first have to subtract the ζ component of f
(1)
i . We thus

consider f
(1)
i − ζ∂zf

(0)
gi and the corresponding reduced unknown

Φ
(1)
i =

f
(1)
i

f
(0)
i

− ζ
∂zf

(0)
gi

f
(0)
i

=
(m icizvgz

kBTg
+ ακφ

(1)
gi

)f (0)gi

f
(0)
i

+
f
(1)
lci

f
(0)
i

. (6.11)

Defining then the linearized collision operator I = (Ii)i∈Sg operating on ϕ = (ϕi)i∈Sg

around the zeroth order inner distribution f
(0)
i by

Ii(ϕ) = − 1

f
(0)
i

∑

j∈Sg

(
Jij(f

(0)
i , f

(0)
j ϕj) + Jij(f

(0)
i ϕi, f

(0)
j )
)
, (6.12)
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where f
(0)
i is given by (4.4), and the operator H = (Hi)i∈Sg by

Hi(ϕ) = ciz ∂ζϕi −
1

m i
∂ζwi ∂cizϕi +

1

ακ
Ii(ϕ) +

1

τi,ph

(
ϕi − 〈ϕimi〉

)
, (6.13)

the ith first order linearized system reads Hi(Φ
(1)
i ) = Ψ̂

(1)
i with the right hand side first

in the form

Ψ̂
(1)
i =

C(0)
i

f
(0)
i

− ∂t log f
(0)
i − ci ·∂ log f

(0)
i − ciz

∂zf
(0)
gi

f
(0)
i

, i ∈ Sg.

However, the chemistry is assumed to be slow so that C(0)
i = O(ǫ), the tangential deriva-

tive term reduces to ci ·∂ log f
(0)
i = ci ·∂ log pi where pi = nikBTw, the normal deriva-

tive term also simplifies with ∂zf
(0)
gi /f

(0)
i = (∂zpgi)/pi, and we also need to add the proper

linear combination of the momentum equilibrium relation m ici·L replacing of the time

derivative ∂t log f
(0)
i = O(ǫ). The corrected right hand side is thus in the form

Ψ
(1)
i = −

ci ·∂ pi + ciz∂zpgi
pi

+ m ici·L, (6.14)

and the first order system for diffusive processes read

Hi(Φ
(1)) = Ψ

(1)
i . (6.15)

The factor Lmay then be obtained by taking the scalar product (2.40) with (m icif
(0)
i )i∈Sg .

It is important to note that the tangential driving gradients involve pi but the normal
driving gradients involve pgi and arise form the multiscale expansion. The boundary
conditions further read

lim
ζ→0

f
(1)
i = 0, lim

ζ→∞
(f

(1)
i − f

(1)
gi ) = 0, (6.16)

since the corrector f
(1)
lci goes to zero as ζ → ∞ and there are not anymore particles as

ζ → 0.
We may then split the right hand side in the form

Ψ
(1)
i = Ψ

(1)
i,ev +Ψ

(1)
i,od, i ∈ Sg,

where Ψ
(1)
i,ev and Ψ

(1)
i,od are respectively even and odd functions of the tangential velocity

ci . The solution Φ
(1)
i is correspondingly decomposed in the form

Φ
(1)
i = Φ

(1)
i,ev +Φ

(1)
i,od, i ∈ Sg, (6.17)

where Φ
(1)
i,ev and Φ

(1)
i,od are respectively even and odd functions of the tangential velocity

ci and thus f
(1)
i,ev = f

(0)
i Φ

(1)
i,ev and f

(1)
i,od = f

(0)
i Φ

(1)
i,od are respectively even and odd in the

tangential velocity ci . Letting then Φ
(1)
ev = (Φ

(1)
i,ev)i∈Sg and Φ

(1)
od = (Φ

(1)
i,od)i∈Sg we obtain

the systems of equations

Hi(Φ
(1)
ev ) = Ψ

(1)
i,ev, Hi(Φ

(1)
od ) = Ψ

(1)
i,od, i ∈ Sg, (6.18)
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with

Ψ
(1)
i,ev = −

ciz ∂zpgi
pi

+ m icizLev, Ψ
(1)
i,od = −ci ·∂ pi

pi
+ m ici ·Lod,

where Lev and Lod are respectively the tangential and normal momentum equilibrium
relations. The scalar Lev and vector Lod are easily identified by taking the moments

of the corresponding equations with (m ici f
(0)
i )i∈Sg and (m icizf

(0)
i )i∈Sg respectively and

found in the form

Lod =
1

ρkBTw

(
∂ p+

∑

i∈Sg

i∈Qi

∂ζ

∫
m icizci f

(0)
i Φ

(1)
i,oddci +

∑

i∈Sg

i∈Qi

1

τi,ph

∫
m ici f

(0)
i Φ

(1)
i,oddci

)
,

Lev =
1

ρkBTw

(
∂zpg +

∑

i∈Sg

i∈Qi

∂ζ

∫
m ic

2
izf

(0)
i Φ

(1)
i,evdci

+
∑

i∈Sg

i∈Qi

∫
∂ζwif

(0)
i Φ

(1)
i,evdci +

∑

i∈Sg

i∈Qi

1

τi,ph

∫
m icizf

(0)
i Φ

(1)
i,evdci

)
.

We again observe that the tangential momentum equilibrium condition of the physisorbate
Lod = O(ǫ) involves ∂ p whereas normal momentum equilibrium condition Lev = O(ǫ)
involves the gas normal driving pressure ∂zpg. The resulting equations for the odd com-
ponents of (6.18) are then in the form

ciz∂ζΦ
(1)
i,od −

m ici

ρkBTw
·

∑

j∈Sg

j∈Qj

∂ζ

∫
m jcjzcj f

(0)
j Φ

(1)
j,oddcj −

1

m i
∂ζwi ∂cizΦ

(1)
i,od

+
1

ακ
Ii(Φ(1)

od ) +
Φ
(1)
i,od

τi,ph
− m ici

ρkBTw
·

∑

j∈Sg

j∈Qj

1

τj,ph

∫
m jcj f

(0)
j Φ

(1)
j,oddcj

= −
∑

l∈Sg

1

pi
(δil − yi)ci ·∂ pl, i ∈ Sg. (6.19)

In these equations we are naturally using the thermodynamic state of the physisorbate
layer with pi = nikBTw, n =

∑
i∈Sg

ni and xi = ni/n, for i ∈ Sg, and the mass fractions

are correspondingly yi = ρi/ρ with ρi = nim i, for i ∈ Sg, where ρ =
∑

i∈Sg
ρi. The

equations for the even component are finally addressed in Appendix C.

6.4 Multicomponent tangential diffusion in the physisorbate

Considering tangential diffusion in the physisorbate, taking into account the similar gas
phase problem solution [38, 39, 40, 41, 42, 43, 44] summarized in Appendix B, it is natural
to seek a solution to (6.19) in the form

Φ
(1)
i,od = −

∑

l∈Sg

Φ
(1),l
i,od ·∂ pl. (6.20)
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The corresponding system of integro-differential equations for Φ
(1),l
i,od is similar to that for

the gas and found in the form

ciz∂ζΦ
(1),l
i,od − m ici

ρkBTw
·

∑

j∈Sg

j∈Qj

∂ζ

∫
m jcjzcj ⊗f

(0)
j Φ

(1),l
j,oddcj −

1

m i
∂ζwi∂cizΦ

(1),l
i,od +

1

ακ
Ii(Φ(1),l

od )

+
Φ
(1),l
i,od

τi,ph
− m ici

ρkBTw
·

∑

j∈Sg

j∈Qj

1

τj,ph

∫
m jcj ⊗f

(0)
j Φ

(1),l
j,oddcj =

1

pi
(δil − yi)ci , (6.21)

with the right hand side

Ψ
(1),l
i,od =

1

pi
(δil − yi)ci , (6.22)

and the natural Enskog constraint reads 〈〈f(1)od , (m ici )i∈Sg〉〉 = 0.
We will use a Galerkin method with the approximation space

Span{ φ1000k ; k ∈ Sg }, (6.23)

where

φ1000k = (wi δki)i∈Sg , wi =
( m i

2kBTw

)1/2
ci . (6.24)

These basis functions are natural two-dimensional versions of the traditional three di-
mensional basis functions that are detailed in [42] on page 87. In the notation φabcdk, the
first index a refers to the tensorial rank with respect to R

3, the second index b = 0 to the
absence of polarization effects, the third index c to the degree of the Laguerre and Sonine
polynomial, the fourth index d to the degree of the Wang Chang and Uhlenbeck polyno-
mial in terms of reduced internal energies and the last index k refers to the species. We
have added the symbol to indicate that the vector basis functions φ1000k are projected
onto the tangential plane.

We are using here the simplest approximation space associated with diffusive processes
[38, 39, 40, 41, 42, 43, 44]. The right hand side of (6.21) is expressed as

Ψ
(1),l
od =

∑

k∈Sg

√
2√

m kkBTw

1

nk
(δkl − yk)φ

1000k ,

and the solution is expanded in the form [38, 39, 40, 41, 42, 43, 44]

Φ
(1),l
od =

∑

k∈Sg

√
2m k

p
√
kBTw

αl
kφ

1000k .

The resulting equations are obtained by using Galerkin method, i.e., by taking the
scalar product of equations (6.21) by the basis functions φ1000k for k ∈ Sg. It is then
remarkable that all differential operators vanishes in such a way that the equations reduce
to a linear system instead of linear differential equations in ζ. We have thus recovered a
traditional transport linear system in such a way that the Galerkin method then reduces
to the standard variational method of multicomponent transport. The resulting linear
system involve the L matrix given by

Lkl =

√
m km l

ακp
[φ1000k , φ1000l ], k, l ∈ Sg, (6.25)
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where for any f = (fi)i∈Sg and g = (gi)i∈Sg with fi and gi functions of ci and i, the
bracket product [f , g ] denotes

[f , g ] =
∑

i∈Sg

i∈Qi

∫
fi ⊙ Ii(g) dci,

and ⊙ is the maximum contracted product between two tensors. The matrix L =
(Lkl)k,l∈Sg

is symmetric positive semi-definite with nullspace spanned by 1I ∈ R
ng with

1I = (1)i∈Sg . In other words L = Lt, L ≥ 0, and N(L) = R1I. The components of L are
given by

Lkk =
∑

l∈Sg

l 6=k

xkxl

Dkl
, Lkl = −xkxl

Dkl
, l 6= k, k, l ∈ Sg,

where Dkl is the binary diffusion coefficient of the physisorbate pairs of species [38, 39,
40, 41, 42, 43, 44]. Further introducing the diagonal matrix

D = diag
(m knk
pτk,ph

)
k∈Sg

, (6.26)

and letting y = (yi)i∈Sg , the resulting transport linear system is found after some algebra
to be in the form

Lαl + Dαl − y〈Dαl, 1I〉 = βl, (6.27)

where 〈 , 〉 denotes the scalar product in R
ng , αl = (αl

k)k∈Sg
, βl = (βlk)k∈Sg

, βlk = δkl − yk,
〈1I, βl〉 = 0, and the solution αl must satisfy the constraint 〈y, αl〉 = 0. The transport
linear system is then rewritten in the convenient form

(
L+ (I− y⊗1I)D(I− 1I⊗y)

)
αl = βl. (6.28)

Letting L̃ = L+(I− y⊗1I)D(I−1I⊗y), the matrix L̃ then has properties similar to that of
L, in such a way that L̃ = L̃t, L̃ ≥ 0, and N(L̃) = R1I. Then for any positive coefficient
ν > 0 the solution αl is given by [41, 42]

αl =
(
L+ (I− y⊗1I)D(I− 1I⊗y) + νy⊗y

)−1
βl, (6.29)

and thus depends smoothly on the diagonal D. In particular, as D → 0 when ζ → ∞, we
exactly recover the tangential diffusion process of the gas mixture and limζ→∞ αl = αl

g

where αl
g is the corresponding solution of the gas phase transport linear system presented

more specifically in Appendix B.
Finally, the tangential fluxes in the physisorbate are naturally defined as

Fi = ǫ
∑

i∈Qi

∫
ci f

(0)
i Φ

(1)
i,oddci,

and taking into account the decomposition of Φ
(1)
i,od, these fluxes are given by

Fi = −ǫ
∑

l∈Sg

niα
l
i

∂ pl
p
.

Further assuming that the crystal is free of tangential stress in such a way that ∂ p = O(ǫ),
the tangential flux is then in the form Fi = −ǫ∑l∈Sg

niα
l
i∂ xl where the mole fraction

of the lth species is given by xl = nl/n, whereas in the gas the tangential flux reads
Fgi = −ǫ∑l∈Sg

ngiα
l
gi∂ xgl.
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6.5 First order expansion in the chemisorbate

Proceeding similarly as for the physisorbate and using (3.40), the first order equations
for the chemisorbate species and the crystal species read

∂tf
(0)
i + ci ·∂ f

(0)
i + ciz ∂ζ f

(1)
i − 1

m i
∂ζwi ∂ciz f

(1)
i +

1

τi,ph

(
f
(1)
i − 〈f(1)i 〉mi

)

= C(0)
i i ∈ Sc ∪ Ss ∪ Sb, (6.30)

Letting then

Φ
(1)
i = f

(1)
i /f

(0)
i (6.31)

and defining the operator Hi acting on ϕi by by

Hi(ϕi) = ciz ∂ζϕi −
1

m i
∂ζwi ∂cizϕi +

1

τi,ph

(
ϕi − 〈ϕimi〉

)
, (6.32)

the linearized equations may be written

Hi(Φ
(1)
i ) = Ψ

(1)
i , (6.33)

where

Ψ
(1)
i =

C(0)
i

f
(0)
i

− ∂t log f
(0)
i − ci ·∂ log f

(0)
i .

An important difference with the physisorbate is the absence of any normal gradient of the
species partial pressures. Normal gradients indeed arise for physisorbed species through
inner expansions of the gas distribution functions and are thus absent for chemisorbed
species. The boundary conditions are

lim
ζ→ζ−i

f
(1)
i = 0, lim

ζ→ζ+i

f
(1)
i = 0, (6.34)

and it is natural to impose an Enskog type constraint for the first order corrector f
(1)
i in

the form ∫
f
(1)
i dcidζ = 0, i ∈ Sc ∪ Ss ∪ Sb, (6.35)

since the average value of f
(1)
i is otherwise undetermined because Hi(1I) = 0 and any

term proportional to f
(0)
i could be added to f

(1)
i , keeping in mind that limζ→ζ−i

f
(0)
i =

limζ→ζ+i
f
(0)
i = 0. It is further possible to introduce layer averaged kinetic equations

as discussed in Appendix D. The surface diffusion fluxes may then be elegantly and
equivalently obtained from the layer averaged equations. The layer averaged equations
present many similarities with standard three dimensional kinetic equations.

The right hand side may be decomposed in the form

Ψ
(1)
i = Ψ

(1)
i,ev +Ψ

(1)
i,od, i ∈ Sc ∪ Ss ∪ Sb,

where

Ψ
(1)
i,ev =

C(0)
i

f
(0)
i

− ∂t log f
(0)
i , Ψ

(1)
i,od = −ci ·∂ log f

(0)
i , i ∈ Sc ∪ Ss ∪ Sb,
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are respectively even and odd functions of the tangential velocity ci . The solution Φ
(1)
i

is then decomposed in the form

Φ
(1)
i = Φ

(1)
i,ev +Φ

(1)
i,od, i ∈ Sc ∪ Ss ∪ Sb, (6.36)

with Φ
(1)
ev = (Φ

(1)
i,ev)i∈Sc , Φ

(1)
od = (Φ

(1)
i,od)i∈Sc so that

Hi(Φ
(1)
i,ev) = Ψ

(1)
i,ev, Hi(Φ

(1)
i,od) = Ψ

(1)
i,od, i ∈ Sc ∪ Ss ∪ Sb, (6.37)

with the Enskog constraints. The distributions f
(1)
i,ev = f

(0)
i Φ

(1)
i,ev and f

(1)
i,od = f

(0)
i Φ

(1)
i,od are

respectively even and odd in the tangential velocity ci and the Enskog constraint is in

the form
∫
f
(1)
i,ev dcidζ = 0 since that for f

(1)
i,od is automatically satisfied. Moreover, at both

sides ζ = ζ−i and ζ = ζ+i , the distributions fi,ev and fi,od go to zero.

6.6 Tangential multicomponent diffusion in the chemisorbate

A remarkable point of crystal surfaces is that the total species number per unit surface
is constant

∑
i∈Sc

ñi + ñs = ñσ or equivalently
∑

i∈Sb
ñi + ñs = ñσ and the molar based

mixture velocity vanishes also in a reference frame attached to the crystal because of
the interaction with phonons. There is a corresponding contraint stating that the total
tangential molar flux must vanish [74, 75]

∑

i∈Sc

i∈Qi

∫
ci f

(0)
i Φ

(1)
i,od dcidζ +

∫
cs f(0)s Φ

(1)
s,od dcsdζ = 0,

since diffusion processes are naturally measured with respect to the cristal. This con-
straint is analogous to the usual mass conservation constraint between mass fluxes in a
multicomponent mixture. It is then natural to define surface diffusion velocities on a
crystal with respect to the molar average velocity.

It is also natural to consider the coupled system of equations constituted by the
chemisorbate and the free sites and we denote by ST the corresponding species indexing
set

ST = Sc ∪ Ss.
The bulk species—constrained to follow the chemisorbed species—are uncoupled and will
be examined later. A main task is to determine the integrated tangential fluxes that will
be needed when investigating the chemisorbed species macroscopic equations

F̃i = ǫ
∑

i∈Qi

∫
ci f

(0)
i Φ

(1)
i,oddcidζ.

Following the formalism developped by Waldmann for molar based diffusion detailed in
[73, 33], the proper fluxes are in the form F̃i = ñiW̃i with a molar tangential layer

diffusion velocity W̃i given by

W̃i =
ǫ

ñi

∑

i∈Qi

∫
ci f

(0)
i Φ

(1)
i,oddcidζ −

ǫ

ñσ

∑

j∈ST

j∈Qj

∫
cj f

(0)
j Φ

(1)
j,oddcjdζ. (6.38)

The kinetic equations for the chemisorbed and free site species are written by using
the vector operator

H = (Hi)i∈ST
, (6.39)
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acting on families of perturbed distribution functions Φ
(1)
od = (Φ

(1)
i,od)i∈ST

where Hi is the
differential-integral operator (6.32). The coupled first order equation for the odd part of
the distribution functions is then in the form

H(Φ
(1)
od ) = Ψ

(1)
od , (6.40)

where Ψ
(1)
od = (Ψ

(1)
i,od)i∈ST

or equivalently Hi(Φ
(1)
i,od) = Ψ

(1)
i,od for i ∈ ST . The right

hand side is in the form Ψ
(1)
i,od = −ci ·∂ log f

(0)
i and using f

(0)
i = nimi and ñi =

ni
∫
exp
(
−wi/kBTw

)
dz, where ñi is the surface concentration of the ith surface species,

we obtain

Ψ
(1)
i,od = −ci ·∂ log f

(0)
i = −ci ·∂ log ñi = −ci ·∂ log p̃i, i ∈ ST ,

where p̃i = ñikBTw denotes the surface partial pressure of the ith species. Denoting
by p̃ =

∑
l∈ST

p̃l =
∑

l∈Sc
p̃l + p̃s = ñσkBTw the total surface pressure, which remains

constant, and x̃i = p̃i/p̃ the surface mole fraction of the ith species, we may then write
that

Ψ
(1)
i,od = −

∑

l∈ST

1

x̃i
ci ·d̃l δil,

where
d̃i = ∂ x̃i, (6.41)

denotes the surface diffusion driving force of the ith species. These diffusion driving forces
are constrained by the relation

∑

l∈ST

d̃l =
∑

l∈Sc

d̃l + d̃s = 0.

Multicomponent diffusion fluxes and coefficients defined with respect to the molar av-
eraged velocity have been investigated by Waldmann [73] and summarized in Appendix C
of [33]. Waldmann’s analysis must then be adapted to the situation of tangential surface
diffusion. To this aim, the right hand side is rewritten in the form

Ψ
(1)
od = −p̃

∑

l∈ST

Ψ(1),l
·d̃l,

where Ψ(1),l = (Ψ
(1),l
i )i∈ST

and

Ψ
(1),l
i =

1

p̃i
(δil − x̃i)ci .

Denoting by Φ(1),l the solution to the integral equations

H(Φ(1),l) = Ψ(1),l,

with boundary conditions similar to (6.34), and taking into account the simple structure

of H and of Ψ(1),l, the solution Φ(1),l is found in the form Φ(1),l = (Φ
(1),l
i )i∈ST

with

Φ
(1),l
i =

τi,ph
p̃i

(δil − x̃i)ci ,

where we have used that ∂ζΦ
(1),l
i = 0 and ∂cizΦ

(1),l
i = 0. The molar diffusion velocities

are then given by

W̃i = −ǫ
∑

l∈ST

D̃ild̃l, (6.42)
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where the multicomponent diffusion coefficients D̃il, i, l ∈ ST , read [33]

D̃il =
p̃

2ñi

∫
f
(0)
i Φ

(1),l
i ·ci dcidζ −

p̃

2ñσ

∑

j∈ST

∫
f
(0)
j Φ

(1),l
j ·cj dcjdζ.

All calculations done, it is found that

D̃il = δil
Di

x̃i
− (Di +Dl ) +

∑

j∈ST

x̃jDj , i, j ∈ ST , (6.43)

whereDi denotes the surface diffusion coefficient of the ith species associated with phonon
interactions

Di =
kBTw

m i
τi,ph, i ∈ ST , (6.44)

that is directly proportional to the relaxation time τi,ph for interaction with phonons.

The matrix D̃ is symmetric D̃ = D̃t with D̃ x̃ = 0 where x̃ = (x̃i)i∈ST
is the surface

mole fraction vector. The matrix D̃ is positive semi-definite with nullspace given by
N(D̃) = R x̃ and for any vector y = (yi)i∈ST

we have

〈D̃ y, y〉 =
∑

i∈ST

1

x̃i
Di

(
yi − x̃i

∑

l∈ST

yl

)2
.

Since D̃ x̃ = 0 we also obtain that
∑

i∈ST
x̃iW̃i = 0 and the diffusion process is compat-

ible with the molecular structure of the crystal, that is, it is guaranteed that ñσ remains
constant. Incidentally, the analysis may equivalently be conducted using the layer aver-
aged equation, since only the integrated fluxes are required, as presented in Appendix D.

The relations (6.43) and (6.44) expressing the surface diffusion coefficients further
show that surface diffusion is due to the interaction with phonons. This is a natural
results since surface diffusion and volume diffusion in solids are consequences of thermal
agitation [76, 77] and thermal agitation is represented by the interaction with phonons
in the model.

6.7 Chemisorbed and free site first order equations

In the chemisorbate, it is obtained at first order that

∂t

∫
(f

(0)
i + ǫf

(1)
i )dci + ∂ ·

∫
ci (f

(0)
i + ǫf

(1)
i )
)
dci + ∂ζ

∫
ciz(f

(1)
i + ǫf

(2)
i )dci =

∫
C(0)
i dci. (6.45)

The first time derivative term yields the contribution

∂t

∫
f
(0)
i dci = ∂tni exp

(
− wi

kBTw

)
,

and the other time derivative term ∂t
∫
f
(1)
i dci yields a zero contribution when integrated

over ζ from the natural Enskog type constraint
∫
f
(1)
i dcidζ = 0.

For the tangential derivative terms, we first note that
∫
ci f

(0)
i dci = 0. For the next

tangential term involving f
(1)
i = f

(0)
i Φ

(1)
i , we may use the decomposition Φ

(1)
i = Φ

(1)
i,ev+Φ

(1)
i,od
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where Hi(Φ
(1)
i,ev) = Ψ

(1)
i,ev and Hi(Φ

(1)
i,od) = Ψ

(1)
i,od and the results of previous Section 6.6.

The tangential fluxes have indeed been shown to be in the form

F̃i = ñiW̃i = ǫ

∫
ci f

(1)
i dcidζ = ǫ

∫
ci f

(1)
i,oddcidζ = −ǫñi

∑

l∈ST

D̃ild̃l,

where d̃i = ∂ x̃i = ∂ ñi/ñσ. In addition, integrating over ζ and summing over i ∈ Qi, the
normal derivatives terms in (6.45) do not contribute since there are no particles at the
limits ζ → 0 and ζ → ζ+i .

The overall mass conservation equation in the chemisorbate is thus obtained in the
form

∂tñi − ǫ
∑

l∈ST

∂ ·

(
ñiD̃il∂ ñl/ñσ

)
= w

(0)
i . (6.46)

It is then observed that the kinetic model yields a surface diffusion term that is directly
due to the interaction with phonons.

Since
∑

i∈ST
F̃i = 0 or equivalently D̃ x̃ = 0, we also recover that

∑
i∈ST

ñi =
∑

i∈Sc
ñi + ñs is governed by the equation ∂t

(∑
i∈ST

ñi

)
= 0 keeping in mind that

∑
i∈Sc

∫
C(0)
i dcidz +

∫
C(0)
s dcsdz = 0 from the conservation of sites by chemical reactions.

It is therefore recovered that
∑

i∈ST
ñi = ñσ remains constant in time.

7 Extension to multisite adsorption

We investigate in this section the situation where chemisorbed species may occupy several
atom sites on the crystal surface.

7.1 Multisite adsorption

The reactive surface model presented in the previous sections has been obtained with the
simplifying assumption that chemisorbed species are adsorbed on single site atoms of the
crystal surface. However, chemisorbed species on a flat surface may sometimes occupy
several atoms sites. We thus assume now that the ith chemisorbed species requires si ≥ 1
sites to be chemisorbed on the crystal surface. To each chemisorbed species, say of index
i ∈ Sc, we may then associate si bulk species with indices denoted by b(i, 1), . . . ,b(i, si)
that are all in Sb. The si sites associated with i ∈ Sc are thus b(i, 1), . . . ,b(i, si) ∈ Sb.
The number of bulk species is then nb =

∑
i∈Sc

si. The simplified monosite adsorption
case investigated in previous sections then corresponds to si = 1 for any i ∈ Sc.

The kinetic equations are similar when multisite adsorption occur but collisions are
naturally more complex. The chemisorption of the ith particle involves a collision with
si free site crystal atoms and similarly the desorption process involve the collision with
si crystal atoms of the solid surface. Whenever a chemisorbed species Mi for i ∈ Sc is
involved in a reaction, all its attached si bulk species are thus automatically involved.
Assuming for illustration that the ith chemisorbed species has a direct gas-phase parent
with index g(i) ∈ Sg, noting for short by s the free site index, and assuming that there is
no dissociation during adsorption, then the direct multisite adsorption of Mg(i) into Mi

may be written with the atomic site convention

Mg(i) + siMs ⇄ Mi +
∑

1≤j≤si

Mb(i,j). (7.1)
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The same adsorption reaction would be written in the form

Mg(i) + siO(s) ⇄ Mi, (7.2)

with the open site formalism. As a typical example, using the open site formalism, the
reaction of adsorption of Propene C3H6 on platinum Pt requires two free sites and may
be written [78]

C3H6 + 2Pt(s) ⇄ C3H6(s),

where C3H6 denotes the Propene gaseous molecule, Pt(s) the open site symbol of a
platinum crystal surface and C3H6(s) the adsorbed molecule, whereas the adsorption of
water vapor H2O on the same surface reads

H2O+ Pt(s) ⇄ H2O(s),

the adsorbed water molecule H2O(s) only occupying a single platinum atom site [78].
The number density of chemisorbed species per unit surface ñi, i ∈ Sc, then corre-

sponds to siñi =
∑

1≤j≤si
ñb(i,j) moles of bulk species per unit surface with ñb(i,1) = · · · =

ñb(i,si) = ñi. The monolayer constraints between species numbers then reads

∑

i∈Sc

siñi + ñs = ñσ.

We introduce for convenience the notation ss = 1 so that
∑

i∈ST
siñi = ñσ with ST =

Sc ∪ Ss. In this situation of multisite adsorption, it is natural to define the site mole

fractions

x̃s
i =

siñi
ñσ

, i ∈ ST = Sc ∪ Ss, (7.3)

that sum up to unity, keeping in mind that ñσ =
∑

i∈ST
siñi remains constant from the

structure of the crystal surface. These fractions represent site mole fractions, that is, the
local ratio of the number of sites occupied by the ith chemisorbed or free site species per
unit surface divided by the total number of sites per unit surface.

In the situation of a single species being adsorbed of several sites, the modified po-
tentials (4.31) are then typically in the form

µ̃i = log
( ñi

z̃
′
i(1− θ̃)si

)
,

involving the traditional factor (1− θ̃)si in the denominator [79, 80].

7.2 Surface tangential diffusion with multisite adsorption

In order to investigate the tangential mass fluxes of chemisorbed species in the multisite
situation, a similar analysis to that of Section 6.6 may be conducted. Incidentally, dif-
fusion processes in the physisorbate are naturally unchanged by multisite chemisorption.
Considering again the indexing set ST = Sc ∪ Ss, the kinetic equations are found in the

form H(Φ
(1)
od ) = Ψ

(1)
od where Ψ

(1)
od = (Ψ

(1)
i,od)i∈ST

and Ψ
(1)
i,od = −ci ·∂ log f

(0)
i . It is then

natural to use the site molar fractions and to write that

Ψ
(1)
i,od = −ci ·∂ log f

(0)
i = −ci ·∂ log(siñi), i ∈ ST .

Applying the Waldman formalism, the new diffusion driving forces are

d̃i = ∂ x̃s
i , i ∈ ST . (7.4)
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and are constrained by the relation
∑

l∈ST
d̃l = 0. The right hand side is rewritten in the

form
Ψ

(1)
od = −p̃

∑

l∈ST

Ψ(1),l
·d̃l,

where Ψ(1),l = (Ψ
(1),l
i )i∈ST

and

Ψ
(1),l
i =

1

p̃ x̃s
i

(δil − x̃s
i)ci , i, l ∈ ST .

The tangential diffusion velocities are then obtained in the form

W̃i = −ǫ
∑

l∈ST

D̃ild̃l, i ∈ ST , (7.5)

with the fluxes F̃i given by F̃i = ñiW̃i .
The analysis is similar to that conducted in Section 6.6 provided that the site mole

fractions per unit surface are used instead of the ordinary mole fractions per unit surface.
The multicomponent diffusion coefficients are then found in the form

D̃il = δil
Di

x̃s
i

− (Di +Dl ) +
∑

j∈ST

Dj x̃
s
j, i, l ∈ ST .

where Di = kBTwτi,ph/m i, i ∈ ST , denotes the surface diffusion coefficient of the ith
species associated with phonon interactions. In the situation of single site adsorption
where si = 1, for i ∈ ST , we naturally recover the result of the previous section. The
matrix D̃ = (D̃)i,l∈ST

is symmetric D̃ = D̃t and N(D̃) = Rx̃s where x̃s = (x̃s
i)i∈ST

. In

particular, since D̃x̃s = 0, we have
∑

l∈ST
D̃ilslx̃l = 0 so that

∑
i∈ST

siñiW̃i = 0. In
other words, we obtain the natural site number diffusion constraint

∑

i∈ST

siF̃i = 0, (7.6)

generalizing the monosite constraint. Although this constraint is physically natural, it
appears to have been overlooked in the literature in the multisite situation. Finally, the
various macroscopic boundary conditions for the gas and the surface species are found to
be unchanged.

8 Conclusion

The kinetic model describing complex chemical reactions on a solid surface introduced in
this work may be extended is various directions. Adding bulk and surface phonon kinetic
equations would allow to take into account temperature variations in the crystal as well
as the situations where Tg 6= Tw. The linearized first order equations associated with the
physisorbate and the chemisorbate also lead to new half space integro-differential equa-
tions that have never been investigated. Finally, multitemperature flows as well as state
to state models involving gas surface interactions, which are of paramount importance
for reentry, may also be investigated with similar models.
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A Collision operators with phonons

We denote in this section the species quantum indices in the form (i, ĩ) where ĩ is an
index for the degeneracies of the energy state i, ranging in an indexing set denoted by
Q̃ii. These degeneracies may typically be magnetic quantum numbers [73, 41].

The detailed operator Ji,ph describing collisions between particles of species i and
phonons taking into account the detailed quantum states (i, ĩ) are in the general form
[19, 35, 36, 37]

Ji,ph =
∑

i
′∈Qi

ĩ
′∈Q̃ii

∫ ((
fph(q) + 1

)
fi(c

′
i, i

′, ĩ
′
)− fph(q)fi(ci, i, ĩ)

)
W i,̃i,i′ ,̃i′

i,ph dc′idq, (A.1)

where fph(q) denotes the phonon distribution function, i ∈ S the species index, q the
phonon wave vector or quasi-momentum, ci and c

′
i the particle velocities before and after

the interaction, and W i,̃i,i′ ,̃i′

i,ph a transition probability. The dilute approximation has been
used for fi in order to simplify (A.1) and the appearing of the additional factor 1 in the
gain term is a typical quantum effect [19, 35, 36, 37].

Proceeding as in Waldmann [73] and Oxenius [81], and assuming that the distributions
are isotropic in such a way that fi(ci, i, ĩ) = fi(ci, i) is independent of ĩ, we may set

fi(ci, i) =
∑

ĩ∈Q̃ii

fi(ci, i, ĩ) = aiifi(ci, i). (A.2)

The operator (A.1) is then obtained in the form (2.21) with the degeneracy averaged
transition probabilities

W
i,i′

i,ph =
1

aii

∑

ĩ,̃i′∈Q̃ii

W i,̃i,i′ ,̃i′

i,ph ,

and these transition probabilities are such that aiiW
i,i′

i,ph = aii′W
i
′,i
i,ph, [73, 81]. The operator

(A.1) corresponds to collisions such that m ici = m ic
′
i + q + b where b is a vector of the

reciprocal crystal lattice and there is another operator associated with collisions such that
m ici + q = m ic

′
i + b that leads to the same type of simplified source term Ji,ph and the

corresponding details are omitted.

B Diffusion transport linear system in the gas

The transport linear systems associated with diffusion in the gas phase are well docu-
mented [38, 39, 40, 41, 42, 43, 44] and we summarize the results used in the paper. The

integral equations (6.4) are solved with φ
(1)
g written in the form

φ
(1)
gi = −

∑

l∈Sg

φ
(1),l
gi ·∂xpgl, (B.1)
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and the right hand sides are found in the form

ψ
(1),l
gi =

1

pgi
(δil − ygi)ci. (B.2)

The Enskog constraints reduce to 〈〈(f (0)gi φ
(1),l
i,g )i∈Sg , (m ici)i∈Sg〉〉 = 0 and the system is

then solved by using a variational method.
We use the variational approximation space spanned by

Span{ φ1000k; k ∈ Sg }, (B.3)

where

φ1000k = (wiδki)i∈Sg , wi =
( m i

2kBTw

)1/2
ci. (B.4)

The right hand side may be expressed in the form

ψ(1),l
g =

∑

k∈Sg

√
2√

m kkBTw

1

nk
(δkl − yk)φ

1000k,

and the solution is expanded as

φ(1),l
g =

∑

k∈Sg

√
2m k

p
√
kBTw

αl
kφ

1000k.

The transport linear system is obtained by taking the scalar product of the gas integral
equations by the basis functions φ1000k for k ∈ Sg, and the resulting matrix Lg is

Lg, kl =
2
3

√
m km l

ακp
[φ1000k , φ1000l]g, k, l ∈ Sg, (B.5)

where for any f = (fi)i∈Sg and g = (gi)i∈Sg with fi and gi functions of ci and i, the
bracket product [f , g ]g denotes [f , g ]g =

∑
i∈Sg

∑
i∈Qi

∫
fi ⊙ Igi(g) dci. The matrix Lg =

(Lg, kl)k,l∈Sg
is symmetric positive semi-definite with nullspace spanned by 1I ∈ R

n, that
is, Lg = Lt

g, Lg ≥ 0, and N(Lg) = R1I, and its components are given by

Lg kk =
∑

l∈Sg

l 6=k

xgkxgl

Dkl
, Lg kl = −xgkxgl

Dkl
, k 6= l, k, l ∈ Sg,

where xgk = ngk/ng denotes the mole fraction of the kth species in the gas and Dkl the
binary diffusion coefficient for the (k, l) species pair [39, 40, 41, 42, 43, 44]. The resulting
transport linear system is found after some algebra in the form

Lgα
l
g = βlg, l ∈ Sg, (B.6)

where αl
g = (αl

g k)k∈Sg
, βlg = (βlg k)k∈Sg

, βlg k = δkl − ygk, 〈1I, βlg〉 = 0, and the mass

constraint yields that the solution αl
g must satisfy 〈y, αl

g〉 = 0. Then for any positive

coefficient ν > 0 the solution αl
g is given by

αl
g =

(
Lg + νyg⊗yg

)−1
βlg, l ∈ Sg. (B.7)

The molar diffusion flux of the ith species is then given by

Fgi = −ǫ
∑

l∈Sg

ngiα
l
gi

∂xpgl
pg

, (B.8)

and its projection on the tangential plane yields the flux used in Section 6.4. Since
∂xpg = O(ǫ), these diffusion fluxes may also be written Fgi = −ǫ∑l∈Sg

ngiα
l
gi∂xxgl.
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C Normal multicomponent diffusion in the physisorbate

Condidering normal diffusion in the physisorbate, the equations governing even compo-

nents of perturbed distribution functions Φ
(1)
i,ev resulting from (6.18) are in the form

ciz∂ζΦ
(1)
i,ev −

m iciz
ρkBTw

∑

j∈Sg

j∈Qj

∂ζ

∫
m jc

2
jzf

(0)
j Φ

(1)
j,evdcj +

1

ακ
Ii(Φ(1)

ev )

− 1

m i
∂ζwi ∂cizΦ

(1)
i,ev −

m iciz
ρkBTw

∑

j∈Sg

j∈Qj

∫
∂ζwj f

(0)
j Φ

(1)
j,evdcj

+
Φ
(1)
i,ev − 〈Φ(1)

i,evmi〉
τi,ph

− m iciz
ρkBTw

∑

j∈Sg

j∈Qj

1

τj,ph

∫
m jcjzf

(0)
j Φ

(1)
j,evdcj

=
C(0)
i

f
(0)
i

−
∑

l∈Sg

1

pi
(δil − yi)ciz∂zpgl, i ∈ Sg. (C.1)

Taking into account the similar gas phase problem solution, it is natural to seek a solution
of (C.1) in the form

Φ
(1)
i,ev = −

∑

l∈Sg

Φ
(1),l
i,ev ∂zpgl +Φ

(1),vg
i,ev , i ∈ Sg, (C.2)

with a diffusional part −∑l∈Sg
Φ
(1),l
i,ev ∂zpgl and a remaining term Φ

(1),vg
i,ev that will involve

chemistry, diffusion and convection. The diffusional part is naturally assumed to obey

the mass conservation Enskog constraint
〈〈
f(0)Φ

(1),l
ev , (m iciz)i∈Sg

〉〉
= 0 where f(0)Φ

(1),l
ev =(

f
(0)
i Φ

(1),l
i,ev

)
i∈Sg

.

The differential-integral equations (C.1) are then solved using a Galerkin procedure
with the convenient approximation space

Span{ φ0000k; k ∈ Sg; φ1000kz ; k ∈ Sg }, (C.3)

where

φ0000k = (δki)i∈Sg , φ1000kz = (wizδki)i∈Sg , wiz =
( m k

2kBTw

)1/2
ciz. (C.4)

The basis functions φ1000kz are the natural one-dimensional versions of the traditional
corresponding three dimensional basis functions whereas the φ0000k are the natural scalar
basis functions. The solutions are expanded in the form

Φ(1),l
ev =

∑

k∈Sg

√
2m k

p
√
kBTw

α̃l
kφ

1000kz, (C.5)

Φ
(1),vg
ev =

∑

k∈Sg

√
2m k√
kBTw

α̂kφ
1000kz +

∑

k∈Sg

α̂′
kφ

0000k. (C.6)

It is indeed natural that Φ
(1),l
ev , l ∈ Sg, are odd with respect to the normal species velocities.
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We next use a superposition method, first solving a partial system for the simpler

diffusional component of the solution −∑l∈Sg
Φ
(1),l
i,ev ∂zpgl and then solving a full system

for more complex remaining part of the solution Φ
(1),vg
i,ev . Considering first the system (C.1)

without the chemistry source terms C(0)
i /f

(0)
i , for the diffusional part of the solution, and

taking the product with the test functions f(0)φ1000kz = (f
(0)
i φ1000kzi )i∈Sg , k ∈ Sg, using

(2.40), we obtain simple linear systems for the α̃l = (α̃l
k)k∈Sg

. After some algebra, it is
naturally found that the governing equations reduce to the same transport linear systems
with the same mass constraint as for tangential diffusion so that

α̃l = αl, l ∈ Sg, (C.7)

and diffusion is recovered to be isotropic. Therefore, the solution α̃l converges towards
that of the gas α̃l → αl

g as ζ → ∞ as we have already established for αl. The diffusive
flux of the ith species Fiz in the normal direction may thus be written

Fiz = −ǫ
∑

l∈Sg

niα
l
i

∂zpgl
p

, i ∈ Sg, (C.8)

or equivalently Fiz = −ǫ
∑

l∈Sg
ngxiα

l
i∂zxgl, and converges towards the corresponding gas

flux Fgiz = −ǫ∑l∈Sg
ngxi,gα

l
gi∂zxgl,

Once the diffusive component of the solution Φ
(1),l
ev , l ∈ Sg, are known, we may use the

decomposition (C.2) and obtain a variational formulation for the remaining part of the

solution Φ
(1),vg
i,ev . Important simplifications are then obtained from the simple structure

of φ1000kz and φ0000k. In particular, the multiplication by f(0)φ0000k, k ∈ Sg, using the
scalar product (2.40), yields

nk∂ζ α̂k −
nk
kBTw

∂ζwk α̂k + ∂ζFkz = C
(0)
k , (C.9)

where

C
(0)
k =

∑

k∈Qk

∫
C(0)
k dck.

Using then ∂ζ log nk = −∂ζwk/kBTw, we may rewrite (C.9) in the form ∂ζ(nkα̂k +Fkz) =

C
(0)
k , and by integration, we obtain that

nkα̂k =

∫ ζ

0
C
(0)
k dζ̂ − Fkz. (C.10)

From the compatibility with the gases for ζ → ∞, and using (C.6), we also deduce that

lim
ζ→∞

α̂k = vg, lim
ζ→∞

α̂′
k = 0,

and we may alternatively write that nkα̂k = ngkvg + Fgkz −
∫∞
ζ C

(0)
k dζ̂ − Fkz. By in-

tegrating (C.9) over (0,∞), we also recover the fluid boundary condition (4.19) since

w
(0)
k =

∫
C
(0)
k dz. On the other hand, taking the scalar product with f(0)φ1000kz , k ∈ Sg,

using (2.40), it is found that

nk∂ζ α̂
′
k − yk

∑

j∈Sg

nj∂ζ α̂
′
j = bk,
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where bk = p
kBTw

(∑
l∈Sg

Lklα̂l +Dkkα̂k − yk〈Dα̂, 1I〉
)
. We may then impose the constraint

∑
j∈Sg

nj∂ζ α̂
′
j = 0 to finally get that α̂′

k = −
∫∞
ζ

bk

nk
dζ.

In conclusion, diffusive processes are isotropic in the physisorbate and converge to-

wards that of the gas associated with φ
(1)
gi . The physisorbate perturbed distribution func-

tions also have components Φ
(1),vg
i,ev converging towards the remaining parts m icizvgz/kBT g

of the gas corrected perturbed distribution functions.

D Layer-averaged kinetic equation

We investigate in this section layer-averaged or partially integrated kinetic equations for
the surface species ST = Sc ∪ Ss. The layer-averaged zeroth order densities are defined
by

f̃
(0)
i =

∫
f
(0)
i dcizdζ, i ∈ ST ,

and the layer-averaged odd perturbed distributions Φ
(1)
i,od as

Φ̃
(1)
i,od =

1

f̃
(0)
i

∫
f
(0)
i Φ

(1)
i,oddcizdζ, i ∈ ST .

Since the relaxation times for the surface species are independent of ciz and ζ, we may

then define the ith layer-averaged kinetic operator H̃i as

H̃i(ϕ̃) =
1

τi,ph

(
ϕ̃−

∫
ϕ̃ m̃idci

)
, i ∈ ST ,

where m̃i is the tangential two-dimentional Maxwellian of the ith species, and the layer-

averaged perturbed distributions Φ̃
(1)
i,od then satisfy the kinetic equations

H̃i(Φ̃
(1)
i,od) = Ψ̃

(1)
i,od, i ∈ ST , (D.1)

where Ψ̃
(1)
i,od = −ci ·∂ log f̃

(0)
i , i ∈ ST . These equations are directly obtained by multi-

plying Hi(Φ
(1)
i,od) = Ψ

(1)
i,od by f

(0)
i , partially integrating the resulting kinetic equations with

dcizdζ, and then dividing by f̃
(0)
i . Letting then Φ̃

(1)
od = (Φ̃

(1)
i,od)i∈ST

, H̃ = (H̃i)i∈ST
, and

Ψ̃
(1)
od = (Ψ̃

(1)
i,od)i∈ST

, we obtain H̃(Φ̃
(1)
od ) = Ψ̃

(1)
od .

It is further possible to introduce a surface bracket operator acting on pairs Φ̃ =
(Φ̃i)i∈ST

and Φ̃′ = (Φ̃′
i)i∈ST

, where Φ̃i and Φ̃′
i are functions of ci , in the form

⌊⌊Φ̃, Φ̃′⌋⌋ =
∑

i∈ST

∫
f̃
(0)
i H̃i(Φ̃i)⊙ Φ̃′

idci . (D.2)

This surface bracket operator is also symmetric ⌊⌊Φ̃, Φ̃′⌋⌋ = ⌊⌊Φ̃′, Φ̃⌋⌋, positive semi-definite
⌊⌊Φ̃, Φ̃⌋⌋ ≥ 0, and its kernel is spanned by constants.

The layer-averaged kinetic equation (D.1) may be used whenever one wants to obtain

the layer-averaged distribution Φ̃
(1)
i,od or any of its moment with respect to the tangen-

tial velocity ci . These equations are natural since only the integrated quantities are
physically interesting and all the results of Section 6.6 may be recovered. The tangential
diffusion fluxes in particular may be expressed as

F̃i = ǫ

∫
f̃
(0)
i Φ̃

(1)
i,od ci dci , i ∈ ST .
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The Waldmann formalism for the surface kinetic equation also leads to

Ψ̃
(1)
od = −p̃

∑

l∈ST

Ψ̃
(1),l
od ·d̃l, l ∈ ST ,

where Ψ̃
(1),l
od = (Ψ̃

(1),l
i,od )i∈ST

and Ψ̃
(1),l
i,od = 1

p̃i
(δil − x̃i)ci , for i, l ∈ ST . The solutions Φ̃

(1),l
od

to the integral equations H̃(Φ̃
(1),l
od ) = Ψ̃

(1),l
od for l ∈ ST are found in the explicit form

Φ̃
(1),l
i,od = τi,ph

1

p̃i
(δil − x̃i)ci , i, l ∈ ST .

The tangential velocities may also be written

W̃i =
ǫ

ñi

∫
f̃
(0)
i Φ̃

(1)
i,odci dci − ǫ

ñσ

∑

j∈ST

∫
f̃
(0)
j Φ̃

(1)
j,odcj dcj , (D.3)

and from the isotropy of the layer-averaged operator, we recover the molar diffusion
velocities from (6.42) and the diffusion coefficients

D̃il =
p̃

2ñi

∫
f̃
(0)
i Φ̃

(1),l
i,od ·ci dci − p̃

2ñσ

∑

j∈ST

∫
f̃
(0)
j Φ̃

(1),l
j,od ·cj dcj .

The diffusion coefficient may also be written as D̃il =
kBTwp̃

2 ⌊⌊Φ̃(1),i
od , Φ̃

(1),l
od ⌋⌋, for i, l ∈ ST

and so that the two-dimensional surface formalism for layer averaged quantities is similar
to that of gas mixtures in three dimensions mutatis mutandis.
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[38] L. Waldmann, E. Trübenbacher, Formale kinetische Theorie von Gasgemischen aus
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