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Abstract

A kinetic theory describing chemical reactions on crystal surfaces is introduced.
Kinetic equations are used to model physisorbed-gas particles and chemisorbed par-
ticles interacting with fixed potentials and colliding with phonons. The phonons are
assumed to be at equilibrium and the physisorbed-gas and chemisorbed species equa-
tions are coupled to similar kinetic equations describing crystal atoms on the surface.
An arbitrary number of surface species and heterogeneous chemical reactions are
considered, covering Langmuir-Hinshelwood as well as Eley-Rideal mechanisms and
the species may be polyatomic. A kinetic entropy is introduced for the coupled sys-
tem and the H theorem is established. Using a fluid scaling and a Chapman-Enskog
method, fluid boundary conditions are derived from the kinetic model and involve
complex surface chemistry as well as surface tangential multicomponent diffusion.

Keywords : Kinetic theory; Gas-surface interaction; Surface reactions; Chapman-
Enskog; Fluid boundary conditions.

1 Introduction

Chemical reactions often occur at solid or liquid surfaces like in hypersonic reentry [1, 2,
3, 4, 5, 6], engine combustion [7], condensation and evaporation [8, 9, 10|, or chemical
vapor deposition [11, 12]. Although the description of reactive surfaces using molecular
simulations [13, 14, 15] or macroscopic fluid models [16, 17, 18] has been highly successful,
there is still a need to develop kinetic models at the mesoscopic scale. These models may
be used in particular to derive fluid boundary conditions at reactive interfaces using the
Chapman-Enskog method.

Kinetic gas-surface models involving chemical reactions have traditionally been in-
vestigated by using Maxwell type boundary conditions with boundary partial densities
typically given by chemical equilibrium conditions, avoiding the complexities of gas sur-
face interactions. More refined models of gas-solid interfaces based on physical grounds
involve kinetic equations for gas particles interacting with a potential field and colliding
with phonons that describe the fluctuating part of the surface [19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31]. These models have been used to study condensation and evap-
oration, particle trapping, phonon drag, surface homogenization, or scattering kernels
[19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. Such physical models have recently
been extended to cover the situation of a single-species chemisorption [32, 33]. In this
work, a kinetic model for complex chemical reaction networks on crystal surfaces—also
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involving polyatomic species—is investigated expanding previous work [32, 33] as well as
preliminary results [34].

An arbitrary number of heterogeneous chemical reactions, physisorbed-gas species or
chemisorbed species—that may be monatomic or polyatomic—are considered. The crys-
tal is assumed to be monatomic for the sake of simplicity and the surface atoms may
either be free sites or else bonded to chemisorbed species. The kinetic Boltzmann equa-
tions take into account the interaction of gas particles with average surface potentials as
well as with phonons [20, 23, 27, 29, 30]. The potential fields are generated by fixed crys-
tal particles and the phonons describe the fluctuating part of the surface. The phonons
are assumed to be at equilibrium in this work for the sake of simplicity [20, 22, 24, 25]
although a kinetic equation for phonons could also be considered [19, 35, 36, 37]. The
physisorbed-gas, chemisorbed and crystal species kinetic equations are all coupled by
chemistry source terms. The surface chemistry will be assumed to be slow enough so
that the crystal surface essentially remains at physical equilibrium and only its chemical
composition is out of equilibrium.

Using the atomic site formalism of heterogeneous chemistry, the chemical reactions
are written in the form

o= >y, reR, (1.1)

JEFT keBr
where 2; is the symbol of the ith species that may either be a physisorbed-gas particle, a
chemisorbed particle, a crystal free site particle or a bonded crystal particle, r denotes the
reaction index and fR the reaction indexing set. The sets 7" and B" denote respectively
the indices of reactants and products of the rth reaction. The chemical reactions are
described by using the atom site formalism that takes into account the crystal atoms,
even though macroscopically it may also be described by using the open site formalism
that formally hides the crystal atoms [17, 33]. The surface chemical reaction mechanism is
arbitrarily complex and covers adsorption, desorption, Langmuir-Hinshelwood as well as
Eley-Rideal reaction types. We first assume for the sake of simplicity that the chemisorbed
molecules only occupy one crystal site on the surface, that is, that adsorption processes
are monosite. The extension to the situation of multisite adsorption is then addressed
separately in an extra section. The system is assumed to be isothermal and the phonon
are consistently assumed to be at physical equilibrium as well as surface crystal atoms.
A modified kinetic entropy is introduced for the coupled system of kinetic equations and
an H theorem is established.

A Chapman-Enskog type expansion is introduced with a fluid scaling of the kinetic
equations. A multiscale asymptotic analysis is performed and the Stefan convection ve-
locity associated with overall mass production at the surface is naturally assumed to be
small. The inner structure of the physisorbate, the chemisorbate, and the crystal layers
are analyzed at zeroth order and closely related to interaction potentials. The gas species
diffusive fluxes and the Stefan gas flow at the surface then results from the physisorbed-gas
particles production by surface chemistry. The chemisorbed particles are also governed
at zeroth order by differential equations with surface chemistry source terms. The tra-
ditional species fluid boundary conditions for reactive surfaces are recovered and involve
heterogeneous chemistry production rates [16, 17, 18]. The dynamic boundary conditions
associated with the pressure tensor and the heat flux at the interface are also addressed.
We also establish the validity of the simpler open site formalism in order to describe the
macroscopic equations. With this formalism the crystal free site atoms as well as the
crystal atoms bonded to chemisorbed particles are removed and replaced by an open site
symbol that is massless and atomless.



The inner structure of the physisorbate, the chemisorbate, and the free site layers are
further analyzed at first order. The linearized systems of differential-integral equations
that govern the perturbed distribution functions are found to differ from traditional half
space problems. The corresponding first order species fluid boundary conditions also
include extra terms associated with multicomponent tangential surface diffusion fluxes
that are investigated in the physisorbate and the chemisorbate. Finally, the extension
to multisite adsorption processes is investigated and the corresponding modified surface
equations and multicomponent diffusion fluxes are presented.

The kinetic model is presented in Section 2 and the asymptotic framework in Section 3.
Zeroth order expansions and species boundary conditions are investigated in Section 4
and the momentum and energy boundary conditions in Section 5. First order expansions
are considered in Section 6 and the extension to the situation of multisite adsorption is
addressed in Section 7.

2 A kinetic model

A kinetic model describing multicomponent gases nearby reactive crystal surfaces is pre-
sented. The kinetic equations involve monatomic or polyatomic particles interacting with
surface potential fields and colliding with phonons, [19, 20, 21, 22, 23, 32, 33, 34]|. This
complex chemistry collisional formalism for surface reactions is new to the best of the
authors’ knowledge.

2.1 Kinetic equations for physisorbed-gas species

We consider a mixture of monatomic or polyatomic species indexed by Sy = {1,...,Ng}
where Ny denotes the number of physisorbed-gas species. The particules may approach the
surface and be physisorbed but may also be chemisorbed by forming chemical bonds with
the crystal atoms. The chemisorbed species are different chemical species and are indexed
by Sc = {Ng +1,...,Ng + N} where N, denotes the number of chemisorbed species. We
also consider the free sites crystal particles on the surface indexed by Ss = {Ng + N +Ng},
where Ng = 1 is the number of free site species, and the index of the free sites Ng + N¢ + N
will sometimes be denoted by ‘s’ for the sake of simplicity. Moreover, the crystal particles
bonded to the chemisorbed particles are indexed by Sy, = {Ng + N¢ + Ng+ 1,... Ny +
Nc + Ng + N} where Ny, denotes the number of bulk species. It is first assumed in this
work that the chemisorbed species only occupy one atom site on the crystal surface so
that there are as many bulk species as chemisorbed species N, = N.. The more complex
situation of multisite adsorption, where a chemisorbed species may be bonded to multiple
crystal atoms, is addressed separately in Section 7. The resulting species indexing set S
for heterogeneous chemistry is finally denoted by

S=S8,US8. US;US,={1,...,N}, (2.1)

where N = Ny + N + Ng + Ny, is the total number of reactive species at the surface.
The Boltzmann equations governing physisorbed-gas species are in the form [19, 20,
21, 22, 23, 32, 33, 34]

1 .
Opfi + €i-0afi — ——0aWi* e, fi = > Jii(fi i)+ Jipn(fi) +Ci, i€ Sy, (22)
¢ jESg

where 0, denotes the time derivative operator, i € Sy the species index, fi(t,x,c;,1)
the ith species distribution function, ¢; the ith species particle velocity, 1 the energy



quantum state of the ith species, 8, the space derivative operator, m; the particle mass,
w; the interaction potential between fized crystal particles and the particles of the ith
species, O, the velocity derivative operator, J;; the collision operator between the ith
and the jth physisorbed-gas species, J; o, the particle-phonon collision operator, and C;
the chemistry source term. The solid surface is denoted by ¥ and assumed to be planar
located at z = 0 with the spatial coordinates written & = (x,vy, 2)! and e, denotes the
base vector in the normal direction oriented towards the gas. The coordinate vector x is
also written = = (x,,2)! where z, = (z,y)! is the two dimensional vector of tangential
coordinates. Similarly the particle velocity ¢; is written ¢; = (¢;y, ciz)t where ¢;, denotes
the tangential two-dimentional velocity vector and c;, the normal velocity.

The particle collision operator J;; is in the traditional form [38, 39, 40, 41, 42, 43, 44]

Tilf f) = > / FE YWY deddde), e Sy (23)

a /a /
eQ; i’ g
JJEQ

where, in a direct collision, ¢; denotes the velocity of the collision partner, I and J the
energy quantum state before collision, ¢} and ¢/; the velocities after collision, 1" and J’ the
energy states after collision, a;; the degeneracy of the 1th quantum state, Q; the indexing
set of the quantum energy states of the ith species, WZ-I,J/ the transition probability of
nonreactive collisions averaged over degeneracies and f! = f;(t,x,c},1'). Ounly collision
operators J;; between physisorbed-gas species i,j € Sg, are taken into account. The
following reciprocity relations are satisfied by the transition probabilities [38, 39, 40, 41,
42, 43, 44]

ailajJW%Il = a;ra; ]/W” Y, (2.4)

The collision terms J;; may be written equivalently in terms of collision cross sections
[38, 39, 40, 41, 42, 43, 44].

The phonon collision operator J; ,, will be investigated in Section 2.5 and the reactive
operator C; in Section 2.6. These collision operators J; ,n and C; for i € S, both vanish
far from the surface as well as the potentials W; in such a way that letting z — oo in
equation (2.2) yields the kinetic equations in the gas phase

8tfgi +c; '8acfgi = Z Jij(fgiyfgj)a 1€ Sgy (2'5)

JESg

where fg;(t,x,c;,1) denotes the gas distribution function of the ith species. The ki-
netic equation (2.5) is the standard Boltzmann equation for a mixture of monatomic or
polyatomic gases and there is thus a single kinetic framework describing both gas and
physisorbed mixtures, the gas equations being recovered far from the surface. No chemi-
cal reactions are considered in the gas phase for the sake of simplicity although they may
be included in the model.

2.2 Kinetic equations for chemisorbed and crystal species

The distribution functions for the chemisorbed, the free sites and the bulk species are
assumed to be governed by the kinetic equations [32, 33, 34].

1
atfi"'ci'awfi_ ;amwzacsfl = Ji,ph(fi)"'Cz' 1€ SCUSSUSb7 (2'6)

where f;(t, x, c;,1) denotes the ith species distribution function, ¢; the particle velocity, 1
the energy quantum state, w; the interaction potential with fized crystal particles (interior



crystal particles for the crystal surface species), m; the particle mass, J; i the particle-
phonon collision operator and C; the reactive source term. Since the crystal is monatomic,
the crystal free site species as well as the bulk species—the crystal species that are bonded
to chemisorbed species—are monatomic. The phonon collision operator J; ,n, will be
investigated in Section 2.5 and the reactive operator C; in Section 2.6. For the chemisorbed
species, Equations (2.6) are analogous to that used for physisorbed species—using the
corresponding chemisorption potential—and have a similar physical interpretation. They
are also in the form derived by Bogoliubov and Bogoliubov [45] as well as in the form of a
one-particle equation of the BBGKY hierarchy, as discussed in a quasi steady framework
by Cercignani [46], and analogous to kinetic equations describing lattice gases introduced
by Bogdanov et al. [23]. For the crystal species, the kinetic equations are further similar
to that of the chemisorbed species equation since for crystal growth phenomena the
chemisorbed layers are crystal layers. The equilibrium distributions associated with (2.6)
are the appropriate Maxwellian distributions constrained by the crystal potentials w;
in agreement with statistical physics at equilibrium [47, 48, 49, 50, 51]. For the bulk
species, the phonon collision term may also be interpreted as an overall relaxation operator
encompassing phenomena of different origins.

The surface layer ¥ is the last layer of crystal atoms located around z = 0 and is
constituted by free site particles as well as bulk crystal particles bonded to chemisorbed
species with distribution f, = fo+>_,c S fi- We introduce for convenience the standard or
unperturbed surface layer distribution function f$ that is solution of the kinetic equation

1
8tf§ + Co ‘8wf§ - m_awwa'acafg = Jo,ph(fs)a (27)

where w, = w; for any i € S;US}, denotes the interaction potential between fixed internal
crystal particles and crystal surface particles, m, the particles mass, and J, pp, the crystal
particle-phonon collision operator. The standard surface distribution function f; is that
of an unperturbed crystal surface layer. The probability 1 — # to find an open site on the
surface layer ¥ is defined as the ratio

5
Js

The quantity @ is usually termed the coverage and represents the probability that a site
is occupied by a chemisorbed particle in the monolayer chemisorbate. The probability of
free sites 1 — 0 is defined here as a kinetic variable and will be shown to only depend on
time ¢ and tangential coordinate @, at zeroth order.

1—-60= (2.8)

2.3 Summed potentials

The interaction potentials summed over fized crystal particles w;, i € S, are assumed
to only depend on the mormal coordinate z for the sake of simplicity. These potentials
are written in the form w; = w;(z/d), where ¢ is a characteristic range of the surface
potential also characteristic of the range of gas-phonon interaction and ¢ = z/§ is the
corresponding rescaled normal coordinate. The potentials for the physisorbed-gas species
are such that

lim w;(¢) = +oo, lim w;({) =0 1€ Sy. 2.9

lim wi(() = + Jim wi(¢) =0, : (29)
These potentials go to zero in the gas phase and explode at ( = 0, repelling all particles
from the crystal surface. On the other hand, the potentials for the surface species are



such that

lim w;(¢) = 400, lim w;(¢) = +o0, i€ ScUSsUSh, (2.10)
C—¢ ¢—¢h

where (;” and C;r are fixed ¢ coordinates, so that for any i € S. U Ss U S}, the ith species
is localized over (¢, ,C:' ). For the sake of simplicity, the crystal surface particles are
assumed to have the same potential w; = W, with j € S U Sy, and are thus localized
over the same interval ((;, Cj) = (¢;,¢F). We also assume that for any chemisorbed
species i € S, we have (f < (7 <0< (S < C:r . These interaction potentials usually
involve an attractive zone and a repulsing zone as Lennard-Jones potentials integrated
over all crystal particles as illustrated in Figure 1. The potentials of physisorbed-gas

particles and the corresponding chemisorbed particles may also be interpreted as slices
of potential energy surfaces [33].

Y

S Physisorbed-gas ¢

Potential energy

\

v/ Chemisorbed
Surfade

Figure 1: Typical surface interaction potentials as function of the distance from surface
in arbitrary units.

Since the summed potentials only depend on z, periodic potential variations parallel to
the surface are neither taken into account for chemisorbed species nor for crystal species.
Similarly, lateral interactions between chemisorbed species, usually of van de Waals type,
are not taken into account. The surface potential w;, ¢ € S, are also assumed to be
independent of the presence of chemisorbed species for the sake of simplicity—and thus
independent of the coverage 8—so that in particular w, = w; for i € S; U Sy. In the
same vein, dense gas effects between physisorbed species [52] are not considered in the
kinetic model as well as sublimation or deposition reactions of crystal atoms [11, 12].
These simplifications are notably feasible when the chemisorbed species are of relatively
small size, and the surface mole fractions are small so that the coverage of the surface 6
is low.

Physisorption interaction potentials may be evaluated from standard potentials sum-
med over lattices whereas chemisorption potentials are generally associated with quantum
chemistry models [15, 53]. Experimental methods may be used to evaluate such adsorp-
tion potentials but quantum mechanical simulations using the density functional theory



is the most reliable tool for a detailed description of adsorption and surface reaction
[15, 54, 55, 56, 57, 58, 59, 60]. An alternative procedure may be the semi-empirical
Reaxff method that has already been used in order to describe surface chemical reac-
tions [61, 62]. Physisorption and chemisorption potentials may then be extracted from
quantum simulations of adsorption phenomena.

2.4 Maxwellians

The species distribution functions at physical equilibrium are given by f = n;M; where n;
denotes the number of particle per unit volume, M; the wall Maxwellian of the ¢th species
and the superscript © stands for physical equilibrium. The wall Maxwellian distribution
is in the form

m; >3/2 air < mileil? Ea ) .
M, = : — - €s 2.11
i (2ﬂ@7@ 7 P\, T R T (20

where m; denotes the mass of the ith species, k; the Boltzmann constant, Ty, the wall
temperature, a;; the degeneracy of the 1th state, Z%nt the internal partition function of the
ith species, and E;; the energy of the ith species in the 1th state. The internal partition
function Z%nt of the ith species is given by

7t = Z a exp (— - ) (2.12)

1€9; kBTw

We introduce for convenience the modified Maxwellian distributions
m; = M; exp(—Wi/kagTW), 1 €S, (213)

that may be written

2
< m; )3/2 ajr ( milci|® Ejq +Wz‘)
m; = X — .

. - 2.14
ks Ty ) 7zt Uy kol (2:14)

These modified Maxwellian distributions m;, ¢ € S, will play a role in the analysis of the
reactive surface layer. With the inclusion of the interaction potential w;, the distribution
m; is indeed such that

(9tmi =0, c;-O,ym; — iawwzaclml =0, 1 €8, (2.15)
7
and it will also be later established that .J;,n(m;) = 0. These modified Maxwellian
distributions m;, ¢ € S, thus appear as natural solutions of thin layer kinetic equations in
a potential field with phonon interactions or equivalently as natural solutions of the steady
nonreactive kinetic equations. Decomposing between parallel and normal directions with
respect to ¥ we may further write

1
Gtmi =0, om; = 0, C;, o,m;, — —0,W; 0. m; = 0, 1€ S, (2.16)
mz 1z

where 0, denotes the tangential spatial derivative operator, ¢;, the normal velocity of the
ith species, 9, the normal spatial derivative, and 8% the differential operator with respect
to ¢;,. The modified Maxwellian distributions also play a key role in the expression of
the reactive collision term C; and in the kinetic entropy.



Considering further the unperturbed surface layer distribution fg, it will be estab-
lished in the following that
s =nsMg, (2.17)

where n, denotes the number density of the surface layer and M, the Maxellian distri-
bution defined as (2.11). The number of surface molecules par unit volume n, will be
shown to be in the form

- ( Wo ) (2.18)
Ng = Ng €XP kBTw ) .

where n, is a constant characteristic of the crystal and its orientation so that f5 = ny,m,
with m, defined as (2.13). From (2.17) and (2.18) the standard distribution f¢ is indeed
solution of (2.7) and we have 9,fS =0, ¢, -84 f5 — m%rawwa-acf; =0, and J,pn(f5) =0
as for the modified Maxwellian distributions. One may also define the number density

per unit surface
\WY
e = [ ngdz=n, [ ex <— g >dz, 2.19
/ / Uk, (219)

that represents the number of surface atoms per unit surface and is also characteristic of
the crystal surface. A similar notation is introduced for any surface species with

n; = /fz dci, n; = /’I’LZ dZ, 1€ 5. USgU Sb, (220)

so that n; represents the number of particles of species i per unit surface, keeping in mind
that chemisorbed species and surface crystal species are localized in space.

2.5 Phonon collision operators

The operator J; 1, describing collisions between particles of species ¢ and phonons is in
the general form [19, 35, 36, 37]

Jiph = Y /((fph(Q) + 1)fz(0§,1/)2—f, — fon(q) filei, I))Wi’,gh dcidg, (2.21)

eQ;

where f,n(q) denotes the phonon distribution function, ¢ € S the species index, q the
phonon wave vector or quasi-momentum, ¢; and ¢, the particle velocities before and after
the interaction, I and I’ the quantum energy states before and after the interaction, and
Wigh a transition probability average over degeneracies. Note that the dependence on ¢t
and x of the distribution functions has been left implicit to simplify notation and that
the phonon collision operator is presented in more details in Appendix A. The dilute
approximation has been used for f; in order to simplify (2.21) and the appearing of the
additional factor 1 in the gain term is a typical quantum effect [19, 35, 36, 37]. The
transition probabilities satisfy reciprocity relations anW?&;h = ailrwg’gh similar to that
of nonreactive collision terms. The operator (2.21) corresponds to collisions such that
mic; = m;c;, + q + b where b is a vector of the reciprocal crystal lattice and there is
another operator associated with collisions such that m;c; + ¢ = m;c; + b that leads to
the same type of simplified source term J; ,n, and the corresponding details are omitted.

The equilibrium relation between distribution functions corresponding to (2.21) reads

(Fonl@) + 1) fr (€l 1) =2 = fi(@) i (e D), (2:22)

[

where the superscript € stands for physical equilibrium. The equilibrium distribution for
the phonons fSh is the Bose-Einstein distribution and the equilibrium distribution for the

8



ith species f; is given by f = n;M; where n; denotes the number of particles per unit
volume, and M; the wall Maxwellian distribution for any ¢ € S, [35, 36, 37]. Dividing
then the integrand in the collision term (2.21) by the factor (fgh(q) + 1) m;(ch, 1)ai/a;y =

Sh(q)mi(ci,l) and further assuming that phonons are at equilibrium fSh = fph, it is

obtained that F(et) i )
i(Cy 1 ilCi,1 v
Tin(f) =Y /( ) )W;;hdcg, (2.23)

m;(C;, 1
= i(€i1)

where W;’;h =m;(c;,1) [ fSh(q)W;:;hdq denotes the resulting transition probability. The
assumption that phonons are at equilibrium is often used in the literature [20, 22, 24, 25|
and the Boltzmann equilibrium distribution for internal energies is also due to the inter-
action with phonons. The transition probability W%h satisfies the reciprocity relation
W;:;h = Wg,gh and is nonzero only in the neighborhood of the surface [19, 20]. The op-
erators J; pn are sometimes simplified as J; pn(fi) = —(fi — niM;) /7 where the relaxation

time 7; only depends on the reduced normal coordinate ¢ [20, 22, 24, 25].

2.6 Reactive collision operators

The rth surface chemical reaction is written in the form (1.1) where 7" and B" denote
the indices for the reactants and products counted with their order of multiplicity and
fR is the set of reaction indices. The letters F© and B" are mnemonics for forward and
backward directions and we denote by F" and B" the indices of the quantum energy
states of the reactants and products. We also denote by VZfTYV and Vﬁk the stoichiometric
coeflicients of the ith species in the rth reaction in the forward and backward directions,
that is, the multiplicity of species ¢ in F" and B", respectively, and by v;. = yzbrk - VZfTYV
the overall stoichiometric coefficient of the ith species in the rth reaction. With the
atomic site convention, the reacting species are the physisorbed-gas species indexed by
Sg, the chemisorbed species indexed by S, the crystal free site species indexed by S
and the bulk species indexed by Sy, that is, the crystal molecules are included in the
reaction mechanism. All particles involved in reactive collisions are thus properly taken
into account in the symbolic description of the chemical reaction (1.1) so that it may be
used in a kinetic framework [32, 33, 34].

The surface reactions (1.1) conserve the atoms associated with gaseous species, the
number of sites as well as the crystal atoms [42, 17, 63, 64]. More specifically, denoting
by 2, the sets of atoms associated with physisorbed-gas or chemisorbed particles and by

a;; the number of [th atoms in the ith species, then the stoichiometric coefficients satisfy
Z a;Vir = 0, reR, e, (2.24)
€S

where we have set a; = 0 for ¢ € SgU S, and | € ;. In addition, the conservation of
crystal atoms reads

Z Vir + Vg = 0, r € R, (2.25)
€Sy

and that of surface sites
Z Vir + Vg = 0, r e MR (2.26)
IS

It is then convenient to extend the gas atom indexing set 2, into A = A, U {8, C} where
C denotes the crystal atom, 8 is a symbol for the site atom, and to define a;3 = 1 if
1€ 8S.USg, a;8=0if i € SgUSb, and q;e = 1if i € SsUSL, qe =01if ¢ € SgUSC, SO



that the conservation of all atoms (2.24)(2.26) reads ) ;. g ajv; = 0 for any r € R and
any [ € 2 and includes site conservation.

There is another symbolic way of describing heterogeneous chemical reactions where
all the crystal molecules I; for i € S5 U Sy, are removed and where the free sites species
My, +no+1 is replaced by an open site symbol O that is massless and atomless [16, 17].
These two symbolic descriptions of surface chemical reactions are equally valid for a
macroscopic description of surface chemistry but only the atomic site convention is useful
in order to describe reactive collisions.

The reactive collision term for the ¢th species may be decomposed into

Ci(f) =Y _Cr(f), (2:27)

reR

where C](f) represents the contribution of the rth reaction. The reactive collision term
Cl(f) associated with (1.1) is written as for gas phase reactions [65, 66, 63, 42, 43]

o Z/(wg” I - ;:P;:Hfj>ndcjndck

FJ, B" keBr JEFT JEF" keBr

Y [(wee To-wes T00) Tde [Taan @29

F7 Bl keB" JEFT JEFT keB;

where fr Br denotes the transition probability that a collision between the reactants F"
with energies F” lead to the products B" with energies B", %" the subset of " where the
index ¢ has been removed once with similar notation for B}, ¥ and B]. The summation
over F" in (2.28) represents the sum over all quantum indices J for all 7 € F" with
similar conventions for F{, B", and B]. The distributions f; are given by fr = fx when
ke SgUSsUS. and f, = f, when k € Sy,. The surface distribution f; need to be used
for bulk species since the chemisorbed molecules may collide with any atom of the crystal
surface [33]. The following reciprocity relations hold between transition probabilities

(65, 66, 63, 42, 43]
Warse 11 83 = Wit 11 Bix (2.29)

JEFT keBr

where 3; = h3/(a;m?) and hy is the Planck constant, and generalize the relation (2.4)
between nonreactive transition probabilities. The collision term (2.28) is similar to typical
reactive terms associated with gas phase chemical reactions [63, 42, 43] and naturally
involves collisions between physisorbed-gas particles, chemisorbed particles, crystal free
sites particles and crystal bulk particles. The operator C; is local in space as typical
collision operators and the distribution functions are three dimensional in space. Reactive
transition probabilities for surface reactions may generally be extracted from quantum
mechanical simulations using the density functional theory [15, 55, 56, 57, 58, 59, 60, 61,
62].

In order to simplify the reactive source term, we further observe that, at chemical
equilibrium, the statistical equilibrium relation holds

we TT ke =wee I1 e (230)

JEFT keBr
where the chemical equilibrium distributions f§¢, i € §, are given by {° = n{°™M;, when
i € Sg USsUS. with nf® denoting the chemical equilibrium value of n;, and by ¢ = § =
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fs = nyM, for i € Sy since nS® = ng = n, remains constant in time. The superscript “
denotes chemical equilibrium whereas the superscript © denotes physical equilibrium.
Using then the equilibrium relation (2.30), we may write the reactive source term as

Z/(H - fce) wile TT75° 11 dej 11 de

FT,B" keBr K jeFr!i JEFT  EFT keBr

2D /(H joe ]Epfce> wis [T 7 I] dey [] dew. (231

F7 Bl keBr'k JEFT  JEFT keB;

In order to simplify the reaction collision terms, we now assume that the surface distribu-
tion fi = f, involved for the bulk species k € Sy, remains at physical equilibrium f, = f5.
However, the surface distribution at physical equilibrium coincide with that at chemical
equilibrium f$ = f$°. The chemical production rates are then in the form

Z/(che T2 e 1 T, T e

FT BT k; Br e]:r ]EfT je}-ir kGBT
F "B"
Z /( H fce H fce> FTB" Hf H de H dey, (2.32)
FTBT ke Br e]:r ]e}‘r _]G]'—’” ]CEB{

where the overbar indexing sets 7 and B" are obtained by removing any occurence of
the bulk species in F" and B".

On the other hand, at chemical equilibrium, we have equality of the chemical poten-
tials according to the chemical reaction (1.1)

Z pie = Z HE r €N, (2.33)
JEFT keBr

where £1£¢ denotes the chemical potential of the ith species at chemical equilibrium. This
relation may also be written

Z vivpse = Z vPkpce, r € R. (2.34)
ieS ieS

The chemical potentials, that take into account the interaction potentials w;, are in the
form

pi = i (2.35)

W;
ks Ty’
where uiin is the intrinsic species chemical potential [48, 49, 50]. The intrinsic chemical
potential is given by the usual formula pi* = g;/ksT = log(n;/z;) where g; denotes the
Gibbs function of the i¢th species, 7Z; the partition function per unit volume and n; is
the local number density with the influence of the force field [48, 49, 50]. For the bulk
species ¢ € Sy, we also have the chemical potential ,u;n = log(ny/7;) since collision may
occur with any crystal particle on the surface. These effective chemical potentials u; for
1 € Sy, yields activity coefficients for bulk species that are constants in agreement with
heterogeneous surface chemistry [16]. The partition functions are in the form z; = z{rzin®
where z!" is the translational partition function of the ith species par unit volume and
71" the internal energy partition function. The translational partition functions are given
by 7t = A7 where A; = hp /(27ks miTw)l/2 denotes the thermal de Broglie wavelength

1

of the ith species and hp the Planck constant.
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After some algebra, using the equilibrium condition (2.33), the atom conservation
relations (2.25)(2.26) as well as

1
%:7 Je k € SgUS.USs = S\Sh, (2.36)

£ exp(ug’) mizy

the source term is obtained in the form

Z/(H”’f I1 )W ] des T] de

T, B" keBr jEFT Zj JEFT keBr
Y[ (H | ’Yﬂ) wew Tl de; [[dee (237)
F7 BI keBr JEFT JEFT  keEB!
where
e = ri—’; k € SgUS.USs=S\Sh, Y =ng, k€S, (2.38)
and ryr i mile;?  Ejy 4w,
wit =wei T — 7 exp(_ QJkBTJW _ jkBTw 3)7 (2.39)

JEFT

are rescaled transition probabilities such that W = WBBTJFTTT

2.7 Collisional invariants

Collision invariants in kinetic models are closely related with macroscopic conserva-
tion laws. Since the model involves different types of collisions, represented by differ-
ent collision integral operators, as well as different type of particles, several collisional
invariants may be introduced. We generally define the functions 1! associated with
particle numbers ¢! = (0i1)ics, | € S, where ¢; denotes the Kronecker symbol, mo-
mentum in three dimensions ¥~ = (m;cy,)ics, v € {1,2,3}, as well as total energy
PN = (Smileil® + B+ Wi)ies.

Mass, momentum, and energy is conserved in binary collisions between physisorbed-
gas particles, associated with the collision operators J;;, i,j € Sg, so that Yt for | €
Sg, and | = N+ 1,N + 2,N + 3,N + 4 are collisional invariants of the physisorbed-gas
mixture. Moreover, for the physisorbed-gas species, only the first N, components of these
invariants are relevant and we may define ¢é = (6i1)ies,s | € Sg, 1/)N+” = (Mmiciv)ies,,
v €{1,2,3}, as well as ¢N+4 (5miles|? + i+ Wi)ics,. The fluid governing equations in
the physisorbate-gas are then obtained by taking moments of Boltzmann equations (2.2)
using the physisorbed-gas scalar product

€= [0 (2.40)

i€S,

1€9;
where £ = (§;)ies,, ¢ = ((i)ies, and & © ¢; is the maximum contracted product between

tensors & and (. N

We further define the atoms invariants as ¢! = (air)ies, | € A, where a;; denotes the
number of atoms of type [ in the molecule of type i for i € § and [ € 2, and 2 the set of
all atoms associated with gas particles, crystal atoms and surface site [63]. Since atoms,
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momentum, and energy are conserved in reactive collisions, the invariants of the chemical
operators C;, i € S, are then ¢!, 1 € 2, and ¢! for | = N+ 1,N +2,N+ 3,N + 4.

On the other hand, contrarily to particle-particle collision operators, momentum and
energy are not conserved by the collision operators with phonons J; p1,, since it may be
given to phonons that are assumed to be at equilibrium. The operators J; ,;, only conserve
the number of particles with the invariant ¢! = (8;);cs for I € S. Incidentally, when a
kinetic equation is used to describe the phonons, energy is conserved during collisions
between phonons and particles but not necessarily momentum because of the umklapp
process [35].

2.8 Kinetic entropy

The kinetic entropies compatible with the phonon collision operators J; ,, are slightly
different from the traditional expressions. The origin of this modification is that phonons
are assumed to be at equilibrium and the collision terms J; ,, for 7 € S have been
simplified accordingly. However, since phonons are interacting with gas particles as well
as chemisorbed particles, there should be a phonon entropy increase associated with this
interaction. Such an increase of phonon entropy having being discarded, it is natural that
the corresponding terms are missing in the total entropy production. In order to solve
this technical difficulty, modified entropies have to be introduced [67, 68]. The modified
entropies are generally not anymore required when phonons kinetic equations are taken
into account [36, 37]. These modified entropies are further enriched in this work in order
to take into account the species interaction potentials w;, i € S, as well as the entropy
associated with chemisorbed and crystal species.

The kinetic entropies per unit volume associated with the physisorbed-gas particles,
the chemisorbed particles, and free sites are defined by

Slkin = —k;B Z /fl (1og(fz/mlzz) — 1) dci, 1€ Sg @] Sc U Ss - S\Sba (241)

1€9;

the entropies associated with the bulk species by

S = —ks /fi log(ng/z;)de;, i € Sp, (2.42)
and the total entropy by
Skin =3 s, (2.43)
1€S

Multiplying the Boltzmann equation (2.2) by log(f;/m;z;), integrating with respect
to de;, and summing over 1 € Q; for i € S; U S U Sy = S\ S}, multiplying the kinetic
equation (2.6) by log(n,/z;), integrating with respect to de;, for i € Sy, and adding the
resulting balance laws, and using (2.15), we obtain a balance equation for S¥ in the
form

atskin + 8m.fkin _ Dkin’ (244)

where FX" is the kinetic entropy flux

:F-kin — _sz Z /czfl(log(fz/mlzl) — 1) dcl- — k§3 Z /szl log(no/zi) dci, (245)
’iES\Sb €Sy
1€9Q;
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and v¥" denotes the kinetic entropy source term. This entropy source term v*i"

split as vkin = vy 40, + 0 where

may be

:—]ﬁa Z / ij fufj)log(fz/mz)dch (2'46)

,_]GSg
1€9;
oh = — ki Z / i.ph(fi) log(fi/miz;) de; — kBZ/ i.ph(fi)log(ng/z;) de;,  (2.47)
1€S5\Sp 1€Sh
1€9;

and

o= —ks Z /C log(fi/m;z;)de; — kBZ/C log(n,/7;) de;. (2.48)

ZES\Sb i€Sh
1€Q;

We now investigate the sign of entropy production terms and first consider the produc-
tion v; arising from the non reactive operators .J;;, ¢, j € S; associated with physisorbed-
gas particles. We note that the factors log(f;/m;z;) may be simplified as log f; since
(log(mizi))i €S, is a collisional invariant. The resulting entropy production v; thus coin-
cides with the traditional expression and using standard arguments from kinetic theory,
it is obtained that

Z Z / (fifj, fi /aaﬂzﬂl) W;‘]]»Il",dcidcjdcédc;, (2.49)
i,j€Sg 1,'€Q; a'j
J1,0'€9;

where T denotes the nonnegative function Y(x,y) = (z — y)(log z — log y). Considering
next the entropy production v, due to the interaction with phonons, we note that the
factors log(f;/m;z;) may be simplified into log(f;/m;) since logz; is independent of ¢;
whereas the factors log(n,/Zs) yields zero contributions since they are independent of the
species velocities. Using standard arguments from kinetic theory, it is then obtained after
some algebra that

Z Z/ (fi/mi, fi/m}) Wi pn de; de;. (2.50)

zeS\Sb LIVEQ;

Note that the bulk species contributions in the above sum vanish since the surface is as-
sumed to be at physical equilibrium. Considering finally entropy production v, associated
with reactive collisions, it is obtained after some algebra that

ve="h > > / 7{ n ) w1 dei T dex (2.51)

rERFT,B" jeFT Zj keBr jeFT keBr

where the reduced distributions v are given in (2.38). Since the function T only takes
nonnegative values, we conclude that all quantities v, by, and ve are nonnegative terms.
All collisions, nonreactive or reactive, thus lead to nonnegative entropy production. The
Boltzmann equations (2.2) and (2.6) are thus compatible with the Boltzmann H theorem
and lead to a dissipative structure of the reactive surface at the molecular level.
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3 Multiscale framework

In order to investigate reactive fluid boundary conditions, a fluid scaling of the kinetic
equations (2.2) is introduced along with a multiscale framework. Introducing a kinetic
scaling would be of high scientific interest but lay beyond the scope of the present work.

3.1 Fluid scaling

We denote by T a characteristic temperature, n* a characteristic number density, m*
a characteristic particle mass, and 7* a characteristic collision time. We write v* =
(ksT*/m*)'/2 the characteristic thermal velocity, f* = n*/v*3 the characteristic particle
distribution, \* = 7*v* the characteristic mean free path, W* = 1/(n*7*v*®) the charac-
teristic transition probability for inert collisions. We also denote by 77 a characteristic
fluid time with [* = 77v* the corresponding fluid length. We also introduce a charac-
teristic time for phonon interaction T;h that is easily related to characteristic transition
probabilities szh with 1/ T;h = szhv*(i for i € S, as well as a typical length ¢* charac-
teristic of the range of the surface potential, that is, the distance normal to the surface
where the quantities W; and W; p,, are significant.

Dividing the kinetic equations by n*/7fv*3, the resulting rescaled kinetic equations
involve—after some algebra—the dimensionless parameters

* * * *
—T—*—)\—, eph—@, 626—. (3.1)
(r * (o *

The characteristic times and lengths at the solid/gas interface are generally such that
o < 7° < 1 and 6* < A* < I and €, represents the species Knudsen number [20].
Since our aim is to derive fluid boundary conditions, it is assumed in this work that the
small parameters €, €pn, and € are of the same asymptotic order of magnitude in the
sense

€x = Qi € €ph = Oiph €, (3.2)

where apy and oy are positive constants. From a physical point of view, it means that
particle collisions and phonons interactions are considered to be fast in comparison with
fluid time and that both the mean free path \* and the surface potential characteristic
range 0% are considered to be small in comparison with the fluid length [*. Note that it
is incidentally assumed that all species have comparable masses, collision frequencies and
phonon interaction frequencies. This scaling may be seen as the simplest fluid scaling for
the reactive surface layer model and it is a natural choice since we want to study fluid
boundary conditions at a reactive interface.

Keeping in mind that the potential w; only depends on z, the kinetic equation gov-
erning f; is obtained in the form

1 1
O fi +c¢iy 0, fi + ¢, 3zfi—z5zwi O, fi = e Z Jij (fis f7)

v R™ jeS,

1 .
+ —Ji,ph(fi) + Ci, 1€ S, (3.3)
Qph€
where f; denotes the distribution function, ¢;, the tangential velocity of the ith species
with ¢; = (ci”,ciz)t, 0, the tangential spatial derivative operator, c;, the normal velocity
of the ith species, 9, the normal spatial derivative, 0. _ the differential operator with

respect to ¢;,, J;; the particles collision operator that are only nonzero for i, j € Sy, J; pn
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the phonon collision operator and C; the chemistry source term. The chemistry operators
C;, i € S, are therefore assumed to be slow in comparison with the inert collision operators
Jij, 1,5 € Sg, and J; pn, @ € S. These equations may be interpreted either as rescaled
equations with rescaled quantities denoted as unscaled quantities, or, equivalently, as
original unscaled equations where € is a formal expansion parameter numerically equal to
unity [39, 40].

3.2 Standard expansion in the gas
The kinetic equations in the gas, obtained from (3.3) by letting i € Sy, w; = 0, J; pp = 0,
C; =0, read
1 .
atfgi + ¢y 'aufgi + Cis 8zfgi = E Z Jij(fgiafgj)’ (RS Sg' (3'4)
" €S,

These equations coincide with the traditional scaling of the Chapman-Enskog method
using the formal expansion parameter a,e. The standard Enskog expansion of the dis-
tribution functions fg;, i € Sg, valid in the gas is thus in the form

fei(t, @y, z,¢5,1) = Jz(io)(t,:c”,z, Ci,1) + age ]/”;l-l)(t,:c”,z, ci, 1) + 0(62). (3.5)

At zeroth order, it is obtained that

0 0
> Jij(fg(@- ) J?g(j)) =0, (3.6)
JESg
and from the H theorem, it is found that log ]‘A’g(? ) is a collisional invariant so that ]‘A’g(? ) is
a Maxwellian distribution. This Maxwellian in the gas phase is in the form
2
7(0) _ < m; >3/2 a; (_milci —vg|®  Eq ) 3.7
Jow =i\ gy ) e P 2k T, kT, /) (8.7)

where ng; is the local gas number density, m; the particle mass, v, the local gas velocity,
and T, the local gas temperature with

Ngi = Z /fgz de;, PgVg = Z /micifgi de;, (3'8)

1€9; ieSg
1€9Q;

5g(Tg) = Z /(%mi\ci — ’Ug‘2 + Eil)fgz‘ de;. (3.9)

The internal partition function Z%nt of the ith species in the gas is given by

. E.
Z;nt(Tg) = Z Qa1 €Xp (— kb; > (310)
1€9; g

We have denoted by pg = >, s, MiNgi the gas mixture mass density, ng = > .o S, i the
gas mixture number density, & = %ngk:BTg + D ic s, Ngiti the internal energy of the gas
mixture per unit volume, and

(025} Eq
5 sl ). o



the average energy of the ith species. The standard expansion (3.5) of the distribution

function fy; then yields the outer expansion of the ith physisorbed-gas distribution f;.
At first order, the distribution ]‘A’g(l) = (f;il))@'esg is written in the form

ﬂil) = ¢$ 7Y (3.12)

gl

and the first order perturbation $§> = (aé?)z‘esg is solution of the system of Boltzmann
linearized integral equation [38, 39, 40, 41, 42, 43, 44]

gl(qﬁ(l )= (8 logf + ¢;- 04 log ]/”;l-o)), i € S, (3.13)

completed by the Enskog constraints ((gl),wé» =0 for 1 <1 < Ng+4. The gas collision
invariants ¢é are associated with species number Q,Z)g = i%)zesg, [ € Sy, momentum

a T = (my cw)legg, v € {1,2,3}, and total energy ¢p*" " = (5milei|* + Ea)ies,. The
integral operator 7, = (Ig,)le s, denotes the traditional linearized collision operator acting
on ¢ = (p;)ies, with components

Zoilp) = —% S (U5 (9, 790 + 1 (70, 1)), (3.14)

gi JESg

and the time derivative terms 8tf(i0 ) in the integral equations (3.13) are evaluated from
Euler equations [38, 39, 40, 41, 42, 43, 44].
After lengthy algebra, gz/bg) is found in the form [38, 39, 40, 41, 42, 43, 44|

&;g) = _agi:amvg - %&;gzamvg - Z &Egj'awpgj - &Egi'aw(l/kBTg)’ (3'15)
JESg

where pg; denotes the partial pressure of the jth spemes in the gas, ¢ i € Sg, are

gi’

traceless symmetric matrices, ¢ i € Sg, are vectors, ¢ i, € S, are vectors and qﬁ

gZ’ gZ ? gl’
i € S, are scalars. The coefficients ¢g = (qbgi)iesg, qﬁg = ( gi)iESg? (bg ((p i)ies,, and

agi = ((/],'\)g-j)iesg, for j € S, are solutions of systems of tensorial integral equations in
the form [38, 39, 40, 41, 42, 43, 44]

(d’n) k:BT (( Ug)®(ci - ”g) - %’Cz - ”g‘21)7 i € S, (3.16)
~ 20t o 3ksT, 2!t ,
() = ——(gmilci — - — (& — Eir), ; 1
g (¢g) ckaTg(zm |C ’Ug| 5 ) + Cvk’BTg (ez E 1) S Sg (3 7)
Igi(q’)g) = < 5 & _ %mllcl — vg]2 + ¢ — Eil) (¢; — vg), i€ S, (3.18)
Igi(¢g ) = _(6Zj - Ygi)(cl' - ’Ug)’ (WS Sg’ (319)

Pgi

with the Enskog constraints (( /;O) (/;Bg,i/)lg» =0, ( /;0) Ag,ib{g)) =0, ( Ag(o) &Eg,qb{g)} = 0, and
( /go)&é)j,i/)lg)) =0, for j € S; and 1 <1 < Ny +4. In these equations, I denotes the
three dimensional identity tensor, ¢ = %k:B the translational constant-volume specific

heat per molecule, ¢ = Y ic Sy xglcint the mixture internal heat capacity per molecule,
1nt

= de;/dTy the internal heat capacity of the ith species, ¢, = ¢'7 + ¢™ the mixture heat
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capacity at constant-volume per molecule, ¢; the average internal energy of the ith gaseous
species, Xgi = Ngi/ng the mole fraction of the ith species in the gas and yg; = pgi/pg the
mass fraction of the ith species in the gas with pg; = m;ng;. The fluid shear viscosity 7,
volume viscosity x, partial thermal conductivity /): multicomponent diffusion coefficients
D;j;, i,j € Sg, and the Soret coefﬁ(uents ot g 6 Sg, may then be expressed in terms of

[

the perturbed distributions q’)g, Ag q’)g, and ¢g , J € Sg [38, 39, 40, 41, 42, 43, 44]

3.3 Corrected expansion near the surface

Since we investigate a fluid interacting with a solid surface, it is natural to assume that
the fluid velocity is of first order v4(t,x,,2) = O(e) in the neighborhood of the surface.
In addition, for the sake of simplicity, we also assume that the tangential gas velocity
Vg = Vg — Vg€, Vvanishes at the surface z = 0. The gas velocity at the solid-gas interface
z = 0 is thus in the form

ve(t, 2, 0) = €v,.(t, Ty )es, (3.20)

where v, (t,,) denotes the normal component of the rescaled velocity vy /e at z = 0.
The normal velocity at the wall v, = €75, €, represents the Stefan flow. When a surface
exchanges mass with a fluid, there is indeed an induced normal convection velocity—
termed the Stefan velocity—that compensates for mass fluid production. Assuming that
this velocity is small near the solid interface is natural and assuming that vy, = vy —vg €.
vanishes at the interface is the classical adherence condition [69, 70]. The model could
be generalized in order to take into account a first order slip velocity vg, (¢, z,,0) = O(e)
at the surface z = 0 but such an extension lays beyond the scope of the present work.

The fluid convection velocity near the planar surface v, being of first order in ¢, the
outer expansion (3.5) need to be corrected near the surface. All terms proportional to
the velocity v, must be shifted by one order in the outer expansion near z = 0. The
corrected expansion of the species distribution functions fy; valid in the gas phase near
the surface are denoted in the form

= 10+ D+ 1 0 3

The second order term fg(f ) will play no role but need to be taken into account formally
in some of the expansions.

After some algebra, it is obtained from (3.5)—(3.19) that fg(?) is the zero velocity
Maxwellian distribution

© [ mi \32%ay mileil® B
i _”gz(mBTg> zine exp(- 2k T k:BT> (3.22)

where all quantities like z™ or T, are evaluated at z = 0. The modified integral operator
Ty = (Zgi)ies, operating on ¢ = (¢)ies, is found to be the linearized collision operator

around the zero velocity Maxwellians fg(? )

Tile) == > & ( S 1900 + 71D, 12). (3.23)

JESg gz

The modified first order term fg(l.l) is also in the form

miCi, Vgz ¢!
£ —(TTg + ) 1Y, (3.24)
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with v (¢, @,,0) = €y, (¢, x,) and qﬁg) given by

0% = — 11000y — 1050005 — Y P Bapy; — b 0u(1/ksTy). (3.25)

jES,

The tensor function ¢ = (d’gi)z‘esg is solution of the equation system

g2(¢g) (cz®cz - %|ci|21), 1€ Sg,

k:BT

with ((fg(o) g,z/)lg» = 0,1 <1 <Ny +4, and the scalar type function ¢5 = (¢5;)ies, is
solution of the equation system

2¢m o 3kTy 2ctr :
Igi(¢g) = m(§mi|ci| T ) + chBVT ( EH) i € Sg,

with ((fg(o)(bg,w{g» =0, 1 <1< Ng+4. The vector function ¢§j = (¢D’

gi’)iESga ] € Sg7 are
the solutions of the integral equation systems
1

Loi(pg’) = 17(517 — Ygi)Ci, i,J € Sg, (3.26)
i

with the Enskog constraints << © q’)gj L) = 0for j € Sy and 1 <1 < Ny + 4. Finally,

the vector function q’)g ((bgl),esg is the solution of the integral equation system

3 5k T,
L)) = (MaTe

— %mi|ci|2 + ¢ — Eil) ci, i€ S, (3.27)

with the Enskog constraints (( g(o) g, ¢é;>> =0,1<1I<Ng +4.
Since vy = O(€) near the interface we further deduce that d,v, = O(e) at zeroth
order, and from the isothermal assumption we also have 8,7, = O(¢) so that the main

(1)

terms in (3.25) are the diffusion terms. More specifically, at zeroth order, ¢, is reduced

gt
1) _ D; ) . . .
to (ﬁgi =-> €S, (bgi +Ozpgj. Moreover, from the species mass conservation equation of

the ith species [42]
Ongi + Oz (NgiVg) + Og-F; = 0,

where F; = €)oo, [(ei — vg)gb( )f( )dcz is the particle diffusion flux of the ith species
in the gas, we also note that
Ong;(t, x,,0) = O(e), (3.28)

in such a way that ng; is slowly varying in time near the surface.

3.4 Multiscale expansion

The surface potentials w;, i € S, depend on the reactive surface layer coordinate denoted
by
z
(=-. (3.29)
€
The problem thus appears to be multiscale since it involves the normal coordinate z as

well as the inner layer coordinate ¢ = z/e. The physisorbed-gas distributions f;, i € S,,
are expanded in the multiscale form

fi= Ze]f (t,x,,z,¢;,1) + Zejfl(é)(t,ac”,g,ci,l), i € S, (3.30)

J
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where Zj ejfg(g) (t,x,,z, ¢ 1) is the outer expansion and Z e]fl(cjz)

(t,z,,(, ;1) the surface
layer corrector expansion. The surface layer correctors fl(gi) (t,z,,(,¢,1), j > 0, must
converge to zero as ( — oo in such a way that the outer gas expansion (3.21), evaluated
in Section 3.2, is recovered in the gas phase.

The inner expansions f;, i € Sy, of the distributions f;, i € S, in the physisorbate are

next obtained by first expanding in terms of ¢ the outer expansions » ; el fg(f )(t, xy,2,Ci,1)

using z = e and then adding the layer corrector expansions. The inner expansion
foi = foi(t, 0, (€5, 1) = foi(t, @y, €C, c;,1) of fg; is written in the form
fgi(ta Ty, Ca Ci, I) = Z Ejfé‘z)(t? Ty, Ca Ci, I)’ (331)
J

and it is found notably that fé?) (t,z,,(,ciy1) = fg(?) (t,z,,0,¢;,1) and féll-)(t, x,,(, ci,1) =
f( )(t x,,0,¢;,1) + C(@ng(io))(t, x,,0,¢;, I). These relations may we written

fle = F%, V= FO T, e, (3.32)

where for any function A = .A(t,:c”,z,ci,l) we write A(t,x,,c;,1) = A(t,x,,0,¢;, 1) its
restriction for z = 0. The inner expansion of the distribution of the ith species f; in the
physisorbate then reads
fi=> (b, ¢ e, (3.33)
J
where

=9 4 10),
j)

The inner distribution coefficient fl-(]

j>o0. (3.34)
)

thus involve a polynomial fgl. in terms of { arising

from the Taylor expansion of the fg(f), k > 1, and a thin layer corrector fl(gz).

The chemisorbed, free site, bulk and surface distributions are expanded in the simpler
form ‘
fo=Y Dt Cei), i€ ScUSSUS,U{o}, (3.35)
J
since such distributions are localized in the adsorption layer and only involve the inner
layer coordinate (.

3.5 Inner layer kinetic equations

Since ( is the proper normal coordinate of the reactive surface layer, the rescaled equations
governing the physisorbed inner distributions f; and involving ¢ derivatives, obtained from
(3.3), are in the form

,fi - -
+ ciy -0 fi + c L Ocfi anga fi = - Z Jij (fi, £7)
JESg
1 :
Ji,ph(fi) +C;, S Sg. (3.36)
Qph€

Similarly, since fg; satisfies the Boltzmann equation (2.5), we may perform the change of
variable from z to ¢ so that the inner expansion fy; of f,; satisfies the kinetic equation

Oyfai + Civ O,y + czz Ocfyi = —E > Ji(fefy), i€ S (3.37)
n JESy
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Substituting the inner expansion fg; of fg; into (3.37) and equating the powers of €, we

also obtain kinetic equations satisfied by the expansion coefficients fg) for 7 > 0. At the

order e~ !, we obtain that
0) (0 0) .
O fLY) Z Ti(fD D), ies,,
jESg
and each of these terms vanish since f f fé?) (t,x,,0,¢;,1) is independent of ¢
and f(A) is Maxwellian so that .J;; (fg),fé])) =0 for any 7,75 € Sg.
At the next order €, letting = (1) (Hg))legg, with = H(l) fg)/fé?), we obtain that

8¢H( ) + Ig,( DY /a, = — (0, log fé?) +¢;, -0, log fé?)), (3.38)
and e v B

=) = Bz o, g1 + (0, Tog 1L i€ S,

—gi kBT g’

since f f —{—Ca f gi f = (%%:gz +a,£¢_s§)>fé and f f . Using now that
both (m;c;, )iesg and (BZ log f : ) are collisional invariants and are in the nullspace
of the operator Z,, we deduce that Z, ("(1 )/ =T, ((bg ), and since 8¢Eg) = 0, log fg@)')
we obtain that (3.38) coincides with

Igz@g)) = _(at 10g fgl]) + Ci '6” 10g fgz]) + Ciz az 10g fgl]))a

that is simply the linearized Boltzmann equation written at z = 0.
Subtracting equation (3.37) from (3.36) for ¢ € Sy, we also obtain the equation

1 11
8t(fi — fgi) + ¢, '8“ (fl — fgi) + —Ciz 84(1:@ — fgi) — —zacwi 86_ fi =
6 f[/ 1z

1
—Z{ (6 6) = Jy(f f) b+ ——Jin(f) +Ciy i€ S, (339)
Q€ s, Qph€

that will be convenient in order to investigate the inner structure of the reactive surface
layer. The advantage of (3.39) is that all terms go to zero when ( goes to infinity, avoiding
all integrability technicalities.

Finally, for the localized surface species, we obtain a similar rescaled equation using
the proper normal coordinate ¢

1 11
Opfi+ w0 fi+ —¢;, O fi—=—0cWi Oc,_fi =
€ €m;
1

Qph€

J@',ph(fi) + C;, 1€ S.USsUS. (3.40)
4 Zeroth order expansions in the adsorbate

Zeroth order expansions are investigated in the reactive surface layer and next the corre-
sponding fluid boundary conditions.
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4.1 Zeroth order expansion for physisorbed-gas species

In the physisorbate, using (3.36), the ith species equation is found in the form

iz Ocf” — —3<W15 fi’ Z Jii (0, 67) +Tleh(f.(°)), i€ S, (41)
jESg

Using (2.15) we may rewrite (4.1) in the form

1
mi (e 06 fm) — 0w 0, (10 /m)) = = 3 7y, £ +_leh<f<>), (4.2)

®jeS,y

We multiply (4.2) by log(f; )/mz) make use of d4(A(log A—1)) = log A, reintegrate the
m; factor inside the spatlal and velocity derivatives using (2.15), integrate over ¢ € (0, c0),

c¢; € R3, and then sum over i € S, and 1 € Q;. Using that f-(o) — f(o-) as ( — 00, since

the corrector f( ) goes to zero as ( — oo, we note that the first term in the left of (4.2)
yields after 1ntegrat10n a null contribution for any i € Sg or 1 € Q; at the gas boundary
since

(—o0

lim | ¢, £ (log(f” /m;) — 1) de; = /cfé (1og (P /) — 1) de; = 0,

keeping in mind that fgl)-) and M; are even in the normal velocity. Similarly, keeping in

mind that fl-(o) — 0 as ¢ — 0 since the surface repulsive potential repel all physisorbed-gas
particles, we also obtain a zero contribution of the first term at the surface boundary since

lim cizfi(o) (log( /m,) —1)de; = 0.

¢—0

The second terms of the left of (4.2) also yields a null contribution for any i € Sy or
1 € Q; after integration since it is in divergence form

1
e, (= -0cwi £ (log(£” /mi) — 1)),
i
and fi(o) (log( ©) /mz) — 1) goes to zero as |¢;| — co. We have thus established that

1
—~ 3 /Jij(fi(o),fj(o))log( 9 /m;) de;d¢
B ijeSy

1€9Q;

+— 3 / on(F9) 1og(FV /m;) de;d¢ = 0. (4.3)

1E€Sg
1€Q;

Such entropy production type terms have been investigated up to the scaling factor —kg

in (2.46)(2.47) and have nonpositive integrands. Such integrands thus vanish so that
£ f(O))

fl-(o) is a Maxwellian from Jj;(f; = 0 and is at temperature Ty, with zero average

velocity since J@ph(fl-(o)) = 0. Writting this Maxwellian for convenience as
fi(o) =n; exp( T >Ml, (4.4)
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where M; is given by (2.11), and substituting this identity in (4.1) yields that d¢n; = 0 so
that n; is independent of ¢. The constant n; is identified by letting ¢ — oo in (4.4) and
it is obtained that n;(t,x,) = ng;(t, x,,0) so that

n; = Ng;, (45)

where for any quantity A = A(t,x,, 2, ¢;, 1) we denote by A(t, x,,c;, 1) = A(t,x,,0,c;,1)
its restriction for z = 0. It has thus been established that

fl-(o) = NiM; = Ng;M; = ;M i € Sg. (4.6)

and the number of physisorbed-gas particles of the ith species per unit volume n; can be
written

ni(t, @y, ¢) = Tigi(t, ) exp(— V]:B(Ti)) i€ S, (4.7)

This expression establishes that, in the physisorbate, the ith species is naturally dis-
tributed like exp(—Ww;/ksTy) as was expected based of physical grounds [20, 48]. More-
over the ith species in the physisorbate is at equilibrium with the bath of the ith gas
particles having number density T (t, @,) = ng;(t, «,,0) and arising from the gas phase.

Since fl(col) = f © f F9) e also obtain that for any ¢ € Sg
9 =7 @'<L>3/2 dir exp( ml’cZ’ Gl >{exp< ) 1} (4.8)
i = "e\ ok Ty ) kTe kT ko T

(0)

The layer corrector f;/ thus converges to zero as ¢ — oo as the potential w;, and the
excess molecular density in the physisorbate n; —nyg; is naturally distributed as the positive
values of the function exp(—wi / k:BTW) —

As a final remark, we note that the kinematic boundary condition [69, 70]

Tg (t7 Ly, 0) = TW7 (49)

has been established by writting that the gas Maxwellian distribution is at equilibrium
with phonons, using JLph(fi(O)) = 0. We also recover the relations vg(t, x,,0)-e, = 0 and
vg(t, x,,0) e, = 0. In contrast, the dynamic boundary conditions for mass, momentum
or energy will be obtained as moments of the kinetic equations. The model could also be
generalized by taking into account a first order temperature difference T, — Ty, = O(e)
but such an extension lays beyond the scope of the present work.

4.2 Zeroth order expansion for chemisorbed and crystal species

For the chemisorbed species as well as the crystal species, the kinetic equation (3.40)
yields that

1 J (0) .

- i,ph(fi )7 1€ 5. USsU Sy, (410)

Oéph

e 0.9 — Lowia, O =
ml 1z

Multiplying by log( © /m;), and proceeding as for the physisorbate it is obtained that

¢ O¢ (f( )(log( )/ml) — 1)>__8CW1 o, <f(0) (log(f; 0)/ml) - 1))
1

Oéph

—— Jipn (£) Tog (£ /m).

23



Integrating over ¢ € (¢;,¢;") and ¢; € R?, summing over 1 € Q;, using that fl-(o) goes to
zero as ¢ — ¢; and as ( — CZ?L, the particles being repelled by the potential, and that

fl-(o) goes to zero as |¢;| goes to infinity, it is obtained that

L / Tion(F©) log (F©) /m;) desd( = 0.
aph 1€9Q;

From the expression of the entropy source (2.47) established for the H theorem, it is

deduced that fl-(o) is a Maxwellian at temperature Ty, and with zero average velocity.
Writting this Maxwellian for convenience in the form
0 Wi .
fi( ) — niexp(—sziW)Mi, 1€ 5. USsU Sy, (4.11)
where M; is given by equation (2.11), and substituting this identity in (4.10), it is obtained
that d¢n; = 0 and n; is independent of (.
The number densities in the chemisorbate and crystal last layer are thus in the form

Wz‘(C)),

ni(t, @, ¢) = ni(t, @) exp (_ kT

i€ SeUSsUSh, (4.12)

and the ith species is distributed as the function exp(—wi /ksTy ), as was expected based
on physical grounds, so that it is localized since W; goes to infinity as ¢ — ¢;” or ¢ — C;L .
We may also introduce the number of chemisorbed particles per unit surface

ﬁi(t,$”) = /’I’LZ dz, 1 €8,
that is related to n;(¢,x,) via a configuration integral

7, = n; /exp(—k:V—Ti> dz, 1€ 5. USsUSE.

We have thus established that fi(o) may be written

MO

i = nim; = n;m;, (4.13)

where the rescaled maxwellian m; is given by m; = m;/ [ exp(— kajiw) dz. Finally, both
n; and n; are independent of the gas phase values 7g;(t, @, ), j € S, at variance with the
physisorbate species that is at equilibrium with the bath of gas. Note also incidentally

that, with the exponential dependence of n; on the potential —w;/k; Ty, all terms in the

general form O:W; fi(o)

¢—= ¢

Proceeding similarly for the standard surface distribution that is solution of (2.7)
it is recovered that fy = f5 is given by (2.17) with a number density of the surface
layer n, in the form (2.18), so that the surface atoms are spatially distributed as the
function exp(—wg/kBTw). The quantities n,(t,x,,() and n,(t,x,) are characteristic of
the crystal surface and its orientation and related to the number of surface atoms per
unit surface 7, (t,,) = [ ny,dz, defined as in (2.19), that also depends on the crystal
and its orientation. We may thus write that fS = f$ = ny,m, = n,m, where m, =
ma/fexp(—,q:vjﬂw) dz.

involved in the kinetic equations (4.10) go to zero as ( — (; or as
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From the structure of the free site distribution fs(o) and that of the equilibrium crystal

layer standard distribution f$ = fS given by (2.17), and since wg = W, we deduce that
at zeroth order the probability of free site £ /S simplifies into

1 g 7

and therefore only depends on time and tangential coordinate. The zeroth order coverage
O(t,x,) is then obtained as

and is thus independent of {. Since the chemisorbate is assumed to be monolayer and
the adsorption process is monosite, we have the natural constraints

> i+ g = T, > T+ s = Tl (4.15)

1€S. 1€SY

Defining n. = ;¢ s. i and ny, = Y ic S, n; as the number of chemisorbed species per
unit surface or bulk species per unit surface we thus have n. +ns = ny, +ns = n, in such
a way that n. = ny, = 0n, and ng = (1 — H)n(7 Moreover, for each chemisorbed species
i € S., there exists a unique bulk species b(i) € S}, to form a chemical pair, and then

ﬁi = ﬁb(z) .

4.3 Species mass boundary conditions

The zeroth order mass conservation equations are obtained by taking the scalar product
of kinetic equations by the mass collisional invariants and keeping only zeroth order
terms. Taking the scalar product of Boltzmann equations with the mass invariants is
equivalent to integrating each Boltzmann equation with respect to the velocity variable
and summing over the quantum energy states.

In the physisorbate, using the difference equation (3.39) for convenience, it is obtained
that

S o /f(o — £ dcﬁ—zag/ (FV —£l)de; = Z/C de;, (4.16)

1€9; 1€9Q; 1€9;

where Ci(o) denotes the chemical production terms evaluated with the Maxwellian distri-
butions fi(o), i € S. We have used here that fci”fi(o)dci = [eci fé?)dci = 0 and that the
mass collisional invariants Q,Z)lg, 1 <1 < Ng, are orthogonal to the collision operators J;;
and J; pn. Moreover, since 0yngi(0) = O(e€) from (3.28), the first term vanishes at zeroth
order and we obtain that

Zac/ (f — £))de; = Z/c Dde;.

1€9Q; 1€9;

POONPTCY

In order to integrate over ¢ € (0,00), we need to determine the limits of f; i

both ends of the interval. Noting that fi(l) fg(;l) fl(m), we first obtain that fi(l) — fg)
1)

at

goes to zero as ( — oo. Moreover, f( goes to zero as C —> 0, since there are not anymore

physisorbed-gas particles at the surface, and using f f + ¢0,log f f , We next
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. 1 1 =1 . .
obtain that fi( ) fél-) goes to _fé@') as ¢ — 0. Integrating with respect to ¢ over (0, 00)
thus yields

3 / ci.fde =Y / cVde;dc. (4.17)

1€9; 1€9Q;

Using next the relation j_’g) = <%%ygz + a,ﬂ?é?) fg) the total particle flux of the ith
g

species in the gas may be written

Z € /Cz‘zfg)dci = NgiUgz + fzia

1€Q;

where Uy, = €7,, and Foi=c¢€ fcizanq_ﬁg)fg)dci denotes the normal diffusion flux of the
ith species, and the overbar symbol means that it is evaluated at z = 0. Denoting for
short by mgo) the zeroth order number of particles of the ith species produced by unit
surface and unit time by surface chemistry

=3 / cVde;dz, (4.18)

1€9;

where the integral of the production terms is performed over z, the boundary condition
for the ith gaseous species finally reads
TigiUgs + Foi = 10 4.19
NgiVgz + /2 = 10, . ( . )

The species diffusion flux may also be expressed as F; = ng;V; where V; denotes the
mass based species diffusion velocity that is in the form

Vi=— Did;—0"0,logT,,  i€S,, (4.20)
JESy

and where d; = O4;xg; denotes the diffusion driving force of the jth species in the gas
and Xg; = ngj/ng the mole fraction of the jth species [38, 39, 40, 41, 42, 43, 44]. These
boundary conditions (4.19) exactly correspond to that used at a reactive surface in mul-
ticomponent flow models [16, 17, 18, 42].

We may further multiply (4.19) by m; and sum over the gas species and use the mass
constraint between the particle fluxes Zie Sy m;F; = 0 to get that

S 0
PeUgz = Z mimg ), (4.21)
i€,

where p, = Yic s, Milgi is the gas mass density at the solid boundary z = 0. In particular,
the Stefan mass flux towards the gas phase p Vg, is due to the overall mass production

of physisorbed-gas species by the surface chemistry .. Sy mimgo)

(0)

i

. Using the total mass

conservation in chemical reactions ), g m;w; " = 0 and the conservation of the number
(0)

of sites msmgo) + ZiESb mimgo) = 0, we obtain that Ziesg mimgo) = — ZiESC mito, " is
the rate of total mass exchange between the gas and the surface due to chemisorption

processes.
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The integrated mass conservation equation (3.40) in the chemisorbate may be obtained
with a similar procedure and yields that

W;
on; /exp(—kBT

where Ci(o) denotes—as for physisorbed species—the zeroth order chemical production
rate. Defining the molecular production rate mgo) for any species as in (4.18), and using

the z variable instead of (, the equation (4.22) may be rewritten

)dg =3 / cVdede, (4.22)

1€9;

o = i€ S US,USh, (4.23)

7 Y

where n; = n; [ exp(—Wi / kBTW)dz represents the total amount of chemisorbate available
in the layer per unit surface and may be interpreted as the natural surface number density
of the chemisorbate.
In summary, it has been established that
— = 0 . - — 0
NgiVg: + Fri = mg )a i € Sg, Pglgz = Z mimz(‘ ),
i€,
o =, i€ S.USUS.

(2

We have therefore recovered the species fluid boundary conditions at a reactive surface
including chemisorbed species and crystal species [16, 17, 18, 42].

4.4 Surface chemical production rates

The integrated surface chemistry term mgo) = ZIEQi i CZ.(O)dcidz evaluated with the layer
distributions fi(o), 1 € 5, is obtained in the form
0
) = > W= v )xes (4.24)
reR

where ¥, denotes the rate of progress of the rth surface reaction. Letting then for short

n = ni when k € S\Sp and n;, = n, when k € S}, we have at zeroth order 7120) = ny, for

any k € S, where 71(90) = f,go)/mk and v has been introduced in (2.38). Using the kinetic
expression (2.37), the macroscopic rate y, is found in the form

B 1 My
=t (T2-T12). (1.25)
JEFT keBr

where IC, is the overall reaction constant of the rth reaction through the layer
K=Y / wes T dej [ dex de (4.26)

The rate of progress x, may also be rewritten

= K QI(%)VM B H(%)uFrk>7

€S

making use of the reaction stoichiometric coefficients.
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The surface chemistry rate x, may also be naturally rewritten by using the surface
species number densities (4.12). To this aim, the partition function of any surface species
7; is defined with a configuration integral [53]

7 = Zi/exp< T >dz 1€ 5. USsUSy. (4.27)

We then note that for any chemisorbed or free site species

n; n; n; .

— == ==, i€ S5.USs. 4.28

Z;  Zi Z; ¢ ° ( )
Letting then for the gaseous species n; = n; = Tig; and Zi = 7i,1 € Sg, for the chemisorbed
and free sites 7; = 7;, 1 € S, U Ss, and for the bulk species n; = 1y, 7 € Sy, then the rate
of progress may then be evaluated in the form

Xr = K» (]l(%)fw - g(;@) . ) (4.29)

These expresssions are fully compatible with the atomic site formalism of heterogeneous
chemistry. The traditional mass conservation equations as well as surface chemical pro-
duction rates have thus been recovered from the kinetic model. From the expression of
the rates of progress, we also recover the Langmuir-Hinshelwood and Eley-Rideal kinetics
as well as the Langmuir isotherms at equilibrium [17, 32, 33, 34].

It is also possible to write the rate of progress in a form compatible with the open site
convention by excluding the crystal species. To this aim, the rates of progress is rewritten
as

o 1 ~l/ n
< H Tl kr 1 _ sr _ E k:r (1 _ 9) bk>7 (430)

keSgUS. r keSgUSC

where K. and K¢ are the proper direct and equilibrium constants

_ fw
! ~U > Vir ~_Vzr
IC,,—ICTnUHZi , Il

€S €S

U= E viv v = E vPk 4 Pk,

€Sy €Sy

and

These expresssions are fully compatible with the open site formalism with the elimination
of the crystal species and with the free atom species, formally replaced by an open site
symbol O, is taken into account with a simple coverage probability 0.

We may further factorize the product (1 — 6)” in the rates of progress (4.30), using
that 7 = > ,cq v, AR VAL > iesy, Vi vPk + Pk The factors (1 — DK = and (1—6)~ = are
then incorporated in the correspondmg products over the chemisorbed species using the
modified number densities 72;/(1 — ) for i € S.. Further assuming that the formation
energies of bulk species are equal, keeping in mind that they correspond to a typical
bond energy with the crystal, we obtain that the bulk species partition functions are
equal z; = 7y, for i € Sy, where Z, denotes their common value. It is then possible to
rewrite the rates of progress in a form that fully eliminates all crystal species, including
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the open site. To this aim, we introduce the following modified chemical potential of
chemisorbed species B

~ n; .

My = log(%), S SC7 (431)

z;,(1—0)

where Z; = 7;71,/Zs is a partition function of the ith chemisorbed species taking into ac-
count the crystal bond energy. This modified potential includes the 1 —6 factor associated
with the free site density in agreement with statistical mechanics for low coverage that
exclude crystal species [53, 49]. Letting also naturally for the gas species

_ 1og(@> 1og(”~‘”> i €S, (4.32)
Z; Z;

the rate of progress is then obtained in a general form associated with statistical mechan-

ics [71, 72, 42]

=k (en( X ) - en( X b)), (433)

keSgUSc kJESgUSC

where K/ is positive. The various expressions of the production rate derived with the
atomic site formalism (4.29), the open site formalism (4.30), and the mechanistic for-
malism using the modified potentials (4.31) thus gradually eliminate the crystal surface
species. However, even though the saturation factor 1 — 6 is sometimes integrated into
the chemical potential of the chemisorbed species [i;, it still originates from the surface
free crystal atom species.

5 Momentum and thermal boundary conditions

We investigate in this section the normal momentum, tangential momentum, and energy
dynamic boundary conditions at zeroth order, completing the mass dynamic boundary
conditions obtained in previous sections. These dynamic boundary conditions are ob-
tained by taking appropriate moments of the kinetic equations whereas the kinematic
boundary conditions have been obtained by identifying Maxwellian distributions.

5.1 Normal momentum boundary conditions

We multiply by m;c;, and e the difference equation (3.39), integrate with respect to the

particle velocity ¢;, sum over ¢ € S; and 1 € Q;, and keep all terms of order € or €l.

Keeping in mind that both fi(o) and fé?) are even with respect to ¢, , as well as with

respect to ¢;,, the resulting equation is in the form

S o / mick (F0 4+ ef ) — ) — efDyde; - Y / Ocwi 0. (7 + ef V) de;

129

i€Sg 1E€Sg
1€9; 1€9Q;
/mc Jipn(f 0)+6f(1 dc,—eZ/mcC de;.
zGS Cph i€Sg
1€9; 1€9Q;
Integrating with respect to (, keeping in mind that fl(col.) = fi(o) — fé?) and fl(clz) = f(l) — f(l)

go to zero as ( — oo, that fi(o) and fi(l) go to zero as ( — 0, and that fél-) and féll-)

29



respectively to JFg? and féli) as ¢ — 0, yields a normal momentum balance associated
with the physorbate-gas species

3 / mick (P + ef))des — > / BcWi 0o () + ef ) ded¢

1€Sg 1€Sg
1€9Q; 1€9Q;
- Z /m ciodipn () + efM) desdC + e Y /m ¢.CVdeid¢.  (5.1)
ZESg 1€Sg
1€9Q; 1€Q;

A direct calculation yields

0 _ —
E /miczzzféi) de; = E Pgi = Dg»
1E€Sg i€Sg
1€9;

where pg; = ngiksT,; denotes the gas pressure of the ith species, p; = >, S, P the gas
pressure and p, the gas pressure at z = 0. Using the definition of the viscous tensor I
in the gas and the properties of the Navier-Stokes correctors ¢g;, © € Sy, it is established
[38, 39, 40, 41, 42, 43, 44] that

Z m; /cl®clf de; :ﬁg, (5.2)

1€Sg
1€9Q;

where ﬁg is the viscous tensor at z = 0. The viscous tensor may also be expanded in
terms of the macroscopic variable gradients and shown to be in the form

IT, = —€£0g-v,d — en (B0 + (0zv5)" — 205-v,1), (5.3)

where x denotes the volume VISCOSIty and 7 the shear viscosity. Use has been made that
the term proportional to m;c;, f as well as that associated with d’g@ 2(1/ksT,) and
qbgi +Ozpgj in féz yield null contributions in m; fci®cif$) de;. Defining naturally the
pressure tensor in the gas by

Pg - ng + Hg7 (54)

and considering the zz components of (5.2), we thus have

Z /mlczzz(fgz)) + efg)) de; = pg + ngz PEZ’
i€,
1€9;

where Il is the zz component of IT,.

In order to eliminate the reactive source term in the right hand side of (5.1), we form
the normal momentum balance of the surface species for ¢ € S. U Sg U S}, that are similar
except for the absence of a flux coming from the gas. Denoting for short by S, the surface
species indexing set

Sy, = Se U S5 U S,
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the resulting momentum balance associated with surface species is in the form

-3 / OcWi 0. () + ef M) ded¢ =

1€y,
IEQ

/ mic Jipn(f + eft)) deidC + e Y / mic;,.C " de;dC. (5.5)
zeS ®ph i€Sy,
IGQ IEQ

Adding the momentum balance equations (5.1) and (5.5), using momentum conservation

in chemical reactions
Z/mc C )dcidC:O,

€S
1€Q;

and integrating by part with respect to the normal velocity variable the potential terms

-3 / OcW; ci,06,_(F7 + ef ) ded¢ = /f%wz '+ efM)deidc,

i€S €S
1€9; 1€9Q;
it is obtained that
Dy + Mgoo = — / oew; (1 + ef V) ded¢ + Y — / mic;, Jipn(F + ef ) desd.
ieS ies @b
1€9Q; 1€9Q;

The solid crystal pressure tensor—opposite of the crystal Cauchy tensor—at the surface
is then naturally defined as

Pr=-3Y / acw; (FV + M) ded¢ + Z / mic; Jipn (O + ef V) desd.

€S
1€9Q; IeQ

This expression may be simplified by using
(0cWi) 1i(C) = —PyiOc (exp(—Wi/ksTw)), i € S,
where n; are the zeroth order number densities, and
(Ocw;) ni(¢) = —niks Ty O (exp(—wi/k:BTw)), 1€ Sy, =5:.USsU Sy,

and integrating with respect to (, in such a way that

P =ps— Y / acwifY degd( + Z / mici, Js.on(FM) dedC.

€S

1€9; IeQ
The first two terms of the right hand side represent the total force per unit surface acting
on the physisorbate, chemisorbate, and surface layer, whereas the third term represents
the gain in momentum by the species due to the interaction with phonons per unit surface
and time and also represents a force per unit surface. Since all zeroth order terms vanish
except the pressure term acting on the physisorbate, it appears that it is dominant term.
We may finally write the resulting boundary condition in the form

8
P.. =P, (5.6)
that is the traditional momentum boundary condition, the contribution of the normal

velocity term being of higher order.
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5.2 Tangential momentum boundary conditions
We multiply by m;c;, and e the difference equation (3.39), integrate with respect to the
particle velocity ¢;, sum with respect to ¢ € S, and 1 € Q;, and keep all terms of order €V

and €'. Keeping in mind that both fi(o) and fé?) are even with respect to ¢;, and ¢;, and
that the phonon interaction operators vanish for Maxwellians, the resulting equation is
in the form

Z €0, ~/mici,,®ci,| (fi(o) 0) )de; + Z 63(/”1 ¢;.cin(f f( ))dcl _

1E€Sg 1E€Sg
1€9; 1€9;
o Z /m civJipn(f dc, +e E /m cinCVde;.
ph s, i€Sg
1€9Q; 1€9;

We may then integrate with respect to ¢ and use that f(o) and fi(l) go to zero as ( — 0,

fi(o) — fé?) and fi(l) — fg) go to zero as ( — 0o f and fg(;) — j_’g) as ¢ — 0 to get

Y gl

that
Z Ea"pgl/{eXp<_kBLT> - 1}d§+ € Z /m szcznfgl de; =
i€Sg w zegg
S
— Z /m czu zph 1 dczd<+ Z /m clll dCde
ZESg 1€Sg
1€9; 1€9Q;

The second term may be evaluated as ﬁg”z by using (5.2) in the 1z directions, where
II,,. denotes the tangential components of IT,-e,. In order to eliminate the reactive
source term, we may again form the overall layer tangential momentum balance of the
surface species. The resulting equations are obtained in the form

Z/m cinJiph(f dcldC—i— Z /m c,l,C dcldC

i€Sy,
IEQ IeQ

Adding all the species tangential momentum balance and using the conservation of mo-
mentum in the chemical collision operators yields

My = ) ph/mzc“ Ji.pn (F) dcldC—i—Zeaupgl/{ exp(—kBLjiw)}dC.

i€S 1€Sg
1€9Q;

It is then natural to define the tangential component of the normal stress in the solid as

Pse = /m cinJipn(f )dcidC—i— Z ea,lg_)gi/{l —exp( T )}dC,
i€ 5y

(6
zeS ph
1€9Q;

since it represents the gain in tangential momentum by the surface species due to in-
teraction with phonon per unit surface and time and thus represents a tangential force
per unit surface. We thus finally obtain the equality of the tangential component of the
normall stress or pressure tensor

P%z = ﬁguz = ’Piow (57)
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and only first order terms remain. Note that when there is one single species, then the
second term of P} is O(e?) and may be discarded since 8,p, = O(€) from the momentum

conservation equation.

5.3 Thermal boundary condition

We multiply by 2m;|c;|? + Ei + W; and e the kinetic equation (3.36) for i € Sy, multiply
by 2m;|e;|? 4+ E; and e the gas kinetic equation (3.37), and form the difference equation.
Integrating then with respect to the particle velocity, summing over ¢ € Sy and 1 € Q;,
and keeping all terms of order € and €!, it is obtained that

S o [ Gmilei? + i+ w0 + ) - (milei? + w6 + i) e =
i€Sg
1€9Q;

1
> a—/(%mi|ci|2+Ei1+wi)‘]i7ph(€fi(1))dci
icS, Ph
1€9Q;

+ 3 ¢ [Gmiel + 5t wocde;
i€,
1€9Q;

Use has been made that dyng; = O(e), in order to suppress the time derivative term. In

addition, since fi(o) and fé?) are even in ¢;,, the integrals containing fi(o) and fé?) on the

left hand side vanish, and since constants are orthogonal to the collision operators, the
terms associated with E; + W; in the first integral on the right-hand side have vanishing

contribution. Integrating the resulting equation with respect to (, it is obtained that

€
> E/Ciz(%mz‘\Ci\ZJrEn)fg) dej=— > /%mi‘ci‘QJ@ph(fl-(l))dcidC
i Qph
ZESg 1% ZESg
1€9; 1€9;
=3 e [Umlel + s wededc (659
i€S,
1€Q;

Using the definition of the heat flux in the gas, specialized in the normal direction, the
moment associated with fg(z1 ) is evaluated in the form

1 _ _
€ Z /Ciz(%mi’ciP + Eil)féi) de; = Z (3ksTg + &) ngivg: + Q..
1€Sg i€Sg
1€9;

The heat flux may also be written
Q= -0 Ty—pY_ ebi"di+ Y (ShTy+ ) F,

ics i€Sg

where )\ is the partial thermal conductivity, 6; the ith species thermal diffusion coefficient
and d; = (OzPgi)/pe the diffusion driving force of the ith species.

In order to eliminate the reactive source term in the right hand side of (5.8), pro-
ceeding as for the momentum balance equations, we may use the thermal balance of the
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surface species. The resulting equations are in the form

S o [Gmiled? + miot wf® ded¢ = 3 == [ hmiles P () deidd
i€Sy, i€Sy, ph
1€9; 1€9;
+y 6/(%mi|ci|2 + B + w;)CVde;dc.
ieS,,
1€9;

Letting then for ¢ € S, U S5 U Sy,

E;, = E; + /Wi exp(—wi/k:BTw)dC / /exp(—wi/k:BTw)dC, (5.9)

adding the energy balance of all the species and using the conservation of energy in
chemical reactions yields

Z (3hsTys + &) eV + Q. + Z ((BhsTg +Ey)it) =

i€Sg €Sy,
€ 1
Z a—/%mz|cz|2Jz7ph(fz( ))dCZdC
ies Oph
1€9Q;

The solid heat flux at the surface is defined as

€ 1
Q= Y = [dmieP () de.
‘ Qph
€S
1€9Q;
since it represents the gain in kinetic energy of the species due to interaction with phonons
per unit surface and time and represents a heat flux. We have thus established that

Z (3keTg + )il + Q. + Z O (BkTy + E)n) = QF, (5.10)

i€S, ieSy,

and we may also use that 0;n; is directly expressed in terms of the surface reaction rate.
This relation corresponds to that generally used for thermal balances at reactive surfaces
[17, 42]. Incidentally, the heat flux in the solid cannot be expressed in terms of the
temperature gradient in the solid because phonon kinetic equations are not taken into
account [35].

6 First order expansions and multicomponent diffusion

First order expansions are investigated as well as multicomponent diffusion in the ph-
ysisorbate and the chemisorbate layers.

6.1 Simplified phonon interaction operator

In order to simplify the analysis of first order equations in the reactive surface layer it is
assumed that the phonon collision operators are in the relaxation form

1 1

=T ) —
aph z,ph(‘ﬁz)

i — (i)M;), €S, 6.1
Ti,ph((p (pi)M;) i (6.1)
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where the relaxation times 7; ,, = 7; pn(¢) are independent of the velocity ¢; and where
(i) denotes for short the integral over the velocity and the sum over the quantum num-

bers
<g02> = Z /QDZ dCZ', 1€ 5.

1€9;

Such an assumption introduced by Borman et al. [19, 20] simplifies the analysis at first
order as well as the derivation of the corresponding species fluid equations. Since there
is no interaction with phonons far from the surface ¥, we also have for the physisorbate
species
lim 7; ,K(¢) = 400, i€ S, (6.2)
(—o0

A natural further simplifying assumption, concerning the chemisorbed, free site and bulk
species, is that the corresponding relaxation times are constants independent of ¢, keeping
in mind that the surface and chemisorbed layers are thin layers

T; ph = constant, 1€ S.US;USy. (6.3)

We then have 7; ,,(¢) = 7ipn = constant for ¢ € (¢, (") whereas 7; pn(¢) = 400 out-
side of this interval. The dynamics associated with phonon interactions has thus been
simplified in the form of simple relaxation operators.

6.2 First order expansion in the gas as a thin layer

A prerequisite to the study of physisorbate diffusive processes is to investigate first order
gas kinetic equations in the thin layer form (3.38). We indeed already know the correct
first order integral equations that must be recovered. More specifically, at zeroth order,

we have (Egi) == jes, $§j~8—ﬂ9gj and from (3.26) we also have
— 1 -
Igz‘(¢g)) =- Z —(0ij — Ygi)Ci* Oxpy;- (6.4)
JESg 8

These equations are exactly the integral equations obtained by letting v, = 0 in the
traditional first order integral equations for diffusion processes in the gas.
Keeping in mind that Eg) = fg)/fg(;?) and Eg) = (Eg))iegg, the first order equations
in the thin layer form (3.38) are
=(1 - 0 0 .
Cis 3<~( ) —i—l'gi(:g))/c)c,.i = —(9,1o0g féi) + ¢;, -8, log fé ) i € Sg, (6.5)

—gi ()
where fé?) = JFSZ)') and

=(1) _ MiC;, Yge (1) 3 7o £0) :
By = k;;i% + axdy +¢0:1og f,;7, i€ Sg.
g
We first observe that the left hand side of (6.5) does contain the required ith gas species
integral operator Zgy;. Moreover, using 8,7, = O(€) and v, = O(€), the tangential gra-
dient terms of the right hand side yields —¢;, -9, log fé?) = —¢;, -0, log D, involving the
pressure gradients in the tangential direction. However, the pressure normal derivatives

present in (6.4) are missing in the right hand side of (6.5). We thus proceed as in Sec-
tion 3.5 and transfer the term cizﬁcEg) = ¢;,0. log fg) = ¢;,0, log py; from the left hand
side to the right hand side. A full pressure gradient term c;- 04 log p,; then appears with
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tangential derivative as well as normal derivatives in the right hand side. By subtractmg

€0, log fg) from Hé ), the corresponding first order distribution f — (0, f 9.7 also has a
finite limit as ¢ — oo.
In order to complete the right hand side, we also need the terms arising usually

through the derivative 0, log fé?)

Ong; = O(e), and 0;Ty = O(e), the derivative 0, log fé?) is found to be O(e). Ignoring

formally that dyvy, = O(€), the velocity term Jyvg in 0 log fé?) should yield contribu-

tions With the total pressure gradient term as in the gas phase. We would then evaluate

as in the gas phase. However, since dwy = Oe),

Oy, log fgZ <(Opvg + Vg Ozvg) as —m;Ci*Opg/psksTy using Euler momentum equation
O0yVg + Vg 0405 = —02pg/ps, and the proper right hand side (6.4) would then be recov—
ered. In our situation, however, since the mixture velocity is absent from f f prg
have to proceed differently. Since d,vy = O(€) we observe that the momentum equatzon
s then an equilibrium relation at zeroth order, without any time derivative term, in the
form —0zpe/ps = O(€). We may thus subtract the equilibrium O(e) term —0g4pg/pg
multiplied by the proper factor m;c;/ksTy to recover the exact right hand side of first
order equations for diffusive processes (6.4). The resulting equations are then well posed
with a right hand side in the range of the gas collision operator, that is, orthogonal to
the collision invariants. The only difference with the traditional situation is that instead
of using Euler unsteady equations, we have used here Euler equilibrium relations in order
to form the proper right hand side

| m;c; 3wpg
——c'~8 D )
Pgi Lo gz kBT Pg

Collecting previous results, we introduce the modified first order unknowns

i € Sg.

1) MmiCiy ng

o, = Tj_—‘g Hgbgl = E — (0, log f fgZ , i € Sg, (6.6)
the correct right hand sides
1 — .
\Ilg) == Z — (6 — Ygi)(aupgl'ciu + anglciz), i € Sg, (6.7)
leS, P

and defining the operator Hy = (Hgi)ics, by

Hei(p) = iz Ocp + Igz( ), i€ S,, (6.8)
the correct first order linearized equations written in the thin layer form read

1 ,
(@) =0l  ies, (6.9)
We have thus recovered with (6.7) the full three dimensional pressure gradient evaluated
at z = 0. The solution must also ensure the Enskog constraints (( fg(o)q)g),¢é>> = 0 for
1 <1 < Ng +4 that reduces to the single constraint ((fgo)fb () , (mici)ies, ) = 0 for vector
systems. It is further natural to write the coupled equations in vector form by letting

1 1
Hy = Hgidies,, O = (@0 )ies,, O = (W )ies,.

in such a way that
Hg((bél)) = \Ilél)a
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with the Enskog constraints ((fy © <I>(1 L) =0for 1 <1< Ng+4.

Since (m;c;,)ics, is a COthlonal invariant, it is in the nullspace of the linearized
operator Z; = (Zg)ics, and moreover @él) is independent of ¢ so that ’Hgi(q)g)) =
Igl-(@g)) Ja., = Igl-(gbg)). We thus have recovered the classical linearized gas integral
equations for diffusion processes (6.4).

In summary, we have first obtained a pressure normal gradient term by transferring
the term ¢;,0:(¢0, log fgi(;)) = ¢;,0, log fg;) from the left to the right hand side. We then
have obtained the total pressure gradient—usually arising through the time derivative
Oyvg of the velocity—by adding the proper linear combinations of the momentum equi-
librium condition—the fluid mechanical equilibrium equation—in order to finally obtain
the proper integral equations. It is interesting then to establish a short cut that allows to
derive the proper diffusion integral equations. To this aim, we note that the contribution
of the momentum equilibrium condition may be obtained by adding an extra term simply
proportional to the momentum collisional invariant (;¢;);cs, to the right hand side and

by taking the scalar product with (micifé?))iesg. We may thus simply write as a shortcut
that

Igl-(@g)) = —¢;- 0z logpy; + mici-L,

and take the scalar product of the equation with (mjcjfég))jesg to get that

~ Oap,
DTy
in order to recover the proper right hand side for a well posed system of integral equations
(6.7). This is the convenient method that will be used to investigate the physisorbate
layer’s diffusion processes. Finally, the distribution function at zeroth order may further
be decomposed along the species partial pressure gradients [38, 39, 40, 41, 42, 43, 44] as
also summarized in Appendix B.

6.3 First order expansion in the physisorbate

From equation (3.36) and the inner expansion (3.33), the first order equation in the
physisorbate is obtained in the form

1
0% + ¢;y -8, 4 ¢;, 08 — —acwz 9o 1) — = 3" (F (O ) g (5 £0)
¥ jES,
1

Ti,ph

(V=) =¢”, e, (6.10)

(2

+

Following the procedure already used in Section 6.2 for first order gas equations writ-
ten in the thin layer form, we first have to subtract the ( component of fi(l). We thus

consider fi(l) —C 8z_f$) and the corresponding reduced unknown

o0 _ f _Caz_féog (Mt g 50 > 7o N o
L) (O T\ KT, f(O)' )

% % i

Defining then the linearized collision operator Z = (Z;);cs, operating on ¢ = (;)ies,

around the zeroth order inner distribution f<(0) by

0 0) 0 0
Li(p) = 0) > (i f( Yoi) + i (f] )tpi,fj(» M), (6.12)
i JESg
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where fi(o) is given by (4.4), and the operator H = (H;)ics, by
1 1 1
Hi(p) = iz Ocpi — —O0cW; O i + —Ti() + (¢i — (iM3)), (6.13)
m; (675 Ti,ph

the ¢th first order linearized system reads %i(q)gl)) = \/I\fgl) with the right hand side first
in the form

R 0 o7
\I’Z(l) = fzo) — at log fz(o) — ¢, +0, log fz(O) — Ciz fé%l ) IS Sg'

However, the chemistry is assumed to be slow so that Ci(o) = O(e), the tangential deriva-
tive term reduces to ¢;, +9, log fl-(o) = ¢;, +0, log p; where p; = n;ksT, the normal deriva-
tive term also simplifies with (9Z_(fg0i) /fl.(o) = (02pgi) /i, and we also need to add the proper
linear combination of the momentum equilibrium relation m;c;-L£ replacing of the time

derivative 0, log fl-(o) = O(€). The corrected right hand side is thus in the form

Ci 'au i + ¢ a— i
G A 1 S (6.14)

gl =
! pi

and the first order system for diffusive processes read
H;(dW) = oY), (6.15)

The factor £ may then be obtained by taking the scalar product (2.40) with (micifi(o))iesg.
It is important to note that the tangential driving gradients involve p; but the normal
driving gradients involve py; and arise form the multiscale expansion. The boundary
conditions further read

limfY =0, lim (fY — D) =0, (6.16)

¢—0 {—o0 gt

since the corrector fl(cli)
¢—0.

We may then split the right hand side in the form

goes to zero as ( — oo and there are not anymore particles as

v =g g i €Sy,

1,ev i,0d?
where \I’Z(}e)v and \I’z(,lo)d are respectively even and odd functions of the tangential velocity

¢;,. The solution <I>§1) is correspondingly decomposed in the form

ol — o) 1 ol i€ S, (6.17)

i,ev i,0d?

e ths 18, = £02 anc 2, = (00l

tangential velocity ¢;,. Letting then o) = (<I>Z(71e)v

the systems of equations

where @E}e)v and <1>Z(.71)d are respectively even and odd functions of the tangential velocity
are respectively even and odd in the
)ies, and CID&) = ((I)m )ies, we obtain

i,0d

Hi(B)) = W, Ha(@L) = W

,ev? i,0d?

i € Sg, (6.18)
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with

’EBV - % + m; G ‘Ceva \I]Z(,lo)d = _CZ”T?HPZ + miciu'»coda
where Lo, and Lyq are respectively the tangential and normal momentum equilibrium
relations. The scalar Lo, and vector L,q are easily identified by taking the moments
of the corresponding equations with (ml-ci”fi(o))iesg and (m; szfz( ))iegg respectively and
found in the form

(OF O,
Lod = ——+ [)kBT < WP+ Z 8@/ czuf (bloddcz"i‘

1
/mic”f( )<I>£(3ddci),

i€Sg Ti,ph
IeQ 1€9Q;
1
Loy = kB (Ope+ > o / micZf 080 de,
P w 1€Sg
1€9;
1 1 0) + (1
+ 3 [awalalldet 30 = [me V0l de).
i€Sg €Sy 7
1€9Q; 1€9Q;

We again observe that the tangential momentum equilibrium condition of the physisorbate
Loq = O(e) involves 9,p whereas normal momentum equilibrium condition Le, = O(e)
involves the gas normal driving pressure fpg. The resulting equations for the odd com-
ponents of (6.18) are then in the form

miciy 1 1 1
szac Zod pk:BT Z ag/m]c 2Cj ()q)ggddcj —Eﬁgwiﬁcizq);o)d

JESg
JEQ]'
‘b(l) m;c; 1
+ I q)(l) + iod  MiCin /m . f(O)q)(l) de.
Qe ( Od) T oh pkBTw A Tj,ph J=anty j,od~7
JESg
JEQj
= - Z czu 8||pla 1€ Sg- (619)

less P

In these equations we are naturally using the thermodynamic state of the physisorbate
layer with p; = niksTw, n = ZieSg n; and x; = n;/n, for i € Sy, and the mass fractions
are correspondingly y; = p;/p with p; = n;m;, for i € Sy, where p = Zz‘esg pi- The
equations for the even component are finally addressed in Appendix C.

6.4 Multicomponent tangential diffusion in the physisorbate

Considering tangential diffusion in the physisorbate, taking into account the similar gas
phase problem solution [38, 39, 40, 41, 42, 43, 44| summarized in Appendix B, it is natural
to seek a solution to (6.19) in the form

(1),
z od = Z Q)Z o)d ||pl- (620)
leSg
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The corresponding system of integro-differential equations for @glo)c’ll

the gas and found in the form

is similar to that for

Cz‘zacq)z(,lo)él i CZ” Z aC/mJCJzCJH@’f 0)‘I>§13ddca - _8CW18 (I)(l)dl + I(‘I)(l)l)

JESg
Je9;
oD . ) )
i,0d m;Ciy (0) (1)
— . _ m.c;, Qf: de. i — yi)Cin,s 6.21
Ti,ph pkBTW j;Sg Tj ph/ 750 i _]Od J = pi( 7 z) Al ( )
JEQJ'

with the right hand side

1
\Ililczd = ;(521 - yi)cina (6.22)

7

and the natural Enskog constraint reads <<f(()31), (miciv)ies,)) = 0.

We will use a Galerkin method with the approximation space
Span{ ¢!kl 1 c g 1, (6.23)

where

1000kl L mi \Y2
(b (w2||5k2)265g7 wlll - (2]€BTW> Czu- (624)

These basis functions are natural two-dimensional versions of the traditional three di-
mensional basis functions that are detailed in [42] on page 87. In the notation ¢2°?  the
first index a refers to the tensorial rank with respect to R3, the second index b = 0 to the
absence of polarization effects, the third index ¢ to the degree of the Laguerre and Sonine
polynomial, the fourth index d to the degree of the Wang Chang and Uhlenbeck polyno-
mial in terms of reduced internal energies and the last index k refers to the species. We
have added the 1 symbol to indicate that the vector basis functions ¢'%%! are projected
onto the tangential plane.

We are using here the simplest approximation space associated with diffusive processes
[38, 39, 40, 41, 42, 43, 44]. The right hand side of (6.21) is expressed as

)gblOOOkII

)

) B
vy Z FkszT - ( Yk

keSg

and the solution is expanded in the form [38, 39, 40, 41, 42, 43, 44]

q)(l al 1000k

The resulting equations are obtained by using Galerkin method, i.e., by taking the
scalar product of equations (6.21) by the basis functions ¢'%%%! for k € S,. It is then
remarkable that all differential operators vanishes in such a way that the equations reduce
to a linear system instead of linear differential equations in (. We have thus recovered a
traditional transport linear system in such a way that the Galerkin method then reduces
to the standard variational method of multicomponent transport. The resulting linear
system involve the L matrix given by

Ly = VMEm [p1000k 1 g100001] k1€ S, (6.25)

K.
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where for any f = (f;)ies, and g = (4i)ics, with f; and g functions of ¢; and 1, the
bracket product [f,g] denotes

= > /f@I(g de;,

1€Sg

1€9;
and ©® is the maximum contracted product between two tensors. The matrix L =
(Lki)k,ies, is symmetric positive semi-definite with nullspace spanned by T € R with
I = (1)ies,- In other words L = L', L > 0, and N(L) = RI. The components of L are
given by

XEX] XX

ka: Z D—k;l7 Lkl:_D—kla l%k7 k7l€Sg7
leSg
l#k

where Dy is the binary diffusion coefficient of the physisorbate pairs of species [38, 39,
40, 41, 42, 43, 44]. Further introducing the diagonal matrix
Mg
ka,ph>keSg’

D= diag( (6.26)

and letting y = (y;)ies,, the resulting transport linear system is found after some algebra
to be in the form

Lol + Dol — y(Dd!, ) = B, (6.27)
where (,) denotes the scalar product in RNz, ! = (ak)kesg, (ﬁ )kESys ﬂli = Ok — Yk,
(I, 8"y = 0, and the solution o/ must satlsfy the constraint (y,a!) = 0. The transport

linear system is then rewritten in the convenient form
(L + (I — yI)D(I — n®y))al =gl (6.28)

Letting L = L+ (I-y®T)D(I— I®y), the matrix L then has properties similar to that of
L, in such a way that L=L'L>0,and N (L ) RI. Then for any positive coefficient
v > 0 the solution o is given by [41, 42]

= <L + (I — y®I)D(I — Ioy) + Vy®y) g, (6.29)

and thus depends smoothly on the diagonal D. In particular, as D — 0 when { — oo, we
exactly recover the tangential diffusion process of the gas mixture and lim¢_, al = o/g
where o/g is the corresponding solution of the gas phase transport linear system presented
more specifically in Appendix B.

Finally, the tangential fluxes in the physisorbate are naturally defined as

F;, = EZ/CZ”f(O q)z(loddcz,

1€9;
and taking into account the decomposition of <I>£ (3 4 these fluxes are given by
0
F;, = —¢ Z niaé—"pl.
1S, p

Further assuming that the crystal is free of tangential stress in such a way that 9,p = O(e),

the tangential flux is then in the form F;, = —e )", Sy niaéau x; where the mole fraction
of the lth species is given by x; = n;/n, whereas in the gas the tangential flux reads
ng” = —¢€ ZlESg ﬁgialgiauigl.
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6.5 First order expansion in the chemisorbate

Proceeding similarly as for the physisorbate and using (3.40), the first order equations
for the chemisorbate species and the crystal species read

1
0,8 + ¢y 0,89 1 ¢;, 0,8 — —8<wz B Y+ ——(FY — (D))
Ti,ph
=Y ieS.USUS, (6.30)
Letting then
O (6.31)
and defining the operator H; acting on ¢; by by
1
Hi(pi) = ci Ocpi = —0cW; Oc, i + —— (i — (pid)), (6.32)
m; Ti,ph
the linearized equations may be written
Hi(ofV) = vV, (6.33)
where ©
\Ilil) = CZ— — 815 log fz( ) —Cyy a” log f(o)
£©)

An important difference with the physisorbate is the absence of any normal gradient of the
species partial pressures. Normal gradients indeed arise for physisorbed species through
inner expansions of the gas distribution functions and are thus absent for chemisorbed
species. The boundary conditions are

lim £V =0,  1im fV =0, (6.34)
(¢ (¢
and it is natural to impose an Enskog type constraint for the first order corrector fl-(l) in
the form

/ fVded¢ =0, i€ S.USUSh, (6.35)

89

since the average value of f;’ is otherwise undetermined because H;(II) = 0 and any

term proportional to fl-(o) could be added to fi(l), keeping in mind that limc e fl.(o) =
0) _

as discussed in Appendix D. The surface diffusion fluxes may then be elegantly and
equivalently obtained from the layer averaged equations. The layer averaged equations
present many similarities with standard three dimensional kinetic equations.

The right hand side may be decomposed in the form

limC St fi( It is further possible to introduce layer averaged kinetic equations

‘I’gl) \Ilile)v + \Ilglo)d7 i € ScUSsU Sy,
where
m _ ¢ 0 (1) (0)
iev ZO) 8 logf \I}i od = —Cin -0, log fi ) 1€ S5.USsU Sy,
) fz K
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are respectively even and odd functions of the tangential velocity ¢;,. The solution @El)
is then decomposed in the form

oV — o) 4 oW

z,ev i,0d?

i € 5.USsU S, (6.36)

with @) = (<I>(1) )ieSe s <I>(()1d) = (@510)d)iegc so that

i,ev

i,ev i,ev’? 4,0 i,0d?

i € SeUSsUSh, (6.37)

with the Enskog constraints. The distributions fO— f(o)q)(l) and f f( I

i,ev i,ev i,od T zod are
respectively even and odd in the tangential Veloc1ty Ciy and the Enskog constraint is in

the form f f

1,ev

sides ( = (; and ¢ = C;r , the distributions f; ., and f; ,q go to zero.

dcidC = 0 since that for fz‘(?d is automatically satisfied. Moreover, at both

6.6 Tangential multicomponent diffusion in the chemisorbate

A remarkable point of crystal surfaces is that the total species number per unit surface
is constant ) ;. s, ni + Ns = Ny or equivalently >, s, 1; + ns = 1, and the molar based
mixture velocity vanishes also in a reference frame attached to the crystal because of
the interaction with phonons. There is a corresponding contraint stating that the total

tangential molar flux must vanish [74, 75]

3 / ci V0 deidC + / e f00Y ded¢ =0,

1€Sc

1€9;
since diffusion processes are naturally measured with respect to the cristal. This con-
straint is analogous to the usual mass conservation constraint between mass fluxes in a
multicomponent mixture. It is then natural to define surface diffusion velocities on a
crystal with respect to the molar average velocity.

It is also natural to consider the coupled system of equations constituted by the
chemisorbate and the free sites and we denote by S7 the corresponding species indexing
set
St =5.USs.

The bulk species—constrained to follow the chemisorbed species—are uncoupled and will
be examined later. A main task is to determine the integrated tangential fluxes that will
be needed when investigating the chemisorbed species macroscopic equations

I?iu - GZ /cinf(O)(bz(loddCZdC
1€9Q;

Following the formalism developped by Waldmann for molar based diffusion detailed in
[73, 33], the proper fluxes are in the form F;, = n;W;, with a molar tangential layer
diffusion velocity W;, given by

0) = (1)
Wi, = = Z/c i) de d(—— 3 /cﬂf( 'l de;dc. (6.38)

' 1eg; Mo icsr
J€9Q;

The kinetic equations for the chemisorbed and free site species are written by using
the vector operator

H = (Hi)iess (6.39)
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acting on families of perturbed distribution functions <I>(()1d) = (@Elgd)iesT where H,; is the
differential-integral operator (6.32). The coupled first order equation for the odd part of

the distribution functions is then in the form
@y =o'l (6.40)
1 _ ORY ; (MY — g ; .
where W | = (U, )ics, or equivalently H;(®, ;) = ¥, , for i € S7. The right
hand side is in the form \Ilz(}())d = —c¢; -0, logfi(o) and using fi(o) = nm; and n; =
ni [ exp(—wi / kBTw)dZ, where n; is the surface concentration of the ith surface species,
we obtain

\II(I)d = —¢;, -0, log FO = —c¢;, -0, logn; = —c¢;, -0, log p;, i€ ST,

7,0 7
where p; = n;kTyw denotes the surface partial pressure of the ith species. Denoting

by p = > s DL = > ies. D1+ Ds = ngksTy the total surface pressure, which remains
constant, and X; = p;/p the surface mole fraction of the ith species, we may then write

that 1
\Ilz(‘,lo)d = - Z f;ciu 'dl 6il,
lesr
where B
d; = 8,%;, (6.41)

denotes the surface diffusion driving force of the ith species. These diffusion driving forces

are constrained by the relation
S d=Yd+d=o
leSr 1eSe

Multicomponent diffusion fluxes and coefficients defined with respect to the molar av-
eraged velocity have been investigated by Waldmann [73] and summarized in Appendix C
of [33]. Waldmann’s analysis must then be adapted to the situation of tangential surface
diffusion. To this aim, the right hand side is rewritten in the form

vyl =5 Yy v,
leSt

where Wl = (\I/(-l)’l)ieST and

(2

1
\Ilgl)’l = Z?((szl - ;(Ji)cin-

Denoting by @ the solution to the integral equations
H(@W) = g

with boundary conditions similar to (6.34), and taking into account the simple structure
of H and of UM the solution M+ is found in the form &M = (@51)’l)i65T with

T -
@51)71 - Z»L—ph((szl - Xi)cim
2
where we have used that 34@51)’1 =0 and Bciz @El)’l = 0. The molar diffusion velocities
are then given by
Wiu = —¢€ Z Dildla (642)
leSr
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where the multicomponent diffusion coefficients 5”, i,l € ST, read [33]

Dy=-L / fO0M ¢, ded¢ — - Z / 00 e;, dejdc.

2’1’Li
7 jesr
All calculations done, it is found that
_ D!
Dy = 51— — (D} +D))+ > %D, ije ST, (6.43)
JEST

where D! denotes the surface diffusion coefficient of the ith species associated with phonon
interactions
ks Ty

i

D =

Ti,ph; i € 5T, (6.44)

that is dlrectly proportional to the relaxation time 7; ), for interaction with phonons.
The matrix D is symmetric D = D' with DX = 0 where X = = (Xi)ies, is the surface

mole fraction vector. The matrix D is positive semi-definite with nullspace given by
N(D) = RX and for any vector y = (1;)ics, we have

(Dy,n) = = D"(nz—sznz) :

ZEST leSt

Since DX = 0 we also obtain that Zz‘e Sr ?Zﬁ;@ » = 0 and the diffusion process is compat-
ible with the molecular structure of the crystal, that is, it is guaranteed that n, remains
constant. Incidentally, the analysis may equivalently be conducted using the layer aver-
aged equation, since only the integrated fluxes are required, as presented in Appendix D.

The relations (6.43) and (6.44) expressing the surface diffusion coefficients further
show that surface diffusion is due to the interaction with phonons. This is a natural
results since surface diffusion and volume diffusion in solids are consequences of thermal
agitation [76, 77] and thermal agitation is represented by the interaction with phonons
in the model.

6.7 Chemisorbed and free site first order equations

In the chemisorbate, it is obtained at first order that
) / 2 + etMYde; + 8, [ i (1O + 1)) de; + 0 / e, (V) + fPyde; =
/ cVde;. (6.45)

The first time derivative term yields the contribution

8t/fi(0)dci = On; exp(—k:;i >,

and the other time derivative term 9, [ fl-(l)dci yields a zero contribution when integrated

over ¢ from the natural Enskog type constraint [ fi(l) de;dC =0
For the tangential derivative terms, we first note that f ci”fi(o)dci = 0. For the next
1) _ f0) @) @ _ M) <I>(1)
1 1

tangential term involving f; , we may use the decomposition ®; iev T ®iod
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where Hi(fbg}e)v) = \Ilgle)v and Hi(fﬁglgd) = \I/Elgd and the results of previous Section 6.6.

The tangential fluxes have indeed been shown to be in the form

ﬁ‘in = ﬁiWi|| = E/Ciufl'(l)dcidg = e/cinfi(,?ddcidg = —en; Z 5ilzil7
leSr

where EZ = 9,x; = 8,n;/ny. In addition, integrating over ¢ and summing over I € Q;, the
normal derivatives terms in (6.45) do not contribute since there are no particles at the
limits ¢ — 0 and ¢ — (.

The overall mass conservation equation in the chemisorbate is thus obtained in the
form

~ ~ g~ = 0
O — € Z 0,- (niDilau nl/no> = mz( ). (6.46)
leSr

It is then observed that the kinetic model yields a surface diffusion term that is directly
due to the interaction with phonons. N

Since F;, = 0 or equivalently DX = 0, we also recover that Zz‘eST n; =

> ics. i + s is governed by the equation at<2ieST nl) = 0 keeping in mind that

1€ST

: de;dz s ' degdz = 0 from the conservation of sites chemical reactions.
ics. JCVdeidz + [V de,dz = 0 from th tion of sites by chemical reacti
It is therefore recovered that Zz‘e Sr T; = Ny remains constant in time.

7 Extension to multisite adsorption

We investigate in this section the situation where chemisorbed species may occupy several
atom sites on the crystal surface.

7.1 Multisite adsorption

The reactive surface model presented in the previous sections has been obtained with the
simplifying assumption that chemisorbed species are adsorbed on single site atoms of the
crystal surface. However, chemisorbed species on a flat surface may sometimes occupy
several atoms sites. We thus assume now that the ith chemisorbed species requires s; > 1
sites to be chemisorbed on the crystal surface. To each chemisorbed species, say of index
i € S¢, we may then associate s; bulk species with indices denoted by b(i, 1),...,b(,s)
that are all in Sy,. The s sites associated with ¢ € S, are thus b(i,1),...,b(i,s) € Sp.
The number of bulk species is then N, = > s. Si- The simplified monosite adsorption
case investigated in previous sections then corresponds to s; = 1 for any i € S..

The kinetic equations are similar when multisite adsorption occur but collisions are
naturally more complex. The chemisorption of the i¢th particle involves a collision with
s; free site crystal atoms and similarly the desorption process involve the collision with
s; crystal atoms of the solid surface. Whenever a chemisorbed species 9; for i € S is
involved in a reaction, all its attached s; bulk species are thus automatically involved.
Assuming for illustration that the ith chemisorbed species has a direct gas-phase parent
with index g(i) € Sy, noting for short by s the free site index, and assuming that there is
no dissociation during adsorption, then the direct multisite adsorption of 9, into M;
may be written with the atomic site convention

Mgy +5Ms = My + Z My (i) (7.1)

1<j<si
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The same adsorption reaction would be written in the form
gﬁg(l) +SZ’O(S) = mi, (72)

with the open site formalism. As a typical example, using the open site formalism, the
reaction of adsorption of Propene C3Hg on platinum Pt requires two free sites and may
be written [78]

CsHg + 2Pt(S) = C3H6(S),

where C3Hg denotes the Propene gaseous molecule, Pt(s) the open site symbol of a
platinum crystal surface and CsHg(s) the adsorbed molecule, whereas the adsorption of
water vapor HoO on the same surface reads

Ho0 + Pt(s) = HaO(s),

the adsorbed water molecule HoO(s) only occupying a single platinum atom site [78].

The number density of chemisorbed species per unit surface n;, i € Se, then corre-
sponds to s;n; = ZISJSSi np(i,5) moles of bulk species per unit surface with ny,; 1) = -+ =
Nh(i,s;) = Ni- The monolayer constraints between species numbers then reads

E SN + Ng = Mg
1€Se

We introduce for convenience the notation s, = 1 so that .. Sr sn; = ne with S =
Sc U Sg. In this situation of multisite adsorption, it is natural to define the site mole
fractions

~ ST .

X; = —, 1€ S =5.USs, (7.3)

Neg

that sum up to unity, keeping in mind that n, = .. Sy s;n; remains constant from the
structure of the crystal surface. These fractions represent site mole fractions, that is, the
local ratio of the number of sites occupied by the ith chemisorbed or free site species per
unit surface divided by the total number of sites per unit surface.

In the situation of a single species being adsorbed of several sites, the modified po-
tentials (4.31) are then typically in the form

p; = log <~Z7;(1ﬁ_i 5y > ;

involving the traditional factor (1 — 6)% in the denominator [79, 80].

7.2 Surface tangential diffusion with multisite adsorption

In order to investigate the tangential mass fluxes of chemisorbed species in the multisite
situation, a similar analysis to that of Section 6.6 may be conducted. Incidentally, dif-
fusion processes in the physisorbate are naturally unchanged by multisite chemisorption.
Considering again the indexing set S = S. U S5, the kinetic equations are found in the
form 7—[(@02)) = \Il&) where \Il(()ld) = (\I}z(,lo)d)iEST and \IJz(,lo)d = —cj, +0, log fl-(o). It is then
natural to use the site molar fractions and to write that

\I'(.Bd = —¢;, -0, log fi(o) = —¢;, +0, log(s;n;), i€ ST.

(2

Applying the Waldman formalism, the new diffusion driving forces are

di=0%x, iebSr. (7.4)
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and are constrained by the relation Zle Sy d; = 0. The right hand side is rewritten in the

form
— 5 3t
leSt

where Wl = (\Ilgl)’l)ieST and

1 ~ .
i — X5 )Ciy, i,l € ST.

The tangential diffusion velocities are then obtained in the form

zu = Z Dzldla (RS ST7 (75)
leSt

with the fluxes E . given by ﬁ‘z y = 'ﬁ,ﬁv/, "

The analysis is similar to that conducted in Section 6.6 provided that the site mole
fractions per unit surface are used instead of the ordinary mole fractions per unit surface.
The multicomponent diffusion coefficients are then found in the form

~ D! ‘
Dil:fs@'l%—g—(Dy—i-Dy)—i- Z D% 1,1 € S1.

3%
JEST

where DZ'~| = kgTwtipn/mi, © € S7, denotes the surface diffusion coefficient of the ith
species associated with phonon interactions. In the situation of single site adsorption
where 5; = 1, for ¢ € S7, we naturally recover the result of the previous section. The
matrix D = (D)HEST is symmetric D = D' and N(D) = RX® where X° = (X))ies;- In
particular, since DX* = 0, we have Zles Dys% = 0 so that 22657— siﬁiﬁv/“ =0. In
other words, we obtain the natural site number diffusion constraint

Z SZ‘FZ‘” = 0, (76)

1€ST

generalizing the monosite constraint. Although this constraint is physically natural, it
appears to have been overlooked in the literature in the multisite situation. Finally, the
various macroscopic boundary conditions for the gas and the surface species are found to
be unchanged.

8 Conclusion

The kinetic model describing complex chemical reactions on a solid surface introduced in
this work may be extended is various directions. Adding bulk and surface phonon kinetic
equations would allow to take into account temperature variations in the crystal as well
as the situations where Ty # Ty,. The linearized first order equations associated with the
physisorbate and the chemisorbate also lead to new half space integro-differential equa-
tions that have never been investigated. Finally, multitemperature flows as well as state
to state models involving gas surface interactions, which are of paramount importance
for reentry, may also be investigated with similar models.
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A Collision operators with phonons

We denote in this section the species quantum indices in the form (1,1) where T is an
index for the degeneracies of the energy state I, ranging in an indexing set denoted by
51-1. These degeneracies may typically be magnetic quantum numbers [73, 41].

The detailed operator J; 1 describing collisions between particles of species i and
phonons taking into account the detailed quantum states (1,1) are in the general form

[19, 35, 36, 37]

]%ph Z / fph + 1 f( 27 ’ )_ fph(q)ﬂ(c%I?D)W“l ! dc dq? (Al)

reQ;
I eQz]

where f,n(g) denotes the phonon distribution function, ¢ € S the species index, g the

phonon wave vector or quasi momentum, ¢; and ¢, the particle velocities before and after
the interaction, and WI’I’;I T a transition probability. The dilute approximation has been
used for f; in order to snnphfy (A.1) and the appearing of the additional factor 1 in the
gain term is a typical quantum effect [19, 35, 36, 37].

Proceeding as in Waldmann [73] and Oxenius [81], and assuming that the distributions

are isotropic in such a way that £(c;,1,1) = fi(¢;, 1) is independent of T, we may set
i(ei,1) = Y filei,1,1) = aufi(es, 1), (A.2)
1€Q;

The operator (A.1) is then obtained in the form (2.21) with the degeneracy averaged
transition probabilities

] 1 Ty

L L LLI,I
Wi,ph o a; Z Wi,ph )
TTIEFQVZ'I

and these transition probabilities are such that alIW ! oh = a,I/WZ ph [73, 81]. The operator
(A.1) corresponds to collisions such that m;c; = mzc +qg+b where b is a vector of the
reciprocal crystal lattice and there is another operator associated with collisions such that
m;c; + q = m;c; + b that leads to the same type of simplified source term J; ,, and the
corresponding details are omitted.

B Diffusion transport linear system in the gas

The transport linear systems associated with diffusion in the gas phase are well docu-
mented [38, 39, 40, 41, 42, 43, 44] and we summarize the results used in the paper. The

integral equations (6.4) are solved with gbg) written in the form

~ " 64 Bapa, (B.1)

1€S,
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and the right hand sides are found in the form

1
1/’;)’[ = — (b1 — Ygi)Ci- (B.2)
Pgi

The Enskog constraints reduce to <<(fg(i0)¢§}g)’l)iesg, (mici)ies,) = 0 and the system is
then solved by using a variational method.
We use the variational approximation space spanned by

Span{ ¢'%%%; k¢ S, }, (B.3)

where

1000k L omi \1/2
¢ (w 5kl)l€5ga w; = (2kBTw> C;. (B4)

The right hand side may be expressed in the form

P («m yi) o000k

k; \/mkk:BT Nk

and the solution is expanded as

\/2’” llOOOk
P = Z a0
keSg

The transport linear system is obtained by taking the scalar product of the gas integral
equations by the basis functions ¢'%0% for k e Sg, and the resulting matrix L, is

VM [1000k  510000] k,l € S, (B.5)
7y

where for any f = (fi)ies, and g = (4i)ics, with f; and g functions of ¢; and 1, the

bracket product [f, glg denotes [f,glg = > icq, 2 ico, [ fi ® Zyi(g) de;. The matrix Ly =

(Lg, k1)k,ies, 15 symmetric positive semi-definite with nullspace spanned by T € R¥, that

is, Lg = Lg, Ly >0, and N(Ly) = RI, and its components are given by

2
Lg =35

XgkXgl XgkXgl
Lgkk: E ﬁ7 Lgkl:_&a k#la k7l€Sg7
=5 Du Dy,
g

14k
where Xg, = ng/ng denotes the mole fraction of the kth species in the gas and Dy, the
binary diffusion coefficient for the (k,1) species pair [39, 40, 41, 42, 43, 44]. The resulting
transport linear system is found after some algebra in the form

Lgal, = gL, l € S, (B.6)

where af, = (ol Jkes,, By = (BLphes,s Bhr = Okt — Ygh, (I,BY) = 0, and the mass

constraint yields that the solution o/g must satisfy (y, o/g> = 0. Then for any positive

coefficient v > 0 the solution o/g is given by

-1
alg = (Lg + Vyg®yg) é, lesS,. (B.7)
The molar diffusion flux of the ith species is then given by
Ozp 3
—€ ) ngiak;—E (B.8)
1S,

and its projection on the tangential plane yields the flux used in Section 6.4. Since
O0zpg = O(e), these diffusion fluxes may also be written Fy; = —€ ), Ss ngio/giawxgl.

50



C Normal multicomponent diffusion in the physisorbate

Condidering normal diffusion in the physisorbate, the equations governing even compo-

nents of perturbed distribution functions oW

i oy Tesulting from (6.18) are in the form

cizacéi, ev Z 3</m] ]zf(o (p_glevd + Z((b(l))
JEQ
A T
phs T
oM _ (<I>(1) M) . .
+ i,ev iev . 1G5z - m'C»Zf(-O)(I)(.le) de.
Ti,ph PlﬁaTw j;Sg Tj,ph A J.evoJ
JEQJ'
¢ 1
- fZO) N Z 27(6“ - yi)cizangl, 1€ Sg. (C.1)
i leSg

Taking into account the similar gas phase problem solution, it is natural to seek a solution
of (C.1) in the form

(1),7 .
zeV_ Zq)zev zPgl +q)zevg’ ZESg, (02)
1S,
with a diffusional part — 3%, Sy <I>§ e)v 0.pgi and a remaining term (I>§ e)", ® that will involve
chemistry, diffusion and convection. The diffusional part is naturally assumed to obey
the mass conservation Enskog constraint <<f(0) &) l, (m; CZZ)ZeSg >> = 0 where f(0)<1>§£)’l
(f( )Lt

1 1,ev )ZESg °
The differential-integral equations (C.1) are then solved using a Galerkin procedure
with the convenient approximation space

Span{ ¢"0%: k€ S,; !0z e g, 1, (C.3)

where

m 1/2
HO000k _ (6ks)ics, H1000k= _ (Wiz0ki)ics, Wiy = (Zkgs“ > Cse (C.4)

The basis functions ¢'9%%* are the natural one-dimensional versions of the traditional
corresponding three dimensional basis functions whereas the ¢%%% are the natural scalar
basis functions. The solutions are expanded in the form

_ V2my, &l p1000kz C5
,;gp T Ok (C.5)

Dyvg _ V2ME 1000k & HP000k
by 8 = E — Q¢ + E X0 C.6
nes, VieTw kes (o
g g

It is indeed natural that <I>g,)’ , 1 € Sg, are odd with respect to the normal species velocities.

51



We next use a superposition method, first solving a partial system for the simpler
diffusional component of the solution — ;. Sy Q(l)’lﬁngl and then solving a full system

1,ev
ﬂ%%

for more complex remaining part of the solution ®; .>**. Considering first the system (C.1)

without the chemistry source terms Ci(o) / fi(o), for the diffusional part of the solution, and
taking the product with the test functions f(®)$1000kz — (fi(o)qﬁzmoom)iegg, k € Sg, using
(2.40), we obtain simple linear systems for the &' = (&} )re s,- After some algebra, it is
naturally found that the governing equations reduce to the same transport linear systems

with the same mass constraint as for tangential diffusion so that

a=da, 1eb,, (C.7)

and diffusion is recovered to be isotropic. Therefore, the solution &' converges towards

that of the gas & — alg as ¢ — oo as we have already established for of. The diffusive

flux of the ith species F;, in the normal direction may thus be written

d:p
1 Yzlgl .
F, = —¢ Z nial—= i € S, (C.8)
1€S, p
or equivalently F, = —e ;. S, ﬁgxiaéﬁzxgl, and converges towards the corresponding gas
flux Fy;, = —e Zlesg ﬁgii,go‘lgiazxgl’

Once the diffusive component of the solution @éi)’l, l € S, are known, we may use the
decomposition (C.2) and obtain a variational formulation for the remaining part of the

solution @g{c)\;yg. Important simplifications are then obtained from the simple structure

of ¢1000kz and ¢0000k  Tn particular, the multiplication by f(?)¢0000k 1 < S, using the
scalar product (2.40), yields

nkacak‘ - k;:—’_lliacwk ar + 8Csz = Q:(O), (CQ)

where

eV =3 / cVde.

KEQy
Using then O¢ log ny, = —0:Wy/ks Ty, we may rewrite (C.9) in the form O¢(nyoy + F.) =
Q,go), and by integration, we obtain that

¢ H0) 12
nk&k:/ Q:k dC—sz. (C.lO)
0

From the compatibility with the gases for { — oo, and using (C.6), we also deduce that

lim Q) = v, lim @), =0,

Jm dy=o  Jim
and we may alternatively write that nyay = ngrvs + Fore — fcoo Qg))dé — Fi,. By in-
tegrating (C.9) over (0,00), we also recover the fluid boundary condition (4.19) since

mg)) =/ Q:g))dz. On the other hand, taking the scalar product with f(9)@1000kz k. < Se,
using (2.40), it is found that

nkac&; — Yk Z njaca;- = bk,
JESg
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where b, = ﬁ (Zlesg L&y + Doy — yp(Day, II>) We may then impose the constraint
Zjesg n;0ca; = 0 to finally get that aj = — fcoo 22 dc.
In conclusion, diffusive processes are isotropic in the physisorbate and converge to-

wards that of the gas associated with gz_bg). The physisorbate perturbed distribution func-
(1),7%

tions also have components ®; o ® converging towards the remaining parts m;c;, vy, / k:BTg
of the gas corrected perturbed distribution functions.

D Layer-averaged kinetic equation

We investigate in this section layer-averaged or partially integrated kinetic equations for
the surface species S+ = S, U S;. The layer-averaged zeroth order densities are defined
by

7O _ / fOdc, d¢c,  ieSr,

and the layer-averaged odd perturbed distributions @glo)d as

G 1 0) « (1) ,
q)égd N ¥(—0) /f( (I)E oddczzdg’ (S S’T-

Since the relaxation times for the surface species are independent of c,, and ¢, we may
then define the ¢th layer-averaged kinetic operator H; as

H,(3) = — <¢_/¢Midq”), ie Sy,

Ti,ph

where M; is the tangential two-dimentional Maxwellian of the ith species, and the layer-

(1)

averaged perturbed distributions &)Z oq then satisfy the kinetic equations

@) =wl,  iesr (D.1)

where {Ivfglo)d = —¢; +0, log?i(o), 1 € S7. These equations are directly obtained by multi-
plying %Z(q)z(lo)d) = \Ifz(lo)d by fi(o), partially integrating the resulting kinetic equations with
dc;,d¢, and then dividing by E(O). Letting then &)gld) = (&)E}O)d)iesp H = (ﬁi)ieST, and
\If(() ) = (\I’Elgd)zesp we obtain ’H(‘b(l)) = \If(()ld).

It is further possible to introduce a surface bracket operator acting on pairs o =
(®;)ies, and P = (®))ics,, where ®, and <I>’ are functions of ¢;,, in the form

[2,0] = > [ fVH(®:) © Bides,. (D.2)

1€ST

This surface bracket operator is also symmetric |[®, ®'| = [®', ® ], positive semi-definite
\L(f, §>J > 0, and its kernel is spanned by constants.

The layer-averaged kinetic equation (D.1) may be used whenever one wants to obtain
the layer-averaged distribution ig}o)d or any of its moment with respect to the tangen-
tial velocity ¢;,. These equations are natural since only the integrated quantities are
physically interesting and all the results of Section 6.6 may be recovered. The tangential

diffusion fluxes in particular may be expressed as

(2

F—e / FOF0) eden, i€ Sy
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The Waldmann formalism for the surface kinetic equation also leads to

=5 > vMa, 1esy
leSr

where \If(l)l (\Ifglo)dl) es; and \Ifglo)dl == (611 —X;)Ciy, for 7,1 € S7. The solutions <I>( M

to the integral equations H(‘b&) ) = \D(l)l for | € St are found in the explicit form
GO 1 - .
(I)i,od - Ti,phﬁ((;il - Xi)ciu, Z,l € S’]‘.
T

The tangential velocities may also be written

ﬁ/fiu = ;/E( '3 Eo)dcllldczll - = Z / q)j odc]“de”, (D3)

ng
7 jeSt

and from the isotropy of the layer-averaged operator, we recover the molar diffusion
velocities from (6.42) and the diffusion coefficients

571 :g/fz(O)q)glo)dl Ciy dczn o~ Z / O)Q)]lg; *Cjy dcju-
7 jesr

The diffusion coefficient may also be written as D; = kBTwp \LCIDO d ,<I>(1 |, for i,1 € St
and so that the two-dimensional surface formalism for layer averaged quantities is similar
to that of gas mixtures in three dimensions mutatis mutandis.
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