
HAL Id: hal-02900278
https://hal.science/hal-02900278

Submitted on 4 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Choice of the Smoothing Parameter for Alpha
Stable Signals

Rachid Sabre

To cite this version:
Rachid Sabre. The Choice of the Smoothing Parameter for Alpha Stable Signals. International Journal
of Signal Processing Systems, 2020, 8 (2), pp.49-53. �10.18178/ijsps.8.2.49-53�. �hal-02900278�

https://hal.science/hal-02900278
https://hal.archives-ouvertes.fr


The Choice of the Smoothing Parameter for 
Alpha Stable Signals 

 
Rachid Sabre 

Biogéosciences (UMR CNRS/uB 6282), University of Burgundy, Agrosup, 26, Bd Docteur Petitjean, Dijon, France 
Email: r.sabre@agrosupdijon.fr 

 
 
 

Abstract—In this work we consider the class of symmetric 
alpha stable processes which are a particular family of 
processes with infinite energy. These processes used in 
modeling the random signals with indefinitely growing 
variance. The spectral density estimator of such signals is 
given in the literature by smoothing the periodogram by a 
spectral window. Thus, the estimator depends on the width 
of the spectral window considered as a smoothing parameter. 
The choice of this parameter plays an important role since 
the rate of convergence of the estimator is a function of this 
parameter. The objective of this paper is to propose a 
method giving the optimal parameter based on the cross 
validation technique (minimization of MISE: Mean 
Integrate Square of Error). We establish a criterion 
function and we prove that the mean of this criterion 
converges to MISE. Thus, we show that the value 
minimizing this criterion is the optimal smoothing 
parameter. The rate of convergence of the estimator has 
been studied in order to prove that the smoothing 
parameter obtained by this method gives the fastest 
convergence of the estimator towards the spectral density. 
  
Index Terms—alpha stable, cross validation, spectral density, 
spectral window 
 

I. INTRODUCTION 

In this paper, a class of symmetric alpha stable signals 
has been considered. It is a particular family of processes 
with infinite energy. Theory of these processes have been 
covered in a numerous papers including [1]-[6] to name a 
few. 

Symmetric alpha processes are considerably accurate 
model for many phenomenon in several fields such as: 
physics, biology, electronic and electric, hydrology, 
economies, communications and radar applications, (see 
[7]-[17]). In this work, a symmetric stable harmonizable 
process is precisely discussed 𝑍 = {𝑍𝑛:𝑛𝑛 ∈ 𝑍} 
Alternatively 𝑍has the integral representation:  

Zn = �  
π

−π
exp[i(nλ)]dξ(λ) 

where 1 < 𝛼 < 2 and 𝜉  is a complex valued symmetric 
α-stable random measure on 𝑅  with independent and 
isotropic increments. The measure defined by 𝑚(𝐴) =
|𝜉(𝐴)|𝛼𝛼 (see [4]) is called the control measure or spectral 
measure. Suppose that this measure is absolutely 
continuous with respect to Lebesgue measure: 𝑚𝑑(𝑥) =

                                                           
 Manuscript received January 14, 2020; revised May 14, 2020. 

𝜙(𝑥)𝑑𝑥. The function𝜙 is called the spectral density. The 
spectral density function was already estimated when the 
time of the process is continuous by [4], when the time of 
the process is discrete by [18] and when the time of the 
process is p-adic by [19]. 

The estimators of the spectral density proposed in 
literature use a smoothing parameter that satisfies certain 
conditions. The rate of convergence depends on this 
smoothing parameter. The choice of this parameter 
becomes problematic insofar as there are several 
parameters that satisfy these conditions. Few works deal 
with the choice of this parameter. The contribution of this 
work consists in giving, from the data, a criterion for 
choosing the optimal smoothing parameters allowing the 
estimators to converge as quickly as possible towards the 
spectral density. The originality of this work is the use of 
cross-validation to set up a criterion to choose the 
smoothing parameter minimizing the quadratic error in 
the spectral estimates for alpha stable processes. Cross 
validation has proven its worth in several situations, but 
this work uses it for the first time in the estimations of the 
spectral density of stable alpha processes. 

This paper is organized as follows: section I is reserved 
to recall the periodogram and its smoothing to obtain a 
spectral density estimator. In section II we give the cross 
validation criterion. Section III show that criterion give 
the optimum parameter. The section IV is reserved for the 
numerical studies and simulation 

II. PERIODOGRAM AND ITS PROPRIETIES 

This paper considers a (S𝛼S) process where its spectral 
representation is  

  Zn = ∫  π
−π einλdξ(λ) (1) 

where 𝜉  is a isotropic symmetric 𝛼 -stable with 
independent increments  

The measure defined by: 𝜇(]𝑠, 𝑡]) = |𝜉(𝑡) − 𝜉(𝑠)|𝛼𝛼 is 
Lebesgue-Stiel measure called the spectral measure (see 
[1] and [3]). When 𝜇 is absolutely continuous 𝑑𝜇(𝑥) =
𝑓(𝑥)𝑑𝑥, the function 𝑓 is called the spectral density of 
the process𝑍. 

As in [18], [20] and [21], we give the definition of the 
Jackson polynomial kernel: 

Let 𝑍1, … , 𝑍𝑁𝑁  observations of the process 𝑍 : 
(𝑍𝑛𝑛)0≤𝑛𝑛≤𝑁𝑁−1, where 𝑁𝑁 satisfies: 

 N − 1 = 2k(n − 1) with n ∈ N k ∈ N ∪ {1/2} 

If =1/2  then  𝑛𝑛=2n1−1, n1∈𝑁𝑁. 
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The Jackson's polynomial kernel is defined by: 

  |HN(λ)|α = �ANH(N)(λ)�α (2) 

where  

𝐻(𝑁𝑁)(𝜆) =
1
𝑞𝑘,𝑛𝑛

�
sin �𝑛𝑛𝜆2 �

sin �𝜆2�
�

2𝑘

 

𝑤𝑖𝑡ℎ 𝑞𝑘,𝑛𝑛 =
1

2𝜋
�  

𝜋

−𝜋
�

sin �𝑛𝑛𝜆2 �

sin �𝜆2�
�

2𝑘

𝑑𝜆.

 

and 𝐴𝑁𝑁 = (𝐵𝛼,𝑁𝑁)−
1
𝛼 with 𝐵𝛼,𝑁𝑁 = ∫  𝜋

−𝜋
|𝐻(𝑁𝑁)(𝜆)|𝛼𝑑𝜆.  

We give the following lemmas proved in [18].  
 
Lemma 1. 

There is a nonnegative function ℎ𝑘 such as:  

𝐻(𝑁𝑁)(𝜆) = �  

𝑘(𝑛𝑛−1)

𝑚=−𝑘(𝑛𝑛−1)

ℎ𝑘 �
𝑚
𝑛𝑛
� cos(𝑚𝜆) 

Let  

 𝐵′𝛼,𝑁𝑁 = ∫  
𝜋

−𝜋
�

sin�𝑛𝑛𝜆
2
�

sin�𝜆
2
�
�

2𝑘𝛼

𝑑𝜆 

and 𝐽𝑁𝑁,𝛼 = ∫  
𝜋

−𝜋
|𝑢|𝛾|𝐻𝑁𝑁(𝜆)|𝛼𝑑𝜆, where𝛾 ∈]0,2].

  

Then 𝐵′𝛼,𝑁𝑁 �
≥ 2𝜋 �2

𝜋
�

2𝑘𝛼
𝑛𝑛2𝑘𝛼−1if 0 < 𝛼 < 2

≤ 4𝜋𝑘𝛼

2𝑘𝛼−1
𝑛𝑛2𝑘𝛼−1if 1

2𝑘
< 𝛼 < 2

 

and 𝐽𝑁,𝛼 ≤ �

𝜋𝛾+2𝑘𝛼

22𝑘𝛼(𝛾−2𝑘𝛼+1)
1

𝑛2𝑘𝛼−1
if 1

2𝑘
< 𝛼 < 𝛾+1

2𝑘
,

2𝑘𝛼𝜋𝛾+2𝑘𝛼

22𝑘𝛼(𝛾+1)(2𝑘𝛼−𝛾−1)
1
𝑛𝛾

if 𝛾+1
2𝑘

< 𝛼 < 2.
 

 
The following lemma is proved in [1].  
 
Lemma 2. 

If 𝜉  is a (S. 𝛼 .S) process with independent and 
isotropic increments, then  

E �exp�iRe �i� f(u)dξ(u)
π

−π
��� = exp�−Cα �  

π

−π
|f(u)|αdμ(u)� 

where 𝐶𝛼 = (2𝜋)−1 ∫  𝜋
−𝜋 |𝑐𝑜𝑠(𝜃)|𝛼𝑑𝜇(𝑢).  

 
In this paper, we propose the following periodogram 

defined by 

dN(λ) = AN �  
k((n−1)

n′=−k(n−1)

hk(n′/n)�e−in′λ�X(n′ + k(n′ − 1)). 

Using the lemma 2 we show that  

Eexp(irRedN(λ)) = exp(−Cα|r|αψN(λ)) 

where  

𝜓𝑁(𝜆) = �  
𝜋

−𝜋
�𝐴𝑁 �  

𝑘((𝑛−1)

𝑛′=−𝑘(𝑛−1)

ℎ𝑘(𝑛𝑛′/𝑛𝑛)𝑒−𝑖𝑛′𝜆𝑒𝑛′𝑢�

𝛼

𝜙(𝑢)𝑑𝑢 

Thus  

ψN(λ) = �  
π

−π
|HN(λ − u) − HN(u)|αϕ(u)du) 

We modify this periodogram by taking the power p, 
0 < 𝑝 < 𝛼

2
, and multiplying by a normalization constant:  

IN(λ) = C(p,α)|dN(λ)|p 

The normalization constant is given by  

C(p,α) =
Dp

Fp,αCα
p/α 

where 𝐷𝑝 = ∫  1−𝑐𝑜𝑠(𝑢)

|𝑢|1+𝑝 𝑑𝑢 and 𝐹𝑝,𝛼 = ∫  1−𝑒
−|𝑢|𝛼

|𝑢|1+𝑝 𝑑𝑢 
 As in [3] and [18], we show that  

EIN(λ) = (ψN(λ))
p
α 

and 𝑉𝑎𝑟(𝐼𝑁(𝜆)) = 𝑉𝛼,𝑝𝜓𝑁(𝜆)
2𝑝
𝛼  

III. SMOOTHED PERIODOGRAM 

In order to give an unbiased consistent estimate of 𝜙, 
we smooth 𝐼𝑁by a the following spectral window: 

 fN(λ) = ∫  π
−πWN(λ − u)IN(u)du  

where the spectral window is defined by  𝑊𝑁(𝑥) =
𝑀𝑁𝑊(𝑀𝑁𝑥) where 𝑊 is a nonnegative even continuous 
function vanishing for |𝑥| > 1 with ∫  1

−1 𝑊(𝑥)𝑑𝑥 = 1 and 

𝑀𝑁𝑁 is sequence converging to infinity such that 𝑀𝑁𝑁

𝑁𝑁
→ 0. 

As in [20] for giving the best rate of convergence of 
this estimator, we introduce on 𝜙  two hypothesis (ℎ1) 
and (ℎ2) called regularity hypothesis: 

(ℎ1): |𝜙(𝜆 − 𝑢) − 𝜙(𝜆)| ≤ 𝐶1|𝑢|𝛾 where 0 < 𝛾 ≤ 1 
(ℎ2) : |𝜙(𝜆 − 𝑢) − 𝜙(𝜆) − 𝑢𝜙′(𝜆)| ≤ 𝐶2|𝑢|𝛾  where 

1 ≤ 𝛾 ≤ 2 𝐶1 and 𝐶2 being nonnegative constants. 

Note by 𝑓(𝜆) = 𝜙(𝜆)
𝑝
𝛼  

 
Theorem 1. 
 Let 𝜆 a real number. Then  
(i) 𝑓𝑁𝑁(𝜆) is an asymptotically unbiased estimator of 
the 𝑓(𝜆) 
(ii) Choosing 𝑘 so large that +1 < 2𝑘𝛼n we have  

 EfN(λ) − f(λ) = �
O � 1

MN
γ�  if ϕ satisfies(h1)

O � 1
MN
�  if ϕ satisfies(h2)

 

(iii) 𝑉𝑎𝑟(𝑓𝑁(𝜆)) converges to zero. 
Vi) If 𝜙 satisfies (ℎ1) or (ℎ2) and  𝑀𝑁𝑁

2/𝑛𝑛 converges 

to zero 𝑡ℎ𝑒𝑛𝑛 𝑉𝑎𝑟(𝑓𝑁(𝜆)) = 𝑂 � 𝑀𝑁
4

𝑛2
� 

 
The proof of this theorem is inspired by the 

demonstration used in [18]. 
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Theorem 2. 
Let 𝜆 a real number such that 𝜙(𝜆) > 0. Then  

�𝑓𝑁𝑁(𝜆)�
𝛼
𝑝 converges in probability to 𝜙(𝜆). 

 
Proof 

We show that 𝑓𝑁𝑁(𝜆)converges in mean quadratic to 
𝑓(𝜆). Indeed 

𝐸 �𝑓𝑁(𝜆) − 𝜙(𝜆)
𝑝
𝛼�
2

= �𝐸𝑓𝑁(𝜆) − 𝜙(𝜆)
𝑝
𝛼�

2
+ 𝑉𝑎𝑟�𝑓𝑁(𝜆)�. 

Then from theorem 1, 𝐸 �𝑓𝑁(𝜆) − 𝜙(𝜆)
𝑝
𝛼�
2
converges to 

zero. Thus �𝑓𝑁𝑁(𝜆)�
𝛼
𝑝 converges in probability to 

(𝜙(𝜆))
𝛼
𝑝 = 𝑓(𝜆). 

It is clear that the choice of 𝑀𝑁𝑁 plays an important role 
since the convergence speeds depend on this smoothing 
parameter. The paper [22] gave a criterion of choice of ℎ 
in the one-dimensional case, they were restricted to the 
parametric case. The objective of this work is to give a 
criterion for the selection of these parameters by non-
parametric methods. Let's note by ℎ = 1

𝑀𝑁𝑁
 the width of 

the spectral window. We are therefore looking for a 
criterion 𝐶𝑉(ℎ)  allowing us to select h  minimize the 
mean integrated square error (MISE), where 

  MISE(h) = ∫ E[fN(x) − f(x)]2ρ(x)dx (3) 

𝜌 being a weight function that is assumed to be known 
and null outside of [0,2𝜋]. 

Although 𝑀𝐼𝑆𝐸(h) it is a good measure of the quality 
of 𝑓N, it can not help us to choose ℎ, since it depends on 
the unknown function 𝑓. We will therefore try to estimate 
it. For this, we adopt the method of cross validation that 
has been proposed by [22]. Indeed, consider the 
integrated square error (ISE) defined by: 

𝐼𝑆𝐸(h) = ∫ [𝑓𝑁(x) − 𝑓(x)]2𝜌(x)𝑑x = 𝐴 − 2𝐶 + 𝐵

where 𝐴 =  �  
2𝜋

0
 𝑓𝑁2(x)𝜌(x)𝑑x

 𝐶 = �  
2𝜋

0
 𝑓𝑁(x)𝑓(x)𝜌(x)𝑑x

 𝐵 =  �  
2𝜋

0
 𝑓2(x)𝜌(x)𝑑x.

 

Since 𝐵  is Independent of ℎ , to choice ℎ , 
minimizing 𝐼𝑆𝐸(ℎ) is to choose ℎ  minimiszing 𝐴 − 2𝐶 . 
We can calculate the term 𝐴 since we know 𝑓𝑁, whereas, 
in the term 𝐶 , since 𝑓 is unknown. We proceed by the 
principle of “leave-out- 𝐼”.  

IV. CONSTRUCTION OF THE CROSS VALIDATED 
ESTIMATOR 

In this section, we will define the estimator and give 
some results in the form of a proposition or theorem.  

Let 𝑗 ∈ {0,1, … ,𝑛𝑛 − 1} . The construction of “leave-
out- 𝐼" consiste of find an estimator 𝑓𝑁

𝑗 (𝜔𝑗) that replace 
𝑓𝑁(𝜔𝑗) in the expression of 𝐶 and such that 𝐼𝑁(𝜔𝑗) and 

𝑓𝑁
𝑗 (𝜔𝑗)  are asymptotically independent. Thus, we can 

estimate 𝐶 by:  

1

𝑁𝑁
�  

𝑁

𝑗=1

 𝑓𝑁
𝑗 (𝜔𝑗)𝐼𝑁𝑁(𝜔𝑗)𝜌(𝜔𝑗) 

1

𝑁
∑  𝑁
𝑗=1  𝑓𝑁

𝑗 (𝜔𝑗)𝐼𝑁𝑁(𝜔𝑗)𝜌(𝜔𝑗) where 𝜔𝑗 = 2𝜋𝑗

𝑁
,  

𝑁𝑁 = �𝑁𝑁−1

2
�, 𝑓𝑁

𝑗 (x) = ∫  2𝜋
0   𝐼𝑁𝑁

𝑗 (u)𝑊𝑁𝑁(x − u)𝑑u   with 

 𝐼𝑁
𝑗 (𝑢) = 𝐼𝑁(u)                                                  si  u ∉ 𝐴𝑗

𝐼𝑁
𝑗 (𝑢) = 𝜃1(u)𝐼𝑁�𝜔𝑗+1� + 𝜃2(u)𝐼𝑁�𝜔𝑗−1�      sinon
𝐴𝑗 = �𝜔𝑗−1,𝜔𝑗+1�,
where

 

𝜃1(u) = 𝛼 ;  𝜃2(𝑢) = (1 − 𝛼) with  𝛼 =
u−𝜔𝑗+1

𝜔𝑗−1−𝜔𝑗+1
. 

The following proposition shows that 𝑓𝑁
𝑗  and 𝑓𝑁 have 

asymptotically same limit. 
 Proposition 1. We obtain that  

𝐸�𝑓𝑁
𝑗(x) − 𝑓𝑁(x)� = 𝑂 �

1
𝑁𝑁
�. 

From this result, we establish our criterion, noted 𝐶𝑉 
"cross validation", defined by: 
𝐶𝑉(ℎ) = 𝐶𝑉1(h) + ∫  2𝜋

0  𝑓2(u)𝜌(u)𝑑u where

 𝐶𝑉1(h) =  ∫  2𝜋
0  𝑓N2(u)𝜌(u)𝑑u − 2

N
∑  𝑁�
𝑗=1  𝑓N

𝑗(𝜔𝑗)𝐼N(𝜔𝑗)𝜌(𝜔𝑗)  

We choose the optimal widths of spectral window ℎ� 
the value of h minimizing the criterion 𝐶𝑉(ℎ):  

  h� = argmin
h

CV(h) = argmin
h

CV1(h) (4) 

Subsequently, to facilitate writing and without losing 
generality, we will take 𝜌(u) = 1

2𝜋
 sur [0,2𝜋]  and null 

outside. 

V. OPTIMALITY OF THE CRITERION 

In this section, we establish results similar to those 
given by [23] and [24], concerning the estimation of the 
intensities of a punctual process. It is to show that, on 
average, when 𝑁𝑁 are large enough, the criterion 𝐶𝑉(ℎ)is 
approximately equal to the integrated quadratic error 
𝐼𝑆𝐸(ℎ)and that the variance of 𝐶𝑉(ℎ) is asymptotically 
zero. This allows us to confirm that the parameters ℎ� 
minimizing the criterion 𝐶𝑉(ℎ) are close to those that 
minimize the integral squared error (ISE) when 𝑁𝑁 are 
large enough. These results are stated in the following 
theorem: 

 
Theorem 1. We have 

|𝐸{𝐶𝑉(ℎ) − 𝐼𝑆𝐸(ℎ)}| = 𝑂 �
1
𝑁𝑁
� .

var{𝐶𝑉(ℎ)} = 𝑂 �
1
𝑁𝑁ℎ

�
 

Thus, since  
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 𝐸{[𝐶𝑉(ℎ) −𝑀𝐼𝑆𝐸(ℎ)]2} =

 var{𝐶𝑉(ℎ)} + [𝐸{𝐶𝑉(ℎ) −𝑀𝐼𝑆𝐸(ℎ)}]2  = 𝑂 �
1
𝑁𝑁ℎ� .

 

The widths of the spectral window ℎ� obtained by cross 
validation, defined in (6), are asymptotically optimal, i.e. 
the integrated square error at ℎ� converges in probability 
to the small integrated square error:  

Theorem 2. The width of the spectral window ℎ� 
obtained by cross validation are asymptotically optimal:  
 𝐼𝑆𝐸(ℎ�)
𝐼𝑆𝐸(ℎ��1)

→ 1 en probabilite , where  

 ℎ� = argmin
ℎ
𝐶𝑉(ℎ) and (ℎ��1) = argmin

ℎ
𝐼𝑆𝐸(ℎ). 

To show this result we use the similar technique used 
in [25] and [26].  

VI. SUMILATION 

The proposed estimator can be applied to concrete 
situations. For example, the transmission signal for the 
future generation of wireless and radio communication 
systems where multipath propagation leads to a 
significant degradation of the quality of the transmission. 
To solve this problem, the paper [11] proposed an arrival 
time model based on Poisson distributions. The paper [27] 
provided a model based on stable alpha distributions. The 
sum of arrival times modeled by independent and 
isotropic Poisson distributions can be represented by a 
stable harmonizable process like that given in (1), see 
[28]. 

Throughout this section, we give the simulation of the 
studied process:  

𝑍𝑛 = � 𝑒𝑖𝑛𝜆𝑑𝜉(𝜆)
𝜋

−𝜋
 

where 1 < 𝛼 < 2  and 𝜉  is a complex symmetric α -
stable measure on 𝑅  with independent and isotropic 
increments and with control measure 𝑚 such that  
𝑚𝑑𝑥 = 𝜙(𝑥)𝑑𝑥. 

In order to achieve this, we use the series 
representation defined in [28]. Therefore, the process 𝑍 
given in (8) can be expressed as follows: 

 𝑍𝑛 = 𝐶𝛼�∫ 𝜙(𝑥)𝑑𝑥�1𝛼� 𝜀𝑗𝛤𝑗−1𝛼𝑒𝑖𝑛𝑉𝑗𝑒𝑖𝜃𝑗  
∞

𝑗=1
where  

 • 𝜀𝑗  is a sequence of i.i.d. random variables such 
as 𝑃[𝜀𝑗 = 0] = 𝑃[𝜀𝑗 = 1] = 1/2,  

 • 𝛤𝑘 is a sequence of arrival times of Poisson process,  
 • 𝑉𝑗  is a sequence of i.i.d. random variables 

independent of 𝜀𝑘 and of 𝛤𝑘 having the same distribution 
of control measure m , which has probability density 𝜙 

• 𝜃𝑗  are independent random variables, having the 
uniform distribution on  [−𝜋,𝜋] , independent of  𝜀𝑗 , 𝛤𝑗 
and 𝑉𝑗.  

To generate 𝑁𝑁  values (𝑁𝑁 = 5001) of the process 𝑍𝑛 , 
we use the following steps:  

 • generate 5000 values of 𝜀𝑗 
 • generate 5000 values of 𝛤𝑗 
 • generate 5000 values of 𝑉𝑗 
 • generate 5000 values of 𝜃𝑗 

Then we calculate for all 0 ≤ 𝑛𝑛 ≤ 𝑁𝑁:  

𝑍𝑛 = 𝐶𝛼�∫ 𝜙(𝑥)𝑑𝑥�
1
𝛼 � 𝜀𝑗𝛤𝑗−1𝛼𝑒𝑖n𝑉𝑗𝑒𝑖𝜃𝑗
2000

𝑗=1

 

where the spectral density is chosen as 𝑓(𝑥) =

�𝜙(𝑥)�
𝑝
𝛼 = |𝑥|2𝑒−|𝑥|  for 𝑥 ∈ [−𝜋,𝜋]  and 𝑓(𝑥) = 0 

otherwise and 𝛼 = 1,7. 
We calculate the function 𝐶𝑉1(h) for h ϵ [0,1]. The 

curve of 𝐶𝑉1 is plotted on [0,1] in Fig. 1. 

 
Figure 1. Curve of CV1. 

From the curve of CV1 we determine the value of h 
where CV1 is minimum:  ℎ� = argmin

ℎ
𝐶𝑉1(ℎ) =

0.12.  Thus we deducting the optimal value of 𝑀𝑁𝑁 = 1

 ℎ�
. 

 
Figure 2. Curves of spractral density, its estimators. 

Fig. 2 gives the curves of spectra density f, estimator of 
f with arbitrary parameter h and estimator of f with 
arbitrary parameter ℎ� . We find that the estimator with the 
parameter  ℎ�  gives a better estimate. 

VII. CONCLUSION 

We give an estimator of the constant additive error in 
spectral representation of (S α S) process. This work 
could be applied to several cases when processes have an 
infinite variance and the observation of these processes 
are perturbed by a constant noise. For example: 
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• the decomposition of audio signals with 
background noise by separating the different 
musical instruments. 

• the denoising of a degraded historical record. The 
signal is considered infinitely variable. 
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