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Multilayer models for shallow two-phase debris flows with
dilatancy effects

J. Garres-Dı́az ∗, F. Bouchut †, E.D. Fernández-Nieto ‡,
A. Mangeney §¶, G. Narbona-Reina ‡

Abstract

We present here a multilayer model for shallow grain-fluid mixtures with dilatancy effects.
It can be seen as a generalization of the depth-averaged model presented in [Bouchut et al. A
two-phase two-layer model for fluidized granular flows with dilatancy effects. J. Fluid Mech.,
801:166-221, 2016], that includes dilatancy effects by considering a two-layer model, a mixture
grain-fluid layer and an upper fluid layer, to allow the exchange of fluid between them. In the
present work the approximation of the mixture layer is improved including normal variations
of the velocities and concentrations of the two phases thanks to the multilayer approach. In
the model presented here dilatancy effects induce in particular a non-hydrostatic pressure for
both phases related to the excess pore fluid pressure. Contrary to the single-layer model, the
computation of this excess pore pressure entrains a serious difficulty due to the multilayer
approach. We identified here one of the main numerical difficulty of solving two-phase shallow
debris flows models: the strongly non-linear behaviour and abrupt changes of the excess
pore fluid pressure when starting from non-equilibrium conditions. We propose a simplified
approach to approximate the excess pore fluid pressure in the simple case of uniform flows
in the downslope direction and quantify the error made. Our method makes it possible
to introduce two or three layers in the normal directions with a reasonable approximation.
Analytical solutions for uniform grain-fluid flows over inclined planes, with and without side
wall friction, are calculated and compared to the proposed model. The presented model
preserves the total solid granular mass as in [6]. In the numerical results, we observe that
the proposed model with a two layer description of the mixture accurately represents the
velocity measured at the surface of the mixture in the laboratory experiments. This is
obviously poorly represented by the depth-averaged velocity in single-layer models while the
other quantities (solid volume fraction, basal excess pore fluid pressure) are similar to those
obtained with single-layer models. Our numerical results show a significant impact of the
parameters involved in dilatancy law, in particular on the calculation of the time evolution
of the excess pore fluid pressure.
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1 Introduction

Many efforts have been devoted to the study of granular flows (aerial, sub-aerial, debris flows,...)
in recent years. Gravity driven flows such as landslides, submarine avalanches, or rock avalanches
are important natural hazards. One of the challenges of those studies is to predict the velocity and
the runout distance in rapid landslides in order to provide new tools for prediction and prevention
systems. The physical understanding of these flows, and their theoretical description is still a
challenge from the geophysical, mathematical and numerical point of view.
In last years, mathematical modelling has contributed to investigate granular flows. However,
many questions remain open regarding the internal behavior of these flows, as the rheology and
the fluid-grain interaction in fluidized flows.

On the one hand, rheological laws able to explain the complex behavior of granular flows have
been widely investigated. Currently, the most accepted law is the so-called µ(I)-rheology, intro-
duced in [20], and other equivalent laws that consider a variable friction coefficient in the definition
of the stress tensor (see Capart et al. [8]). On the other hand, most of natural landslides involve
a fluid (commonly water) mixed with the granular material. Interactions between the fluid and
solid phases play a key role in the dynamics of these debris flows. This interaction basically de-
pends on the pore fluid pressure, which determines the effective friction between the fluid and the
grains. Many studies have been devoted to the study of dilatancy effects in granular materials.
Compression/dilatation implies a decrease/increase of the fluid pressure that has a strong effects
on the dynamics of fluidized flows (see e.g. [6, 7, 25]).

Most of the models in the literature describing two-phase (grain-fluid) flows are based on the
Jackson’s model [18], which considers the buoyancy force and the friction between the phases.
This model has five unknowns: the solid (grain) volume fraction, the fluid and solid pressures,
and solid and fluid velocities. However, only four equations are used: mass and momentum con-
servation equations for each phase. Therefore, the Jackson’s model is underdetermined and a
closure equation has to be added. It seems convenient to formulate this closure equation in term
of the contraction/dilatation effect as discussed in [6].

As it is well known, the computational cost of solving 3D models is huge. For this reason,
the thin-layer (i. e. shallow) approximation have been commonly used to obtain depth-averaged
models from the Jackson’s model. Pitman and Le [27] and later Petanti et al. [23] proposed a
depth-averaged model where no closure relation was included but used an extra boundary condi-
tion instead. This approach makes it impossible to obtain a dissipative energy balance, leading
therefore to a model that is physically meaningless. This is widely discussed in [5], where a model
with a consistent energy balance is proposed based on the incompressibility of the solid phase.
However, the granular phase is not incompressible and dilatancy effects have to be accounted for.

Roux and Radjai introduced a dilatancy model in [28], namely the rate of the solid volume
change is defined in terms of the shear rate of the granular material γ̇ and a dilatation angle ψ as
−γ̇ tanψ. Actually, they write the evolution of the solid volume fraction ϕ as

∂tϕ+ v · ∇ϕ = −ϕ γ̇ tanψ,

where v is the solid velocity. Pailha and Pouliquen [25] used this relation as a closure of the
Jackson’s model to obtain a depth-averaged model, but they also assume an extra boundary
condition and therefore their system is overdetermined. When the previous equation is combined
with the mass conservation equation, it leads to

∇ · v = γ̇ tanψ, (1)
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which is the closure relation considered by Bouchut et al. [6, 7]. A key point in that model is
to consider a thin layer of fluid over the mixture layer. Then, the contraction/dilatation of the
mixture is allowed through a fluid transference between the two layers. As in the Pailha and
Pouliquen model [25], the dilatancy effects appear in this model in particular through an excess
pore fluid pressure term representing a deviation from the hydrostatic solid and fluid pressures.

A different approach to two-phase models is to assume a single-phase flow (e.g. Iverson [16],
George and Iverson [13, 14], Iverson and George [17]) where the mass and velocity of the mixture,
which are defined as an average in terms of the solid volume fraction, are used instead of the
masses and velocities of each phase. Therefore, the relative motion between the fluid and solid
is not explicit in the model. In [17] they consider dilatancy effects through a modification of the
dilatancy law of Roux and Radjai [28] and took into account the compressibility of the granular
material.

The previous depth-averaged models share an important limitation. The dilatancy effect is
written in terms of the shear rate of the solid phase γ̇, which strongly depends on the variations in
the direction normal to the topography. Therefore, these “single-layer” models give a poor approx-
imation of this term. Moreover, contraction/dilatation produces a relative motion of the fluid and
solid phases in the normal direction that these models hardly reproduce. Multilayer models were
introduced as an intermediate step between depth-averaged and 3D Navier-Stokes models (e.g.
[3, 12]). These models allow us to recover the normal structure of the flow, and consequently to
get a better approximation of the terms that depend on the normal variations. Fernández-Nieto
et al. [10] introduced a multilayer model for dry granular flows with the µ(I) rheology. They
showed that the rheological terms are better approximated thanks to this approach, making it
possible to numerically reproduce relevant behaviour of dry granular flows. In particular, they
recover the position and evolution of the flow/no-flow transition. Furthermore, their model were
able to simulate naturally the change of velocity profiles from Bagnold to S-shaped. This was
deeply investigated by Fernández-Nieto et al. [11], where side walls friction was added, changing
significantly the flow dynamics.

The goal of this work is to propose a multilayer extension of model [6] for fluidized granular
flows with dilatancy effects. To this aim, we start from the Jackson’s model with the closure rela-
tion (1), and the final model is obtained from an asymptotic analysis and the multilayer approach.
Then, the velocity and solid volume fraction is no more constant along the normal direction. Ac-
tually, both are piecewise constant functions, with discontinuities at the internal interfaces of the
multilayer domain. One of the key point of this work is to highlight the main numerical difficulty
in such multilayer (or 3D) models for debris flows: to deal with the strongly non-linear and abrupt
changes of the excess pore fluid pressure when starting from non-equilibrium conditions. We pro-
pose an approximation of this excess pore fluid pressure in simple uniform flows and compare our
numerical results with previous depth-averaged (i. e. single-layer) models and with analytical
solutions to quantify the errors made in the proposed numerical approximation and how much
adding layers in the normal direction improves the comparison with laboratory experiments com-
pared to single-layer models.

The paper is organized as follows: in section 2 the governing equations and the rheology are
presented. Section 3 is devoted to the details of the derivation of the multilayer model, from
the dimensional analysis of the Jackson’s model to the final two-phase multilayer model. The
numerical tests are presented in section 4 and some conclusions are introduced in section 5. The
explicit expression of the excess pore pressure is done in Appendix A. Appendix B collects all the
details of the special case of the 2 layer model preserving the granular mass, named PGM-2 model.
This model is the multilayer model with a smaller computational cost and which we compare with
depth-averaged models. We show that it reproduces accurately experimental data, mainly the
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velocity measured at the surface of the mixture, as can be seen in section 4.

2 The initial system

In this section we present the governing equations together with the closure relations and the
rheology describing fluidized granular flows, as well as the boundary conditions of the system. As
in [6], the domain consists of a grain-fluid mixture layer and a fluid layer on its top. The role of
this upper layer is to allow the exchange of fluid Vf between the two layers (Figure 1) that is a key
point on the dilatancy effect. This exchange is given through the kinematic boundary condition
at the mixture interface.

Figure 1: Sketch of the domain. The term Vf , which may be no-zero, represents the fluid
transference at the mixture interface with the upper fluid domain.

2.1 Governing equations

As mentioned before, the goal of this paper is to derive a new multilayer model for fluidized granu-
lar flows that can be seen as an extension of the work developed in [6]. We focus on the modelling
of the mixture layer and the model for the single upper layer is adopted from [6] since it does not
change. Thus, we focus on the detailed modelling of the mixture layer in the following.

We consider a granular material and a fluid with constant densities ρs, ρf . The governing equations
are given by the Jackson’s model for fluidized granular materials. The system consists of the
concatenation of the mass and the momentum equations for the granular and fluid phases. The
equations for the solid phase are considered only in the mixture domain and the fluid equations are
considered in both domains. We denote uf the velocity of the fluid in the top layer and v,u ∈ R2

the solid and fluid velocities respectively in the mixture layer.
Thus, for the upper layer the mass and momentum equations read:{

∇ · uf = 0,
ρf (∂tuf + (uf · ∇)uf ) = −∇ · σf + ρfg,
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whereas in the mixture domain, the Jackson’s complete system reads:

ρs
(
∂tϕ+∇ · (ϕv)

)
= 0,

ρf
(
∂t (1− ϕ) +∇ · ((1− ϕ)u)

)
= 0,

ρsϕ
(
∂tv + (v · ∇)v

)
= ∇ · σs − ϕ∇pfm + f + ρsϕg,

ρf (1− ϕ)
(
∂tu+ (u · ∇)u

)
= ∇ · σfm + ϕ∇pfm − f + ρf (1− ϕ) g,

(2)

where g is the gravity force and 0 < ϕ < 1 is the solid volume fraction. The total stress tensors
are

σf = −pfI + τ f , σs = −psI + τ s, σfm = −pfmI + τ fm ,

with p ∈ R the pressure for the solid and fluid phases in the mixture (subscript s and fm respec-
tively), and for the fluid in the upper layer (subscript f ). I is the 2D identity tensor and the
deviatoric stress tensors are given by

τ f = 2ηfD(uf ), τ s = 2ηsD(v), τ fm = 2ηfmD(u),

where ηf ∈ R is the constant viscosity of the fluid phase, and the viscosity of the solid phase
ηs ∈ R is defined by the rheological law for the granular phase. The strain-rate tensors are defined
as usual by

D(uf ) =
1

2
(∇uf + (∇uf )′), D(v) =

1

2
(∇v + (∇v)′), D(u) =

1

2
(∇u+ (∇u)′).

In system (2), the terms ϕ∇pfm and f are the buoyancy and the drag forces between the
phases. We consider here that

f = β (u− v) ,

where β is the drag coefficient. Following precedent works, this coefficient is defined as

β = (1− ϕ)2 ηf
κ
, with κ =

d2
s (1− ϕ)3

150ϕ2
, (3)

where κ is the hydraulic permeability of the granular mass and ds the grain diameter [25, 17, 6].
The Jackson’s model is underdetermined and a closure equation must be added. In this work we
assume the closure introduced in [6] including the dilatancy effects

∇ · v = Φ, (4)

where the dilatancy function Φ is defined as in [25] and it is detailed in the subsection 2.2.

2.1.1 Boundary conditions

In this work we consider analogous boundary condition to [6] that we summarize here, we refer
the reader to this reference for more details.

• At the bottom we consider the non penetration conditions

u · n = 0, v · n = 0 at the bottom,
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where n is the space unit normal pointing out of the domain. This is completed with friction
conditions for solid and fluid phases. At first, a Coulomb friction law,

(σsn)τ = − tanµeff
v

|v|
(σsn) · n at the bottom,

where µeff is the effective friction coefficient given in terms of the rheology introduced in the
next subsection and the subscript τ denotes the tangential projection. For the fluid phase
we consider a Navier friction condition,

(σfm n)τ = −kbu at the bottom,

for some coefficient kb ≥ 0.

• At the free surface we assume no tension for the fluid and the kinematic condition

σfNX = 0; Nt + uf ·NX = 0 at the free surface,

where N = (Nt, NX) is a time-space normal to the free surface.

• At the interface, we consider the kinematic condition for the solid phase

Ñt + v · ÑX = 0 at the interface,

where Ñ = (Ñt, ÑX) is a time-space downward normal to the interface. Since we assume
that there is an exchange of fluid mass between the layers, it must be conserved across the
interface. Thus the fluid mass leaving the upper layer is the same than the fluid entering
the mixture. If this quantity is denoted by Vf we have

Vf ≡ Ñt + uf · Ñx = (1− ϕ∗)Ñt + (1− ϕ∗)u · Ñx at the interface,

where we write the Rankine-Hugoniot condition for equations ∇ · uf = 0 and ∂t(1 − ϕ) +
∇ · ((1− ϕ)u) = 0. That can be also written in terms of the relative velocity as

− ϕ∗

1− ϕ∗
Vf = (uf − u) · Ñx = −ϕ∗(Ñt + u · Ñx).

Notice that the value ϕ∗ is introduced to denote the value of the solid volume fraction at
the interface, which is discontinuous since there is no solid phase in the upper layer.

The conservation of the total momentum gives,

ρfVf (u− uf ) + (σs + σfm)ÑX = σfÑX at the interface.

The energy balance through the interface yields the stress transfer condition

σsÑX =

(
ρf
2

(
(u− uf ) ·

ÑX

|ÑX |

)2

+

(
(σfmÑX) · ÑX

|ÑX |2
− pfm

)
ϕ∗

1− ϕ∗

)
ÑX .

Finally a Navier fluid friction condition is considered at this level(σfm + σf
2

ÑX

)
τ

= −ki(uf − u)τ at the interface,

where ki ≥ 0 is a friction coefficient.
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2.2 Rheology for fluidized granular flows

A rheology accounting for the behavior of immersed granular flows must be considered. For dry
granular flows the µ(I)-rheology [20] is usually considered where the viscosity of the granular

material is given by µ(I)ps
‖D(v)‖ , with µ(I) being the friction coefficient and I the inertial number.

Dilatancy affects the friction law and can be introduced as follows (see [25, 10]):

ηs =
(µ(I) + tanψ) ps
‖D(v)‖

,

where ‖D‖ =
√

0.5 D : D and ψ is the dilatation angle as is defined by equation (10) (see [28,
25, 6]). We introduce µeff = µ(I) + tanψ the effective friction coefficient, appearing also in the
Coulomb friction law.
The friction coefficient is

µ(I) = µs +
µ2 − µs
I0 + I

I, (5)

which depends on the inertial number I, where I0, µ2 > µs are constant values depending on
the material. The main difference between the dry and the fluidized case is the definition of the
inertial number I (see [2]). In the case of immersed granular flows in the viscous regime, this
dimensionless number is defined as

I =
2 ηf ‖D(v)‖

ps
, (6)

in contrast to Idry = 2d‖D(v)‖√
ps/ρs

that is the inertial number for the dry case with d being the particle

diameter.
Following this idea, we can also consider an alternative simplified rheology where the friction
coefficient is defined as

µ(I) = µs +K1I, (7)

where K1 is a constant value. In this case, the viscosity coefficient can be written as follows,

ηs =
(µs + tanψ) ps
‖D(v)‖

+ 2K1ηf .

Note that the viscosity coefficient is not defined in the case ‖D(v)‖ = 0. As in previous
works for dry granular flows [10, 11] we consider a regularization method (e. g. [4, 22], since the
results are good enough (although zero velocity is not obtained in static solutions, but very small
velocities) and they are cheaper computationally than using a duality method (e. g. [15, 24])).
Then, the regularized viscosity coefficient is

ηs =
(µ(I) + tanψ) ps√
‖D(v)‖2 + δ2

, (8)

with δ > 0 the regularization parameter. Remark that other regularization techniques might be
used (see e.g. [21, 26]).

Finally, the dilatancy function is adopted from [25] and it is given by:

Φ = γ̇ tanψ (9)

with γ̇ = 2‖D(v)‖ the shear rate, ψ the dilatation angle and

tanψ = K (ϕ− ϕeqc ) , ϕeqc = ϕstatc −K2I, (10)
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which allows us to rewrite (4) as

∇ · v = K
(
ϕ − ϕstatc + K2I

)
,

where K is the dilatation constant and K2 is a constant value, ϕstatc is a constant volume fraction
corresponding to a static equilibrium, and ϕeqc the critical-state equilibrium compacity. This value
determines if the current state of the granular medium is dilatation, contraction or equilibrium.
Assuming a deformation occurs, γ̇ > 0, the solid dilates if ϕ > ϕeqc and contracts if ϕ < ϕeqc . In the
dilatation case, the fluid is sucked into the fluid-solid mixture and the pore pressure decreases. In
the other case the fluid is expelled from the mixture and the pore pressure increases. If ϕ = ϕeqc
then there is no dilatation nor contraction.

2.3 Local coordinates

We write the system for the mixture in tilted coordinates. Let b̃(x) be an inclined fixed plane of
constant angle θ with respect to the horizontal axis, we define the coordinates (x, z) ∈ Ω×R+ ⊂ R2.
The x (respectively z) axis is measured along the inclined plane (respectively the normal direction)
as depicted in Figure 2. In this reference frame the gravity force is written as

g = (−g sin θ,−g cos θ)′.

We also set b(x) an arbitrary bottom topography and the layer of the fluidized material over it

with thickness h(t, x), which are measured in the normal direction to the inclined plane b̃(x). The
fluid and granular velocities are u = (u, uz) and v = (v, vz) where u, v denotes the downslope
velocities of the fluid and granular phase, and uz, vz the normal components of u,v. Finally, we
set ∇ = (∂x, ∂z), the usual differential operator in the space variables.

We denote the components of the total stress tensor for the fluid phase as:

τ fm =

(
τxxfm τxzfm
τxzfm τ zzfm

)
and D(u) =

1

2

(
2∂xu ∂zu+ ∂xu

z

∂zu+ ∂xu
z 2∂zu

z

)
,

and analogously defined for the solid phase. With these definitions and embedding the mass
equations into the momentum equations, system (2) is written as

ρs
(
∂tϕ+ ∂x (ϕv) + ∂z (ϕvz)

)
= 0,

ρf
(
∂t (1− ϕ) + ∂x ((1− ϕ)u) + ∂z ((1− ϕ)uz)

)
= 0,

ρs
(
∂t (ϕv) + ∂x (ϕv2) + ∂z (ϕvvz)

)
+ ∂xps = ∂xτ

xx
s + ∂zτ

xz
s − ϕ∂xpfm

+ β (u− v)− ρsϕg sin θ,

ρf
(
∂t ((1− ϕ)u) + ∂x ((1− ϕ)u2) + ∂z ((1− ϕ)uuz)

)
+ ∂xpfm = ∂xτ

xx
fm

+ ∂zτ
xz
fm

+ϕ∂xpfm − β (u− v)− ρf (1− ϕ) g sin θ,

ρs
(
∂t (ϕvz) + ∂x (ϕvvz) + ∂z (ϕ(vz)2)

)
+ ∂zps = ∂xτ

xz
s + ∂zτ

zz
s − ϕ∂zpfm

+ β (uz − vz)− ρsϕg cos θ,

ρf
(
∂t ((1− ϕ)uz) + ∂x ((1− ϕ)uuz) + ∂z ((1− ϕ) (uz)2)

)
+ ∂zpfm = ∂xτ

xz
fm

+ ∂zτ
zz
fm

+ϕ∂zpfm − β (uz − vz)− ρf (1− ϕ) g cos θ,

(11)
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and the dilatancy closure equation is

∂xv + ∂zv
z = Φ.

The boundary conditions are detailed directly in section 3 after the asymptotic analysis.

3 Two-phase multilayer models with dilatancy

In this section we deduce the multilayer model for fluidized granular flows focusing on the points
that are different from previous multilayer models (e.g. [10]). The model is obtained from a
dimensional analysis and considering a multilayer approach of the domain in the vertical direction.
We focus on the approximation of the deviatoric tensor at the internal interfaces, as well as the
definition of the vertical velocity and the stress for both, the solid and the fluid phases.

A difficulty of this model is that the solid pressure is not purely hydrostatic: an excess pore fluid
pressure appears in the equations as a consequence of the contraction/dilatation of the granular
material (see (29)-(30)). This term also appears in the vertical velocities of both phases (23).
Finally, the model and the explicit expressions for the mass transference terms are presented.

3.1 Dimensional analysis

We perform here a dimensional analysis of the system (11). We consider a shallow domain by
assuming that the dimensionless parameter ε = H/L is small, where H and L are the characteristic
height and length of the flowing mass, respectively. We denote as U the characteristic velocity
and the characteristic time is then given by L/U . We define the dimensionless variables, denoted
with the tilde symbol (̃.), as follows:

(x, z, t) = (Lx̃,Hz̃, (L/U)t̃), h = Hh̃, ρs,f = ρ0ρ̃s,f , ϕ = ϕ0ϕ̃

(u, uz) = (Uũ, εUũz), (v, vz) = (Uṽ, εUṽz),

ps,f = ρ0U
2p̃s,f , ηs,f = ερ0UHη̃s,f , κi = Uκ̃i, kb = Uk̃b(

τxxs,f , τ
xz
s,f , τ

zz
s,f

)
= ϕ0ρ0U

2
(
ε2τ̃xxs,f , ετ̃

xz
s,f , ε

2τ̃ zzs,f

)
, Vf = εU Ṽf .

Note that since

D(u) =
U

H

1

2

 2ε2∂x̃ũ ε∂z̃ũ+ ε3∂x̃ũz

ε∂z̃ũ+ ε3∂x̃ũz 2ε2∂z̃ũz

 ,

we obtain that
τ̃xxf = η̃∂x̃ũ, τ̃xzf = η̃

2

(
∂z̃ũ+ ε2∂x̃ũz

)
, τ̃ zzf = η̃∂z̃ũz,

and D(v) and the components of τs are analogously written. In this work we have considered that
the characteristic velocity for the solid phase is equal to the one of the fluid, and we also take the
characteristic solid volume fraction is ϕ0 = 1. We also define the Froude number

Fr =
U√

gH cos θ
,

and the nondimensional drag coefficient

β =
ρ0U

L
εk β̃, where k =

{
−1 strong friction;
0 moderate friction,

(12)

10



and the dilatancy function

Φ =
U

H
Φ̃.

Thus, the system (11) can be rewritten using dimensionless variables as (tildes have been
dropped for simplicity):

ρs
(
∂tϕ+ ∂x (ϕv) + ∂z (ϕvz)

)
= 0,

ρf
(
∂t (1− ϕ) + ∂x ((1− ϕ)u) + ∂z ((1− ϕ)uz)

)
= 0,

ρs
(
∂t (ϕv) + ∂x

(
ϕv2
)

+ ∂z (ϕvvz)
)

+ ∂xps = ε2∂xτ
xx
s + ∂zτ

xz
s

− ϕ∂xpfm + εkβ (u− v)− ρsϕ

εFr2
tan θ,

ρf
(
∂t ((1− ϕ)u) + ∂x

(
(1− ϕ)u2

)
+ ∂z ((1− ϕ)uuz)

)
+ ∂xpfm = ε2∂xτ

xx
fm + ∂zτ

xz
fm

+ ϕ∂xpfm − εkβ (u− v)− ρf (1− ϕ)

εFr2
tan θ,

ε2ρs
(
∂t (ϕvz) + ∂x (ϕvvz) + ∂z

(
ϕ(vz)2

) )
+ ∂zps = ε2∂xτ

xz
s + ε2∂zτ

zz
s

− ϕ∂zpfm + εk+2β (uz − vz)− ρsϕ

Fr2
,

ε2ρf
(
∂t ((1− ϕ)uz) + ∂x ((1− ϕ)uuz) + ∂z

(
(1− ϕ) (uz)2

) )
+ ∂zpfm = ε2∂xτ

xz
fm

+ ε2∂zτ
zz
fm + ϕ∂zpfm − εk+2β (uz − vz)− ρf (1− ϕ)

Fr2

(13a)

(13b)

(13c)

(13d)

(13e)

(13f)

and

∂xv + ∂zv
z =

1

ε
Φ. (13g)

Before applying the multilayer approach it is suitable to write the system in matrix notation.
To this aim we collapse all terms coming from the stress tensors under the following notation for
the fluid phase (analogously for the solid phase) σε,fm = −pfmE + ετ ε,fm where the subindex ε
marks the dependence of these terms on ε, as in [10], with

τ ε,fm = ηDε,fm(u), Dε,fm(u) :=
1

2

(
2ε2∂xu ∂zu+ ε2∂xu

z

∂zu+ ε2∂xu
z 2 ∂zu

z

)
, and E =

(
ε 0

0 1/ε

)
.

Then, defining F =

(
tan θ

Fr2
,

1

εFr2

)′
, the system (13) is finally written as

11





ρs
(
∂tϕ+∇ · (ϕv)

)
= 0,

ρf
(
∂t (1− ϕ) +∇ · ((1− ϕ)u)

)
= 0,

ρs
(
∂t (ϕv) +∇ · (ϕv ⊗ v)

)
− 1

ε
∇ · σε,s +

1

ε
ϕ∇ · (pfmE)

= εkβ (u− v)− 1

ε
ρsϕF ,

ρf
(
∂t ((1− ϕ)u) +∇ · ((1− ϕ)u⊗ u)

)
− 1

ε
∇ · σε,fm −

1

ε
ϕ∇ · (pfmE)

= −εkβ (u− v)− 1

ε
ρf (1− ϕ)F ,

∇ · v =
1

ε
Φ.

(14)

Next we specify the asymptotic expressions of the boundary conditions described in section
2.1. Taking into account the asymptotic analysis up to second order performed in [6] (see its
Appendixes A and B for the details), these conditions read

(1− ϕ∗)
(
∂th+ u|z=b+h ∂x (b+ h)− uz|z=b+h

)
= −Vf ;

∂th+ v|z=b+h ∂x (b+ h)− vz|z=b+h = 0;

pfm|z=b+h = ρfg cos θhf , ps|z=b+h = 0,

(15)

The energy balance gives(ηf
2
∂zu
)
|z=b+h

=
1

ε

((ε
2
ρfVf − κi

)
(uf − u)

)
|z=b+h

where uf is the first component of the velocity of the water in the upper layer.
At the bottom z = b the no penetration and the friction conditions read

u|z=b ∂xb = uz|z=b ; (ηf ∂zu)|z=b =
1

ε
kb u|z=b ,

v|z=b ∂xb = vz|z=b ;
(ηs

2
∂zv
)
|z=b

=
1

ε

(
(µ(I) + tanψ) ps

v

|v|

)
|z=b

.

Moreover we consider that there is no transference of mass at the bottom, neither solid nor fluid.

3.2 A multilayer approach

We remind the notation of the multilayer domain in order to apply this approach to system (14).
The mixture domain is denoted by ΩF (t) and

IF (t) =
{
x ∈ R; (x, z) ∈ ΩF (t)

}
,

is its projection on the reference inclined plane, for any time t > 0. The idea of this approach
is to divide the domain along the direction normal to the plane in N ∈ N \ {0} shallow layers

12



Figure 2: Sketch of domain with the particular multilayer division for the mixture grain-fluid
layer and its notation.

with thickness hα(t, x), such that the total height is h =
∑N

α=1 hα (see Figure 2). In practice, the
normal partition is previously fixed by using the positive coefficient lα satisfying

hα = lαh for α = 1, ..., N ;
N∑
α=1

lα = 1.

The N + 1 interfaces separating the vertical layers are denoted by Γα+ 1
2
(t), and are described

by z = zα+ 1
2
(t, x) for α = 0, 1, .., N , x ∈ IF (t). These interfaces, which are assumed to be smooth

enough, shut the subdomain Ωα(t) up, i.e.,

Ωα(t) =
{

(x, z); x ∈ IF (t) and zα− 1
2
< z < zα+ 1

2

}
.

A key point of this approach is the approximation of the variables at the interfaces. Then, for
an arbitrary function f and for α = 0, 1, ..., N , we set

f−
α+ 1

2

:= (f|Ωα(t)
)|Γ

α+ 1
2

(t)
and f+

α+ 1
2

:= (f|Ωα+1(t)
)|Γ

α+ 1
2

(t)
,

where if the function f is continuous, then

fα+ 1
2

:= f|Γ
α+ 1

2
(t)

= f+
α+ 1

2

= f−
α+ 1

2

.

Finally, the normal vectors at the interfaces are defined. For a time t ≥ 0,

nT,α+ 1
2

=

(
∂tzα+ 1

2
, ∂xzα+ 1

2
,−1

)′
√

1 +
(
∂xzα+ 1

2

)2

+
(
∂tzα+ 1

2

)2
and nα+ 1

2
=

(
∂xzα+ 1

2
,−1

)′
√

1 +
(
∂xzα+ 1

2

)2

denote the space-time unit normal vector and the space unit normal vector to the interface Γα+ 1
2
(t)

outward to the layer Ωα+1(t) for α = 0, ..., N (see detail in Figure 2).
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3.2.1 Weak solution with discontinuities

In order to apply the multilayer approach, we look for a particular weak solution (u,v, pfm , ps, ρf , ρs, ϕ)
of (14) (see [12, 10]) satisfying that:

(i) (u,v, pfm , ps, ρf , ρs, ϕ) is a standard weak solution of (14) in each layer Ωα(t),

(ii) (u,v, pfm , ps, ρf , ρs, ϕ) satisfies the normal flux jump condition for mass and momentum
equations for each phase, at the interfaces Γα+ 1

2
(t), namely:

[(ρsϕ ; ρsϕv)]α+ 1
2
nT,α+ 1

2
= 0,

[(ρf (1− ϕ) ; ρf (1− ϕ)u)]α+ 1
2
nT,α+ 1

2
= 0,

(16)

[(ρsϕv; ρsϕv ⊗ v −
1

ε
σε,s)

]
α+ 1

2

nT,α+ 1
2

= 0,

[
(ρf (1− ϕ)u; ρf (1− ϕ)u⊗ u− 1

ε
σε,fm)

]
α+ 1

2

nT,α+ 1
2

= 0,

(17)

where [(a; b)]α+ 1
2

denotes the jump of (a; b) across the interface Γα+ 1
2
(t).

In the previous normal flux jump condition for the momentum equation, we have used that the
fluid pressure pfm is continuous and the gravitational force and friction between the phases are
source terms, therefore there is no jump in the bouyancy term and all the terms at the interfaces.

Thus, there is no significant differences between the jump condition in [10] and our case. A
particular family of test function is considered where the horizontal component of the velocity
does not depend on z, and the vertical one is linear on z. Then, the velocities of the granular and
the fluid phase in each layer are

u|Ωα(t)
:= uα := (uα, u

z
α)
′
, v|Ωα(t)

:= vα := (vα, v
z
α)
′
,

where uα,vα and uzα, v
z
α are the horizontal and normal velocities, respectively, on layer α. Then,

∂zuα = 0, ∂zvα = 0; and ∂zu
z
α = df,α(t, x), ∂zv

z
α = ds,α(t, x)

for some smooth functions df,α(t, x), ds,α(t, x). We also consider that the solid volume fraction is
constant in each layer

ϕ|Ωα(t)
:= ϕα = ϕα(t, x).

From the jump condition for the mass equations (16) we can easily obtain the definition of the
solid mass flux (Gs,α+ 1

2
) and the fluid mass flux (Gf,α+ 1

2
):

Gs,α+ 1
2

:= G+
s,α+ 1

2

= G−
s,α+ 1

2

and Gf,α+ 1
2

:= G+
f,α+ 1

2

= G−
f,α+ 1

2

with

G±
s,α+ 1

2

= ϕ±
α+ 1

2

(
∂tzα+ 1

2
+ v±

α+ 1
2

∂xzα+ 1
2
− (vz

α+ 1
2
)±
)
, (18a)

G±
f,α+ 1

2

= (1− ϕ)±
α+ 1

2

(
∂tzα+ 1

2
+ u±

α+ 1
2

∂xzα+ 1
2
− (uz

α+ 1
2
)±
)
. (18b)

Note that condition (15) gives the mass transference at the top of the mixture layer z = zN+1/2(t, x),
i.e. the exchange with the upper fluid domain,

Gf,N+1/2 = −Vf and Gs,N+1/2 = 0. (19)
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Now, after some straightforward calculations we get the approximation of the deviatoric tensor at
the interface Γα+ 1

2
using (17) as in [10]:

τ±
ε,s,α+ 1

2

nα+ 1
2

= τ̃ ε,s,α+ 1
2
nα+ 1

2
± 1

2

ρsGs,α+ 1
2√

1 +
∣∣∣∂xzα+ 1

2

∣∣∣2 [v]|Γ
s,α+ 1

2

,

where τ̃ ε,s,α+ 1
2

is an approximation of
(
ηsDε(vα)

)
|Γ
α+ 1

2

, defined by

τ̃ ε,s,α+ 1
2

= ηs,α+ 1
2
D̃ε,s,α+ 1

2
=

1

2
ηs,α+ 1

2


2ε2∂x

(
v+
α+ 1

2

+ v−
α+ 1

2

2

)
D̃xz
ε,s,α+ 1

2(
D̃xz
ε,s,α+ 1

2

)′
2VVZ ,α+ 1

2

 ,

with

D̃xz
ε,s,α+ 1

2
= ε2∂x

(
(vz
α+ 1

2

)+ + (vz
a+ 1

2

)−

2

)
+ VHZ ,α+ 1

2
.

As in previous works, VZ = (VHZ ,VVZ ) is an approximation of the derivatives in z of the velocity

VZ − ∂zv = 0, at the interfaces.

Analogously, we can define for the fluid phase τ̃ ε,fm,α+ 1
2
, D̃ε,fm,α+ 1

2
and UZ ,α+ 1

2
and get the ap-

proximation of the deviatoric tensor of the fluid phase:

τ±
ε,fm,α+ 1

2

nα+ 1
2

= τ̃ ε,fm,α+ 1
2
nα+ 1

2
± 1

2

ρfGf,α+ 1
2√

1 +
∣∣∣∂xzα+ 1

2

∣∣∣2 [u]|Γ
f,α+ 1

2

.

Finally, we need to approximate ηs,α+ 1
2
, the viscosity coefficient (8), up to first order in ε. We

consider

‖D(v)‖α+ 1
2
≈ 1

2

∣∣∣VHZ ,α+ 1
2

∣∣∣ ,
then, the viscosity coefficient is

ηs,α+ 1
2

=

(
µ(Iα+ 1

2
) + (tanψ)α+ 1

2

)
ps,α+ 1

2√∣∣∣VHZ ,α+ 1
2

∣∣∣2 /4 + δ2

, (20)

with

VHZ ,α+ 1
2

=
vα+1 − vα
hα+ 1

2

, for α = 1, . . . , N − 1,

and hα+ 1
2

the distance between the midpoints of layers α and α+ 1. For the particular case α = 0

we take

VHZ , 1
2

=
λv1

h1

, (21)
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with λ depending on the friction condition at the bottom, λ = 1 (friction), λ = 2 (no slip). ps,α+ 1
2

is the solid pressure at the interface zα+ 1
2
, whose expression will be given later, and

Iα+ 1
2

=
ηf

∣∣∣VHZ ,α+ 1
2

∣∣∣
ps,α+ 1

2

, for α = 0, . . . , N − 1. (22)

Finally, thanks to (15) we trivially have ηs,N+1/2 = 0.

Vertical velocities

The procedure to recover the vertical velocities is the same as in [12]. In order to compute the
vertical velocity for the solid phase, we use both the solid mass transference term and the dilatancy
closure equation. Firstly, since there is not transference of solid mass at the bottom level, we have
Gs,1/2 = 0, i.e., we get

(vz1
2
)+ = v1∂xb+ ∂tb.

Now, integrating the dilatancy equation (13g) between zα− 1
2

and z ∈
(
zα− 1

2
, zα+ 1

2

)
we obtain that

vzα(z) = (vz
α− 1

2
)+ − (z − zα− 1

2
)

(
∂xvα −

1

ε
Φα

)
,

and from the solid mass transference term (18a) we get

(vz
α+ 1

2
)+ =

1

ϕα+1

(
(ϕα+1 − ϕα) ∂tzα+ 1

2
+ (ϕα+1uα+1 − ϕαuα) ∂xzα+ 1

2
+ ϕα(vz

α+ 1
2
)−
)
,

with

(vz
α+ 1

2
)− = (vz

α− 1
2
)+ − hα

(
∂xvα −

1

ε
Φα

)
.

Computing the vertical velocity of the fluid phase is possible by using the incompressibility of
the mixture

∇ · (ϕv + (1− ϕ)u) = 0. (24)

Analogously to the procedure above, we can obtain the vertical velocity for the fluid phase using
(24), (18b) and (25b), resulting:

(uz1
2
)+ = u1∂xb+ ∂tb, (25a)

uzα(z) = (uz
α− 1

2
)+ −

(
z − zα− 1

2

)
(1− ϕα)

(
∂x (ϕαvα + (1− ϕα)uα)− ϕα∂xvα +

1

ε
ϕαΦα

)
, (25b)

(uz
α+ 1

2

)+ =
1

(1− ϕα+1)

(
(ϕα − ϕα+1) ∂tzα+ 1

2

+
(

(1− ϕα+1)uα+1 − (1− ϕα)uα
)
∂xzα+ 1

2
+ (1− ϕα) (uz

α+ 1
2

)−
)
,

(25c)

and

(uz
α+ 1

2
)− = (uz

α− 1
2
)+ − hα

(1− ϕα)

(
∂x (ϕαvα + (1− ϕα)uα)− ϕα∂xvα +

1

ε
ϕαΦα

)
. (25d)
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Explicit expression for fluid and solid pressures: pfm , ps

From the nondimensional vertical momentum equation (13f) we obtain up to first order that

∂zpfm = ϕ∂zpfm − εk+2β(uz − vz)− ρf (1− ϕ)

Fr2
. (26)

By integrating this expression from z to b + h (thanks to the continuity of the dynamic fluid
pressure), we obtain

pfm,α(z) =
ρf
Fr2

(b+ h+ hf − z) + pef,α, (27a)

where

pef,α = pe
f,α+ 1

2
+ εk+2

∫ z
α+ 1

2

z

β

(1− ϕ)
(uz − vz) dz′, (27b)

with

pe
f,α+ 1

2
= pef,α+1

(
z = zα+ 1

2

)
= εk+2

N∑
γ=α+1

∫ z
γ+ 1

2

z
γ− 1

2

β

(1− ϕ)
(uz − vz) dz′. (27c)

Once we have the fluid pressure, we can obtain an explicit expression for the solid one. From
the vertical momentum equation (13e) for the solid phase we have

∂zps = −ϕ∂zpfm + εk+2β(uz − vz)− ρsϕ

Fr2
.

Using (26) in the previous equation and integrating from z to zα+ 1
2

we get

ps,α(z) = ps,α+ 1
2

+
ϕα (ρs − ρf )

Fr2

(
zα+ 1

2
− z
)
− εk+2

∫ z
α+ 1

2

z

β

(1− ϕ)
(uz − vz) dz′,

where

ps,α+ 1
2

=
(ρs − ρf )
Fr2

N∑
γ=α+1

hγϕγ − pe
f,α+ 1

2
. (28)

We can write

ps,α(z) =
(ρs − ρf )
Fr2

N∑
γ=α+1

ϕγhγ +
ϕα (ρs − ρf )

Fr2

(
zα+ 1

2
− z
)
− pef,α, (29)

where pef,α is given by (27b). The computation of the excess pore pressure is subtle. It is carried
out using the dilatancy equation, the mass transference terms for the solid and the fluid, and the
fact that we obtain the incompressibility of the mixture with velocity (ϕv + (1− ϕ)u) from the
mass equations in (14). We also assume that we are in the case where the friction between the
solid and the fluid phase is strong (k = −1 in (12)). This leads to (details in appendix A)

pef,α(z) = pe
f,α+ 1

2
− βα

h2
α −

(
z − zα− 1

2

)2

2 (1− ϕα)2 Φα −
βα

ϕα (1− ϕα)2

(
zα+ 1

2
− z
) α−1∑

γ=1

ϕγhγΦγ, (30a)

with

pe
f,α+ 1

2
= pef,α+1

(
z = zα+ 1

2

)
=

N∑
ξ=α+1

−βξ hξ
ϕξ (1− ϕξ)2

 ξ−1∑
γ=1

ϕγhγΦγ +
ϕξhξΦξ

2

 . (30b)
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3.3 Final model

We derive the final model for the mixture by looking for a particular weak solution of system (14)
with the procedure introduced in [12], which was applied to the case of a variable viscosity in [10].
As we mentioned before, for the upper layer we adopt the model derived in [6].
Finally, the resulting system must be written in dimensional variables. As conclusion, the final
model reads, for α = 1, ..., N ,



∂thf + ∂x(hfuf ) = −Gf,N+ 1
2
,

ρf

(
∂t (hfuf ) + ∂x

(
hfu

2
f

)
+ g cos θhf∂x(b+ b̃+ h+ hf )

)
= −1

2
ρfGf,N+ 1

2
(uf + u)− ki(uf − u),

lαϕα

(
∂th+ ∂x(hvα)

)
= Gs,α+ 1

2
−Gs,α− 1

2
+ ϕαlαhΦα,

lα

(
∂t (hϕα) + ∂x(hϕαvα)

)
= Gs,α+ 1

2
−Gs,α− 1

2
,

lα

(
∂t (h (1− ϕα)) + ∂x(h (1− ϕα)uα)

)
= Gf,α+ 1

2
−Gf,α− 1

2
,

lα

(
ρs∂t (hϕαvα) + ρs∂x

(
hϕαv

2
α

)
+ g cos θhϕα ∂x

(
ρs

(
b+ b̃+ h

)
+ ρfhf

)
+ g cos θh (ρs − ρf )

(
N∑

γ=α+1

hγ∂xϕγ +
hα
2
∂xϕα

)

+ g cos θh (ρs − ρf )
N∑

γ=α+1

(ϕγ − ϕα) ∂xhγ − h (1− ϕα) ∂xpef,α

)
= lαhβα (uα − vα)

+ Ks,α− 1
2
−Ks,α+ 1

2
+

1

2
ρsGs,α+ 1

2
(vα+1 + vα) − 1

2
ρsGs,α− 1

2
(vα + vα−1) ,

lα

(
ρf∂t (h (1− ϕα)uα) + ρf∂x

(
h (1− ϕα)u2

α

)
+ ρfg cos θh (1− ϕα) ∂x

(
b+ b̃+ h+ hf

)
+ h (1− ϕα) ∂xpef,α

)
= − lαhβα (uα − vα)

+ Kf,α− 1
2
−Kf,α+ 1

2
+

1

2
ρfGf,α+ 1

2
(uα+1 + uα) − 1

2
ρfGf,α− 1

2
(uα + uα−1) ,

(31a)

(31b)

(31c)

(31d)

(31e)

(31f)

(31g)

where

βα =
1

hα

∫ z
α− 1

2

z
α− 1

2

βα dz and ∂xpef,α =
1

hα

∫ z
α− 1

2

z
α− 1

2

∂xp
e
f,α dz, (31h)
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where βα and pef,α are given by (3) and (30), respectively. The mass transference termsGs,α+ 1
2
, Gf,α+ 1

2

are given by (18), and

Ks,α+ 1
2

= −1

2
ηs,α+ 1

2
(VHZ ,α+ 1

2
)VHZ ,α+ 1

2
, Ks, 1

2
= −ρsg cos θ h

(
µ
(
I 1

2

)
+ (tanψ)1/2

) v1

|v1|
,

Kf,α+ 1
2

= −ηf UHZ ,α+ 1
2
, Kf, 1

2
= −kb u1,

(31i)

for VHZ ,α+ 1
2
, ηs,α+ 1

2
defined in (20)-(22).

For the specific case of the bottom and mixture interface, we introduce the following definitions:

u0 = 0; v0 = (1− λ)v1; uN+1 = uf ; vN+1 = 0;

notice that the definition of v0 comes from (21). Moreover, the frictions between the mixture and
the upper fluid layer are defined by

Ks,N+ 1
2

= 0, and Kf,N+ 1
2

= ki(uf − u).

At the mixture interface we also remind that the transference terms are given in (19).
Note that although the previous system has 5N equations, only 5N−1 are linearly independent,

therefore we have a system with 5N − 1 equations and unknowns, which are:

(h, {ϕα, huα, hvα}α=1,...,N , {Gf,α+ 1
2
, Gs,α+ 1

2
}α=1,...,N−1).

However, an explicit expression can be found for the mass transference terms, as detailed below.

3.3.1 Explicit mass transference terms

In order to obtain explicit expressions for the solid mass transference term, we start by combining
the averaged mass equations for the solid and fluid phase (31d)-(31e), giving

lα

(
∂th+ ∂x

(
h
(
ϕαvα + (1− ϕα)uα

)))
=
(
Gs,α+ 1

2
+Gf,α+ 1

2

)
−
(
Gs,α− 1

2
+Gf,α− 1

2

)
. (32)

Next, denoting

Ũα = ϕαvα + (1− ϕα)uα,

and summing up the previous equation from α = 1, . . . , N we obtain

∂th+ ∂x

( N∑
α=1

lαh Ũα

)
= Gs,N+ 1

2
+Gf,N+ 1

2
. (33)

Here we have used that there is no mass transference at the bottom, i.e. Gs, 1
2

= Gf, 1
2

= 0.

The transference terms Gs,N+ 1
2

and Gf,N+ 1
2

are defined in (19). Using previous equation in the

averaged dilatancy equation (31c), it leads to

lα ϕα

(
− ∂x

( N∑
γ=1

lγh Ũγ

)
+ ∂x (hvα)− hΦα

)
+ lαϕα

(
Gs,N+ 1

2
+Gf,N+ 1

2

)
= Gs,α+ 1

2
−Gs,α− 1

2
,
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and summing up the previous equation from α = 1, . . . , N , it gives

Gs,α+ 1
2

=

α∑
β=1

lβ ϕβ

(
∂x

(
hvβ −

N∑
γ=1

lγh Ũγ

)
− hΦβ

)
+
(
Gs,N+ 1

2
+Gf,N+ 1

2

) α∑
β=1

lβϕβ. (34a)

Once we have an explicit expression for the solid mass transference term, we can use it in
order to obtain the fluid mass transference term. We embbed (33) in (32), and sum it up from
α = 1, . . . , N , it gives

Gf,α+ 1
2

=

α∑
β=1

lβ∂x

(
h Ũβ −

N∑
γ=1

lγh Ũγ

)
− Gs,α+ 1

2
+
(
Gs,N+ 1

2
+Gf,N+ 1

2

) α∑
β=1

lβ. (34b)

Taking into account those expressions for the mass transference terms, system (31) can be
rewritten as a system with 3N+1 equations and unknowns. The unknowns are now the total height
(h), the solid volume fraction ({ϕα}Nα=1) and the solid and fluid velocities ({vα}Nα=1, {uα}Nα=1).
Thus, the equations of the final system are (31d), (31f), (31g) and (33).

Note that we need a closure relation for the fluid and solid mass transference at the free surface
introduced in (19). Moreover, some important properties of the model, as the mass conservation,
depend on how these terms are defined. This is discussed in subsection 3.4.1.

Since the proposed model is a two-phase multilayer model, its mathematical nature would be
non-hyperbolic [1, 9]. Nevertheless, the friction between phases is considered strong which leads
to obtain similar velocities. Thus we expect that the system is not far from being hyperbolic,
which is reinforced by the fact that we do not find numerical difficulties in the approximation
of the model. Even in simple configurations, the numerical approximation of our model involves
important difficulties, namely when approximating the pressure. For this reason, in the following
we study the particular case of immersed uniform flows, for which numerical tests will be presented
in section 4.

3.4 Particular configuration: immersed uniform flows

We consider the analogous case to [7] for uniform flows, i.e. an immersed flow with rigid top
boundary at the surface (see Figure 3), in order to compare with their results. To this aim, we
rewrite the derivative of the fluid depth taking into account that we have a rigid lid boundary
(b = 0). This implies that

∂x (x tan θ + h+ hf ) = 0.

Since we consider the case of a uniform flow we also have that ∂xh = 0. Then, from the previous
equation we deduce that ∂xhf = − tan θ.
Taking these hypotheses into account in (31c)-(31i) with uf = 0, ki = 0, we obtain the following
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Figure 3: Sketch of the domain in the immersed configuration and flat free surface.

simplified system

∂th = Gs,N+ 1
2

+Gf,N+ 1
2
,

∂tϕα = −ϕαΦα,

lα ρs ∂t (hϕαvα) = lα hβα (uα − vα) − (ρs − ρf ) g sin θlαhϕα

+Ks,α− 1
2
−Ks,α+ 1

2
+

1

2
ρsGs,α+ 1

2
(vα+1 + vα) − 1

2
ρsGs,α− 1

2
(vα + vα−1) ,

lα ρf ∂t (h (1− ϕα)uα) = − lα hβα (uα − vα)

+Kf,α− 1
2
−Kf,α+ 1

2
+

1

2
ρfGf,α+ 1

2
(uα+1 + uα) − 1

2
ρfGf,α− 1

2
(uα + uα−1) ,

(35a)

(35b)

(35c)

(35d)

Note that (35b) is deduced from (31c) and (31d). We also consider the following definitions: for
the drag coefficient (see (3))

βα =
150ϕ2

α

d2
s (1− ϕα)

ηf ,

and from (9)-(10) the dilatancy function is

Φα = γ̇αK
(
ϕα − ϕeqc,α

)
, with ϕeqc,α = ϕstatc −K2 Iα, with γ̇α =

|vα − vα−1|
hα

.

Note that in the definition of γ̇α we set a backward approximation because this is the one that
gives us better results, namely at the bottom where the friction boundary condition must be taken
into account. In particular, the central approximation produced spurious oscillations.

The system (35) is written in terms of the mass transference at the mixture interface, appearing
in the first equation (35a). An important property of this system that is shared with the system
proposed in [6] is that it preserves the solid mass in the mixture domain under the definitions
given in (19), that is, Gs,N+ 1

2
= 0 and Gf,N+ 1

2
. In this case we get

∂th = Gf,N+ 1
2
,
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hence, thanks to (33) the total solid mass is preserved:

∂t

(
N∑
β=1

hβϕβ

)
= 0.

In order to give an expression for the mass transference terms in the multilayer domain, we
first use that Gs,N+ 1

2
= 0 in (34a) to obtain the fluid mass transference at the free surface, so

finally we have

Gs,N+ 1
2

= 0, Gf,N+ 1
2

=

N∑
γ=1

lγϕγhΦγ

N∑
γ=1

lγϕγ

. (36)

With this definition, the solid and fluid mass transference terms are written as

Gs,α+ 1
2

=
α∑
β=1

lβϕβ

(
Gf,N+ 1

2
− hΦβ

)
and Gf,α+ 1

2
= Gf,N+ 1

2

α∑
β=1

lβ −Gs,α+ 1
2
, (37)

for α = 1, . . . , N − 1.

From now on we refer to model (35), (36), (37) as PGM model (Preserving Granular Mass).
Actually, this model is the multilayer extension of the model proposed by Bouchut et al. [6],
where the thickness of the mixture (hm in their notation) is not preserved. In fact, their case is
the single-layer case of the proposed model. In that case, as authors assume there is no solid mass
transference between these layers, therefore Gs,3/2 = 0 and from (34a) the fluid mass transference
at the free surface remains

Gf,3/2 = h1Φ1 + ∂x
(
h1 (1− ϕ1) (u1 − v1)

)
,

which matches with −Vf as defined in [6], where the minus sign comes from the fact that they
consider the upward normal vectors while we work here with downward normal vectors.

This section is organized as follows: in subsection 3.4.1 we propose a multilayer extension
preserving the mixture height (as the Pailha and Pouliquen model [25]). An analytical solution is
deduced in subsection 3.4.2, by neglecting the friction between the phases. In subsection 3.4.3 we
deduce an analytical solution that includes the effect of the side walls friction for confined flows,
which plays an important role in the case of granular flows, namely in laboratory experiments.
The numerical approximation of the resulting system (35) is a difficult task even in this simple
configuration of a uniform flow. The main difficulty is the approximation of the excess pore fluid
pressure term pef,α, which is necessary to define Iα. Its numerical approximation is a key point of
the numerical scheme, which is detailed in subsection 3.4.4.

3.4.1 A multilayer model preserving the mixture height

As discussed in [6] one of the main difference between their model and the one of Pailha and
Pouliquen is that this last one preserves the total height of the mixture and not the total mass.
This implies different steady state solutions for each model. In order to perform a similar com-
parison in the numerical tests we show a multilayer model that preserves the height instead of the
granular mass in the mixture.
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In order to preserve the total height of the mixture layer it is required that the solid mass
leaving the mixture domain equals the fluid mass entering the domain, i.e., Gs,N+ 1

2
= −Gf,N+ 1

2
in

the model (35). Note that in this case, the model in the upper layer should also take into account
the granular phase.

From (35a) we obtain that
∂th = 0,

and (31d) and (34a), under the uniform flow assumption, lead to

∂t

(
N∑
β=1

hβϕβ

)
= Gs,N+ 1

2
, with Gs,N+ 1

2
= −

N∑
β=1

lβhϕβΦβ. (38)

Therefore, the solid mass of the considered mixture may be not preserved at the domain. The
solid and fluid mass transference terms (34) are

Gs,α+ 1
2

= −
α∑
β=1

lβ hϕβΦβ and Gf,α+ 1
2

= −Gs,α+ 1
2
. (39)

for α = 1, . . . , N . From now on we refer to model (35), (38), (39) as the PH model (Preserving
Height).

3.4.2 Analytical solution

The analytical solution for a uniform immersed flow can be obtained with an analogous procedure
to the case of a granular flow, i.e, Bagnold flow (see e.g. [21]). To this aim, we consider the
particular case where no friction effects appear in the model (even β(u − v)). This allows us to
obtain an explicit expression for analytical solid velocity, pressure and solid volume fraction. The
effects of the term β(u− v) will be studied in the numerical tests (see section 4.1.1).

Firstly, since we focus on steady uniform flows, where Gs,N+ 1
2

= Gf,N+ 1
2

= 0, once the final

height is computed (which will be different in each model), the analytical solution will be the
same for both models analyzed in previous section. Starting from system (11) in the immersed
configuration (∂xhf = − tan θ), and assuming a steady uniform flow (tanψ = 0), we obtain

∂zτ
xz
s = (ρs − ρf )ϕ(z) g sin θ,

∂zps = − (ρs − ρf )ϕ(z) g cos θ.
(40)

Moreover we consider

τs(z) = µ(I(z)) ps(z), µ(I(z)) = µs +K1 I(z), and ϕ(z) = ϕeqc (z) = ϕstatc −K2 I(z).

Integrating from z > b to the free surface b+ h we obtain

ps(z) = (ρs − ρf ) g cos θ

∫ b+h

z

ϕ(s)ds, (41)

τxzs (z) = − (ρs − ρf ) g sin θ

∫ b+h

z

ϕ(s)ds.
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Using that
τxzs (z) = µ(I(z)) ps(z),

we get

− (ρs − ρf ) g sin θ

∫ b+h

z

ϕ(s)ds = µ(I(z)) (ρs − ρf ) g cos θ

∫ b+h

z

ϕ(s)ds,

so

(µ(I(z)) + tan θ)

∫ b+h

z

ϕ(s)ds = 0.

This leads to a constant friction coefficient µ(I) = − tan θ. Thus, we obtain that the inertial
number I(µs, ∆µ = µ2 − µs, tan θ,K1) is constant

I =
− tan θ − µs

∆µ+ µs + tan θ
I0, or I =

− tan θ − µs
K1

,

depending of the considered rheology (5) or (7), and therefore the solid volume fraction

ϕ = ϕeqc = ϕstatc −K2I,

is also constant. In addition, using the definition of the inertial number (6) we get an expression
for ∂zv. Integrating from z = b to 0 < z < b + h and using the no-slip condition at the bottom,
the velocity profile reads:

v(z) =
(ρs − ρf ) I ϕ cos θ

2ηf

(
(b+ h)2 − (b+ h− z)2

)
.

3.4.3 Side walls friction for confined flows: analytical solution

To model side wall friction the following additional viscous term is considered at the momentum
solid phase (see [11] and [24]),

− 2

W
µwps(z)

v

|v|
, (42)

where W is the width of the domain and µw the friction coefficient at the lateral walls.
In order to obtain an analytical solution in this case we start again from (40), where the side

walls friction term is added

∂zτ
xz
s (z)− 2

W
µwps(z) = (ρs − ρf )ϕ(z) g sin θ,

∂zps(z) = − (ρs − ρs)ϕ(z) g cos θ.

where we have also assumed that sign(∂zv) = sign(v) = 1. Following the same procedure as in
the previous section we get

τxzs (z) +
2

W
µw (ρs − ρf ) g cos θ

∫ b+h

z

(∫ b+h

s

ϕ(ξ)dξ

)
ds = − (ρs − ρf ) g sin θ

∫ b+h

z

ϕ(s)ds. (43)

and writing (43) in terms of ϕ(z), we obtain(
µs +K1

ϕstatc − ϕ(z)

K2

)∫ b+h

z

ϕ(s)ds +
2

W
µw

∫ b+h

z

(∫ b+h

s

ϕ(ξ)dξ

)
ds

= − tan θ

∫ b+h

z

ϕ(s)ds.

(44)
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Now, deriving the previous equation, it leads to the integro-differential equation

ϕ′(z)
K1

K2

∫ b+h

z

ϕ(s)ds +

(
µs +K1

ϕstatc − ϕ(z)

K2

)
ϕ(z) +

2

W
µw

∫ b+h

z

ϕ(s)ds = − tan θϕ(z).

Considering the variable

F (z) =

∫ b+h

z

ϕ(s)ds,

we obtain an initial value problem with two differential equations(
F (z)

ϕ(z)

)′
=

 −ϕ(z)

− K2

K1F (z)

((
µs +K1

ϕstatc − ϕ(z)

K2

)
ϕ(z) +

2

W
µwF (z) + tan θϕ(z)

)  ,

where
F (β + h) = ε, ε� 1,

ϕ(b+ h) = ϕstatc +
K1

K2

(tan θ + µs) .

This system is solved using a numerical ODE solver, obtaining the concentration ϕ(z) and F (z).
The pressure is computed using (41) and the inertial number is I(z) = (ϕstatc − ϕ(z)) /K2. Using
the definition of I we find the analytical solid velocity solving the differential equation

v′(z) =
ps(z)I(z)

ηf
, with v(0) = 0.

Remark 1. Note that if we take (µw = 0) in (44) we recover the previous case without side walls
friction (subsection 3.4.2). In particular, it leads to µ(I) = − tan θ, which implies that both, the
inertial number I and the solid volume fraction ϕ, are constant.

Remark 2. In the case of uniform flows for dry granular flows and a hydrostatic pressure it is
equivalent to consider the additional viscous term (42) or the following modification of the friction
coefficient (see [19])

µ(I) = µ(I) + µw
b+ h− z

W
.

We show in what follows that for the case considered in this paper, where we deal with a two-phase
flow, this modification of the friction coefficient, under the same hypothesis, is not equivalent but
it is a second order approximation of it.

It is enough to use the trapezoidal rule to approximate the double integral in (44). We obtain,
up to second order, (

µ(I) + µw
(b+ h− z)

W
+ tan θ

)∫ b+h

z

ϕ(s)ds = 0.

Note that as a consequence we can deduce an explicit expression that is a second order approxi-
mation of the analytical solution. We obtain the following approximation,

ϕ = ϕeqc = ϕstatc + C2

(
(b+ h− z)− (b+ h− h∗)

)
,

v(z)

C1

=
C2

4

(
(b+ h− z)4 − (b+ h− h∗)4 )

− 2C2 (b+ h− h∗)− ϕstatc

3

(
(b+ h− z)3 − (b+ h− h∗)3 )

− ϕeqc − C2 (b+ h− h∗)
2

(b+ h− h∗)
(

(b+ h− z)2 − (b+ h− h∗)2 ),
25



for z > h∗, where

h∗ = (b+ h)− tan θ − µs
µw

W, C1 =
µw (ρs − ρf ) g cos θ

K1ηfW
, and C2 =

K2µw
K1W

.

Note that in this case, h∗ is the position of the static/flowing interface.

3.4.4 Numerical approximation: computation of the linearized solid pressure

We approximate the system of ODEs for uniform flows (35) (for the two cases described in section
3.4.1) using a standard first order semi-implicit scheme to go from a time tn to tn+1 = tn + ∆t as
follows:

• The first equation is trivially discretized as hn+1 = hn + ∆tGn
f,N+ 1

2

.

• For the equation (35b) for the solid volume fraction, we consider an explicit approximation

ϕn+1
α = ϕnα −∆tϕnαΦn

a .

We can also use an implicit discretization or the exact solution of (35b). We have chosen
the explicit one for the sake of simplicity, since similar results are obtained with all of them.

• For the momentum equations (35c) and (35d) we use a semi-implicit scheme in order to
avoid the restriction on the time step that the viscous terms usually involve:

ρslαh
n+1ϕn+1

α vn+1
α = ρslαh

nϕnαv
n
α + lαh

nβα
n

(unα − vnα)− (ρs − ρf ) lαhn ϕnα g sin θ

+ ρsG
n
s,α+ 1

2

vn
α+ 1

2

− ρsGn
s,α− 1

2

vn
α− 1

2

+
1

2
ηn
s,α+ 1

2

vn+1
α+1 − vn+1

α

lα+ 1
2
hn

− 1

2
ηn
s,α− 1

2

vn+1
α − vn+1

α−1

lα− 1
2
hn

,

ρf lαh
n+1 (1− ϕα)n+1 un+1

α = ρf lαh
n (1− ϕα)n unα − lαhnβα

n
(unα − vnα)

+ ρfG
n
f,α+ 1

2

un
α+ 1

2

− ρfGn
s,α− 1

2

un
α− 1

2

+ ηf
un+1
α+1 − un+1

α

lα+ 1
2
hn

− ηf
un+1
α − un+1

α−1

lα− 1
2
hn

.

For α = 1 and α = N the definitions of Kα+ 1
2

must be taken into account. The new values

are obtained solving a tridiagonal linear system with N equations and unknowns.

If the side walls friction (42) is considered, the term

− 2

W
µwh

n
αp

n
s,α

vn+1
α√

|vnα|2 + δ2

must be added to the right hand side of the momentum equation for the solid phase, where

ps,α =
(
ps,α+ 1

2
+ ps,α− 1

2

)
/2 is the pressure in the midpoint of layer α.
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Once we have hn+1, ϕn+1
α , (hϕαvα)n+1 , (h (1− ϕα) vα)n+1 we find un+1

α , vn+1
α . The difficulty of the

scheme comes when computing the solid pressure at the interfaces pn
s,α− 1

2

at time tn (see (28) and

(30b)):

pn
s,α− 1

2
= (ρs − ρf ) g cos θ

N∑
γ=α

hnγϕ
n
γ +

N∑
ξ=α

β
n

ξ h
n
ξ

ϕnξ
(
1− ϕnξ

)2

 ξ−1∑
γ=1

ϕnγh
n
γΦn

γ +
ϕnξh

n
ξΦn

ξ

2

 , (45a)

depending on the dilatation function

Φn
β = γ̇nβK

(
ϕnβ − ϕstatc +K2 I

n
β

)
, for β = 1, . . . , N. (45b)

In previous equation the inertial number must be approximated in the middle of the layer. For
the sake of simplicity in the computation of Inβ in (45b), we approximate pns,α by the value in the
interface below. Thus we take

Inβ =
ηf γ̇

n
β

pn
s,β− 1

2

, (45c)

Note that this approximation follows the same idea of what it is made in single-layer models, see
for example [25]. In this paper the basal pressure is used to define the dilatancy relation arguing
that the dilatancy at the bottom gives the right order of magnitude of the dilatancy inside the
layer. Here, this hypothesis is adopted for each layer β, thus being pn

s,β− 1
2

.

Therefore, we obtain a nonlinear system with N equations and unknowns (the solid pressures),
where the main difficulty is the fact that the system is fully coupled, i.e., each equation depends
on all the rest, and this is due to the excess pore pressure.

The first attempt that we carried out was to linearise the problem embedding into (45b) the
pressure at the previous time step pn−1

s,β− 1
2

. However, due to the abrupt time variations of the

excess fluid pressure, namely at short times, this method is inadequate. We propose to consider a
numerical method that is based on an approximation of the function f(x) = 1/x by the first-order
term of its Taylor polynomial. Thus, in (45b) we write

1

pn
s,β− 1

2

=
2

pn−1
s,β− 1

2

− 1(
pn−1
s,β− 1

2

)2 p
n
s,β− 1

2
+O(pn

s,β− 1
2
− pn−1

s,β− 1
2

)2, for β = 1, . . . , N.

Thanks to this approximation, and defining the coefficients

Anα =
150ϕnαh

n
αηf

d2
s (1− ϕnα)3 , Bn

α = ϕnαh
n
αγ̇

n
αK

(
ϕnα − ϕstatc

)
, Cn

α = 2
ϕnαh

n
α (γ̇nα)2KK2ηf

pn−1
s,α− 1

2

, Dn
α =

Cn
α

2pn−1
s,α− 1

2

,

the previous nonlinear system becomes, up to second order, the following N ×N linear system

 an11 an12 · · · an1N
an21 an22 · · · an2N
· · · · · · · · · · · ·
anN1 anN2 · · · anNN




pn
s, 1

2

pn
s, 3

2

· · ·
pn
s,N− 1

2

 =

 bn1
bn2
· · ·
bnN

 ,
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where

aij = Dj

(
N∑

k=j+i

Ak +
Aj
2

)
, if i < j,

ajj = 1 + Dj

(
N∑

k=j+i

Ak +
Aj
2

)
,

aij = Dj

N∑
k=i

Ak, if i > j,

and

bj = (ρs − ρf ) g cos θ

N∑
ξ=j

hξϕξ +

N∑
ξ=j

(
Aξ

ξ−1∑
γ=1

(Bγ + Cγ) +
Aξ
2

(Bξ + Cξ)

)
,

that can be solve using a direct method.

4 Numerical tests for uniform flows

In this section we present some numerical results in order to validate our model. In this work
we only deal with uniform immersed flows and consider dilatancy effects by starting with initially
loose or initially dense configurations. With the purpose of comparing the results of the proposed
model with model in [6], we consider the rheology given by (7), i.e., µ(I) = µs + K1 I, in the
immersed configuration.

First, we compare the results obtained for the proposed model with the analytical solution
with and without side walls friction. For sake of simplicity, we only use in this case the model
preserving the total height (PH model). The reason is that it is more simple since the final height
is known and therefore we can directly compute the velocity and the solid volume fraction profiles.
In a second step, we show that the method proposed to approximate the pressure in the previous
section 3.4.4 makes it possible to recover the appropriate root of the non-linear system defined by
(45), for the particular cases N = 1, 2. However, the error made when approximating the pressure
increases with the number of layers, so we decide to use the PGM model with only 2 layers to
compare with experimental data (see section 4.2.1). Then, we briefly analyse the influence of the
dilatation constant K (see (10)) and compare the results of the 2 layer PGM model with previous
depth-averaged single-layer models in the literature, namely the models introduced in [6, 25] and
with laboratory experiments in [25]. For this comparison we use the model preserving the total
solid mass because this is the only physically relevant model.

For the tests presented in this section we set the same values for the parameters than in [6],
i.e., the ones proposed in [25] for low and high fluid viscosity. For each case a dense and a loose
initial configuration is simulated. The physical and rheological parameters that are common for
these tests are detailed in Table 1. The specific parameters in the high or low viscosity cases
and for the loose or dense initial conditions are shown in Table 2. In all the presented tests, we
consider no-friction with the bottom for the fluid phase, kb = 0, and a no-slip condition (see (21))
for the solid one. At the mixture interface, no friction between the fluid in the mixture layer and
the fluid in the upper layer is also assumed, i.e., ki = 0.
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ρs (Kg/m3) ds (µm) µs ϕstatc K K1 K2

2500 160 0.415 0.582 4.09 90.5 25

Table 1: Common physical and rheological parameter for the two-phase simulations.

ηf case ρf (Kg/m3) ηf (Pa/s) θ (◦) h0 (mm) ϕ0 (loose) ϕ0 (dense)
High 1041 96×10−3 -25 4.9 0.562 0.588
Low 1026 9.8×10−3 -28 6.1 0.576 0.592

Table 2: Parameter for the two-phase simulations depending on the high/low fluid viscosity and
loose/dense initial configuration.

4.1 Comparison with analytical solution

In this test we focus on steady uniform flows, where Gf,N+ 1
2

= Gs,N+ 1
2

= 0. Therefore, once the

final height is computed (which will be different from the proposed PGM model and from the
PH model described in subsection 3.4.1), the analytical solution is the same for both models PH
model and PGM model. For the sake of simplicity, we only consider in the comparison with the
analytical solution and the PH model, which is simpler than the PGM model since the height is
prescribed by the initial condition.

We simulate a uniform flow initially at rest (uα = vα = 0, for α = 1, . . . , N), with height h0,
and initial solid volume fraction ϕα = ϕ0 for α = 1, . . . , N , until a steady state is reached.

In the low viscosity case we use 50 vertical layers and a time step ∆tL = 10−5 while 20 layers
are used in the high viscosity case and ∆tH = 10−6. Note that ∆tH = ∆tL/10, i.e., we need a
smaller time step for the high viscosity case, and therefore 20 layers are used in that case because
the time needed to complete the simulation is huge. Concretely, we need 35.6 minutes to simulate
tf = 300 s for the low viscosity case with 20 layers, whereas the high viscosity case takes 28.9
hours to complete tf = 1500 s of simulation. Finally, the low viscosity case with 50 layers takes
5.1 hours. These CPU times corresponds to an Euler semi-implicit time discretization (see section
3.4.4) and have been measured on a Mac Mini with Intel R©CoreTM i7-4578U and 16 GB of RAM.
Remark that although some differences can be found in the transient regime, the steady solution
is the same in both cases (20 or more layers).

4.1.1 No side walls friction

Firstly, we compare our results with the analytical solution for a flow without side walls friction. In
Figure 4 we show that the model approximate properly, with loose and dense initial configuration,
the analytical maximum velocity (the one on the top of the flow) and the averaged velocity

v̄ =
∑N

α=1 lαvα. We can see that the convergence in time is much slower in the high viscosity case
than in the low viscosity case. This fact, together with the use of a smaller time step justify the use
of 20 vertical layers instead of 50 as in the low viscosity case. The main advantage of multilayer
models is that the vertical structure of the flow can be recovered. We show these profiles and
the analytical profile of velocity in Figure 5, where the steady states reached for the loose/dense
initial configuration are the same. In these figures we only show the velocity of the solid phase
because we obtain that both, the solid and the fluid velocities, are equal with a relative error of
order 10−4.

In Figure 6(a) we show the convergence in time of the averaged solid volume fraction (ϕ̄ =∑N
α=1 lαϕα) and the equilibrium concentration (ϕ̄eqc =

∑N
α=1 lαϕ

eq
c,α) towards its steady state.
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velocities in the (a) low and (b) high viscosity case. Dashed (resp. solid) lines are the solution
starting from a loose (resp. dense) configuration, and the dash-dotted (resp. dashed) grey line is
the analytical averaged (resp. maximum) velocity.
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Figure 5: Normal profile of downslope velocity in the (a) low and (b) high viscosity case. Green
crosses (resp. brown squares) are the solution in the dense (resp. loose) initial configuration, and
the dashed grey line is the analytical profile of velocity.

In the inset in Figure 6(a.2) we also show that the solid volume fraction go to the equilibrium
concentration quickly (we don’t show the loose case because the dynamics towards equilibrium is
even quicker in that case). Figure 6(b) shows the normal profile of solid volume fraction. In this
case with no lateral friction, when the friction between the phases βα(uα − vα) is not considered
in system (35), and the analytical profile of the solid volume fraction is constant. This is properly
reproduced by our model except for the first layer (the closest to the bottom). Moreover, when
increasing the number of vertical layers, we obtain the same behaviour. This loss of accuracy in
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Figure 6: (a) Time evolution of the averaged solid volume fraction (green lines) and equilibrium
concentration (brown lines). Dashed (resp. solid) lines are the solution starting from a loose (resp.
dense) configuration, and the dashed grey line is the analytical averaged solid volume fraction. The
inner figure in (a.2) is the difference |ϕ̄− ϕ̄eqc | in the dense initial configuration.
(b) Normal profiles of solid volume fraction in the (b.1) low and (b.2) high viscosity case. The
dash-dotted grey line is the analytical normal profile of the solid volume fraction. Red-crossed are
the simulation neglecting the friction term βα (uα − vα) in the momentum equation.

0 50 100 150 200 250 300
40

50

60

p
s
,b
(P

a
)

 

 

Loose

Dense

Analytical

0 500 1000 1500
30

35

40

45

t (s)

p
s
,b
(P

a
)

(a.1) Low viscos ity

(a)

(a.2) High viscos ity

0 50 100 150 200 250 300
−15

−10

−5

0

p
e f
,b
(P

a
)

0 500 1000 1500
−4

−2

0

2

t (s)

p
e f
,b
(P

a
)

(b.2) High viscos ity

(b.1) Low viscos ity

(b)

Figure 7: Time evolution of (a) the pressure and (b) the excess pore pressure at the bottom in the
(x.1) low and (x.2) high viscosity case. Dashed (resp. solid) lines are the solution starting from a
loose (resp. dense) configuration, and the dashed grey lines are the analytical steady states.

Figure 6(b) is due to the friction between the solid and fluid phases. Actually, we have checked
that if the term β̄α (uα − vα) is neglected in the momentum equations then the constant profile of
solid volume fraction is obtained, (red-crossed solution in 6(b)). In addition, a convergence test in
the number of vertical layers has been performed in this case. We see that the method is second
order accurate for the velocity (see Table 3 and Figure 8). For the solid volume fraction, we always

31



obtain an estimated error of 4.63 × 10−8, which confirms the fact that the friction between the
solid and the fluid phases is the responsible for not obtaining the constant profile in Figure 6(b).
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Figure 8: Relative errors of the velocity for the analytical solution without side walls friction and
neglecting the friction term βα (uα − vα).

N(∆z = 1/N) L1 - Error L1 - Order L2 - Error L2 - Order L∞ - Error L∞ - Order
2 1.25×10−1 – 1.17×10−1 – 9.09×10−2 –
4 3.12×10−2 2.00 2.87×10−2 2.02 2.12×10−2 2.09
8 7.81×10−3 2.00 7.14×10−3 2.00 5.23×10−3 2.02
16 1.95×10−3 2.00 1.78×10−3 2.00 1.30×10−3 2.00
32 4.88×10−4 1.99 4.45×10−4 2.00 3.25×10−4 2.00
64 1.22×10−4 1.99 1.11×10−4 1.99 8.15×10−5 1.99
128 3.05×10−5 1.99 2.79×10−5 1.99 2.04×10−5 1.99
256 7.67×10−6 1.99 7.00×10−6 1.99 5.21×10−6 1.97

Table 3: Order of the error for the velocity of the analytical solution without side walls friction and neglecting the
friction term βα (uα − vα).

Figure 7 shows the pressure and the excess pore pressure at the bottom. We see that the
numerical solutions go to the analytical one in all the configurations, and that there is no excess
pore pressure in the steady state.

Figures 9 and 10 show the normal profiles of excess pore pressure at different times. We see
that the profiles are approximately linear at short times, when the excess pore pressure is larger,
except near the bottom.

4.1.2 Side walls friction

In subsection 3.4.3 the analytical solution is obtained in the case of a flow that is confined in a
channel whose width is W . In that case, the side walls friction has an important effect on the
dynamics of the flow. Mainly, the normal profile can become S-shaped instead of Bagnold type
(see [11]) leading to the appearance of a flow/no-flow transition.
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Figure 9: Normal profiles of excess pore pressure for the low viscosity case, in the (a) loose and
(b) dense configurations, at times t = 0.1, 1, 5, 10, 20, 30, 50, 70, 100, 400 s.
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Figure 10: Normal profiles of excess pore pressure for the high viscosity case, in the (a) loose and
(b) dense configurations, at times t = 0.1, 10, 50, 75, 100, 150, 250, 400, 600, 1500 s.

We consider a flow with the same physical and rheological properties as in previous subsection
in the low viscosity regime and loose initial condition, and we add the side walls friction term with
the friction coefficient µw = tan (13.1◦). In this case we use 20 layers in the multilayer system
since the computational cost, until reaching the stationary solution, is very high.

Figure 11 shows the normal profiles of velocity and solid volume fraction in the presence of lat-
eral walls, for several channel widths W = 0.005, 0.0075, 0.01, 0.012, 0.015, 0.02, 0.03, 0.05, 0.1, 1, 10
m. These values correspond to α layers of granular particles, W = αds, with α = 31, 47, . . . , 62500,
approximately. For the velocity profiles, the dynamics is similar to the case of a dry granular flow
(see [11]). In the case of the solid volume fraction, a constant profile is obtained for large widths,
similar to the case of no lateral wall friction.

However, looking at the analytical solution (see remark 2) we see that the analytical profile of
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Figure 11: Normal profiles of velocity (a) and solid volume fraction (b) for different widths W .
Dashed lines correspond to the simulations and black crosses to the analytical solutions. Blue
symbols and red dash-dotted lines in figure (b) are the simulations for widths W = 31ds, 47ds and
µ̂w = 2µw, additionally cyan dash-dotted lines are the simulations for this case with 160 vertical
layers.

the volume fraction is always linear, starting from the equilibrium volume fraction ϕeqc at the top of
the mixture layer. Actually, the linear counterpart is K2µwz/(K1W ). Therefore, when W is large,
this contribution is nearly zero and we obtain an (almost) constant profile. As observed on Figure
11(b), wall friction makes the solid volume fraction vary linearly with a slope increasing when the
channel width W decreases. An interesting remark is that when a flow/no-flow transition appears
in the velocity profile, the solid volume fraction becomes a constant, whose value is ϕstatc = 0.582,
from the flow/no-flow position to the bottom representing a region of rigid material (zero velocity).
It decreases from the flow/no-flow transition up to the upper surface of the mixture. In Figure
11 we also see the influence of the friction parameter µw. For widths W = 31ds, 47ds we have
simulated the same flow but taking as friction coefficient at the lateral walls µ̂w = 2µw. It makes
the friction force increase (similar effect is obtained by decreasing the channel width) and the solid
volume profile becomes constant almost everywhere in the normal direction, decreasing just close
to the mixture upper surface (see blue symbols and red dash-dotted lines in Figure 11(b)).

In Figure 11 we remark that errors between the analytical and the numerical solutions are
bigger than the expected ones, specially for the solid volume fraction and a small channel width
(see e.g. red dash-dotted lines in Figure 11(b)). This is due to the fact that we have used 20
layers to reproduce steady state solutions with a strong variations in the normal direction and the
multilayer approach is based on a constant profile in each layer. In order to clarify that, we have
performed a convergence test for W = 94ds, also neglecting the term βα (uα − vα), since it is not
considered for the analytical solution. We see that the method is first order accurate in this case,
for both, the velocity and the solid volume fraction (see Table 4 and Figure 12). In addition, for
the two configurations for which the side wall friction is stronger, namely W = 31ds, 47ds, we
have also added the corresponding solutions using 160 layers in Figure 11(b) (cyan dash-dotted
lines). The analytical solution is properly reproduced in that case.
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Figure 12: Relative errors of (a) the velocity and (b) the solid volume fraction for the analytical
solution with side walls friction and W = 94ds.

(a) Velocity

N(∆z = 1/N) L1 - Error L1 - Order L2 - Error L2 - Order L∞ - Error L∞ - Order
2 1.94×10−1 – 1.84×10−1 – 1.74×10−1 –
4 1.45×10−1 0.47 1.42×10−1 0.37 1.34×10−1 0.37
8 9.65×10−2 0.59 9.44×10−2 0.59 8.78×10−2 0.61
16 5.69×10−2 0.76 5.52×10−2 0.77 5.06×10−2 0.79
32 3.10×10−2 0.87 2.99×10−2 0.88 2.72×10−2 0.98
64 1.61×10−2 0.94 1.55×10−2 0.94 1.42×10−2 0.93
128 8.20×10−3 0.98 7.88×10−3 0.97 7.34×10−3 0.95
256 4.06×10−3 1.01 3.93×10−3 1.00 3.80×10−3 0.94

(b) Solid volume fraction

N(∆z = 1/N) L1 - Error L1 - Order L2 - Error L2 - Order L∞ - Error L∞ - Order
2 1.57×10−2 – 1.63×10−2 – 1.97×10−2 –
4 9.79×10−3 0.68 1.00×10−2 0.69 1.18×10−2 0.74
8 5.49×10−3 0.83 5.59×10−3 0.85 6.03×10−3 0.96
16 2.89×10−3 0.92 2.92×10−3 0.93 3.01×10−3 1.00
32 1.48×10−3 0.96 1.48×10−3 0.97 1.49×10−3 1.00
64 7.42×10−4 0.99 7.44×10−4 0.99 7.43×10−4 1.01
128 3.66×10−4 1.01 3.67×10−4 1.02 3.65×10−4 1.02
256 1.76×10−4 1.05 1.77×10−4 1.05 1.78×10−4 1.03

Table 4: Order of the error for (a) the velocity and (b) the solid volume fraction of the analytical solution with
side walls friction, W = 94ds, and neglecting the friction term βα (uα − vα).

In Figure 11 we have used 20 layers in the simulation in order to properly reproduce com-
plex vertical profiles of velocity and solid volume fraction. However, if the number of layers is
reduced, although the profile is not exactly reproduced, its shape and mean variation is well ap-
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Figure 13: Normal profiles of velocity and solid volume fraction for two representative widths
(a) W = 62ds and (b) W = 62500ds, for different number of vertical layers. Dashed blue lines
correspond to the simulations with 20 layers, red circled dash-dotted lines with 3 layers, green
square dotted lines with 2 layers and black crosses are the analytical solutions. Notice that symbols
for 2 and 3 layers correspond to the values in the middle of each layer.

proximated. In Figure 13 we show these vertical profiles for two representative channel widths
W = 62ds, 62500ds, computed with the multilayer model with 2, 3 and 20 vertical layers. In the
first case, the side walls friction has a strong effect on the vertical profiles, leading to a rigid
zone with zero velocity close to the bottom. We see that this solution is well reproduced with 20
layers. The models with 2 and 3 layers give also a good approximation. Even the position of the
flow/no-flow interface is also reasonably well approximated. The mean variation of the profile is
also even better reproduced if the side walls friction is smaller, as shown for W = 62500ds.

4.2 Comparison with other models and laboratory experiments

In this section we compare the results of the PGM model with the results of the model in Bouchut
et al. (2016) [6] and Pailha and Pouliquen (2009) [25] (hereafter B-2016 and PP-2009 respectively).
However, before that, we evaluate in the next subsection the appropriate model that we propose
to use in practice, since the approximation of the solid pressure entrains serious difficulties in the
multilayer framework, as we mentioned before.

4.2.1 Choice of the model

In this section the simulated cases, as well as the physical and rheological parameters, take the
same values as in the previous section. We focus on the dense case for both the high and low
viscosity cases because it is the more complex case, since the convergence to the steady solution is
slower and it differs far more from other analyzed models, as it is shown in following subsections.

Firstly, we check that the proposed linearization to compute the pressure gives good results.
Note that equations (45) lead to a non-linear system with N equations and unknowns, where
each of them is a quadratic equation, and the system is fully coupled due to the excess pore
pressure. Therefore, for a configuration with N vertical layers, there exist 2N vector solutions of
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the system. In particular, for N = 1, at each time step, once the rest of variables are computed,
the pressure at the bottom, pn

s, 1
2

, is a root of the quadratic equation resulting from (45) with

N = 1. That equation can be exactly solved, obtaining two different roots for pn
s, 1

2

. However,

one of them becomes negative and therefore there is only one solution with a physical meaning.
In Figure 14(a)(b) we show that the proposed method in 3.4.4 gives as result an approximation
to this appropriate solution. Analogously, for N = 2, system (45) has 4 different solutions for

the vector
(
pn
s, 1

2

, pn
s, 3

2

)
at each time step, corresponding to the pressure at the interfaces z 1

2
and

z 3
2
. Again, the system obtained by (45) with N = 2 can be exactly solved, where just one of

the roots is relevant, since the others become negative. Figure 14(c)(d) shows that the proposed
method approximates this solution. Nevertheless, we did not managed to calculate an accurate
approximation of this solution at short times where the variation and effect of the excess pore
pressure are strong.

Our results show that it is very difficult to calculate the excess pore pressure when we have
a large number of layers because the system is fully coupled, i.e. each pressure depends on all
the pressures in the other layers. In figures 15 and 16 we see a comparison of the velocity at
short times with the multilayer model with 2, 3, 4, and 10 layers, and the velocity measured at the
surface of the mixture in the laboratory experiments in [25], for the low and high viscosity cases
and the dense initial configuration.

We observe that the model with 2 or 3 layers better reproduces the experimental results than
the model with 10 layers, in particular at the beginning, when the velocity is very small. The
10 layers model predicts that the velocity grows up too fast in both cases, with low and high
viscosity. We see that the single-layer model B-2016 better predicts the time when the velocity
starts to grow up, while the model with 2, 3 layers captures the maximum (i. e. surface) velocity
much better than the single layer model.

We conclude that the lack of accuracy at short times when using a large number of layers
is due to the approximation of the pressure detailed in subsection 3.4.4 and the fact that the
non-linear system to solve is strongly coupled, i.e., the errors approximating the pressure in each
layer accumulates within the whole domain. A more accurate method to approximate the pressure
should be developed if more than 2-3 layers are used. As a result, we will mainly use the 2-layer
model in the following. It is also justified looking at Figure 13, where we have shown that, despite
of the fact that we need many layers to give an accurate approximation of the vertical profiles of
velocity and solid volume fraction, the models with 2 and 3 layers are able to capture surprisingly
well the mean variation of these profiles.

Figures 15 and 16 show the influence of the dilatation constant K (see (10)), which has been
calibrated for single-layer models. If we compare the results obtained with two values of K by
showing also the results obtained with K ′ = 2K (dashed blue lines), we observe a strong sensitivity
of the results to this parameter. This is the case in particular for the high viscosity system (see
the case with 10 layers in Figure 16) for the velocity behaviour in particular at the beginning
when the velocity starts to grow up. These results suggest that this constant should be calibrated
for 3D models (or at least for multi-layer cases).

Therefore, in the following we keep only the model with two layers (Preserving Granular Mass
two-layers model, denoted PGM-2 model hereafter) because it is the simplest case giving an
appropriate solution, although we could choose also the one with 3 layers. In appendix B, we
write this particular case for the reader that is interested on using this particular model, and not
on the general multilayer case. In the following subsection we finally compare this two-layer model
with previous models in the literature and experimental data.
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Figure 14: Time evolution of exact (solid lines) and computed (blue symbols) solid pressures for
the case of a single layer ((a) and (b)) and two layers ((c) and (d)) in the multilayer system, in
the low ((a) and (c)) and high ((b) and (d)) viscosity case with dense initial configuration. Dotted
lines in the two layer case are the pressures at the internal interface z = z3/2, while solid lines are
the pressures at the bottom z = z1/2. Inset figures are the long time exact solutions.

4.2.2 PGM-2 model vs other models

We compare here the results of the proposed two-layer model (PGM-2 model) with the results of
models B-2016 and PP-2009. These depth-averaged models only compute the averaged velocity
and solid volume fraction, while the PGM-2 model allows us to compute two values of these
quantities in the normal direction. In particular, in the configuration considered here, the velocity
in the bottom layer is lower than the velocity in the top layer, further called the maximum velocity.
As previously, the physical and rheological parameter are fixed in tables 1 and 2.

In figures 17 and 18 we see the time evolution of the maximum and the averaged velocities, the
pressure at the bottom, the concentration, the solid mass and the height for all the models in both,
the loose and dense initial configuration, for the high and low viscosity cases. All the models give
similar results at the steady state although the time evolution can differ. We see that the results
of the proposed PGM-2 model and the B-2016 model are very close for the pressure, averaged
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Figure 15: Low viscosity case with dense initial condition. Time evolution of the velocity of
each layer for the multilayer model with 2, 3, 4 and 10 layers. Solid red lines are computed with
dilatation constant K = 4.09 and dashed blue lines are with K = 8.18. The black-squared solid
line is the solution of the single-layer model B-2016, and grey lines is the velocity measured at the
surface of the mixture in laboratory experiments.

solid volume fraction and height, whereas the velocities are slightly different. The behaviour is
very similar, for example, the steady velocity for the dense initial configuration is greater that
the one for the loose configuration. However, with the 2-layers model the obtained maximum
velocity in the top layer is much closer to the velocity measured at the surface of the mixture in
the experiments (see Figure 21). Therefore, the main advantage of this model with respect to the
previous depth-averaged models B-2016 and PP-2009 is the approximation of the velocity field.

Both PGM-2 and B-2016 models preserve the granular mass
(∑N

α=1 hαϕα

)
, contrary to the

PP-2009 model for which the total height (h) is preserved (see figures 17(c)(d) and 18(c)(d)). Note
that a multilayer model preserving the total height has been also obtained in subsection 3.4.1.
Imposing mass conservation leads to different velocity, pressure, and solid mass in steady state for
initially loose and dense cases (PGM-2 and B-2016 models), while the steady state reached with
PP-2009 model does not depend on the initial dense/loose configuration. These results are the
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Figure 16: High viscosity case with dense initial condition. Time evolution of the velocity of
each layer for the multilayer model with 2, 3, 4 and 10 layers. Solid red lines are computed with
dilatation constant K = 4.09 and dashed blue lines are with K = 8.18. The black-squared solid
line is the solution of the single-layer model B-2016, and grey lines is the velocity measured at the
surface of the mixture in laboratory experiments.

expected following the analysis of the proposed model and the one presented in subsection 3.4.1.
Figures 19 and 20 show the convergence of the solid volume fraction to the equilibrium con-

centration in the high and low viscosity cases. This convergence is much slower in the dense
configuration than in the loose one, as commented before. In fact, we can see in Figure 19b that
for the loose configuration the solid volume fraction ϕ̄ goes to ϕ̄eqc at very short times (t ∼ 10−3).

In Figure 21 we show the velocity and excess pore pressure with models PP-2009, B-2016 and
PGM-2, and also the laboratory experiments in Pailha et al. 2009 [25], in both the high and
low viscosity case. Looking at the averaged velocities computed with the depth-averaged models,
we see that they cannot predict the velocity observed at the mixture surface in the experiments.
However, the maximum velocity computed by the proposed two-layers model has the order of
magnitude of the surface velocity in the experiments. On the other hand, having two layers
instead one layer does not significantly change the calculated excess pore pressure. As expected,
this excess pore pressure goes to zero after some time in all models.
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Finally, in Figure 22 we see the evolution of the fluid transference, Gf,N+ 1
2
, at the interface

between the mixture layer and the upper fluid layer. We recall that Gf,N+ 1
2

have the opposite

sign to Vf in previous work [6] (see (19)). For the high viscosity case ( Figure 19(b)) we see
very clearly the dynamics. When the mixtures starts to flow in the initially dense case, we have
ϕ > ϕeqc , leading to a positive dilatation angle tanψ = K (ϕ− ϕeqc ) > 0 and therefore to dilatation.
As a consequence the fluid is sucked into the mixture (Vf = −Gf,N+ 1

2
< 0) and the height of the

mixture increases (see inset in Figure 17c). On the contrary, in the initially loose case, ϕ < ϕeqc ,
leading to tanψ = K (ϕ− ϕeqc ) < 0 and therefore to contraction. The fluid is thus expelled from
the mixture (Vf = −Gf,N+ 1

2
> 0) and the mixture height decreases.

Focusing now on the low viscosity case, we observe the same behaviour for the initially dense
case, but not for the loose case. Figure 23 shows the loose case at very short times, where the
material contracts at the beginning as expected, i.e. the fluid is expelled (−Gf,N+ 1

2
> 0) and the

height decreases. However we see that after some time ϕ2 < ϕeqc,2 (contraction) in the top layer
(layer 2) whereas ϕ1 > ϕeqc,1 (dilatation) in the bottom layer (layer 1). Moreover, it makes that the
fluid transference at the top changes its sign and becomes negative at time t ≈ 5.1 × 10−3, and
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Figure 17: Time evolution of (a) velocity, (b) pressure at the bottom, (c) averaged solid volume
fraction, (d) solid granular mass in the high viscosity case.
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Figure 18: Time evolution of (a) velocity, (b) pressure at the bottom, (c) averaged solid volume
fraction, (d) solid granular mass in the low viscosity case.

therefore the fluid is sucked and the height increases. That is, a different contraction/dilatation
situation could occur in each layer in the multilayer configuration.

Physically, it could mean that when the fluid is expelled at the beginning, the lower part is the
first one that remain with less fluid (because each layer is expelling fluid toward the upper layer,
but receiving it from the layer below), and therefore it becomes to a dense situation. After that,
the lower part dilates and the upper part contracts, going to a globally dilatation situation, as we
can see in Figure 23.

5 Conclusions

In this work we deal with dilatancy effects in granular models of fluidized flows. A multilayer
extension of the two-phase model proposed by Bouchut et al. (2016) [6] has been presented. It is
derived from a dimensional analysis and the multilayer approach following an analogous procedure
to [10]. This model is in principle able to recover the structure of the fluid in the direction normal
to the topography. This is essential to improve the description of friction and viscous terms
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Figure 19: (a) Time evolution of the averaged volume solid fraction and equilibrium concentration
for the high viscosity case and (b) time evolution at short times.
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Figure 20: (a) Time evolution of the averaged volume solid fraction and equilibrium concentration
for the low viscosity case and (b) time evolution at short times.

when considering a complex rheology compared to depth-averaged single-layer models, as showed
in [10, 11]. In particular, it allows to recover the normal velocity profiles, but also the normal
profiles of the solid volume fraction and pore fluid pressure.

The proposed two-phase model behaves as the B-2016 [6] model, preserving the total solid
mass. In addition, a model that behaves as the PP-2009 model [25] −preserving the total mixture
height− has been also obtained for a particular closure relation for the solid mass transference
at the mixture upper interface. That closure relation allows us to obtain either a model (PH)
preserving the total height (and maybe loosing solid mass) or a model (PGM) preserving the total
solid mass (the height vary depending on the contraction/dilatation of the solid). This last model
is the physically meaningful model that we further compare with laboratory experiments.

The main difficulty of the proposed two-phase model is the excess pore fluid pressure that
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Figure 21: (a),(c) Time evolution of the averaged velocity; (b),(d) the excess pore pressure at the
bottom in the high viscosity case ((a),(b)) and the low viscosity case ((c),(d)). Grey lines are the
experiment data.

appears in particular in the solid pressure, which is no more hydrostatic even with the thin
layer approximation. This pressure varies strongly in time when starting from non-equilibrium
conditions due to dilatation or contraction of the granular medium. It further goes to zero when
reaching steady states. Dealing with this strongly varying, non-linear term is shown to be a
real numerical challenge to approximate the model when variations in the normal direction are
considered. For this reason, we only deal with uniform flows in the numerical tests in this work,
although the model is deduced for general flows, and simulation of x-dependent flows could be
part of a forthcoming work.

Even in the case of uniform flows, where the model is reduced to a system of ODEs, the
numerical approximation is not easy and a specific numerical scheme is necessary. As consequence
of this pore excess pressure term, the pressure cannot be easily computed, even in the single-layer
case where the pressure at the bottom is one of the two roots of a quadratic equation. A numerical
scheme based on the first-order Taylor polynomial has been proposed to approximate the pressure.

We have validated the model by comparing with the analytical solution for two-phase uniform
flows. In this case we have chosen the PH model because computing the analytical solution in that
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Figure 22: Time evolution of the fluid transference at the interface between the mixture and the
upper fluid layer in the (a) low and (b) high viscosity cases, with dense/loose initial condition.

Figure 23: Time evolution of the (a) fluid transference at the interface between the mixture and
the upper fluid layer, and (b) the solid volume fraction at short times for the low viscosity case
and loose initial condition.

case is simpler than for the PGM model, since the height is directly obtained. We have seen that
the steady solution does not depend on the dense/loose initial value of the solid volume fraction
for the PH model (also PP-2009 model), where the solid mass varies in time, in contrast with the
results obtained with the PGM model (also B-2016 model), where the solid mass is preserved and
the steady states for the velocity and pressure depend on the initial solid volume fraction.

For these tests, a constant profile of solid volume fraction has been obtained. Furthermore,
an analytical solution for confined flows, where side wall friction notably changes the dynamics
of the flow, has been deduced from the resolution of a integro-differential equation. In that case,
the velocity profile goes from a Bagnold profile to a S-shaped profile, very similar to the case of
dry flows (see [11]). It is interesting that the profile of solid volume fraction is not constant in
this case, but linear, and when a flow/no-flow transition is observed in the velocity profile, then
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the solid volume fraction becomes constant in the no-flow (i. e. rigid) zone. In addition, we see
that including side wall friction as in Jop et al. [19] is a good approximation for shallow flows.
An interesting feature of this approach is that is allows to give an approximation of flow/no-flow
transition which is obviously not the case for depth-averaged single-layer models. Furthermore,
for the analytical solutions (with and without side wall friction) we have also shown convergence
tests depending on the number of vertical layers. In particular, for solutions with a strong vertical
structure (the case of a narrow channel width) the analytical solution is perfectly recovered when
increasing the number of layers.

We have shown that the approximation of the pressure with the proposed method is acceptable,
in the sense that it approximates the good solution from the 2N possible solution vectors for the
pressure. However, this approximation is not accurate enough at short times and the error notably
increases with the number of layers in the normal direction. We have seen that the model with
2 or 3 layers gives reasonable results when compared with experimental data, allowing to make
the quantities (velocity, volume fraction, pore pressure, etc.) vary in the normal direction. The
pore pressure estimates however is getting less and less accurate when increasing the number of
layers due to the accumulation of the numerical error for this full coupled models. This problem
will be encountered also if solving the complete Jackson’s equation for any 3D method. Another
conclusion of this work is that the dilatation constant should be fitted for 3D models, since it has
a strong influence on the results, in particular when using a large number of layers.

The model with two layers (PGM-2 model) has been chosen for further comparison with
experimental results. We conclude that a more accurate method to compute the pressure is
necessary in order to approximate the solution at short times. An interesting alternative could
be to use an adaptive multilayer method, which uses few layers at short times giving a good
approximation of the solid pressure, and increases the number of layers when the excess pore
pressure becomes small. That would allow us to get a better approximation of the velocity profile
at latter times and will be investigated in the future.

We compare the results of the PGM-2 model with the model of Bouchut et al. (2016) [6]
(B-2016) and Pailha and Pouliquen (2009) [25] (PP-2009). We see that our results are similar to
the B-2016 model, except for the velocity. Actually, these previous depth-averaged models were
not able to predict the velocity measured at the mixture surface, while the maximum velocity
calculated at the top layer with the PGM-2 model is closer of this observed velocity. More
differences are found when comparing the proposed model with the PP-2009 model as expected,
since this model preserves the total height instead of the mass and therefore the steady states of
the loose/dense initial condition are the same, in contrast with models B-2016 and PGM-2 models.
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A Explicit expression of the excess pore pressure

In this appendix we detail the computation of the excess pore pressure in equation (27)

pef,α = pe
f,α+ 1

2
+ εk+2 βα

(1− ϕα)

∫ z
α+ 1

2

z

(uz − vz) dz′, (46)
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with

pe
f,α+ 1

2
= pef,α+1

(
z = zα+ 1

2

)
= εk+2

N∑
γ=α+1

βγ
(1− ϕγ)

∫ z
γ+ 1

2

z
γ− 1

2

(uz − vz) dz′. (47)

Firstly, we integrate the dilatancy equation (13g) between zα− 1
2

and z ∈
(
zα− 1

2
, zα+ 1

2

)
as it is

made for the calculation of the vertical velocity, resulting

vzα(z) = (vz
α− 1

2
)+ − (z − zα− 1

2
)

(
∂xvα −

1

ε
Φα

)
. (48)

We can also integrate equation (24) regarding the incompressibility of the mixture, obtaining

ϕαu
z
α(z) + (1− ϕα)uzα(z) = (1− ϕα) (uz

α− 1
2

)+ + ϕα(vz
α− 1

2

)+

−
(
z − zα− 1

2

)
∂x (ϕαvα + (1− ϕα)uα) .

(49)

Now, by considering equation (49) minus equation (48) and dividing the result by (1− ϕα), we
get

uzα(z)− vzα(z) = (uz
α− 1

2
)+ − (vz

α− 1
2
)+ −

(
z − zα− 1

2

)
(1− ϕα)

(
∂x

(
(1− ϕα) (uα − vα)

)
+

1

ε
Φα

)
.

Once we have the explicit expression for the difference of the vertical velocities, we have to compute
the integrals in (46)-(47). Tanking into account that

∫ z
α+ 1

2

z

(
z′ − zα− 1

2

)
dz′ =

h2
α −

(
z − zα− 1

2

)2

2
,

we obtain that

pef,α = pe
f,α+ 1

2

+ εk+2 βα
(1− ϕα)

(
zα+ 1

2
− z
)(

(uz
α− 1

2
)+ − (vz

α− 1
2
)+
)

− εk+2 βα
(1− ϕα)

h2
α −

(
z − zα− 1

2

)2

2 (1− ϕα)

(
∂x

(
(1− ϕα) (uα − vα)

)
+

1

ε
Φα

)
.

(50)

In this work we are interested on the case of a strong friction between the fluid and granular phases.
This case is more suitable for natural context applications as discussed in [6], and moreover it is
simpler than the moderate friction choice, involving only first-order derivatives in the momentum
equations. Therefore we take k = −1 in previous equation, leading to

pef,α = pe
f,α+ 1

2

+ ε
βα

(1− ϕα)

(
zα+ 1

2
− z
)(

(uz
α− 1

2
)+ − (vz

α− 1
2
)+
)
− βα

h2
α −

(
z − zα− 1

2

)2

2 (1− ϕα)2 Φα +O(ε).

Using the mass transference terms (18) we obtain

(uz
α− 1

2
)+ − (vz

α− 1
2
)+ =

Gs,α− 1
2

ϕα
−

Gf,α− 1
2

(1− ϕα)
+ (uα − vα) ∂xzα− 1

2
,
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and using the expression for the solid and fluid mass transference terms (34), we get

ε
βα

(1− ϕα)

(
zα+ 1

2
− z
)(

(uz
α− 1

2
)+ − (vz

s,α− 1
2
)+
)

=
−βα

ϕα (1− ϕα)2

(
zα+ 1

2
− z
) α−1∑

γ=1

ϕγhγΦγ + O(ε).

Note that here we have used the nondimensional expression of the mass transference terms, whose
leading order is 1/ε, corresponding to the term involving the dilatancy function. As a result, we
get the following explicit expression for the excess pore pressure

pef,α = pe
f,α+ 1

2
− βα

h2
α −

(
z − zα− 1

2

)2

2 (1− ϕα)2 Φα −
βα

ϕα (1− ϕα)2

(
zα+ 1

2
− z
) α−1∑

γ=1

ϕγhγΦγ + O(ε),

with

pe
f,α+ 1

2
= pef,α+1

(
z = zα+ 1

2

)
=

N∑
ξ=α+1

−βξ hξ
ϕξ (1− ϕξ)2

 ξ−1∑
γ=1

ϕγhγΦγ +
ϕξhξΦξ

2

 + O(ε).

In this case, we consider the moderate friction regime by fixing k = 0 in (50), the excess pore
pressure results

pef,α = pe
f,α+ 1

2

+ ε2 βα
(1− ϕα)

(
zα+ 1

2
− z
)(Gs,α− 1

2

ϕα
−

Gf,α− 1
2

(1− ϕα)
+ (uα − vα) ∂xzα− 1

2

)

− ε2 βα
(1− ϕα)

h2
α −

(
z − zα− 1

2

)2

2 (1− ϕα)

(
∂x

(
(1− ϕα) (uα − vα)

)
+

1

ε
Φα

)
,

where pe
f,α+ 1

2

= pef,α+1

(
z = zα+ 1

2

)
, and Gs, Gf are given by (34). Note that this expression is

more complicated because it involves second order derivatives in the momentum equations.

B Preserving Granular Mass two-layers model (PGM-2
model)

This appendix is devoted to presenting the two-layer model, which we have used in section 4.2.2 to
compare our results with previous models in the literature: Bouchut et al. (2016) [6] and Pailha
and Pouliquen (2009) [25], for readers that are interested on using this model without look at the
detail of the multilayer case.

48



Thus, the PGM-2 model is written as (Gf, 1
2

= Gs, 1
2

= 0, kb = 0 and ki = 0)

∂th = Gf, 5
2
,

∂tϕ1 = −ϕ1Φ1,

l1 ρs ∂t (hϕ1v1) = l1 hβ1 (u1 − v1) − (ρs − ρf ) g sin θl1hϕ1

+Ks, 1
2
−Ks, 3

2
+ ρsGs, 3

2

v2 + v1

2
,

l1 ρf ∂t (h (1− ϕ1)u1) = − l1 hβ1 (u1 − v1)

−Kf, 3
2

+ ρfGf, 3
2

u2 + u1

2
,

l2 ρs ∂t (hϕαv2) = l2 hβ2 (u2 − v2) − (ρs − ρf ) g sin θl2hϕ2

+Ks, 3
2
− ρsGs, 3

2

v2 + v1

2
,

l2 ρf ∂t (h (1− ϕ2)u2) = − l2 hβ2 (u2 − v2)

+Kf, 3
2

+ ρfGf, 5
2
u2 −

1

2
ρfGf, 3

2

u2 + u1

2
,

where

βα =
150ϕ2

α

d2
s (1− ϕα)

ηf , for α = 1, 2,

the mass transference terms are

Gf, 5
2

=
l1ϕ1Φ1 + l2ϕ2Φ2

l1ϕ1 + l2ϕ2

h, Gs, 3
2

= l1

(
ϕ1Gf, 5

2
− ϕ1hΦ1

)
, Gf, 3

2
= l1

(
(1− ϕ1)Gf, 5

2
+ ϕ1hΦ1

)
,

and the dilatancy function is

Φα = γ̇αK
(
ϕα − ϕeqc,α

)
, with ϕeqc,α = ϕstatc −K2

ηf γ̇α
ps,α− 1

2

, for α = 1, 2

with

γ̇1 =
λ |v1|
l1h

, γ̇2 =
|v2 − v1|
l2h

,

with λ = 1 (friction) or λ = 2 (no slip). The viscous terms are

Ks, 3
2

= −1

2
ηs, 3

2

v2 − v1

l1h
, Ks, 1

2
= −ρsg cos θ h

(
µ
(
I 1

2

)
+ tanψ1/2

) v1

|v1|
,

Kf, 3
2

= −ηf
u2 − u1

l1h
, Kf, 1

2
= 0,

with ηs, 3
2

and I 1
2

defined by (20) and (22). Finally, the solid pressure at the continuous level are

written

ps, 1
2

= ps, 3
2

+ (ρs − ρf ) g cos θl1hϕ1 +
β1 l1h

ϕ1 (1− ϕ1)2

ϕ1l1hΦ1

2
,

ps, 3
2

= (ρs − ρf ) g cos θl2hϕ2 +
β2 l2h

ϕ2 (1− ϕ2)2

(
ϕ1l1hΦ1 +

ϕ2l2hΦ2

2

)
,

where Φ1 and Φ2 depend on ps, 1
2

and ps, 3
2

and cannot be explicitly computed. They are computed

as in section 3.4.4.
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[12] E. D. Fernández-Nieto, E. H. Koné, and T. Chacón Rebollo. A Multilayer Method for the
Hydrostatic Navier-Stokes Equations: A Particular Weak Solution. Journal of Scientific
Computing, 60(2):408–437, 2014.

[13] D.L. George and R.M. Iverson. A two-phase debris-flow model that includes coupled evolution
of volume fractions, granular dilatancy, and pore-fluid pressure. pages 415–424, 06 2011.

[14] D.L. George and R.M. Iverson. A depth-averaged debris-flow model that includes the effects of
evolving dilatancy. II. Numerical predictions and experimental tests. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 470(2170):20130820, 2014.

[15] I. R. Ionescu, A. Mangeney, F. Bouchut, and R. Roche. Viscoplastic modeling of granular col-
umn collapse with pressure-dependent rheology. Journal of Non-Newtonian Fluid Mechanics,
219(0):1–18, 2015.

[16] R. M. Iverson. The physics of debris flows. Reviews of Geophysics, 35(3):245–296, 1997.

50



[17] R. M. Iverson and D. L. George. A depth-averaged debris-flow model that includes the effects
of evolving dilatancy. I. Physical basis. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 470(2170):20130819, 2014.

[18] R. Jackson. The Dynamics of Fluidized Particles. Cambridges Monographs on Mechanics.
Cambridge University Press, 2000.

[19] P. Jop, Y. Forterre, and O. Pouliquen. Crucial role of sidewalls in granular surface flows:
consequences for the rheology. Journal of Fluid Mechanics, 541:167–192, 10 2005.

[20] P. Jop, Y. Forterre, and O. Pouliquen. A constitutive law for dense granular flows. Nature,
441(7094):727–730, 2006.

[21] P.-Y. Lagrée, L. Staron, and S. Popinet. The granular column collapse as a continuum:
validity of a two-dimensional Navier-Stokes with a µ(I)-rheology. Journal of Fluid Mechanics,
686:378–408, 2011.

[22] C. Lusso, A. Ern, F. Bouchut, A. Mangeney, M. Farin, and O. Roche. Two-dimensional
simulation by regularization of free surface viscoplastic flows with Drucker-Prager yield stress
and application to granular collapse. Journal of Computational Physics, 333:387–408, 2017.

[23] M. Pelanti, F. Bouchut, and A. Mangeney. A Roe-type scheme for two-phase shallow granular
flows over variable topography. ESAIM: M2AN, 42(5):851–885, 2008.

[24] N. Martin, I. R. Ionescu, A. Mangeney, F. Bouchut, and M. Farin. Continuum viscoplastic
simulation of a granular column collapse on large slopes: µ(I) rheology and lateral wall effects.
Physics of Fluids, 29(1):013301, 2017.

[25] M. Pailha and O. Pouliquen. A two-phase flow description of the initiation of underwater
granular avalanches. Journal of Fluid Mechanics, 633:115–135, 2009.

[26] T.C. Papanastasiou. Flows of Materials with Yield. Journal of Rheology, 31(5):385–404,
1987.

[27] E.B. Pitman and L. Le. A two-fluid model for avalanche and debris flows. Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, 363(1832):1573–1601, 2005.

[28] S. Roux and F. Radjai. Texture-Dependent Rigid-Plastic Behavior, pages 229–236. Springer
Netherlands, Dordrecht, 1998.

51


	Introduction
	The initial system
	Governing equations
	Boundary conditions

	Rheology for fluidized granular flows
	Local coordinates

	Two-phase multilayer models with dilatancy
	Dimensional analysis
	A multilayer approach
	Weak solution with discontinuities

	Final model
	Explicit mass transference terms

	Particular configuration: immersed uniform flows
	A multilayer model preserving the mixture height
	Analytical solution
	Side walls friction for confined flows: analytical solution
	Numerical approximation: computation of the linearized solid pressure


	Numerical tests for uniform flows
	Comparison with analytical solution
	No side walls friction
	Side walls friction

	Comparison with other models and laboratory experiments
	Choice of the model
	PGM-2 model vs other models


	Conclusions
	Explicit expression of the excess pore pressure
	Preserving Granular Mass two-layers model (PGM-2 model)

