
HAL Id: hal-02899964
https://hal.science/hal-02899964

Submitted on 16 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Nonlinear Codes for Control Flow Checking
Giorgio Di Natale, O. Keren

To cite this version:
Giorgio Di Natale, O. Keren. Nonlinear Codes for Control Flow Checking. IEEE European Test Sym-
posium (ETS 2020), May 2020, Tallinn, Estonia. �10.1109/ETS48528.2020.9131592�. �hal-02899964�

https://hal.science/hal-02899964
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Nonlinear Codes for Control Flow Checking
Giorgio Di Natale⇤, Osnat Keren†

⇤Univ. Grenoble Alpes, CNRS, Grenoble INP*, TIMA, 38000 Grenoble, France
†Faculty of Engineering, Bar-Ilan University

Abstract—A hardware-based control flow monitoring technique

enables to detect both errors in the control flow and the instruction

stream being executed on a processor. However, as was shown in

recent papers, these techniques fail to detect malicious carefully-

tuned manipulation of the instruction stream in a basic block.

This paper presents a non-linear encoder and checker that can

cope with this weakness.

I. INTRODUCTION

Dependability is an important characteristic of modern com-
puting system. The hardware components of a system can
be affected by faults due to different root causes such as
environmental perturbations (e.g., radiations, electromagnetic
interference) or malicious attacks (fault attacks, software mod-
ification or replacement).

Many techniques have been proposed in literature to cope
with transient, permanent and malicious faults in many parts
of a system. They target both the hardware and the software
parts, and rely on different forms of redundancy. Among
these techniques for reliability improvement and fault tolerance,
Control Flow Checking (CFC) allows covering faults affecting
storing elements containing the executable program, as well as
all the hardware components handling the program itself and
its flow.

CFC has been proposed to cope with reliability issues for
both transient and permanent faults ([1], [2]) and more recently,
with security issues caused by the injection of malicious faults
[3], [4], which can allow an attacker to either bypass security
checks or retrieve secret information. Software based CFC
solutions which modify the code rely on the assumption that
the code stored in memory is not being maliciously tampered
with and thus cannot provide security [5]; on the other hand,
hardware-based CFC solutions, such as [6] can detect malicious
code and data tampering at run-time.

There are two types of hardware-based CFC policies: fine
grained and coarse grained [5]. Fine grained CFC policy allows
control flow along valid edges of the control flow graph whereas
coarse grain policy relaxes this restriction. A control flow graph
(CFG) makes it possible to model the normal program behavior
of a code that is not self-modifying or generated on the fly as a
walk on a static graph. The nodes in this graph are sequences
of non-branching instructions (also called Basic Blocks) with a
single entry point at the first instruction and a single exit point
at the last instruction. The edges of the graph represent jumps,
branches and returns. The work in [7] distinguished between
two levels of fine granularity: instruction integrity checking
which aims to detect attacks which may not result in control

*Institute of Engineering Univ. Grenoble Alpes

flow violations, and instruction flow checking for detecting
forward-edge and backward-edge flow violations between basic
blocks. The fine-grained methods include Shadow Call Stack
protection which is designed to detect tampering with return
addresses stored in the stack during a function call [7, 8], Code
Pointer Integrity which uses short Message Authentication
Code (MAC) tags to verify the authentication of pointers at run
time [9], and the Signature Modeling technique [10, 11, 12].

In Signature Modeling, basic blocks are accompanied by
a signature, such as a Cyclic Redundancy Check (CRC)
checksum or Hamming code, generated at run-time and then
compared against a pre-computed signature which is stored in
a secure memory. In case of modification of any bit belonging
to that portion of the code, the detection code deviates from the
expected signature and reveals the fault. The two signatures can
be compared during the execution of each instruction [11, 12]
or when a basic block ends [7, 3]. In [12] a CRC-based
signature monitor was integrated into the instruction fetch state
to prevent the processing of instructions whose pre-calculated
and the current signatures do not match. The authors in [13]
proposed a technique to map a malicious software into another
one (protected by a control flow checking mechanism), without
violating the structure of the latter one, in other words, without
being detected by a control flow monitoring technique. The
basic principle involved the fine-tuning of the instructions in
each basic block so that the generated signature corresponded
to the one for the original program. In MAC, the signature
is calculated by resorting also to a secret information which,
besides data integrity, allows guaranteeing the authenticity of
the BB.

In this paper we propose a signature calculation based on
non-linear codes, to protect against malicious modifications of
the executed program. The proposed method can be applied
to fine-grained CFC schemes. We assume the attacker knows
the protected architecture details and its machine language, as
well as the program and its control flow graph. Moreover,
the attacker has the means to execute malicious physical
manipulations on the device by injecting precise faults at run-
time into the machine code stored in memory. Our contribution
is the following:

• A non-linear code based on a weakened version of the
multiple random variables Karpovsky-Wang Algebraic
Manipulation Detection (AMD) code [14]

• A signature calculation method that works in parallel to the
processor pipeline and does not require processor changes,
code changes or additional latency.

• By making use of the fact that the signature is stored
in a secure memory and cannot be tampered with, the
area overhead of the signature calculation is relatively

small (compared to the methods able to prevent malicious
attacks) and does not require partitioning the program into
basic blocks of equal length as required in [7].

This paper is organized as follows: Section 2 presents an
overview of existing CFC solutions, as well it details the
architecture in which the proposed signature calculation can
be used. Section 3 presents some definitions and the security
metric we use to evaluate and build the non-linear code.
Section 4 presents the theoretical construction of the code,
while Section 5 describes its hardware implementation. Finally,
we draw some conclusions in section 6.

II. CONTEXT

Error-detection codes used for integrity checking in CFC
schemes were historically developed to have an overall small
impact on the target system, in terms of area overhead and
additional delay introduced for its calculation. These solutions
were targeting primarily natural faults, which have a uniform
statistical distribution. However, in order to cope also with
malicious attacks, new methods have been proposed, based on
Message Authentication Codes (MAC). In MAC, the signature
is calculated by resorting also to a secret information which,
besides data integrity, allows guaranteeing the authenticity of
the data.

Nevertheless, the MAC techniques that are based on statically
computed cryptographic hash of the instruction sequence in the
basic block [7, 15] have generally high latency, because the
monitor has to buffer the instruction stream corresponding to
a basic block and only start to compute the hash when the
block ends. In some hash algorithms the input is processed
through several rounds and additional latency is accumulated.
Few MAC based checkers ([6, 12]) allows the computation of
the signature together with the execution of the program itself.
Nevertheless, these solutions have some limitations. In [6] a
Cipher Block Chaining-Message Authentication Code (CBC-
MAC) algorithm with a 64-bit MAC length is used. Since
CBC-MAC is only secure for messages of a fixed length,
two block lengths of 5 and 6 instructions are supported. In
addition, its implementation has a critical path which is longer
than the one of the processor, leading to a cycle overhead of
13.7% and a total execution time overhead of 110%. In [12],
on the other hand, the so called ”derived signature” enables a
checksum computation with zero latency. However, it utilizes
systematic encoders of linear cyclic codes defined by generator
polynomials over a finite field. Due to the linearity of the
codes, the corresponding CFCs can detect only a (relatively)
small number of errors, and they cannot detect attacks made
by sophisticated precise attackers.

In this paper we present a MAC based Control Flow Checker
that has the advantage of working with basic blocks of vari-
able length, detecting any injected error and performing the
computation without execution time overhead.

The proposed MAC scheme can be applied to any CFC
architecture where the co-processor in charge of calculating
the signatures of the BBs (also called control flow checker,
or watchdog) works in parallel with the main processor, by
fetching the instructions to be executed from the main bus, and

Instruction
cache

IF ID EX WB

Instruction

PC

Control Unit

Alarm

Secured
memory

Computation
module

Comparator

Fig. 1: Micro-architecture of the control flow checker

by comparing the obtained signature with a predefined one. Fig.
1 shows the generic architecture in which the MAC can be used.
The watchdog is a standalone module that works in parallel to
processor’s pipeline. It does not modify the pipeline stages,
does not add latency, nor interfere with the program flow.
The CFC communicates with the processor via the existing
interface; it receives its inputs which are the current address
and instruction on buses used by the processor during the
Instruction Fetch (IF) phase. The CFC is implemented in a
secure zone. As shown in Fig. 1, the control flow checker
consists of four main blocks: a compact processing unit, a
comparator, a control unit, and a secure memory array (e.g.,
the secure RAM presented in [16]). The secure memory is
more expensive, but is used for storing only a small amount of
information and not the whole program. The size of the secure
memory and its width depends on the number of basic blocks,
their maximal size and the required security level.

We assume that:
• The off-line signature calculation process as well as the

program can be trusted.
• To reduce the cost of the product, the main memory has no

dedicated security protection whereas the watchdog itself,
including its secure memory in which the signatures are
stored, is not accessible by the attacker.

• The attacker knows the original code, its profiling and its
location in the main memory.

• The attacker is able to tamper with the content of the
main memory and the cache and is able to inject arbitrary
or precise errors at run-time; i.e., when the code is loaded
from the memory into the cache or when it is being fetched
from the cache.

III. DEFINITIONS AND SECURITY METRIC

A Basic Block (BB) is a piece of code made of one or several
consecutive instructions without any jumps between them. A
BB starts when its address is the target of a jump instruction of
another (or others) BB(s), and ends with a jump to another BB
(or a return). The BB size is the number of bytes (k) occupied
by all the instructions in that BB.

Most of the security oriented codes1 are defined over a
finite field Fq of size q. The size of the field determines the
complexity of the arithmetic over that field. In this paper we
work over Fq , q = 2r. As we show in the next section, r deter-
mines both the effectiveness of the code and the implementation

1Most of the codes are defined over finite fields, but there are codes that are
defined over integer rings. See for example [17, 18, 19].

complexity. The smaller r is, the lower implementation cost of
the multipliers over that field.

The sequence of instructions in a BB is modeled as a binary
vector. Because of the limits of the code (as explain in Section
IV), we assume each BB to have a size smaller or equal to 8N
bits (i.e., N bytes). The encoder that computes the signature
and the checker that verifies the validity of the sequence refer
to this sequence as a q-ary vector of length k

Y = (yk, ...y1), 2 Fk
q ,

where
k  kmax = d8 ·N

r
e.

Each sequence Y is associated with a signature S. The
signature is computed off-line and stored in a secured memory.
The pair (Y, S) can be referred to as a codeword of a variable
length (security oriented) code. Each signature S has two parts,
a random part X (i.e., the secret information) and a computed
part f(X,Y). It is assumed that the attacker knows Y but does
not know X .

The signature itself is a binary vector of length (t+1)r bits.
(As we show in next section, larger t provides better security).
We refer to S as a q-ary vector of length t+1. Its random part
is a nonzero q-ary random vector of length t,

X = (xt, ...x1) 2 Ft
q,

and f = f(Y,X) 2 Fq is a single q-ary symbol.
Denote by Ŷ = (ŷk̂, ...ŷ1) the (possibly distorted) sequence

read by the checker. It is assumed that the attacker knows the
original sequence Y , and can alter it as s/he wishes. Moreover,
the attacker may also change the length of the sequence (i.e.,
k 6= k̂). The signature is not observable and hence cannot be
altered. Thereby, the checker ”sees” the tuple (Ŷ , X, f(X,Y)).

Our goal is to construct an online control flow checker that
receives the content of the BB as read from the memory (Ŷ)
and the address of the first instruction of the next BB (i.e., it
knows i), and computes in parallel to the execution of the BB
the value of f(Xi, Ŷ). The checker rises a flag if the computed
value differs from the one stored in the secured memory.

The effectiveness of this control flow checker is defined as

the probability Q that the worst attack will pass unnoticed.
That is, let X be a uniformly distributed vector over a subset
X ✓ Ft

q , then

Q = max
Y,Ŷ

EX

⇣
Prob(f(X,Y) = f(X, Ŷ))

⌘

where EX() means the expected value with respect to X .

IV. CONSTRUCTION

The code presented in this paper is a derivative of Karpovsky-
Wang code [14]. However, its computational complexity is
smaller since it makes use of the fact that the signature cannot
be tampered with. This property enables us to construct a
variable length code whose checker can work in parallel to
the execution of the BB without changing its throughput or
latency. It also enables a simple and smooth transition between
BBs.

The following coding scheme is based on the Generalized
Reed-Muller (GRM) codes [20]. It has three parameters, r, t
and b. r defines that size of the field (q = 2r), t is the number
of random q-ary symbols, and b < q� 1 is the smallest integer
for which the coding scheme can protect a sequence of maximal
length kmax. The value of b is determined as follows.

Let Zq be the set of integers {0, 1, ..., q � 1}. Let ⌦ be an
ordered set of integer vectors whose sum is smaller of equal to
b. That is,

⌦b = {⌦ = (wt, ...w1) : 0 <
tX

i=1

wi  b, and wi 2 Zq}.

The parameter b is the smallest integer for which the size of
⌦b is equal to or greater than kmax. Namely,

|⌦b| =
✓
t+ b

b

◆
� 1 � kmax.

We define a product term X⌦ as

X⌦ = xwt
t · · ·xw2

2 · xw1
1 ,

where computation are performed over Fq .

Construction 1. Let Y be a q-ary vector of length k  kmax. A
polynomial based non-linear signature of Y is a binary vector
of size (t+ 1) · r bits of the form S = (X, f) where

f(Y,X) =
kX

i=1

yiX
⌦i , (1)

and ⌦i 2 ⌦b

In fact, f(X,Y) is the X’th symbol in a GRM codeword c
that is associated with the information symbol (0kmax�k, Y).
A schematic description of a control flow encoder and checker
for t = 1 is given in Figure 2.

Example 1. Let the maximal length of a sequence be N = 1547
bytes. Assume we want to design a control flow checker whose
signature is a binary vector of length 30 = (2 + 1) · 10, that
is, r = 10 and t = 2. Then we have kmax = d 8·1547

10 e = 1238,
and b = 49 is the smallest integer for which

✓
2 + b

b

◆
� 1 = 1274 > kmax.

A signature is a binary vector of the form S = (X =
(x1, x2), f(Y,X)) where x1, x2 and f are 10 bit vectors that
represent elements from the finite field F210 . The value of f for
k = kmax is computed as follows

f(Y,X) = y1X
(0,1) + y2X

(0,2) + ...y49X
(0,49) +

y50X
(1,0) + y51X

(1,1) + ...y98X
(1,48) +

...
y1230X

(41,0) + y1231X
(41,1) + ...y1238X

(41,8)

= y1x1 + y2x
2
1 + ...y49x

49
1 +

y50x2 + y51x2x1 + ...y98x2x
48
1 +

...
y1230x

41
2 + y1231x

41
2 x1 + ...y1238x

41
2 x8

1.

Basic Blocks

Multiplier over
GF(2r)

Multiplier over
GF(2r)

XF(Y,X)

Buffer
r

r

r

r

4 bytes

Control flow
monitor for t=1

Addition over
GF(2r)

r

Signature storage

Fig. 2: A control flow encoder that computes f(Y,X) for t = 1.
The value of X is chosen at random during the computation of
the signature. The buffer separates the sequence of instructions
and the address of the next basic block into r-bit tuples.

As we show next, the probability that an attack will be masked
is approximately 49/1024.

Another way to construct a control flow checker for N =
1547 bytes is by taking a larger r, i.e., r = 16 t = 1 and
b = dN/2e = 774. In this case, the signature is a binary
vector of length (1 + 1) · 16 bits, and f is a polynomial of a
single variable, f(Y, x) = y1x+ y2x2 + · · ·+ y774x774. Here,
the computation is performed in the (larger) field F216 , hence,
the implementation cost is larger, however probability that an
attack will be masked becomes smaller (774/216).

A. Implementation considerations

The control flow checker computes the expected f in parallel
to the execution of the BB. That is, the bytes read from the
memory enter a buffer that groups them into r-tuples and
sends each tuple (i.e. each q-ary symbol) to the checker. The
checker circuit consists of a t digit counter that outputs ⌦i.
The counter and its control signals are described in Alg. 1
lines 9-30. The counter is a radix (b + 1) ripple counter. For
example, for t = 4, b = 15, and ⌦i = (w4 = 1, w3 = 7, w2 =
0, w1 = 3), the next ⌦ will be ⌦i+1 = (1, 7, 0, 4). Similarly,
⌦i = (0, 0, 0, 15) will be followed by ⌦i+1 = (0, 0, 1, 0).
Note that the counter described in Alg. 1 differs from the
conventional t-digit counter. A conventional counter has a
global reset/preset signal that initializes (simultaneously) all the
digits to a predefined value, whereas our counter has t local
reset and increment signals. That is, the counter can increment
its upper part, e.g., (wt, . . . , wj+1), and reset its lower part

(wj , . . . , w1). For example, ⌦i = (4, 2, 8, 1) will be followed
by

⌦i+1 = (4, 2, 9, 0), ⌦i+2 = (4, 3, 0, 0),⌦i+3 = (4, 3, 0, 1),

The vector ⌦i that the counter outputs is used to compute
v = X⌦i for the next symbol to arrive (Alg. 1, line 31). When
a new symbol y arrives from the buffer, it is multiplied by v and
the product is added to the computed f (Alg. 1, line 7). Notice
that in each round only a single w, say wj⇤ , is incremented.
In fact, the remaining wj’s either keep their previous values
(when j > j⇤), or they are assigned with zeros (for j < j⇤).
Hence, it is not necessary to compute x

wj

j in each cycle (see
line 31).

In order to simplify the implementation of this requirement,
X has to take values from a subset X ✓ Ft

q \{0}. As we prove
in Th. 1, the larger X is, the smaller the degradation in the
code’s effectiveness.

Algorithm 1 Checker algorithm
1: (Initialization step) Set w1 = 1, wj := 0 for all 1 =

2, . . . , t.
2: (Initialization step) Set sum⌦ := 1.
3: (Initialization step) Set f := 0.
4: (Initialization step) Read the X part of the signature, X 2

X .
5: (Initialization step) Set v := x1. (v is initialized to x1

because that w1 was initialized to 1
6: When a new y is read from the buffer,

7: Compute f := f + y · v
8: Compute the next v
9: if sum⌦ == b then

10: Reset part of the lower digits and increment the upper
part of the counter as follows:

11: if w1 == 0 then

12: if w2 == 0 then

13:
...

14: if wt�2 == 0 then

15: if wt�1 = 0 then wt�1 := 0 end if

16: Increment wt.
17: else

18: Reset (wt�2, . . . w1) and increment (wt, wt�1).
19: end if

20:
...

21: else

22: Reset (w2, w1) and increment (wt, . . . w3).
23: end if

24: else

25: Reset w1 and increment (wt, . . . w2).
26: end if

27: else

28: Increment (wt, . . . w1).
29: end if

30: Compute the new sum, sum⌦ = wt + · · · + w1, using a
t-operand adder, see [21]

31: Prepare the v for the next symbol v = xw1
1 · xw2

2 · · ·xwt
t .

B. The effectiveness of the construction

Let Y be a q-ary vector of length k that represents the
correct sequence, and denote by Ŷ the q-ary vector of length
k̂ that represents the tampered sequence. The two sequences
may be of different length, i.e., k 6= k̂. Notice that the
expansion of Y and Ŷ into q-ary vectors of length kmax does
not change the signature since f(X,Y) = f(X, (0kmax�k, Y)
and f(X, Ŷ) = f(X, (0kmax�k̂, Ŷ). Thus, without loss of
generality, we assume that both vectors are of size kmax. This
enables us to represent Ŷ as

Ŷ = Y + E

where Y, Ŷ and E are vectors in Fkmax
q and treat E as an

additive error vector.

Theorem 1. Let X be a random vector that is uniformly
distributed over X ✓ Ft

q . The probability that a GRM based
signature will not detect a tampered sequence is

Q  bqt�1

|X | .

Proof. Tampering is detected if the computed signature of Ŷ
differs from the signature of Y . In other words, the attack is
undetected if f(Y,X) = f(Y + E,X). Define,

gE(X) = f(Y,X)� f(Y + E,X) =

=
kX

i=1

yiX
wi �

kX

i=1

(yi + ei)X
⌦i =

kX

i=1

eiX
⌦i .

(2)

Then, a nonzero E is undetected if X is a root of the
polynomial gE . This polynomial is associated with a q-ary
codeword c of length qt in the generalized Reed-Muller (GRM)
code. That is,

c = (gE(0), gE(1), ..., gE(q
t � 1)).

Since the GRM is a linear code of minimum distance d =
(q � b)qt�1, every nonzero codeword c has minimal weight
d. That is, gE has at most qt � d roots. Hence, for uniformly
chosen non-zero vector X 2 X , the probability that tampering
will go undetected is

qt � d

|X | =
bqt�1

|X | .

Table I shows several construction for different block and
signature sizes. The first column gives the length of the
maximal sequence, N , (in byte), the probability Q that an
attack will be masked with and without the restriction on the
X’s, is given in the second and third column, respectively. The
signature size (in bits) is written in the forth column, and the
GRM parameters, r, t and b are given in columns 5-7.

V. IMPLEMENTATION

The implementation cost (in terms of area overhead) depends
on the choice of the code parameters. More in particular, the
higher the t and b, the higher the overall cost. Moreover, the
value of r will impact the overall architecture, since the size

TABLE I: Code parameters for signature size  32 bits

N Q with Q without Signature r t b
(bytes) restriction restriction size (bits)

153 0.0998 0.0938 30 6 4 6
140 0.0640 0.0625 28 7 3 8
161 0.0316 0.0313 32 8 3 8
127 0.0127 0.0127 30 10 2 13
367 0.1331 0.1250 30 6 4 8
315 0.0880 0.0859 28 7 3 11
282 0.0395 0.0391 32 8 3 10
258 0.0186 0.0186 30 10 2 19
532 0.1498 0.1406 30 6 4 9
591 0.1120 0.1094 28 7 3 14
525 0.1220 0.1211 24 8 2 31
556 0.0514 0.0508 32 8 3 13
519 0.0569 0.0566 27 9 2 29
540 0.0274 0.0273 30 10 2 28

1361 0.1997 0.1875 30 6 4 12
1136 0.0672 0.0664 32 8 3 17
1072 0.0391 0.0391 30 10 2 40

Fig. 3: Sizes of Basic Blocks taken from some real Linux-based
applications

of the signature depends on it (i.e., it is equal to t ⇤ r). In
order to work with modern 32-bit processors, we have selected
r = 8. Among the possible combinations of r = 8, we hace
checked the smallest values in Table I. More in particular, the
third line shows the combination with t = 3 and b = 8,
having a signature of 32 bits and a maximum BB size of
161 bytes. We have checked the sizes of BB on some actual
applications, to understand the limitations of having N = 161.
Figure 3 shows the distribution of BB’s sizes, taken from
some real Linux-based applications (we have merged the results
from ghostscript, head, hexdump, sort, tail, running on a x86
architecture). As it can be seen, the vast majority of BBs have a
number of bytes that is smaller than N = 161, thus confirming
that the choice of these parameters is reasonable. It must be
noticed that in case of bigger BBs, the original program will
be modified in order to split the big BB into smaller BBs (by
adding unconditional jump operations to link them).

The coding scheme presented in Section IV has been imple-
mented for the chosen parameters. The implementation details
are provided in Fig. 4. We have synthesized the circuit by using

Fig. 4: Implementation details

TABLE II: Area Occupancy comparison

Solution Area [GEs]
Proposed 1700

[6] 90K
[14] N/A (requires multipliers of 36, 60, 90 bits)
[15] N/A (requires an AES)
[18] 3500

a 90nm CMOS technology. The results of the synthesis led
to an area occupancy of about 1700 Gate Equivalents (GEs).
In order to compare our solution to the existing ones, we
have calculated (when possible) the area of the other solutions
in GEs. The values we obtained are sensitive to errors since
not all technological details are provided (nor units in some
cases). For instance, in [6], sizes are not explicitly calculated.
However, they declare a 30% area overhead w.r.t. Leon3.
Leon3 implementations vary from 300K to 450K GE, thus
leading to a rough approximation of at least 90K GEs for their
implementation. Table II presents the comparison with the other
works discussed in this paper. As it can been seen, our solution
has the smallest overhead, it does not introduce any latency, and
it guarantees a high level of security.

VI. CONCLUSIONS

This paper presented a non-linear encoder and checker that
can be used in any Control Flow Checking mechanism that
uses a signature for every BB. It has the advantage of not
introducing latency in its run-time calculation (similarly to
existing solutions based on linear codes) while it guarantees
high level of security of the MAC-based system, without
introducing high area penalties. As for MAC-based solutions,
the code integrates a secret part, which must be stored (together
with the pre-calculated signatures) in a tamper-proof secure
memory.

REFERENCES

[1] A. Shrivastava, A. Rhisheekesan, R. Jeyapaul, and C.-J. Wu,
“Quantitative analysis of control flow checking mechanisms for
soft errors,” in Proceedings of the 51st Annual Design Automa-
tion Conference, DAC ’14, (New York, NY, USA), pp. 13:1–13:6,
ACM, 2014.

[2] A. Benso, S. Di Carlo, G. Di Natale, and P. Prinetto, “A watchdog
processor to detect data and control flow errors,” in 9th IEEE On-
Line Testing Symposium, 2003. IOLTS 2003., pp. 144–148, July
2003.

[3] A. Chaudhari, J. Park, and J. Abraham, “A framework for low
overhead hardware based runtime control flow error detection
and recovery,” in IEEE 31st VLSI Test Symposium (VTS), Berke-
ley, CA, pp. 1–5, IEEE, 2013.

[4] J. Abraham and R. Vemu, “Control flow deviation detec-
tion for software security,” Mar. 11 2010. WO Patent App.
PCT/US2009/047,390.

[5] R. de Clercq and I. Verbauwhede, “A survey of hardware-based
control flow integrity (CFI),” CoRR, vol. abs/1706.07257, 2017.

[6] R. d. Clercq, R. D. Keulenaer, B. Coppens, B. Yang, P. Maene,
K. d. Bosschere, B. Preneel, B. d. Sutter, and I. Verbauwhede,
“Sofia: Software and control flow integrity architecture,” in
2016 Design, Automation Test in Europe Conference Exhibition
(DATE), pp. 1172–1177, March 2016.

[7] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha, “Hardware-
assisted run-time monitoring for secure program execution on
embedded processors,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 14, pp. 1295–1308, Dec 2006.

[8] S. Das, W. Zhang, and Y. Liu, “A fine-grained control flow
integrity approach against runtime memory attacks for embedded
systems,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 24, pp. 3193–3207, Nov 2016.

[9] P. Qiu, Y. Lyu, J. Zhang, D. Wang, and G. Qu, “Control flow
integrity based on lightweight encryption architecture,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 37, pp. 1358–1369, July 2018.

[10] A. Mahmood and E. J. McCluskey, “Concurrent error detection
using watchdog processors-a survey,” IEEE Transactions on
Computers, vol. 37, pp. 160–174, Feb 1988.

[11] K. Wilken and J. P. Shen, “Continuous signature monitoring:
efficient concurrent-detection of processor control errors,” in
International Test Conference New Frontiers in Testing, pp. 914–
925, Sep. 1988.

[12] M. Werner, E. Wenger, and S. Mangard, “Protecting the control
flow of embedded processors against fault attacks,” in Smart
Card Research and Advanced Applications (N. Homma and
M. Medwed, eds.), (Cham), pp. 161–176, Springer International
Publishing, 2016.

[13] G. Di Natale, M. L. Flottes, S. Dupuis, and B. Rouzeyre,
“Hacking the control flow error detection mechanism,” in IEEE
2nd International Verification and Security Workshop (IVSW),
Thessaloniki, pp. 51–56, IEEE, 2017.

[14] Z. Wang and M. Karpovsky, “Algebraic manipulation detection
codes and their applications for design of secure cryptographic
devices,” in On-Line Testing Symposium (IOLTS), 2011 IEEE
17th International, pp. 234–239, IEEE, 2011.

[15] A. M. Fiskiran and R. B. Lee, “Runtime execution monitoring
(rem) to detect and prevent malicious code execution,” in IEEE
International Conference on Computer Design: VLSI in Comput-
ers and Processors, 2004. ICCD 2004. Proceedings., pp. 452–
457, Oct 2004.

[16] Y. Xie, X. Xue, J. Yang, Y. Lin, Q. Zou, R. Huang, and J. Wu,
“A logic resistive memory chip for embedded key storage with
physical security,” IEEE Transactions on Circuits and Systems
II: Express Briefs, vol. 63, pp. 336–340, April 2016.

[17] G. Gaubatz, B. Sunar, and M. G. Karpovsky, “Non-linear residue
codes for robust public-key arithmetic,” in Fault Diagnosis and
Tolerance in Cryptography, pp. 173–184, Springer, 2006.

[18] K. Yumbul, S. S. Erdem, and E. Savas, “On protecting crypto-
graphic applications against fault attacks using residue codes,” in
Fault Diagnosis and Tolerance in Cryptography (FDTC), 2011
Workshop on, pp. 69–79, IEEE, 2011.

[19] Y. Neumeier and O. Keren, “Expurgated codes for detecting
jamming in multi-level memories,” in DEPEND 2016, The Ninth
International Conference on Dependability, pp. 15–20, iaria,
2016.

[20] P. Delsarte, J. Goethals, and F. M. Williams, “On generalized
reedmuller codes and their relatives,” Information and Control,
vol. 16, no. 5, pp. 403 – 442, 1970.

[21] I. Koren, “Computer arithmetic algorithms,” in Computer Arith-
metic Algorithms, A. K. Peters, CRC Press, 2002.

