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Abstract

Our aim is to quantify how complex is a Cantor set as we approx-
imate it better and better. We formalize this by asking what is the
shortest program, running on a universal Turing machine, which pro-
duces this set at the precision ε in the sense of Hausdorff distance. This
is the Kolmogorov complexity of the approximated Cantor set, that we
call the “ε-distortion complexity”. How does this quantity behave as
ε tends to 0? And, moreover, how does this behaviour relates to other
characteristics of the Cantor set? This is the subject of the present
work: we estimate this quantity for several types of Cantor sets on the
line generated by iterated function systems (IFS’s) and exhibit very
different behaviours. For instance, the ε-distortion complexity of a Ck

Cantor set is proven to behave like ε−D/k, where D is its box counting
dimension.

keywords: iterated function system, random Cantor sets, scaling
function, Ck Cantor sets, box counting dimension.

1 Introduction and informal statement of results

In this article, our aim is to quantify the complexity of fractal sets from
the point of view of Kolmogorov complexity or Algorithmic Information
Content [9, 13, 15]. If we want to draw a fractal set on a computer, we will
approximate it by a finite set of points, within a precision ε. We can ask
for the shortest program performing this. A natural question is then: how
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does the length of such programs behave as ε gets smaller and smaller? More
formally, this means that we are interested in the shortest programs, running
on a universal Turing machine, which produce this set at the precision ε in
the sense of Hausdorff distance. In other words, we consider the Kolmogorov
complexity of the approximated set and want to look for its behaviour when ε
tends to 0. A basic question is for example whether this complexity depends
on the dimension of the set.

Fractal sets appear in many places. Examples include the middle third
Cantor set, the Sierpiński triangle, the Koch snowflake; the graphs of Weier-
strass functions and Brownian motion; strange attractors of dynamical sys-
tems (the Hénon attractor, for instance); Julia and Mandelbrot sets; etc.
We refer to, e.g., [17, 3, 2, 11, 18] for different kinds of accounts on fractals.
A convenient way to generate many types of fractal sets is to use iterated
function systems (IFS for short) [2].

In this article, we consider Cantor sets generated by different kinds of
IFS and investigate the behaviour of the Kolmogorov complexity of their
approximations in the above sense. For convenience, let us call it the “ε-
distortion complexity”. Our results can be informally summarised as follows.

Informal statement of our results. We first consider IFS’s with polyno-
mial contraction maps and obtain the upper bound const× log(ε−1) for the
ε-distortion complexity of the generated Cantor set, where the (finite) con-
stant may depend on the polynomials. We can produce “many” polynomial
IFS’s with a lower bound of the same order using a probabilistic construc-
tion. This shows that our upper bound is the best possible. It turns out
that some particular Cantor sets like the usual middle third Cantor set are
of much lower complexity.

For analytic IFS’s, we obtain the upper bound const×(log(ε−1))2. We do
not have a lower bound in this case (except of course the same lower bound
as for IFS’s with polynomial maps). However, as we shall see, the upper
bound is more than enough to discriminate clearly between the analytic and
the Ck case on the behaviour in ε of the ε-distortion complexity.

Next we consider random central Cantor sets produced by affine IFS’s,
for which the contraction rate is chosen at random at each step of the con-
struction. In this case, we get the upper bound const× (log(ε−1))2 and the
lower bound const× (log(ε−1))2−δ, for any δ > 0, for almost all such Cantor
sets (where the constant in our bound depends on δ and tends to 0 when
δ → 0).

Finally, we consider Ck IFS’s. Contrarily to the previous cases, the
leading, asymptotic behaviour of the ε-distortion complexity depends on
the box counting dimension D of the generated Cantor set. Indeed, we
obtain the upper bound const × ε−

D
k
−δ, for any δ > 0 (where the constant

in our bound depends on δ and blows up when δ → 0). We then construct
“many” Ck (random) Cantor sets with a lower bound const × ε−

D
k

+δ (for
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any δ > 0), by constructing their scaling function [20]. This shows that our
upper bound is the best possible.

Organization of the article. In Section 2 we first define the Kolmogorov
complexity of an approximated compact set in the sense of Hausdorff dis-
tance. Next, we define the kinds of IFS’s we will consider. Section 3 contains
our results and Section 4 gathers all the proofs.

We close this introduction by mentioning some works related to ours,
though of different nature. One related research stream is about approxi-
mation of points in metric spaces. The first ideas on this field date back
to the theory of ε-capacity and ε-entropy introduced in [14], and have been
developed in [1] in the case of space of functions and approximation of
graphs. For a more recent approach using the ideas of Kolmogorov com-
plexity see [12]. The space of all closed subsets of Rd is a metric space with
the Hausdorff distance, hence our results could be interpreted as estimates
of the complexity of approximation of Cantor sets in this big metric space.
However we are able to distinguish different behaviours of the approximation
complexity depending on the nature of the Cantor set, hence giving a deeper
insight in the specific problem with respect to the very general approach of
approximation in metric spaces.

A second subject is the study of complexity of fractals. Let us first men-
tion that the case of sets reduced to one point on the line was investigated
in [8] where in particular the Hausdorff dimension of the set of reals with
given asymptotic complexity is computed. For graphs of functions, from
the point of view of determining the values of a function at given precision,
see [1]. Let us mention that another notion of complexity consists in ask-
ing about the smallest execution time of the programs generating a given
set with ε-precision, in the sense of Hausdorff distance [21, 7]. Finally, the
geometric properties of fractals such as the similarity dimension have been
used to characterise the information dimension of points of a fractal [16].

Finally we also mention the book of G. D. Birkhoff [6].

2 Definitions

2.1 Kolmogorov complexity of approximating a set: the ε-
distortion complexity

The following definition makes precise what we mean by the Kolmogorov
complexity of an “approximated” compact set C ⊂ Rd.

Let U denote a Universal Turing machine and consider the set of all
binary programs which produce on U a set w = {w1, . . . , wd} of d finite
strings. If we interpret the strings wi as the co-ordinates of a point q ∈ Qd,
that is a point with rational co-ordinates, then we can think of the machine
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U to produce subsets in Rd which are finite union of points with rational co-
ordinates. These subsets are the computable “approximations” of a compact
set C ⊂ Rd that we consider.

Definition 2.1. The ε-distortion complexity of a compact set C ⊂ Rd at
precision ε > 0, which we call the ε-distortion complexity of C , is defined by

∆(C , ε) = min {`(P) : dH(C(P),C ) < ε} , (1)

where the minimum is taken over all binary programs P ∈ {0, 1}∗ running
on a universal Turing machine U , which produce a finite subset C(P) ∈ Rd;
`(P) is the program length and stop; dH denotes the Hausdorff distance.

Notice that, because of the compactness of C , we can use a minimum in
the above definition, which always leads to a finite number.

We are interested in the behaviour of ∆(C , ε) when ε tends to zero. Note
that this is a monotone decreasing function.

For the reader’s convenience, we recall that the Hausdorff distance dH

between two closed subsets F1, F2 of a metric space with metric d is given
by (see, e.g., [18, 2])

dH(F1, F2) = max
{

sup
x2∈F2

d(x2, F1), sup
x1∈F1

d(x1, F2)
}
.

2.2 Iterated function systems

We now recall the definition of Cantor sets generated by several types of
iterated function systems (IFS for short) [2]. For the sake of simplicity, we
restrict ourselves to Cantor sets in the unit interval [0, 1] ⊂ R, although
several results can be easily generalised to arbitrary finite dimension.

Let A = [0, 1] and let I be a finite set of indices with at least two
elements. An (hyperbolic) Iterated Function System is a collection

{φi : A→ A : i ∈ I}

of contractions on A with uniform contraction rate (Lipschitz constant) ρ ∈
(0, 1), and such that φi(A) ∩ φj(A) = ∅ for i 6= j. We shall only consider
hyperbolic iterated function systems with injective contractions, IHIFS for
short. Although some of our results apply in more general cases, this is a
class of IFS’s for which the theory of scaling functions is known to hold (see
below).

For any infinite word ω ∈ I∞ and for any n ∈ N, let ωn1 ∈ In denote the
prefix of length n given by the first n symbols of ω, and let

φ
ωn1

:= φωn ◦ φωn−1 ◦ · · · ◦ φω1 . (2)
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The map π : I∞ → A defined by ω 7→ π(ω) :=
⋂∞
n=0 φ

ωn1
(A) is continuous

(in product topology) and, since

diam
(
φ
ωn1

(A)
)
≤ ρn diam (A),

π(ω) is a point in A for all ω ∈ I∞. The set

C := π(I∞) =
⋃

ω∈I∞

∞⋂
n=0

φ
ωn1

(A)

is a Cantor set and satisfies

C =
⋃
i∈I

φi(C ). (3)

The classical examples of Cantor sets are the middle 1
ρ -th Cantor sets

in the unit interval (ρ = 1
3 gives the usual middle thirds Cantor set). They

can be thought of as generated by IHIFS with affine contractions φ0 and φ1,
and contraction rate ρ.

Random affine IHIFS. The additional feature of a random IHIFS is that,
at each step of the construction, we consider a random choice for the con-
traction rate. For the definition we follow [4].

Let us consider a family (λk)k∈N of independent identically distributed
random variables with values in the interval (0, 1). To each sequence λ =
(λk)k∈N we associate a Cantor set Cλ in the following way. Let C0

λ := [0, 1].
We define

J1
1 (λ) :=

[
0,
λ1

2

]
, J1

2 (λ) :=
[
1− λ1

2
, 1
]
, and C1

λ := J1
1 (λ) ∪ J1

2 (λ).

In words, C1
λ is obtained by removing the central interval of length (1− λ1)

from C0
λ. At the (k + 1)-st step, we delete from each interval Jki (λ), i =

1, . . . , 2k, the central interval of length (1− λk+1), obtaining 2k+1 intervals
Jk+1
i (λ), i = 1, . . . , 2k+1, such that

|Jk+1
i (λ)| = 1

2k+1

k+1∏
h=1

λh ∀i = 1, . . . , 2k+1. (4)

Then we define

Ck+1
λ :=

2k+1⋃
i=1

Jk+1
i (λ).

We call random central Cantor set the set

Cλ :=
∞⋂
k=0

Ckλ .
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We remark that by construction the boundary points ∂Jki (λ) of all the in-
tervals Jki (λ) are contained in Cλ.

Ck Cantor sets in the line and scaling functions. We now consider
Cantor sets with a “differentiable structure”. Their construction is based on
the so-called “scaling function” ([20],[19], [5]). For the reader’s convenience
and later use, we recall the definition of a differentiable Cantor set in the
line and the construction of the scaling function SC of a Ck Cantor set C .
In the sequel we fix I = {0, 1} for simplicity, however the argument works
for any finite alphabet I. For a word ωn1 ∈ In we let

Jωn1 := φ
ωn1

([0, 1]) = φωn ◦ φωn−1 ◦ · · · ◦ φω1([0, 1]) .

Then by definition φi(Jωn1 ) = Jωn1 i for any i ∈ I, where ωn1 i = ω1ω2 . . . ωni,
and it holds

Jωn1 ⊂ Jωn2 ⊂ · · · ⊂ Jωnn−1
⊂ Jωn . (5)

Moreover we assume that the continuous map π : I∞ → [0, 1] is order-
preserving, and let C := π(I∞).

Let now σ : I∞ → I∞ denote the standard shift-map and {σ−1
i }i∈I be

the set of right-inverses of σ, that is σ−1
i (ω) = iω. Then the map π induces

a shift-map f : C → C with right-inverses {f−1
i }i∈I . The Cantor set C is

said to be of class Ck if each of the right-inverses f−1
i has a Ck extension to

A = [0, 1] which is a contraction.
The scaling function instead describes the contraction rates in the in-

clusions (5). For a word ωn1 ∈ In we define S̃C (ωn1 ) ∈ (0, 1)2. The two
components of S̃C (ωn1 ) are the rates of contractions

(S̃C (ωn1 ))i =
|Jiωn1 |
|Jωn1 |

i = 0, 1

where |J | denotes the length of the interval J . The length of the gap between
the two intervals J0ωn1

and J1ωn1
in Jωn1 can be reconstructed from these data.

The scaling function is defined to be the function

SC : I∞ → (0, 1)2

given by
SC (ω) := lim

n→∞
S̃C (ωn1 ).

We refer to [20] for the proof of the existence of this limit.
By definition one has

|Jωn1 | =
n−1∏
j=1

(
S̃C (ωnj+1)

)
ωj

.
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By using the scaling function we can introduce a distance dS(ω, ω̃) on I∞
in the following way. For two sequences ω, ω̃ ∈ I∞, let ω ∩ ω̃ denote their
longest common prefix, and let |ω ∩ ω̃| denote its length. Then we let

dS(ω, ω̃) := sup
α∈I∞

n=|ω∩ω̃|∏
j=1

(
SC (ωnj+1 α)

)
ωj

. (6)

Then there exists a constant H > 0 such that for any ω, ω̃ ∈ I∞ it holds

1
H
≤ |Jω∩ω̃|
dS(ω, ω̃)

≤ H .

Relations between the properties of the scaling function of a Ck central
Cantor set and the differentiability of the IHIFS generating this Cantor set
have been studied in [19] in the case k > 1. In particular, Main Theorem
[19, pag. 406] introduces the following characterisation of a Ck Cantor set
in the line. Let A(ωn1 ) denote the set of the four boundary points of the
intervals (Jiωn1 )i∈I . A scaling function SC generates a Ck Cantor set C if
and only if for any n ∈ N there are diffeomorphisms from A(ωn1 ) into A(ω̃n1 ),
for any ωn1 6= ω̃n1 ∈ In, with derivatives bounded by a constant C(ωn1 , ω̃

n
1 )

which satisfies
C(ωn1 , ω̃

n
1 ) = C dS(ωn1α, ω̃

n
1α)k−1 (7)

where C does not depend on n and from the definition of dS the right hand
side is independent on α ∈ I∞.

3 Results

The next four theorems give the behaviour, as ε → 0, of the ε-distortion
complexity (1), for different types of IHIFS, namely, polynomial IHIFS,
real analytic IHIFS, random affine IHIFS and Ck IHIFS. We will use the
following notations.

Notations. In the sequel we write f � g if there are two positive constants
C1 and C2 such that for any ε > 0 small enough

C1f(ε) ≤ g(ε) ≤ C2f(ε).

We write f 4 g if there is a positive constant C such that for any ε > 0
small enough

f(ε) ≤ Cg(ε).

Our first result deals with polynomial IHIFS’s.
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Theorem 3.1. Let C be a Cantor set generated by an IHIFS with polynomial
functions. Then

∆(C , ε) 4 log(ε−1). (8)

Moreover, for any δ > 0, there exist (many) polynomial IHIFS’s such that
the generated Cantor set satisfies

(1− δ) log(ε−1) ≤ ∆(C , ε). (9)

Remark 3.1. A more precise upper bound follows easily from the proof,
namely

∆(C , ε) ≤

(∑
i∈I

(1 + deg φi)

)
log(ε−1) + o(log(ε−1)).

A more precise lower bound of the same kind can also be obtained for a large
class of Cantor sets which are generated by a set of full measure of some
random polynomial IHIFS’s.

Remark 3.2. Obviously, the classical middle third Cantor set (or more
generally any middle 1

ρ -th set with ρ a rational number) has a much smaller
complexity.

Our next result is about real analytic IHIFS’s.

Theorem 3.2. Let C be a Cantor set generated by an IHIFS with real
analytic functions. Then

∆(C , ε) 4
(

log(ε−1)
)2
.

We do not have a lower bound in this case (except of course the polyno-
mial lower bound). However, as we shall see, the upper bound is more than
enough to discriminate clearly between the analytic and the Ck case on the
behaviour in ε of the ε-distortion complexity.

The next theorem states that random central Cantor sets need more
information than those generated by polynomial IHIFS’s.

Theorem 3.3. Let Cλ be a random central Cantor set as described above.
Then, for any λ ∈ (0, 1)N,

∆(Cλ, ε) 4
(
log(ε−1)

)2
. (10)

Moreover, let us assume that the common distribution of the i.i.d. random
variables (λk) is absolutely continuous, with a density f(x) bounded above
and below away from zero. Then, for any δ > 0, we have(

log(ε−1)
)2−δ

4 ∆(Cλ, ε) (11)

for almost every λ ∈ (0, 1)N.
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We now consider Ck Cantor sets with a differentiable structure.

Theorem 3.4. Let k > 1. For any δ > 0, for any Ck Cantor set C with
box counting dimension D, we have

∆(C , ε) 4 ε−
D
k
−δ. (12)

Moreover, for any δ > 0, there exist (many) Ck central Cantor sets C with
box counting dimension, at most D + δ, such that

ε−
D
k

+δ 4 ∆(C , ε). (13)

We emphasise that in this case the asymptotic behaviour of the ε-
distortion complexity ∆(C , ε), when ε tends to zero, depends in general
on the regularity k of the set and, contrarily to the previous cases, it also
depends on its box counting dimension D.

4 Proofs

The following two simple lemmas will be used repeatedly in the proofs here-
after. We leave their elementary proof to the reader.

Lemma 4.1. Let F and F ′ be closed subsets of A. Let I = [a, b] and
I ′ = [a′, b′] be closed sub-intervals of A. Let H = [c, d] and H ′ = [c′, d′] be

closed subsets of
◦
I and

◦

I ′ respectively. Assume that ∂H ⊂ F , ∂H ′ ⊂ F ′,

F∩
◦
H= ∅ and F ′∩

◦

H ′= ∅. Moreover assume that there exists ε > 0 such that
|a−a′| ≤ ε, |b−b′| ≤ ε, |c−d| > 2ε, |c′−d′| > 2ε and max {|c− c′|, |d− d′|} >
ε, then dH(F, F ′) > ε.

In the sequel, this lemma will be used to show that two Cantor sets (F
and F ′) are at Hausdorff distance larger than ε, H and H ′ playing the role
of holes in the Cantor sets.

Lemma 4.2. Let (Ω,A,P) be a probability space. Let C be a measurable
map from (Ω,A) to the set of closed subsets of A equipped with the Borel σ-
algebra induced by the Hausdorff metric. Let (ak)k be a positive, increasing,
diverging sequence. Assume that for any integer k there exists a sequence
(Vk,j)1≤j≤2ak of measurable subsets of Ω such that{

ω : ∆(C (ω), 2−k) < ak

}
⊂

2ak⋃
j=1

Vk,j

and ∑
k

2ak∑
j=1

P(Vk,j) <∞.

Then, for P-almost every ω, ∆(C (ω), 2−k) ≥ ak for any k large enough
(depending on ω).
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All proofs have the same structure: first an upper bound is obtained
by explicitly constructing an approximation and estimating the complexity;
second a lower bound is constructed using the two previous lemmas.

4.1 Proof of Theorem 3.1

Let N be the largest degree of the polynomial functions {φi}, then we can
write

φi(x) =
∑

0≤α≤N
ci,αx

α ∀ i ∈ I

with coefficients ci,α ∈ R. We now show how to construct a program P
approximating C within Hausdorff distance ε.

Let ε be fixed and K a constant to be specified later on. Let us define
ε′ = ε

K . We construct polynomials

φ̃i(x) :=
∑

0≤α≤N
c̃i,αx

α ∀ i ∈ I

with coefficients satisfying

|ci,α − c̃i,α| < ε′ ∀ i ∈ I ∀ 0 ≤ α ≤ N (14)

such that the φ̃i’s are injective contractions on A(= [0, 1]) with uniform
contraction rate ρ̃ ∈ (0, 1). For any ωn1 ∈ In we construct the composition
φ̃
ωn1

as in (2).
We first show that for any bounded set B ⊂ R such that φi(B) ⊂ B for

all i ∈ I with the same contraction rate ρ, and φ̃i(B) ⊂ B for all i ∈ I, we
have for all n ∈ N

dH(φ
ωn1

(B), φ̃
ωn1

(B)) < ε′
1− ρn

1− ρ
sup
x∈B

∣∣∣∣∣∣
∑

0≤α≤N
xα

∣∣∣∣∣∣ ∀ ωn1 ∈ In. (15)

The proof is by induction. By (14) and definition of dH, one immediately
gets

dH(φi(B), φ̃i(B)) < ε′ sup
x∈B

∣∣∣∣∣∣
∑

0≤α≤N
xα

∣∣∣∣∣∣ ∀ i ∈ I.

The inductive step is obtained by using the triangle inequality for dH. By
the first step we have

dH

(
φωn(φ̃

ωn−1
1

(B)), φ̃ωn(φ̃
ωn−1

1

(B))
)
< ε′ sup

x∈B

∣∣∣∣∣∣
∑

0≤α≤N
xα

∣∣∣∣∣∣

10



where we have used φ̃
ωn−1

1

(B) ⊂ B. Moreover, by using the contraction rate
ρ, we get

dH

(
φωn(φ

ωn−1
1

(B)), φωn(φ̃
ωn−1

1

(B))
)
< ρ dH(φ

ωn−1
1

(B), φ̃
ωn−1

1

(B))

< ε′ ρ
1− ρn−1

1− ρ
sup
x∈B

∣∣∣∣∣∣
∑

0≤α≤N
xα

∣∣∣∣∣∣
where the last inequality is the (n− 1)-th step of the induction. Hence the
triangle inequality implies that

dH(φ
ωn1

(B), φ̃
ωn1

(B)) < ε′
(

1 + ρ
1− ρn−1

1− ρ

)
sup
x∈B

∣∣∣∣∣∣
∑

0≤α≤N
xα

∣∣∣∣∣∣ .
This finishes the proof of (15).

Let us choose n̄ ∈ N such that ρn̄ < ε′ and ρ̃n̄ < ε′. For this fixed n̄, let
V := {0, 1} = ∂[0, 1] and define

C :=
⋃

ωn̄1 ∈In̄
φ̃
ωn̄1

(V ).

We now prove that dH(C , C) < ε. Let us consider x ∈ C and y ∈ C. By (3)
there exists z ∈ C such that x = φ

ωn̄1 (x)
(z) for a given sequence ωn̄1 (x) ∈ In.

Hence

d(x, y) = d(φ
ωn̄1 (x)

(z), y) ≤

dH(φ
ωn̄1 (x)

(z), φ
ωn̄1 (x)

(V )) + dH(φ
ωn̄1 (x)

(V ), φ̃
ωn̄1 (x)

(V )) + dH(φ̃
ωn̄1 (x)

(V ), y).
(16)

For the first term we use the contraction properties to get

dH(φ
ωn̄1 (x)

(z), φ
ωn̄1 (x)

(V )) < ρn̄ diam (A) < ε′.

By (15), for the second term we have

dH(φ
ωn̄1 (x)

(V ), φ̃
ωn̄1 (x)

(V )) <
ε′

1− ρ
(N + 1).

If we take
K = 1 +

N + 1
1− ρ

then
d(x, y) ≤ ε′K + dH(φ̃

ωn̄1 (x)
(V ), y) = ε+ dH(φ̃

ωn̄1 (x)
(V ), y).

11



Choosing y ∈ φ̃
ωn̄1 (x)

(V ) ⊂ C, we have

dH(φ̃
ωn̄1 (x)

(V ), y) = 0,

hence d(x, y) < ε. Therefore

sup
x∈C

d(x, C) < ε.

On the other hand for a given ωn̄1 ∈ I n̄ and y ∈ φ̃
ωn̄1

(V ), take x ∈ φ
ωn̄1

(A)∩C ,
noticing that this set is not empty. Then we deduce that

sup
y∈C

d(y,C ) < ε.

Hence dH(C , C) < ε.
Let us define the program P that contains the numbers ε, ρ and K,

and such that it specifies the coefficients {c̃i,α}, computes n̄ and makes the
computation of the φ̃i(V )’s. The binary length `(P) satisfies

`(P) 4 log
(
(ε′)−1

)
= logK + log(ε−1) .

Indeed, ε is specified with O(log ε−1) bits, and ρ and K do not depend on
ε and can be approximated by rational numbers. The coefficients {c̃i,α} are
approximations of the {ci,α} with precision ε′, hence we can choose them
as rational numbers requiring only O(log(ε′)−1) bits of information. Finally
the information for the computation of n̄ and C needs only O(1) bits of
information. Hence this proves (8).

We now prove (9). Let I = {0, 1} and define φ1(x) = bx, φ2(x) = 1− bx
for b ∈ (0, 1/2). (Note that these are injective functions.) We denote by Cb
the Cantor set generated by the IHIFS {φ1, φ2}. To be in the context of
Lemma 4.2, we take b at random according to the uniform distribution on
the interval (1/4, 1/3). We restrict the possible values of b to ensure that
the middle hole is large enough so that an obviously simplified version of
Lemma 4.1 applies.

For a fixed δ ∈ (0, 1), define ak := (1− δ)k. For any k, there are at most
2ak different binary programs (Pj)1≤j≤2ak of length ak − 1, which generate
at most 2ak different sets Cj := C(Pj). We define

Vk,j :=
{
b : dH(Cb, Cj) < 2−k

}
.

Then {
b : ∆(Cb, 2−k) < ak

}
⊂

2ak⋃
j=1

Vk,j .

12



We now estimate P(Vk,j). We denote by ∂+Cj the rightmost point of Cj ∩
(0, 1/2). For k large enough (k ≥ 3) and for a given j, if b ∈ Vk,j then
d(b, ∂+Cj) < 2−k and therefore P(Vk,j) < 21−k. This implies that

∑
k

2ak∑
j=1

P(Vk,j) <
∑
k

2ak 21−k =
∑
k

21−δk <∞.

The result follows from Lemma 4.2.

Remark 4.1. Notice that this proof works also in arbitrary finite dimension.

4.2 Proof of Theorem 3.2

We give the proof in the case that the {φi} are analytic functions on an open
ball B(0, R) ⊂ C of radius R > 1. The general case follows by applying the
same argument to piecewise polynomial approximations of the {φi}.

By hypothesis we can write for z ∈ A

φi(z) =
∞∑
h=0

ci,h z
h ∀ i ∈ I

with coefficients ci,h ∈ C. By the analyticity of the functions {φi} in B(0, R)
it follows that

lim sup
h→∞

|ci,h| Rh ≤ 1 .

Hence there exists a real constant r such that

|ci,h| Rh ≤ r ∀ h ≥ 0.

As above let us denote by V = {0, 1} = ∂[0, 1]. We now construct approxi-
mations of the analytic functions {φi}.

Let δ ∈ (0, 1) be such that δR > 1, and, for ε fixed, define

ε′ :=
r(δR− 1)
R(1− δ)

((1− δ)ε)

„
logR

log 1
δ

«
. (17)

Let N be the smallest integer satisfying

∞∑
h=N

δh =
δN

1− δ
< (1− ρ)

ε

4r
· (18)

Hence we construct the polynomials

φ̃i(z) :=
N−1∑
h=0

c̃i,h z
h ∀ i ∈ I

13



with coefficients c̃i,h ∈ C such that

|ci,h − c̃i,h| < ε′ ∀ i ∈ I ∀ h = 0, . . . , N − 1 (19)

and the φ̃i’s are contractions functions on A with φ̃i(A) ⊂ A for all i ∈ I,
and uniform contraction rate ρ̃ ∈ (0, 1).

Let us choose n̄ ∈ N such that ρn̄ < ε
4R and ρ̃n̄ < ε

4R . For this fixed n̄,
we define

C :=
⋃

ωn̄1 ∈In̄
φ̃
ωn̄1

(V ).

We now prove that dH(C , C) < ε. The proof will follow again by using (16)
and the analogue of (15).

For any bounded set B ⊂ B(0, δR) such that φi(B) ⊂ B and φ̃i(B) ⊂ B,
we have for all n ∈ N

dH(φ
ωn1

(B), φ̃
ωn1

(B)) < ε
1− ρn

2
∀ ωn1 ∈ In . (20)

The proof of (20) is by induction as the proof of (15). We only show the
first step. By using (19) and (18), we obtain for all z ∈ B(0, δR)

|φi(z)− φ̃i(z)| =

∣∣∣∣∣
N−1∑
h=0

(ci,h − c̃i,h) zh +
∞∑
h=N

ci,h z
h

∣∣∣∣∣
≤ ε′

N−1∑
h=0

δhRh + r
∞∑
h=N

δh < ε′
δNRN

Rδ − 1
+ (1− ρ)

ε

4r
r

< (1− ρ) ε

ε′R(1− δ)((1− δ)ε)
(
− logR

log δ−1

)
4r(δR− 1)

+
r

4r

 = (1− ρ)
ε

2
,

where in the last equality we have used (17). Hence

dH(φi(B), φ̃i(B)) < ε
(1− ρ)

2
∀ i ∈ I.

The inductive step is obtained as in the proof of (15) by the triangle in-
equality for dH.

We now write (16) and, by repeating the argument of the proof of The-
orem 3.1 and by (20), we obtain dH(C , C) < ε.

Let us define the program P which contains the numbers ε, R, r, δ, N
and n̄, and such that it specifies the coefficients {c̃i,h} for h = 0, . . . , N − 1,
and makes the computation of the φ̃i(V )’s. The binary length `(P) satisfies

`(P) 4 N log
(
(ε′)−1

)
4
(
log(ε−1)

)2
.

14



Indeed, ε is specified with O(log ε−1) bits, and n̄ � log ε−1. Hence it
is specified by o(log ε−1) bits and N � log ε−1, hence it is specified by
o(log ε−1) bits. The coefficients {c̃i,h} are approximations of the {ci,h} with
precision ε′, hence we can choose them as rational numbers requiring only
O(log(ε′)−1) bits of information, but there are N of them for each function
φi (see (17) and (18)), hence we need O(N log(ε′)−1) bits of information,
that is O(

(
log(ε−1)

)2). Finally R, r and δ do not depend on ε, hence the
information for them and for the computation of C need only O(1) bits of
information. Hence

∆(C , ε) 4
(
log(ε−1)

)2
and the theorem is proved.

4.3 Proof of Theorem 3.3

We first prove (10) by constructing an approximation C of the set C .
Let us consider a fixed sequence λ ∈ (0, 1)N and the Cantor set Cλ. For

a fixed ε, let n̄ be given by

n̄ := min
{
n ∈ N :

1
2n

<
ε

2

}
. (21)

Next, let us consider a sequence λ̃ = (λ̃k)k∈N ∈ (0, 1)N such that |λ1−λ̃1| < ε
and

|λk − λ̃k| < 2k−2 ε ∀ k = 2, . . . , n̄ . (22)

Then we define the approximation C of Cλ to be the finite set

C := ∂C n̄
λ̃

=
2n̄⋃
i=1

∂J n̄i (λ̃)

where the sets C n̄
λ̃

and J n̄i (λ̃) are constructed as specified in Section 2. We
now prove that dH(Cλ, C) < ε. To this aim we show that

dH(∂Jk1 (λ), ∂Jk1 (λ̃)) <
ε

2
(23)

for all k = 1, . . . , n̄. The same argument applies to all other sets Jki . This
is enough since it implies that, for any two points x ∈ Cλ and y ∈ C in the
analogous intervals (i.e., x ∈ J n̄i (λ) and y ∈ ∂J n̄i (λ̃) with the same index
i = 1, . . . , 2n̄),

d(x, y) ≤ d(x, ∂J n̄i (λ)) + dH(∂J n̄i (λ), ∂J n̄i (λ̃)) + d(∂J n̄i (λ̃), y)

<
1
2n̄

+
ε

2
+ 0 < ε,
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where for the first term we have used (4) and (21), for the second term we
have used (23), and for the third term we have used the definition of C.
Hence dH(Cλ, C) < ε. It remains to prove (23). By definition

∂Jk1 (λ) =

{
0,

1
2k

k∏
h=1

λh

}
, ∂Jk1 (λ̃) =

{
0,

1
2k

k∏
h=1

λ̃h

}
.

Hence it is enough to show that

d

(
1
2k

k∏
h=1

λh,
1
2k

k∏
h=1

λ̃h

)
<
ε

2
(24)

for all k = 1, . . . , n̄. By definition of λ̃, it holds

d

(
1
2
λ1,

1
2
λ̃1

)
<
ε

2
.

Assuming that (24) holds for k − 1, one gets

d

(
1
2k

k∏
h=1

λh,
1
2k

k∏
h=1

λ̃h

)

≤

∣∣∣∣∣ 1
2k−1

k−1∏
h=1

λh

∣∣∣∣∣
∣∣∣∣∣λk − λ̃k2

∣∣∣∣∣+ d

(
1

2k−1

k−1∏
h=1

λh,
1

2k−1

k−1∏
h=1

λ̃h

)
λ̃k
2

<
1

2k−1

2k−2ε

2
+
ε

4
<
ε

2
,

where we have used (22) for the first term, the inductive hypothesis for the
second term, and the fact that λ, λ̃ ∈ (0, 1)N.

To finish the proof of (10) we have to estimate the length of a binary
program P producing the finite set C. The program P must contain the
number ε, the information to compute n̄, the contraction factors (λ̃k) for
k = 1, . . . , n̄ and the instruction to compute C. The number of instructions
for all the computations are O(1) with respect to ε. The number ε is specified
by O(log ε−1) bits of information and n̄ ≈ log ε−1 and each coefficient λ̃k
needs O(log ε−1) bits of information. Since there are n̄ coefficients to be
specified, we find

`(P) 4
(
log(ε−1)

)2
hence (10) follows.

We now prove (11). First of all we identify a full measure set of “good”
λ. By the hypothesis on the density f(x) of the common distribution of the
random variables (λk), the following quantity is finite

γ :=
∫ 1

0
log(x) f(x) dx < 0.
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Notice that eγ

2 can be interpreted as the typical contraction rate, since prod-
ucts of many i.i.d. random variables λk will be involved.

Given any η > 0 we define, for all n ∈ N,

Λn :=

{
λ ∈ (0, 1)N :

k∏
h=1

λh > ek(γ−η) , ∀ k = b
√
nc, . . . , n

}
. (25)

We remark that, since λk ∈ (0, 1) for all k ≥ 1, if λ ∈ Λn then

k∏
h=1

λh > e
√
n(γ−η) ∀ k = 1, . . . , b

√
nc − 1. (26)

Lemma 4.3. Let us denote by Λcn the complement of Λn in (0, 1)N, then∑
n

P(Λcn) <∞ ,

i.e., almost every λ ∈ (0, 1)N belongs to Λcn only for finitely many n ∈ N.

Proof. We use the large deviation principle for independent and identically
distributed random variables (see, e.g., [10]). It implies that for any fixed
η > 0 there exists a positive constant C such that

lim
k→∞

1
k

log P
{

log(λ1 × · · · × λk)
k

− γ < −η
}

= −C .

Hence, for n large enough and for all 0 < C ′ < C, we have the estimate

P(Λcn) ≤
n∑

k=b
√
nc

P

{
k∏

h=1

λh < ek(γ−η)

}
≤ e−C′

√
n

n∑
k=b
√
nc

e−C
′(k−

√
n) .

Therefore
P(Λcn) 4 e−C

′√n

and the lemma follows by the Borel-Cantelli Lemma.
For any ε we define

N(ε) := min
{
n ∈ N :

(
2eη−γ

)n
ε >

(
log(ε−1)

)−2
}
. (27)

We now consider a subset of ΛN(ε). Let q ∈ N and define

Ψq :=

{
λ ∈ ΛN(2−q) : (1− λk+1)

∏k
h=1 λh

2k
> 22−q,∀ k = 0, . . . , N(2−q)

}
.

Lemma 4.4. We have ∑
q

P(Ψc
q) <∞

i.e., almost every λ ∈ (0, 1)N lies in Ψc
q only for finitely many q ∈ N.
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Proof. By Lemma 4.3 and the Borel-Cantelli Lemma, it is enough to prove
that ∑

q

P
(
Ψc
q ∩ ΛN(2−q)

)
<∞.

First observe that if 0 ≤ k ≤
√
N(2−q) and

(1− λk+1) > 22−q 2k (eη−γ)
√
N(2−q)

then λ satisfies

(1− λk+1)
∏k
h=1 λh

2k
> 22−q. (28)

Similarly, if
√
N(2−q) ≤ k ≤ N(2−q) and

(1− λk+1) > 22−q 2k (eη−γ)k ,

then (28) holds. Therefore

P
{
λ ∈ ΛN(2−q) \Ψq

}
≤ 23−q 2

√
N(2−q) e(η−γ)

√
N(2−q) +

+ 22−q 2N(2−q)+1 e(η−γ)(N(2−q)+1) ≤ O(1)
q2

which is summable over q. The lemma is proved.
For a given ε, let λ ∈ Ψlog(ε−1) and define

Mε,N(ε)(λ) := Ψlog(ε−1)

⋂
λ̃ :

|λ1 − λ̃1| < 2ε

|λk − λ̃k| < 2k+1 (eη−γ)
√
N
ε if k = 2, . . . , b

√
Nc − 1

|λk − λ̃k| < 2
eη−γ (2 eη−γ)k ε if k = b

√
Nc, . . . , N

 (29)

We now show that if λ̃ 6∈ M(λ) then dH(Cλ,Cλ̃) ≥ ε. This follows from
Lemma 4.1 and we now check the hypothesis to be satisfied.

If λ̃ ∈ Ψlog(ε−1) \M(λ) then one of the conditions in (29) is violated.
Following the notation of Lemma 4.1, we start with I = I ′ = [0, 1]. We take
H = [λ1

2 , 1−
λ1
2 ] and H ′ = [ λ̃1

2 , 1−
λ̃1
2 ]. Then |H| > 2ε and |H ′| > 2ε since

λ and λ̃ are in Ψlog(ε−1). If |λ1 − λ̃1| ≥ 2ε, then
∣∣∣λ1

2 −
λ̃1
2

∣∣∣ ≥ ε, and Lemma
4.1 applies with F = Cλ and F ′ = Cλ̃, implying dH(Cλ,Cλ̃) > ε.

Assume that, for some k = 2, . . . , b
√
Nc − 1, all conditions in (29) are

satisfied up to k − 1 and condition k is violated. Either there is an ` < k
such that ∣∣∣∣∣ 1

2`
∏̀
h=1

λh −
1
2`
∏̀
h=1

λ̃h

∣∣∣∣∣ > ε,
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in which case we define k̂ to be the smallest such `. Or, if no such ` exists,∣∣∣∣∣ 1
2k

k∏
h=1

λh −
1
2k

k∏
h=1

λ̃h

∣∣∣∣∣ ≥
∣∣∣λk − λ̃k∣∣∣

2k

k−1∏
h=1

λh −
λ̃k
2k

∣∣∣∣∣
k−1∏
h=1

λh −
k−1∏
h=1

λ̃h

∣∣∣∣∣ ≥
≥ 2 ε

(
eη−γ

)√N k−1∏
h=1

λh − ε > ε

where we have used (26) and the fact that the leftmost positive points up
to the (k − 1)-th step of the construction are ε-close, and we set k̂ = k.

We will apply Lemma 4.1 with I = J k̂−1
1 (λ) and I ′ = J k̂−1

1 (λ̃). We take

H =

 1

2k̂

k̂∏
h=1

λh,

(
1−

λk̂
2

)
1

2k̂−1

k̂−1∏
h=1

λh


and

H ′ =

 1

2k̂

k̂∏
h=1

λ̃h,

(
1−

λ̃k̂
2

)
1

2k̂−1

k̂−1∏
h=1

λ̃h

 .

We have |H| > 2ε and |H ′| > 2ε since λ and λ̃ are in Ψlog(ε−1), and we can
apply Lemma 4.1 which gives dH(Cλ,Cλ̃) > ε.

The same argument applies if the k-th condition with k =
√
N, . . . , N is

violated, and all conditions up to k− 1 are satisfied. If the leftmost positive
points up to the (k − 1)-th step of the construction are ε-close, we get∣∣∣∣∣ 1

2k

k∏
h=1

λh −
1
2k

k∏
h=1

λ̃h

∣∣∣∣∣ ≥ 2ε
(
eη−γ

)k−1
k−1∏
h=1

λh − ε > ε

by definition (25) of ΛN(ε) and using, as above, that all previous leftmost pos-
itive points are ε-close to each other. Again this implies that dH(Cλ,Cλ̃) > ε.

Let us now estimate the measure of the set Mε,N(ε)(λ). By an easy
computation based on the independence of the random variables (λ̃k), we
obtain that for all λ ∈ Ψlog(ε−1)

P(Mε,N(ε)(λ))

≤
(

max
x∈[0,1]

f(x)
)N(ε)(2ε)N(ε)(eη−γ)−

√
N(ε) 2

PN(ε)
k=2 k (eη−γ)

PN(ε)

k=b
√
N(ε)c

k

≤
(
2 eη−γ

)−N(ε)2

2
+O(N(ε)) = e−O(1)(log(ε−1))2

, (30)

where we have used the definition (27) of N(ε). Note that this estimate is
uniform in λ ∈ Ψlog(ε−1).
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For a fixed δ ∈ (0, 1), define aq := q2−δ. For any q, there are at most
2aq different binary programs (Pj)1≤j≤2aq of length aq − 1, which generate
at most 2aq different sets Cj := C(Pj). We define

Vq,j :=
{
λ : dH(Cλ, Cj) < 2−q

}
.

Then {
λ : ∆(Cλ, 2−q) < aq

}
⊂

2aq⋃
j=1

Vq,j .

We can write

P

2aq⋃
j=1

Vq,j

 ≤ P(ΛcN(2−q)) + P(Ψc
q ∩ ΛN(2−q)) +

2aq∑
j=1

P(Vq,j ∩Ψq).

Moreover if Vq,j ∩ Ψq 6= ∅, there is a λ ∈ Ψq such that Vq,j ∩ Ψq ⊂
M2−q ,N(2−q)(λ). By Lemmas 4.3 and 4.4, and by (30) it follows that

∑
q

2aq∑
j=1

P(Vq,j) <∞.

The result follows from Lemma 4.2.

4.4 Proof of Theorem 3.4

We first prove (12). Let ε be fixed. We show how to approximate the set C
within Hausdorff distance ε. We will give the proof for integer k ≥ 1. The
proof easily extends to functions whose k-th derivative is Hölder.

We can write the Taylor expansions of the maps φi at a point x0

φi(x) =
k−1∑
p=0

ci,p(x0) (x− x0)p +Ri(x, x0) ∀ x ∈ [0, 1].

Moreover there exists a constant K > 0 such that |Ri(x, x0)| ≤ K|x − x0|k
for x ∈ [0, 1], for all i ∈ I and x0 ∈ [0, 1].

Let ε′ = ε 1−ρ
M for a constant M to be specified later on. We now

construct a sequence of polynomials which approximate the maps (φi)i∈I .
If D is the box counting dimension of the Cantor set C , we need for any
δ > 0 at most N = O((ε′)−

D
k
−δ) intervals (Is)s=1,...,N of size (ε′)

1
k to cover

C . Hence we can consider the maps (φi)i∈I restricted to the sets (Is). If ys
denotes the middle point of the interval Is, let ỹs be the approximation of
the point ys within a distance ε′. Then we define

φ̃si (x) =
k∑
p=0

c̃i,p(ys) (x− ỹs)p ∀ x ∈ [0, 1]
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such that

|ci,p(ys)− c̃i,p(ys)| < ε′ ∀ i ∈ I ∀ p = 0, . . . , k (31)

and they are contractions on R with the same uniform contraction rate
ρ̃ < 1.

To construct an approximation of C , we work on the boundary points of
the intervals Jωn1 which all are in C . Let us denote Jωn1 = [y1

ωn1
, y2
ωn1

]. Since for
any n ∈ N and any ωn1 ∈ In we have yηωn1 ∈ C for η = 1, 2, we can associate

to a given yηωn1
a sequence σn−1

0 ∈ {1, . . . , N}n−1 which specifies to which
intervals of the cover (Is)s=1,...,N the pre-images yη

ωn−1
1

, yη
ωn−2

1

, . . . , yηω1 , y
η
] of

yηωn1
belong, where yη] ∈ {0, 1}.

We now establish the analogue of (15) for the boundary points. Let us
define

ỹηωn1
:= φ̃σn−1

ωn ◦ φ̃σn−2
ωn−1

◦ · · · ◦ φ̃σ0
ω1

(yη] )

then for all n ∈ N it holds

|yηωn1−ỹ
η
ωn1
| <

k + 1 +K + max
i∈I, s=1,...,N

k∑
p=0

|ci,p(ys)|

 ε′

1− ρ
∀ ωn1 ∈ In.

(32)
The proof is by induction. The first step (n = 1) follows by definition of the
approximating polynomials, estimates (31) and properties of the remainder
Ri(x, x0). This yields

|yηi − ỹ
η
i | = |φi(yη] )− φ̃σ0

i (yη] )|

≤ ε′
k∑
p=0

(ε′)
p
k +

k∑
p=0

|ci,p(yσ0)||(yη] − yσ0)p − (yη] − ỹσ0)p|+Kε′

≤

k + 1 +K + max
i∈I, s=1,...,N

k∑
p=0

|ci,p(ys)|

 ε′.

The inductive step follows by using the triangle inequality

|yηωn1 − ỹ
η
ωn1
| ≤ |φωn(yη

ωn−1
1

)− φ̃σn−1
ωn (yη

ωn−1
1

)|+ |φ̃σn−1
ωn (yη

ωn−1
1

)− φ̃σn−1
ωn (ỹη

ωn−1
1

)|

together with

|φωn(yη
ωn−1

1

)− φ̃σn−1
ωn (yη

ωn−1
1

)| < ε′

k + 1 +K + max
i∈I, s=1,...,N

k∑
p=0

|ci,p(ys)|


and

|φ̃σn−1
ωn (yη

ωn−1
1

)− φ̃σn−1
ωn (ỹη

ωn−1
1

)| < ρ |yη
ωn−1

1

− ỹη
ωn−1

1

|,
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where ρ is the uniform contraction rate of the approximating polynomials.
Let us choose n̄ such that ρn̄ < ε

2 for all n ≥ n̄. Then we define the set

C :=
⋃

ωn̄1 ∈In̄

(
ỹ1
ωn̄1
∪ ỹ2

ωn̄1

)
and we claim that dH(C , C) < ε. Indeed, by definition of n̄, any point in the
Cantor set C is at most at distance ε

2 from a point in the boundary of one
of the sets Jωn̄1 . Moreover, by construction of the points ỹη

ωn̄1
we have (32),

hence the claim follows since

dH(C , C) ≤ sup
x∈C

inf
ωn̄1 ∈In̄

|x− ỹη
ωn̄1
|

≤ sup
x∈C

inf
ωn̄1 ∈In̄

(
|x− yη

ωn̄1
|+ |yη

ωn̄1
− ỹη

ωn̄1
|
)
< ε

provided that we choose

M := 2

k + 1 +K + max
i∈I, s=1,...,N

k∑
p=0

|ci,p(ys)|

 .

Let us define the program P that contains the numbers ε, ρ, D, M , K
and k, and such that it specifies all the necessary coefficients c̃i,p, makes the
computation to obtain N and the approximated points ỹs, and moreover it
makes the computations to obtain n̄ and the points ỹη

ωn̄1
. The binary length

`(P) satisfies
`(P) 4 ε−

D
k
−δ

since ε is specified with O(log(ε−1)) bits; ρ, D, M , K and k do not depend
on ε and can be approximated by rational numbers. The coefficients c̃i,p
and the points ỹs are constructed as in the previous proofs with precision ε′,
hence each of them needs O(log(ε−1)) bits of information and their number
is N(k + 2) = O(ε−

D
k
−δ). Finally all the computations to obtain C need

O(1) bits of instructions. Hence (12) follows.
We now prove (13). We define a class of particular scaling functions S(α)

on I∞ to construct differentiable Cantor sets with the given complexity.
Let us denote by I∗ := ∪n∈N In the countable set of finite strings s

written using the alphabet I. Let (λs)s∈I∗ be a family of independent
identically distributed random variables with values in the interval (0, 1)
and absolutely continuous distribution with density f(x) bounded above
and below away from zero. Note that the empty string ] belongs to I∗ and
therefore there is an associated random variable λ].

Let 0 < ζ < 1, 0 < ρ < 1 and ρ < θ < 1 be given constants, with ρ
determining the contraction rate. ζ will be chosen small enough later on.
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We will only consider central Cantor sets, namely the two components of
the scaling functions will be equal. We define the scaling function

Sλ(α) := ρ+ ζ
∞∑
q=1

θq−1 λαq1 ∀ α ∈ I∞

which depends on the realisation of the family (λs). We remark that for any
realisation it holds

ρ ≤ Sλ(α) ≤ ρ+
ζ

1− θ
∀ α ∈ I∞ . (33)

Hence if ζ is small enough, the rate of contraction is almost ρ. It is also
useful to define the truncated scaling function S̃λ by

S̃λ(ωm1 ) := ρ+ ζ

m∑
q=1

θq−1 λωq1 ∀ m ≥ 0. (34)

Using the relations

|Jiωm1 |
|Jωm1 |

= S̃λ(ωm1 ) ∀ i ∈ I (35)

we can construct a central Cantor set Cλ generated by the scaling function
Sλ. From (33) it follows that the Cantor set Cλ has box counting dimension
D(ζ) which satisfies

D(ζ) = − log 2
log ρ

+O(ζ) as ζ → 0. (36)

We now consider the differentiability of the IHIFS generating Cλ. By
(33) and the definition (6) of dS it follows

ρn ≤ dS(ω, ω̃) ≤
(
ρ+

ζ

1− θ

)n
n = |ω ∩ ω̃|

for any ω, ω̃ ∈ I∞. Moreover for any ω 6= ω̃ it holds

|Sλ(ω)− Sλ(ω̃)| ≤ 2ζ
θn+1

1− θ
n = |ω ∩ ω̃|.

Hence for m > n we have diffeomorphisms from A(ωm1 ) into A(ω̃m1 ) with
derivatives bounded by a constant C(ωm1 , ω̃

m
1 ) = O(θn+1). These facts to-

gether with relation (7) imply that the Cantor set Cλ is of class Ck with

k = 1 +
log θ
log ρ

> 1. (37)
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Let 0 < ε < 1 be fixed and small enough depending on the constants
ρ, θ, ζ. Let λ := (λs) and λ′ := (λ′s) denote two different realisations of
the family of random variables. We give a condition on λ and λ′ to have
dH(Cλ,Cλ′) > ε. We denote

p̄ =
[

log(Cε ζ−1)
log(ρθ)

]
(38)

where C is a positive constant (independent of ε) to be specified later on.
For any σ ∈ I∗, we denote by Jσ and J ′σ the intervals associated to σ in

Cλ and Cλ′ respectively.

Lemma 4.5. Assume there is 0 ≤ p ≤ p̄ satisfying

max
ωp1∈Ip

dH(Jωp1 , J
′
ωp1

) > ε. (39)

Then dH(Cλ,Cλ′) > ε.

Proof. Denote by p the smallest integer for which the above inequality holds
and by ωp1 ∈ Ip the string realising the maximum. We apply Lemma 4.1
with I = J

ωp−1
1

and I ′ = J ′
ωp−1

1

. The hypotheses on I and I ′ follow by the

fact that (39) is violated up to p− 1. The gaps H and H ′ have size at least

ρp−1 > (ρθ)p̄ = Cε ζ−1 > 2ε

for ε small enough if Cζ−1 > 2.
Finally since dH(Jωp1 , J

′
ωp1

) > ε we have all the hypotheses of Lemma 4.1.
Hence the lemma follows.

Lemma 4.6. Assume that there exists 0 ≤ p ≤ p̄ and a sequence ωp1 ∈ Ip
such that

|λωp1 − λ
′
ωp1
| > (ρθ)−p

(4 + 2ρ2)ε
ζ

·

Then dH(Cλ,Cλ′) > ε.

Proof. Denote by p the smallest integer for which the above inequality
holds. It is enough to assume that for any q < p condition (39) is not
verified, otherwise the proof follows immediately from Lemma 4.5.

Let x (respectively x′) be the point in the boundary of Jωp1 (respectively
J ′
ωp1

) which is not in the boundary of Jωp2 (respectively J ′
ωp2

). Let y (respec-
tively y′) be the other boundary point of Jωp2 (respectively J ′

ωp2
). Since by

the recursive assumption |y − y′| ≤ ε, we have

|x− x′| ≥ |x− y − (x′ − y′)| − ε.
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Now since |x− y| = |Jωp1 | and (x− y) and (x′ − y′) have the same sign, we
get

|x− x′| ≥
∣∣|Jωp1 | − |J ′ωp1 |∣∣− ε

This can also be written

|x− x′| ≥
∣∣S̃λ(ωp2)|Jωp2 | − S̃λ′(ω

p
2)|J ′ωp2 |

∣∣− ε ≥
≥
∣∣S̃λ(ωp2)− S̃λ′(ωp2)

∣∣ |Jωp2 |+ |J ′ωp2 |
2

− S̃λ(ωp2) + S̃λ′(ω
p
2)

2

∣∣|Jωp2 | − |J ′ωp2 |∣∣− ε ≥
≥
∣∣S̃λ(ωp2)− S̃λ′(ωp2)

∣∣ |Jωp2 |+ |J ′ωp2 |
2

− 3ε ≥ ρp
∣∣S̃λ(ωp2)− S̃λ′(ωp2)

∣∣ − 3ε

since dH

(
Jωp2 , J

′
ωp2

)
≤ ε and Sλ ≥ ρ. From (34) we get

S̃λ(ωp2)− S̃λ′(ωp2) = ζ

p∑
q=2

θq−2
(
λωq2 − λ

′
ωq2

)
and from (35) we have

ζ

p−1∑
q=2

θq−2
(
λωq2 − λ

′
ωq2

)
=

(|J
ωp−1

1
| − |J ′

ωp−1
1

|)(|J
ωp−1

2
|+ |J ′

ωp−1
2

|)

2 |J
ωp−1

2
||J ′

ωp−1
2

|

+
(|J

ωp−1
1
|+ |J ′

ωp−1
1

|)(|J ′
ωp−1

2

| − |J
ωp−1

2
|)

2 |J
ωp−1

2
||J ′

ωp−1
2

|
·

Since |J
ωp−1

1
| ≤ |J

ωp−1
2
| ≤ (ρ+ ζ

1−θ )p−2 we get (using again dH

(
Jωp2 , J

′
ωp2

)
≤ ε,

and Sλ ≥ ρ) ∣∣∣∣∣∣ ζ
p−1∑
q=2

θq−2
(
λωq2 − λ

′
ωq2

)∣∣∣∣∣∣ ≤ 2 ρ−p+2 ε .

Hence
|S̃λ(ωp2)− S̃λ′(ωp2)| ≥ ζθp−2|λωp1 − λ

′
ωp1
| − 2 ρ−p+2 ε.

We conclude that

|x− x′| ≥ ζ(ρθ)p |λωp1 − λ
′
ωp1
| − (3 + 2ρ2)ε.

Therefore the lemma follows by applying Lemma 4.1.
We now want to estimate for a given realisation λ of the family (λs) the

probability of the event

Ep̄(λ) = sup
0≤q≤p̄

(ρθ)q sup
σ∈Iq

|λσ − λ′σ| ≤
(4 + 2ρ2) ε

ζ
·
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By independence of the family (λs) we get

P (Ep̄(λ)) ≤
p̄∏
q=0

(
C (ρθ)−q ε ζ−1

)2q
where

C = (4 + 2ρ2) sup
x∈[0,1]

f(x)

where f is the density of the random variables (λs).
These relations imply that

log P (Ep̄(λ)) ≤
p̄∑
q=0

2q
(
log(Cε ζ−1)− q log(ρθ)

)
≤ 2p̄+1 log(ρθ)− (3 + p̄) log(ρθ).

For a fixed δ ∈ (0, 1), define a` := 2`(−δ+
D
k

) and choose ε = 2−`. For any `,
there are at most 2a` different binary programs (Pj)1≤j≤2a` of length a`− 1,
which generate at most 2a` different sets Cj := C(Pj). We define

V`,j :=
{
λ : dH(Cλ, Cj) < 2−`

}
.

Then {
λ : ∆(Cλ, 2−`) < a`

}
⊂

2a`⋃
j=1

V`,j .

If V`,j is not empty, there exists λ such that V`,j ⊂ Ep̄(λ). Then

P

2a`⋃
j=1

V`,j

 ≤ 2a`P (Ep̄(λ)) ≤

≤ O(1) exp
(

2`(−δ+
D
k

) log 2 + 2p̄+1 log(ρθ)− (3 + p̄) log(ρθ)
)
.

Using (36), (37) and (38), it follows that for any δ > 0 one can find ζ > 0
small enough such that this is summable in `. Hence we can apply Lemma
4.2 to complete the proof.
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