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Abstract

Functional responses are widely used to describe interactions and resources ex-

change between individuals in ecology. The form given to functional responses

dramatically affects the dynamics and stability of populations and communities.

Despite their importance, functional responses are generally considered with a phe-

nomenological approach, without clear mechanistic justifications from individual

traits and behaviors. Here, we develop a bottom-up stochastic framework grounded

in Renewal Theory showing how functional responses emerge from the level of the

individuals through the decomposition of interactions into different activities. Our

framework has many applications for conceptual, theoretical and empirical pur-

poses. First, we show how the mean and variance of classical functional responses

are obtained with explicit ecological assumptions, for instance regarding foraging

behaviors. Second, we give examples in specific ecological contexts, such as in

nuptial-feeding species or size dependent handling times. Finally, we demonstrate

how to analyze data with our framework, especially highlighting that observed vari-

ability in the number of interactions can be used to infer parameters and compare

functional response models.
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1 Introduction

Interactions between individuals affect all ecological processes, and how fast they occur

determine resources exchange rates in an ecosystem. Interactions are generally considered

at the population (or macroscopic) level and supposed to vary along with species densities

following an interaction function, generally called a functional response. The seminal

papers introducing functional responses in population ecology followed a reductionistic

approach and aimed at giving the underlying mechanisms [1, 2, 3]. Yet, population

ecologists generally follow a phenomenological approach to justify functional responses

[4], and functional responses are rarely derived from the individuals’ traits and behaviors.

The form given to functional responses is crucial since it can dramatically affect the

dynamics and stability of populations and communities. For instance, the stability of

predator and prey populations strongly depends on whether predator consumption rates

increases linearly (Holling type I functional response) or following a saturating function

(Holling Type II and III functional responses) with prey densities [5]. It is thus critical

to modelize within and between species interactions as accurately as possible in order

to have the best predictions and understanding of population and community dynamics,

and eventually support wildlife management decisions [6].

The form given to functional responses is largely debated for decades, sometimes

fiercely (e.g. the long-standing controversy about whether it is best to assume density-

dependence or ratio-dependence in predator-prey models [7, 8]). Hundreds of functional

responses have been proposed in the literature regarding all types of interactions: co-

operation [9], plant-pollinators [10, 11], predation (reviewed in [4, 8]), competition [12].

Strikingly, despite a large variety of possible functional responses, Holling type II or re-

lated functional responses are most often used [4, 13], either for predator-prey [14] or

mutualistic interactions [10]. There is however a general agreement that there is much

room for improvement. It is for instance difficult to determine which one of alternative

functional response fits the best to empirical data because of the poor statistical power of
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fitting different functions to data [14, 15]. Holling Type II functional response is certainly

preferred not because it adequately modelizes ecological interactions but rather because

it is a saturating function with a single parameter. Many authors argue that bridging

the gap between interactions at the level of the individuals (the microscopic scale) and

functional responses (the macroscopic level) would be a critical milestone in the field

[6, 16], first because it is necessary to mechanistically justify functional responses, and

second because evidence of individual traits variation in functional responses accumulate

[e.g. 6, 17].

Few studies aimed at making the link between microscopic and macroscopic scales in

the context of functional responses. Some authors used a mean-field approximation to

derive functional response in consumer-resources relationships [e.g. 1, 18]. In particular,

inspired by his famous “Disc experiment”, Holling showed that considering mechanisms

such as searching times proportional to prey density and constant handling times of prey

by predators, gives the well-known Holling’s Type II functional response [1]. Holling

later showed that Holling Type III functional response can be derived by introducing the

mechanism of predators learning [2]. Other authors used deterministic approaches derived

from chemical reactions equations to show which assumptions must be verified for a

specific functional response to be valid, e.g. Holling functional responses [19], Beddington-

DeAngelis functional response [20], plant-marking pollinators interactions [11]. However,

these approaches have strong limitations. First, they can be used only to derive simple

functional responses. Indeed, approximations of deterministic functional responses can be

obtained from a system of ordinary differential equations under assumptions of slow/fast

processes. Approximations might generally be difficult to obtain because the number

of equations and simplifying assumptions to make increase with the complexity of the

system. It makes this approach unlikely to be general enough to embrace the large variety

of possible ecological contexts. Second, since only the mean rates of interaction at the

population level are considered, variability of traits and behaviors between individuals

can not be considered. Third, since these approaches are deterministic, they are only
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valid in very large populations and the importance of stochasticity can not be taken into

account.

Deriving stochastic models of functional responses have two purposes. First, it makes

explicit the assumptions underlying the average interaction rates, i.e. the mean of func-

tional responses. It has been performed in few studies in specific situations. [21] analyzed

a Markov-chain model of a predator-prey system adapted from chemical reactions, and

showed how Holling functional responses could emerge at the population level. [22] and

[23] used a similar approach to derive a functional response in the specific cases of klep-

toparasitism and a Beddington-DeAngelis functional response, respectively. Second, the

development of stochastic models are needed for inferring functional responses from em-

pirical data in order to clearly identify the processes and mechanisms underlying the

variability of interaction rates, which appears to be large in experiments [e.g. 17]. Three

sources of variability are possible: i) environmental or exogenous variability, e.g. tem-

perature or observation errors; ii) inter-individual variation of behavior or traits, e.g.

size, color or run speed; iii) endogenous variability due to stochastic fluctuations of the

interaction themselves, hereafter called interaction stochasticity.

Modelling interactions processes at the microscopic level is necessary to evaluate the

part of variance due to interaction stochasticity. [12] is the only study to our knowledge

which proposed an explicit expression for an approximation of variance due to interac-

tions, in the specific case of competition for resources. They assumed a site-based models

where individuals are randomly distributed in patches every generation. They showed

how different functional responses for competition can be derived depending on the as-

sumptions about how resources are shared between competitors. A general stochastic

framework for the derivation of functional responses is however still lacking. This would

help to better justify the choice of the form given to functional responses, in interpret-

ing data and making statistical inference, and evaluating the importance of interaction

stochasticity for the dynamics and stability of populations and communities. In addition,

since the variance due to interaction stochasticity comes from the interactions process it-
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self, it is a valuable source of informations for inference, and would help for parameters

estimation and models selection.

In this paper, we propose a general stochastic framework which allows accounting

for interaction mechanisms at the level of individuals and the derivation of functional

responses at the population or community level. It is based on the modelling of the dis-

tribution of the times separating two interactions and on the use of the so-called Renewal

Theory, a well-known mathematical stochastic theory (for the reader’s convenience, we

provide a brief account of this theory in Supp. Mat. A.1). It is classically used in for-

aging theory but has never been used, to the best of our knowledge, to derive functional

responses and bridge the gap between behavioral ecology and population ecology. We

first show how functional responses and their stochastic fluctuations can be approximated

under a wide range of possible individual behaviors and interaction types. Second, we

show how our model can be used to derive stochastic versions of classical functional re-

sponses, such as Holling functional responses. We then show how to derive stochastic

functional responses in many different ecological contexts, through two examples: the

rate of successful copulations for males in a nuptial-feeding species, and the feeding rate

of predators when handling of the prey depends on its size. Finally, we apply our frame-

work for inference through a model comparison framework by reanalyzing a dataset on

grey partridges [24]. We show in particular that information can be extracted from ob-

served fluctuations in order to estimate model parameters and improve inference, given

that variability due to interactions themselves are large enough relatively to other sources

of variations.

2 Functional responses from Renewal Theory: A gen-

eral framework

Consider a community with three species denoted by ex, ey and ez. We take three species

for concreteness, one can of course consider more species, and one can consider genotypes,
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phenotypes, substrates or resources instead of species. Our goal is to determine the

number of times N∆(x, y, z) a focal individual of species ex successfully interacts with

other individuals of a given species ey (possibly the same species), during a time span ∆,

with x, y, z the size or density of each species in the environment.

We assume 1 � N∆(x, y, z) � x, y, z, i.e. i) the number of interactions is low com-

pared to the size of the populations during ∆, and ii) the number of interactions during

∆ is large. In other words, it is assumed that interactions between individuals have a

negligible effect on the population sizes and the time span ∆ is large enough for many

interactions to occur. Under these assumptions, the time between the k− 1th and kth in-

teractions, denoted by Tk(x, y, z), is a random variable whose distribution is independent

of k, but generally depends on x, y, z. The number of interactions N∆ during ∆ is thus a

random variable defined as follows (Figure 1):

N∆ = k if T1 + · · ·+ Tk ≤ ∆ < T1 + · · ·+ Tk + Tk+1.

Approximation of the mean and variance of a functional response. Functional

responses, i.e. the expected number of successful interactions per unit of time (in the

more specific case of predator-prey interactions the number of prey killed by a predator

per unit of time, e.g. [1, 7, 8]), can be defined as

R(x, y, z) =
N∆(x, y, z)

∆
. (1)

Under the assumptions that the number of interactions is large (i.e. ∆ is large) but the

environment does not change during this time (i.e. variation in densities x, y and z is neg-

ligible), the mean and variance of the functional response R(x, y, z) can be approximated

in law according to Renewal Theory by

R(x, y, z)
law

≈ 1

E (T (x, y, z))
+ N

(
0,

1

∆

Var (T (x, y, z))

E (T (x, y, z))3

)
, (2)
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where N (0, σ2) denotes a Normal distribution with mean 0 and variance σ2 (see Supp.

Mat. A.1 for mathematical details). Since all the random variables Tk(x, y, z) have

the same distribution, we dropped the index k and simply wrote T (x, y, z) inside the

mean and the variance. This formula shows that knowing the expected time between

two successful interactions E [T (·)] and its variance Var [T (·)] provides the mean of a

functional response and a confidence interval. It is important to notice that the stochastic

fluctuations of the functional response around its mean are only due to the interactions

per se and not to external sources: since we consider interactions between individuals as

a stochastic process, it implies stochastic fluctuations. We will call this intrinsic source of

variability interaction stochasticity in order to differentiate it with possible others, such

as environmental stochasticity or between individuals variability.

In order to give an explicit form of a functional response, the next step is to decompose

the time T (x, y, z) according to the different events taking place between two interactions.

Decomposing the time between two interactions. We suppose that the time be-

tween two interactions, namely T (x, y, z), can be decomposed into a sequence of a given

number of independent steps, in a definite order. We start with a simple example, and

give the general version afterwards. Consider a predator ex and a prey ey (the third

species ez is ignored for simplicity). Assume that a predator has two activities: searching

a prey and handling it if its capture is successful (see Fig. 1). Suppose it takes a time

τh to handle a prey and τs to find it. The first attempt of the predator to find a prey

takes a random time τ
(1)
s . The prey is then either caught (‘success’) or not (‘failure’). If

the capture is successful, then the time of an interaction is T (x, y) = τ
(1)
s (x, y) + τh(x, y).

Otherwise, the predator has to make another attempt, which takes a new random time

τ
(2)
s . If there is a success, then T (x, y) = τ

(1)
s (x, y) + τ

(2)
s (x, y) + τh(x, y), and so on and

so forth. The reader can guess that the number of steps is given by the number of trials

needed to get the first success. It is well-known that this number is a random variable

which follows a geometric law whose parameter is the probability of a success.
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The decomposition of the time between two interactions can be generalized and ap-

plied to many different ecological contexts, for any number of activities. Denote by A the

(finite) set of possible activities and by |A| its cardinality, i.e. the number of necessary

activities in order to perform a new successful interaction. In the previous example, we

had A = {“handling”, “searching”} and |A| = 2. Let τa(x, y, z) be the random time

needed to carry out a given activity a ∈ A, e.g., a = “searching”. Let pa(x, y, z) be the

probability that this activity ends up successfully, and Ga(x, y, z) the random number of

attempts the focal individual must perform before succeeding activity a. Ga(x, y, z) is a

random variable following a geometric distribution with parameter pa(·). Then we can

write (the notation (x, y, z) is dropped hereafter not to overburden the notations, but the

reader should keep in mind that all random variables generally depend on x, y, z):

T =

|A|∑
a=1

τΣ
a

where τΣ
a is the total time spent for activity a to end up successfully, given by

τΣ
a =

Ga∑
i=1

τ (i)
a ,

where, the random variables τ
(i)
a , i = 1, 2, 3, . . ., are independent and have the same

distribution as τa (note that Ga appears as a superscript because it is the random number

of attempts before succeeding activity a).

We can compute the mean and variance of the time span T between two interactions,

and we find (see Supp. Mat. A.2)

E(T ) =

|A|∑
a=1

E(τa)

pa
(3)
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and

Var (T ) =

|A|∑
a=1

(
Var (τa)

pa
+

1− pa
p2
a

E (τa)
2

)
. (4)

We finally obtain an approximation of the functional response by plugging Eqs. (3)

and (4) into Eq. (2). To achieve this, one needs to know τa(x, y, z) and pa(x, y, z) for

all a ∈ A, that is, the time taken by every activity and their probability of success,

both generally depending on the species density in the community. These quantities can

be determined empirically, or explicitly specified in various ecological contexts. We give

examples and applications in the following.

3 Examples of functional responses with searching

and handling times

In this section, we show how stochastic versions of classical functional responses can

be derived assuming simple processes at the level of the individuals for searching and

handling activities.

A general form of the functional response with searching and handling times.

Our aim is to determine the expectation and variance of the number of interactions

between a focal individual ex and individuals ey during a time ∆. We want to take into

account possible perturbations due to interactions between the focal individual ex with

individuals of a third species ez. We suppose that the time between two interactions T in

a given environment (x, y, z) can be decomposed into a searching time τs and a handling

time τh, that handling always succeeds (ph = 1) and catching an individual ey has a

probability ps to succeed. If searching fails, the focal individual starts a new searching

phase or stop searching if the total time ∆ is reached (Figure 1). From Eqs. (3) and

(4), we can compute the expectation and variance of the time separating two interactions

10



between the focal ex individual and ey individuals:

E(T ) =
1

ps
E(τs) + E(τh) (5)

and

Var (T ) =
Var (τs)

ps
+

1− ps
p2
s

E (τs)
2 + Var (τh) (6)

which give an approximation of the stochastic functional response R (Eq. (2)).

In order to give explicit expression of the mean and variance of the time between two

interactions E(T ) and Var(T ), Eqs. 5 and 6 show that we now need to specify the mean

and variance of the time taken to find an individual ey (E(τs) and Var(τs)), the probability

to effectively interact with an individual once found (ps), and the time taken for handling

the interaction (E(τh) and Var(τh)). In other words, we need to explicitly specify how

individuals move into space and how interactions take place. In the following, we derive

functional responses under explicit assumptions regarding foraging and handling times.

We first detail a simple case with assumptions which are classically made to obtain a

Holling type II functional response, i.e. constant handling time, a single type of prey,

and foraging time as a function of prey densities in the environment. Second, we give

a generalized model, in a d-dimensions space which can include many different classical

functional responses.

A simple case: foraging in a 2D space with handling. We assume a focal individ-

ual ex foraging in a 2D space of size L2, where y individuals ey are uniformly distributed on

a square lattice, such as the distance between the two nearest ey individuals is L/(
√
y−1).

The location of the individual ex is randomly chosen in the 2D space and we want to

calculate the expectation and variance of the distance D(y) to the closest ey individual.

The horizontal u1 and vertical distances u2 between ex and ey follow uniform distributions
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in the range [0, δ2] with δ2 = L/2(
√
y − 1), which gives

E (D(y)) =
1

δ2
2

∫ δ2

0

∫ δ2

0

√
u2

1 + u2
2 du1du2 = CE

2

L

2 (
√
y − 1)

,

E
(
D(y)2

)
=

1

δ2
2

∫ δ2

0

∫ δ2

0

(
u2

1 + u2
2

)
du1du2 = CV

2

(
L

2 (
√
y − 1)

)2

,

where CE
2 and CV

2 are two constants (explicit values are given in Supp. Mat. A.3 ). It is

assumed that the focal individual ex has a perfect knowledge of the spatial distribution

of individuals ey and goes to the nearest ey individual following a straight line at speed

v. Hence, the expectation and variance of the searching time are E (τs) = E (D(y)) /v

and Var (τs) = Var (D(y)) /v2. Assuming that searching always succeeds (ps = 1) and

that handling time is a constant cy (Var (τh) = 0), we finally get from Eqs. 5 and 6 the

expectation and variance of the functional response R

E (R) =

√
y − 1

cy(
√
y − 1) + CE

2 λ
,

Var (R) =
1

∆

(
CV

2 − CE
2

2
)
λ2(
√
y − 1)(

cy(
√
y − 1) + CE

2 λ
)3 ,

(7)

with λ = L/2v, the scaled size of the environment (the size of the environment L/2

relative to foraging speed v). Predictions provided by Eqs. 7 are in very good agreement

with individual-based simulations of the present model (Figure 2).

The functional response given by Eq. 7 is a saturating function of the density y which

looks like a Holling II functional response. Classically, the form of the Holling II func-

tional response is justified by two mechanisms: a searching time depending on the density

of the prey, and a constant handling time [1]. This is thus not surprising that we recover

a functional response close to Holling II here. However, the exact form differs: we obtain

a function of
√
y instead of y. This illustrates that being explicit about how individuals

forage into the environment, with specific justifications about the mechanisms under-

lying interactions between individuals, can give rise to alternative functional responses
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(other alternatives are given in the following section). This also shows that adopting a

bottom-up approach allows to estimate how variable is the number of interactions in a

given ecological context due to intrinsic interaction stochasticity. In the present case, the

variance of the functional response decreases with y.

Foraging and handling one or two species in a d-dimensions space. We give

here a generalization of the framework with handling and foraging in d-dimensions. The

individual ex now forages for two possible species ey or ez, with constant handling times

cy and cz. We make similar assumptions than in the previous section, but we introduce

the parameters α, denoting a possible preference of the species ex for species ez, and

β denoting a different availability or vulnerability of species ez (e.g. if β > 1, ez is

easier to be detected relatively to ey, see Supp. Mat. A.3 for details). We will moreover

compare two different movements followed by the focal ex individual: a straight line to

the nearest individuals (as in the previous section) or a Brownian motion. We want to

calculate the time between two interactions between ex and ey which depends on: i) the

number of occurrence where ex interacts with ez instead of ey, which follows a geometric

distribution with probability of success y/(y + αz); ii) the two first moments of the time

taken to reach a given species in a d-dimensions space θEd (w) and θVd (w), respectively (see

Supp. Mat. A.3 for details); iii) the handling times cy and cz. Finally, the time between

two interactions between a focal individual ex and individuals ey are (Supp. Mat. A.3):

E (T ) =

(
y + αz

y
− 1

)(
θEd (βz) + cz

)
+ θEd (y) + cy,

Var (T ) = θVd (y)− θEd (y)2 +
zα

y

(
θVd (βz)− θEd (βz)2

) (8)

in the case of a straight movement to the closest patch and

E (T ) =

(
y + α z

y
− 1

)(
θEBM(βz) + cz

)
+ θEBM(y) + cy,

Var (T ) = θVBM(y)− θEBM(y)2 +
zα

y

(
θVBM(βz)− θEBM(βz)2

) (9)
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in the case of a Brownian motion.

With appropriate assumptions regarding underlying mechanisms, Eqs. 2, 8 and 9

are general enough to recover some classical functional responses and their variance. As

shown in Table 1, assuming a 1D space and direct foraging to the nearest individual

yields the equations for Holling Type I, II and III, Beddington-DeAngelis or the Ratio-

Dependence functional responses, given further assumptions about handling time and

possible interference between species. On a side note, we were not able to find appropriate

assumptions to recover the exact equation of the Holling Type III functional responses as

defined in the literature: We found a function of the form y2/(1 + y + y2) instead of the

classical form y2/(1+y2). It can be due either to a lack of generality of Eq. 8, or because

there is no realistic biological assumptions which allows to recover the same exact form

under our framework, or because Holling Type III is only correct when y is large, i.e.

y is negligible relative to y2. Even if both functions have similar sigmoidal shapes, our

results illustrate that deriving functional responses with a bottom-up approach highlights

implicit and often hidden assumptions regarding the underlying mechanisms.

Interestingly, alternative underlying mechanisms can give rise to similar functional

responses, in two ways. First, the exact same equation can emerge for different hypothe-

ses. There are for instance two ways to introduce competition between predators to

obtain the ratio-dependence functional response, assuming either that the probability of

searching success is ps = 1/x or that the searching time is proportional to the density of

individuals ex, E(τs(x, y, z)) = λ x/y and the probability of success is ps = 1. Second, we

can obtain similar form of the functional responses with alternative foraging strategies

in a given environment. Fig. 3 shows that decelerating functional responses can be ob-

tained without handling time (cy = 0) but with foraging in a 2D or 3D space. Sigmoidal

functional responses (Holling Type III-like forms) can emerge if foraging follows a Brow-

nian motion in a 1D space. Note that not only forms of functional responses vary with

assumptions, but also their range (interactions rates have different scales even though

parameter values are identical, see the y-axes on Fig. 3). This illustrates the relevancy
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of the bottom-up approach developed here. Since the same functional responses can be

obtained under different hypotheses, deducing underlying mechanisms from an observed

form at the macroscopic level is limited; for instance, a sigmoidal functional response

does not necessarily mean that a predator is able to learn. Instead, we propose to mod-

elize interactions at the microscopic level (the level of the individuals) in order to get

corresponding functional responses.

Another merit to adopt a bottom-up approach is that the variance of the functional

responses can be estimated (Tab. 1 and Fig.3). The intensity of stochastic fluctuations of

the functional responses, depicted by the 95% confidence interval on Fig. 3, depends on

the supposed underlying mechanisms (e.g. the large fluctuations in the Ratio-Dependence

functional response are due to the probability of searching success of the form 1/x), and

on the density of species (e.g. fluctuations increase linearly with y when there is no

handling). Also note that even if, as shown before, we can recover the same mean

functional response with different underlying hypotheses, variance can be different: the

ratio-dependence functional response shows different variance whether ps = 1/x and

E(τs(x, y, z)) = λ/y or ps = 1 and E(τs(x, y, z)) = λ x/y. This is noteworthy because it

shows that, in order to make inference from data, both the mean and the variance of the

number of interactions per unit of time can be used to discriminate between concurrent

functional responses models.
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Functional Handling Searching Interaction Mean
Response time probability with ez & Variance (×∆−1)
R(.) cy ps

No handling 0 1 No: z = 0 y l−1

2 species

(Holling Type I) y (3l)
−1

With Handling > 0 1 No: z = 0 y [l + ycy]
−1

2 species

(Holling Type II) yl2 [3 (l + ycy)]
−3

With Handling > 0 1 Yes: z > 0 y2
[
αz(cz − ly) + y2cy

]−1
3 species cz → cz/y

(Holling Type III) β = 0 y5zαl2
[
3
(
αz (cz − ly) + y2cy

)]−3
With Handling > 0 1 Yes : z = x y [2l + cyy + cxαx]

−1

2 species α = β

Predators Interference yl2 (y + αx) [3αx (2l + cyy + cxαx)]
−3

(Beddington-DeAngelis)

With Handling > 0 x−1 No: z = 0 y/x [l + cyy/x]
−1

2 species

Predators Competition y/x l2 [l + cyy/x]
−3

(Ratio Dependence)

Table 1: Examples of assumptions for recovering some classical functional responses in a
1D space with direct movement to the nearest individual (from Eq. 8). For the sake of
simplicity, formulas are given under the assumption that y >> 1, αz >> 1 and βz >> 1,
and denoting l = λ/2. (×∆−1) means that the variance is scaled with the parameter ∆
(see Eq. 2)
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4 Build the <insert your name> functional response

In addition to recover classical functional responses, we argue that our theoretical frame-

work is general enough to be applied to many different ecological contexts. In this section,

we give two detailed examples inspired from the empirical literature. This illustrates how

anyone with a specific question can derive functional responses and its stochastic fluctua-

tions from basic knowledge about individual traits and behaviors, following a bottom-up

approach.

Nuptial feeding: how many successful matings for a male? In many species

such as insects, spiders or birds, males bring food to females in order to increase their

probability to mate [25, 26, 27]. Let us imagine that five successive steps must be fulfilled

by a male to mate with one female: find a free a gift (e.g. a prey), handle it, find a free

female, court it and copulate. Let denote τSG
, pSG

and τHG
respectively the time taken and

probability to successfully search for a free gift (i.e. not already handled by another male

or female), and to handle it; τSF
, pSF

and τHC
, pHC

the time taken and the probability

to successfully search for a female, and to court it; finally let pR be the probability to

successfully copulate with it. Applying Eqs. (3) and (4) gives the expectation and the

variance of the time taken for a male to successfully mate with a female:

E (T ) =
1

pR

(
E (τSG

)

pSG

+ E (τHG
) +

E (τSF
)

pSF

+
E (τC)

pC

)
Var (T ) =

1− pR
p2
R

(
E (τSG

)

pSG

+ E (τHG
) +

E (τSF
)

pSF

+
E (τC)

pC

)2

+
1

pR

(
1− pC
p2
C

E (τC)2 +
1− pSG
p2
SG

E (τSG)2 +
1− pSF
p2
SF

E (τSF )2

+
Var (τSG

)

pSG

+
Var (τSF

)

pSF

)
.

Assuming male-male and male-female competition for finding prey, the probability to

successfully find a free gift by a focal male can be supposed as pSG
= 1/(m+ f), with m
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and f the male and female densities, respectively. The form given to pSG
is arbitrary and,

assuming that all females and males have equal chance to find prey, it only reflects that the

higher the density of competitor males and females, the more difficult for the focal male

to find a gift. Note that the time spent by the focal male to find a free gift also depends

on prey density through τSG
. Similarly, we assumed that males compete for finding a free

female, with equal chance, which gives the probability to successfully find a female to court

is pSF
= 1/m. Handling and court times, and the probability to copulate are assumed

constant (respectively equal to CG, CC and pR = p). An approximation of the expectation

and variance of the number of successful matings by a male can then be obtained using Eq.

2. Figure 4 shows that the variance of the number of successful copulations decreases

when the number of males and females decreases, and that the expected number of

successful copulations has a non-monotonous variation with the density of females. Such

an approach can be useful for studying the evolution of interaction behavior in the context

of nuptial-feeding behaviors [26].

Trait-dependent interaction times: prey size and functional responses. While

most functional responses make the implicit assumption that interaction rates only de-

pend on the number or density of individuals, many investigations suggest that interaction

rates might also depend on individual traits and their distribution in a population, espe-

cially body mass or size [e.g. 28, 29]. For instance, [30] showed that functional responses

generally depend on the ratio between predator and prey masses, and [15] showed that

predators prefer prey with a particular body mass. We show here that our theoretical

framework can be used to derive functional responses dependent on quantitative traits.

As an illustration, we will focus on the derivation of handling times accounting for

body mass. We neglect searching times for the sake of simplicity, but it might be relevant

to include the effect of size on the time and probability to find and catch a prey: larger

prey can be more easily detected or caught. The effect of prey size on searching time can

for instance be taken into account into the spatial scale L introduced before. Let us note
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s the size of the prey and m(s) its distribution, supposed following a truncated normal

distribution defined on [0,+∞], with mean µs and standard deviation σs. π(s) is defined

as the density probability that a predator catches a prey of size s. Finally, we suppose

that the expected handling time conditional on the prey size s is E(τh|s) = t(s). The

expectation and variance of handling times are thus

E(τh) =

∫ ∞
0

π(s) t(s) ds,

Var(τh) =

∫ ∞
0

π(s) t2(s) ds−
(
E(τh)

)2
.

We can now be more specific in order to give explicit expression of the functional

response. Let P (s) be the preference of the predator for prey with size s, assumed to

follow a truncated Gaussian function defined on [0,+∞], with µP the most preferred

size and σP its tolerance. The probability to catch a prey of size s is therefore π(s) =

m(s)P (s)ds/
∫
m(u)P (u)du. We can reasonably assume that handling time is a bounded

increasing function of prey size s, such as E(τh|s) = τmax(1− e−s). Finally, using Eq. (2),

an approximation of the functional response and its variance can be obtained (Fig. 5).

Figure 5 shows how the functional response and its variance change as a function of the

variance of the body size of the prey µs. This illustrates that functional responses not

only depend on the average body size, as shown several times [e.g. 31, 32], but also on

the variance of prey body size, possibly giving non-monotonous relationships.

5 Functional responses inference: A model compar-

ison framework

Many works compare different functional responses models with likelihood ratio test or the

Akaike’s Information Criterion in order to determine which one fits the best [e.g. 14, 24,

15, 33]. However, it is generally difficult to discriminate between alternative functional

responses [14, 15]. A limit of these approaches is that the variance of the functional
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responses is directly estimated from the data, while variance depends on interactions

themselves, as shown by our framework (Eq. 2). Here, we reanalyze a dataset from

[24] to estimate the feeding rate of grey partridges on seeds in a controlled experiment.

[24] especially aimed at testing whether vigilant behaviors significantly affect the feeding

rate. They compared two models using the AIC method: Holling type II with and

without vigilant behaviors. They found no statistical difference between models with

or without vigilance, and concluded that vigilant behaviors do not affect feeding rate.

Here, we first derive a functional response with vigilant behaviors using our bottom-up

approach. Second, we use a likelihood approach to estimate the parameters and test

whether vigilance significantly affects grey partridges feeding rates (see Supp. Mat. A.4

for details).

We supposed that the time between two successful interactions, i.e. between two eaten

seeds, can be decomposed into vigilance bouts with constant duration cv, occurring with

probability pv, searching bouts τs, successful with probability ps, and handling bouts

with constant duration ch. We fitted and compared models with (pv 6= 0) or without

vigilance (pv = 0) using a maximum likelihood approach. Note that parameters of the

model were estimated both from the mean and variance (since mean and variance of the

functional responses are explicitly expressed as a function of the ecological parameters).

The best model was estimated to be in a 2D space, with a direct movement to the

nearest seed, with vigilance (Likelihood-ratio of the models with and without vigilance

= 641.3). We estimated the probability of entering a vigilant bout pv ' 0.12, which

roughly corresponds to the estimation from direct observations in [24]. A comparison of

the resulting functional responses is shown on Fig. 6.

To illustrate the importance of the information included in the variance, we also

fitted the models assuming a fixed variance independent of the parameters. In this case,

the model without vigilance is the best (using an AIC comparison) because it has a

lower number of parameters to estimate. In practice, only using the expectation of the

functional response makes difficult to distinguish between different functional responses.
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This is however made possible using the variance. In our case, the large variability in

the functional responses are better explained by the model with vigilance because the

probability to enter into a vigilance bout mechanically increases variance in our model

(Eq. 2).

These results must yet be taken with caution. The large variation in the functional

response shown in the data (Fig. 6) can be due to other sources of variability, observation

errors or variability between individuals, not taken into account into the present analyses.

Indeed, as shown in [17] for a predator fish, most of the variation in the number of prey

consumed by unit of time can be due to variation in the predator individual traits: search-

ing and handling times both decrease with predator body size. This suggests, in the case

of the grey partridges treated here, that the large observed variance is not necessarily due

to the probability to enter into a vigilance bout, but to between-individuals variability.

In order to properly analyze such type of data and improve our ability to infer functional

responses parameters, an adapted statistical framework must be developed taking into

account both between- and within-individuals variability. Within-individuals variability

is taken into account by our model (Eq. 2) but a mixed-effect model is needed to take into

account between-individuals variability. Ideally, taking account of between prey variabil-

ity would also be needed, for instance to take into account the effect of the variability in

prey body size. Classically, mixed effects models include between-individuals variability

only in the mean part of the model, and not in the variance. In our model, since between-

individuals variability would affect both the mean and the variance of the model (Eq. 2),

a specific mixed-effect statistical framework is needed (development in progress).

6 Discussion

Dealing with identifiability. The rate at which individuals interact, within or be-

tween species, is central in most ecological processes: it affects individuals’ growth, birth

and death, populations’ and communities’ dynamics, and how energy and matter flow
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through ecosystems. Predicting ecological dynamics and supporting management deci-

sions depend on our understanding of how individuals interact. It is thus crucial to use

functional responses models that fit the best with data and with mechanisms underlying

interactions [6]. However, functional response models are hardly identifiable: often, dif-

ferent functional responses fit well to data and inferences show no or few statistical power

[14, 15]. This identifiability problems of functional responses sometimes even resulted in

violent debates [7, 8]. Adopting a bottom-up approach, we show in the present paper

that such an identifiability is not surprising since, on the one hand, various underlying

mechanisms can give rise to similar or identical functional responses (Fig. 3). On the

other hand, our results show that choosing a functional response with a phenomenological

approach does not give insight about the underlying mechanisms.

Ignoring the various sources of variability of the interactions rates is certainly respon-

sible in part of the difficulty to infer functional responses from data. It is now recognized

that both interspecific and intraspecific variations are important in ecology [34, 35], es-

pecially for functional responses [6]. For instance, [17] and [16] respectively showed that

functional responses depend on predators and prey body mass. Here we show that, in

addition to within and between species variability, a third source of variability should also

be considered: interaction stochasticity (Fig.7). Since ecological processes at the level

of the individuals are stochastic, the number of interactions per unit of time is random

and make functional responses randomly fluctuate. We argue that the variation in the

number of interactions per unit of time can have three internal sources: within species

variations for both types of interacting individuals (e.g. the predator and the prey), and

interaction stochasticity (Fig. 7). Inferring functional responses from data would need to

take those three sources of variability into account. Our model would allow the develop-

ment of a statistical framework adapted to this problematic since it follows a bottom-up

approach, from the individual to the macroscopic level. Since our model allows to re-

late the variance of functional responses to ecological parameters and individual traits

(Eq. 2), variance in data can be used as a source of information to infer parameters
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(as we showed in reanalyzing [24]’s dataset). In many cases, one can expect interaction

stochasticity to be the weakest source of variability in real data. As it is illustrated in

our reanalysis of the grey partridges dataset, relying on it alone is certainly not relevant

for model identification. Developing a statistical framework allowing to disentangle all

sources of variability and to extract information from variance is a new challenge.

However, one of the main message of our paper is to question the relevancy of making

inferences by using phenomenological functional responses: is it really important to know

whether an hyperbolic Holling Type II functional response fits better the data than a

sigmoidal Ginzburg-Arditi functional response [36]? We think it is more relevant to make

the link between behavioral ecology, foraging theory, population ecology and community

ecology. We argue that our model can help in doing this by i) stopping searching which

adhoc functional response fits best to data, and ii) constructing one’s own functional

response from one’s own specific case, using basic knowledge about species and their

ecological contexts. Our model is general enough to adapt to many different situations,

given it is possible to decompose interactions into a sequence of different activities.

Assumptions and time scales. Many situations in natural populations or exper-

iments are obviously expected to depart from our model. We made some choices for

the sake of simplicity, without really being necessary. For instance, we supposed that

individuals move in straight line or following a Brownian motion, which can be modified

accordingly to a specific ecological context. However, two assumptions are inherent to our

theoretical framework, and for which departures can be generally found in nature. First,

we assume that the interactions can be decomposed into a sequence of activities whose

duration are random, independent and identically distributed, which is a fundamental

hypothesis of Renewal Theory used here. Yet, individuals are in general able to learn

or sets mark in the environment in order to improve their ability to search, or change

their preference for a prey or another, which violates the independence in time [1, 37].

Individuals can also be clustered in space, which would for instance affect the time taken

by a predator to find two succeeding prey [36]. Population size of each interacting species
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can also significantly vary during the considered time frame, because of prey depletion or

blooming. Second, we assume that the number of interactions and the considered time

frame are large. Yet in general, experiments and observations generally involve a few

dozens or hundreds of interacting individuals during a limited time frame.

What is the impact of violating these assumptions on the resulting functional response

is an open question. Performing stochastic simulations might obviously help in addressing

this question. However, we think it can be addressed more generally from a theoretical

point of view. Indeed, we think that it mostly relies on how do the different time scales

of the ecological processes involved in the functional response relate with each other. For

instance, if individual learning occurs at a slower time scale than it consumes prey, then

we can expect that learning little affects the resulting functional response. Similarly,

if the time taken by a predator to move from one patch of prey to another is large

enough, then it should not affect much the resulting functional response in a short time

frame. If prey reproduction is fast enough, then depletion should have a low impact.

Some authors proposed for example to take into account prey depletion into account [38],

but the approach is still phenomenological, i.e. different time scales are generally not

considered. The relative importance of the time scales is central in ecology. It deserves

particular attention in the case of functional responses in particular [39], and it is a

natural perspective of the current work.

The last perspective of this work is about how individuals interactions translates

into birth and death, in other words how functional responses are related to numerical

responses [6]. Since most population and community dynamics models are systems of dif-

ferential equations, functional responses and numerical responses are generally assumed

to play at similar time scales (except when slow/fast processes are explicitly assumed).

Some authors showed in specific cases that considering different time scales for func-

tional responses and numerical responses [e.g. 40, 41] can dramatically affect population

dynamics and stability. Finally, functional response should be considered as the result

of stochastic ecological processes. We highlight in the present paper the phenomenon
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we called interaction stochasticity, in analogy with demographic stochasticity. It is well-

known that demographic stochasticity can affect population stability [42]. How inter-

action stochasticity can affect population and community stability, through its effect in

numerical responses, is an open question.
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of Veolia Environnement-Ecole Polytechnique-Museum National d’Histoire Naturelle-

Fondation X and by the ANR ABIM (ANR-16-CE40-0001).

25



References

[1] C.S. Holling. Some characteristics of simple types of predation and parasitism.

Canadian Entomologist, 91:385–398, 1959.

[2] C. S. Holling. The functional response of predators to prey density and its role

in mimicry and population regulation. Memoirs of the Entomological Society of

Canada, 45:5–60, 1965.

[3] M. Denny. Buzz Holling and the Functional Response. Bulleting of the Ecological

Society of America, 95:200–203, 2014.

[4] J.M. Jeschke, M. Kopp, and R. Tollrian. Predator functional responses: Discrim-

inating between handling and digesting prey. Ecological Monographs, 72:95–112,

2002.

[5] A. Hastings. Population biology: concepts and models. Ed. Springer-Verlag, NY.,

1997.

[6] N. Pettorelli, A. Hilborn, C.Duncan, and S.M. Durant. Individual variability: The

missing component to our understanding of predator-prey interactions. Advances in

Ecological Research, 52:19–44, 2015.

[7] R. Arditi and L. Ginzburg. How species interact: Altering the standard view on

trophic ecology. Oxford University Press, 2012.

[8] P.A. Abrams. Why ratio dependence is (still) a bad model of predation. Biological

Reviews, 90:794–814, 2015.

[9] J.N. Holland, D.L. DeAngelis, and J. L. Bronstein. Population dynamics and mu-

tualism: functional responses of benefits and costs. The American Naturalist, 159:

231–244, 2002.

26



[10] H.J.N. Holland and D.L. DeAngelis. A consumer-resource approach to the density-

dependent population dynamics of mutualism. Ecology, 91:1286–1295, 2010.

[11] M.A. Fishman and L. Hadany. Plant-pollinator population dynamics. Theoretical

Population Biology, 78:270–277, 2010.

[12] A. Johansson and D.J.T. Sumpter. From local interactions to population dynamics

in site-based models of ecology. Theoretical Population Biology, 64:497–517, 2003.

[13] M.L. Baskett. Integrating mechanistic organism-environment interactions into the

basic theory of community and evolutionary ecology. The Journal of Experimental

Biology , 215:948–961, 2012.

[14] G.T. Skalski and J.F. Gilliam. Functional responses with predator interference:

viable alternatives to the Holling Type II model. Ecology, 82:3083–3092, 2001.
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Figure 1: Functional response as a decomposition of the stochastic times between two
successful interactions. A time frame with duration ∆ of an individual is first decomposed
into N∆ successful interactions with other individuals, for instance prey. Each successful
interaction takes a random time Ti. Second, Ti is decomposed into a sequence of necessary
activities the individual must succeed in order to accomplish a successful interaction.
Each activity takes a random time τ

(j)
a with a probability pa to succeed. As an example,

two activities are necessary in the figure: searching and handling a prey. Each searching
period takes a time τ

(j)
S , has a success probability ps. The individual makes n searching

attempts before catching a prey, resulting in a total searching time τΣ
S , then handling the

prey takes place which takes a time τh with a probability ph = 1 to succeed.
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Figure 2: Comparison between expected and observed functional responses in individual-
based simulations. Model assumptions: 2D space, uniform repartition of prey on a square
lattice, constant handling time and movement speed, straight movement of the focal
predator to prey, the environment is regenerated after each interaction. Interactions
are counted until a maximal time is reached. Results are shown for 1000 independent
runs for each parameter set. A: Dots show the observed mean number of interactions
in simulations. Plain curves are the expected number of interaction, bars show the
observed variance. B: observed and expected (from Eq. 7) functional response (number of
interactions relative to time). C, D and E: Histograms showing the empirical distribution
observed in simulations for various number of prey in the environment, and plain curve
shows the expected distribution (from Eq. 7).
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Figure 3: Functional responses and their 95% confidence interval under various underlying
mechanisms regarding foraging, handling, and interaction between species.
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Figure 4: Functional response (number of successful copulations for a male in a given
time) in a nuptial-feeding species. In order to successfully mate with a female, the focal
male is supposed first to catch a prey, handle it, find a free female, court it and copulate
with it. Space is supposed to be 1-dimensional and the focal male to move to the nearest
gift and the nearest female. The focal male is supposed to be in competition with other
males and females to catch a gift, and to be in competition only with males to find a
female. Handling times and court times are supposed to be constant. Parameters: Time
frame duration ∆ = 100; courtship time and probability of courtship success CC = 1,
pC = 0.9; scaled size of space λ = 10, gifts density z = 5000, probability of copulation
success pR = 0.5, handling time of the gift CH = 1.
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Figure 5: Size dependent functional response. Handling time is assumed to depend on
the prey body size. The body size and the preference of the predator are assumed to
follow positive truncated normal distributions. Plain lines show the expectation of the
functional response, and the dotted lines show the 95% confidence interval. Colours show
functional responses for different most preferred size by the predator: black, µp = 0.1;
blue, µp = 2; red, µp = 10. Other parameters: time frame duration ∆ = 100, mean prey
size µs = 2, standard deviation of the predator preference σP = 5, maximum handling
time Tmax = 0.1. The searching time is assumed to be independent to the prey size.
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Figure 6: Functional response inferred from data of the feeding rates of grey partridge
(number of seeds eaten per second). Dots: empirical data. Plain and dotted curves are
respectively the expectation and the confidence interval of the functional responses (when
applicable). In blue: with vigilance; In red: without vigilance. In black: model fitting
with variance supposed independent of the parameters (see text for details).
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Figure 7: Illustration of the three sources of variability in functional responses. Grey
dots are hypothetical (simulated) measured individual number of interactions per unit of
time (for instance number of prey consumed per predator). Curves represent expected
functional responses under the hypothesis of a Holling Type II in a 2D space (Eq. 2 and
8). Black and blue curves show variation due to between predators variability (searching
rates are supposed different for each individual predator). Dashed and plain curves show
variation due to prey size variability (varying handling times are supposed). Grey arrows
illustrate the expected variability only due to interaction stochasticity (i.e. for a given
set of parameters: unique handling time and searching rate).
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A Supplementary Materials of the paper “Rejuve-

nating Functional Responses with Renewal The-

ory”

by S. Billiard, V. Bansaye and J.-R. Chazottes.

A.1 Some basics in Renewal Theory

For the convenience of the reader, we state and prove the two results we are using in

this paper. We refer to e.g. [43] or [44] for more details. Let T1, T2, . . . be a sequence of

independent non negative random variables. We assume that the Ti’s are all distributed

as a non negative random variable T with distribution F . We assume that F (0) 6= 1 (i.e.,

the random variables are not identically zero) and E(T ) < +∞. Finally, let Sn =
∑n

i=1 Ti

for n ≥ 1. The renewal process (Nt)t≥0 associated to T1, T2, . . . is defined by

Nt =
+∞∑
n=1

1{Sn≤t} = sup{n ≥ 1 : Sn ≤ t}.

Since P(T ≥ 0) = 1 and P(T = 0) < 1, we have E(T ) > 0. By the strong law of

large numbers, we know that Sn/n converges to E(T ) with probability one. Therefore we

deduce that Sn → +∞ with probability one. In particular, with probability one, Sn < t

for only a finite number of n’s, showing that P(Nt < +∞) = 1. It follows that, for all

practical purposes, we can put a ‘max’ instead of a ‘sup’ in the definition of Nt.

Strong law of large numbers for renewal processes. We have

Nt

t
−−−−→
t→+∞

1

E(T )
with probability one.

Proof. By the very definition of Nt we have SNt ≤ t < SNt+1, implying that

SNt

Nt

≤ t

Nt

<
SNt+1

Nt

.
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Now Nt → +∞ with probability one, hence

SNt

Nt

−−−−→
t→+∞

E(T ) and
SNt+1

Nt + 1

Nt + 1

Nt

−−−−→
t→+∞

E(T ).

To state the second result we use, we have to assume in addition that the variance of

T , which we denote by σ2, is finite.

The central limit theorem for renewal processes. We have

Nt − t
E(T )

σ
√

t
(E(T ))3

law−−−−→
t→+∞

N (0, 1),

where N (0, 1) is the standard Gaussian distribution (centred at 0 and with variance

equal to 1).

Proof. Let rt := t
E(T )

+ yσ
√

t
(E(T ))3

. If it is an integer, let nt = rt, if it is not an integer,

let nt = drte+ 1. Then

P

Nt − t
E(T )

σ
√

t
(E(T ))3

< y

 = P(Nt < rt) = P(Nt < nt)

= P(SNt > t) (because {Nt < n} = {Sn > t})

= P

(
Snt − ntE(T )

σ
√
nt

>
t− ntE(T )

σ
√
nt

)
.

We now use the central limit theorem for the sequence T1, T2, . . ., and the fact that

lim
t→∞

t− ntE(T )

σ
√
nt

= lim
t→∞

t− rtE(T )

σ
√
rt

= lim
t→∞

−yE(T )
√

t
(E(T ))3√

t
E(T )

+ yσ
√

t
(E(T ))3

= −y.

It follows that, if Z is a random variable distributed according to N (0, 1), we have

lim
t→+∞

P

Nt − t
E(T )

σ
√

t
(E(T ))3

< y

 = P(Z > −y) = P(Z < y).
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This ends the proof. Loosely speaking, Nt is approximately Gaussian with mean t
E(T )

and variance tσ2

(E(T ))3
.

Application to determine the stochastic fluctuations of the functional re-

sponses.

To apply the two previous theorems in our context, set t = ∆ and apply them for

each given triplet (x, y, z). More precisely, the functional response, defined as R(x, y, z) =

N∆(x, y, z)/∆, is a random variable and we want to determine its fluctuations around its

expected value 1/E (T (x, y, z)). This can also be achieved by applying Renewal Theory.

Colloquially, we get that the distribution of

N∆(x, y, z)

∆
− 1

E (T (x, y, z))
(A.1)

is approximately a Gaussian distribution centred at 0 with a variance equal to

1

∆

Var (T (x, y, z))

(E (T (x, y, z)))3
,

where Var (T (x, y, z)) = E (T 2(x, y, z)) −
(
E (T (x, y, z))

)2
stands for the variance of

T (x, y, z). In particular, one can say that standard deviation of (A.1) is approximately

1√
∆

√
Var (T (x, y, z))

E (T (x, y, z)))3/2
.

The larger the ∆, the better these approximations. Finally, we can condense what pre-

cedes by writing

R(x, y, z)
law

≈ 1

E (T (x, y, z))
+ N

(
0,

1

∆

Var (T (x, y, z))

E (T (x, y, z))3

)
, (A.2)

where N (0, σ2) is a random variable having a Gaussian distribution centred at 0 and

with variance σ2.
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A.2 Some probability facts

Sum of i.i.d random variables Xi a random number of times Y . Let Y be a

random variable assuming positive integer values such that E(Y ) < +∞. Let X1, X2, . . .

be a sequence of independent identically distributed random variables which are also

independent of Y , and such that E(X1) < +∞. Then

E

(
Y∑
i=1

Xi

)
= E(Y )E(X1).

Furthermore, assume that Var(Y ) < +∞ and Var(X1) < +∞. Then

Var

(
Y∑
i=1

Xi

)
= E(Y ) Var(X1) +

(
E(X1)

)2
Var(Y ).

Expectation and variance of the time between two interactions T (Eqs.

3 and 4). Assuming that the probability of success of activity a is pa, then Ya the

number of times activity a is performed before success follows a geometric distribution

with expectation and variance respectively E [Ya] = 1/pa and Var [(1− pa)/p2
a]. Assuming

that activity a takes a time Xa = τa, with expectation E [τa] and variance Var [τa], which

finally gives the expectation and variance of the time between two interactions T in Eqs.

3 and 4.

Expectation and variance of the time taken to search and find ey (Eqs. 8

and 9). We want to calculate T the time taken by a focal individual ex to interact with

an individual ey given there are individuals ez in the environment. Ys is the the number of

times the individual ex forages the environment before encountering ey, hence ex interacts

Ys − 1 times with ez before interacting with ey. Assuming that ex has a probability

y/(y + αz) to choose to searching for individual ey, the expected number of time ex

interacts with ez before interacting with ey is E [Ys − 1] = (y+αy)/y− 1. Further,in the

case of a straight movement to the nearest prey, assuming that the expected time taken

to search for individuals ez is θEd (βz), that handling time of ez by ex is a constant cz,
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that the expected time to search for individual ey is θEd (y), and that handling time of ey

by ex is a constant cy then the total expected time taken by interaction between ex and

individuals ez is given by

E [T |Ys] = (Ys − 1)
(
θEd (βz) + cz

)
+ θEd (y) + cy

=⇒ E [T ] =

(
y + αz

y
− 1

)(
θEd (βz) + cz

)
+ θEd (y) + cy

which corresponds to Eq. 8 (similar calculations gives Eq. 9 in the case of a Brownian

motion).

In order to calculate the variance of the time taken by a focal individual ex to interact

with an individual ey, we need to calculate the second moment of T . Assuming that the

second moment of the time taken to search for individuals ez is θVd (βz) and to search for

individuals ey it is θVd (y), the second moment of T is given by

E
[
T 2|Ys

]
= (Ys − 1)θVd (βz) + θVd (y) + 2(Ys − 1)θEd (βz)θEd (y) + (N − 1)(N − 2)θEd (βz)2

=⇒ E[T 2] =

(
y + αz

y
− 1

)
θVd (βz) + 2

(
y + αz

y
− 1

)
θEd (βz)θEd (y)

+

(
y + αz

y
− 1

)(
y + αz

y
− 2

)
θEd (βz)2 + θVd (y)

which after some calculations gives the variance of T in Eq. 8.

A.3 Foraging in a d-dimension space

The individual ex forages an environment where two species ey or ez are present with

densities y and z, respectively. The environment is a d-dimensions space with size Ld.

The handling times of the individual ex with species ey and ez are assumed constant, re-

spectively denoted by cy and cz. We assume that the focal individual ex arrives randomly

at a given position in space, and that it has a perfect knowledge of the environment. The

parameter α denotes a possible preference of the species ex (if α > 1) or rejection (if α <)
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for resource ez relatively to species ey. Because of this possible preference, the individual

ex chooses to interact next with an individual of species ey with probability y/(y + αz)

or with an individual of species ez with probability αz/(y + αz). Given the species with

which individual ex will interact next, say ez, we have to compute the time taken for ex

to reach an individual ez. The parameter β denotes an availability or vulnerability of

species ez relatively to ey during the foraging process (for instance species ez is easier to

detect if β > 1). The expected time to reach an individual ey is denoted by θEd (y), and

the time taken to reach an individual ez is denoted by θEd (βz). Two different movements

are considered: following a straight line to the nearest patch or following a Brownian

motion at speed v. Once the interaction has taken place, foraging starts again from a

random position in the environment. There is thus no memory in the foraging process,

which is a basic assumption of Renewal Theory used in our framework.

A.3.1 Regular repartition in a d-dimensions space, movement to the nearest

individuals

The focal ex individual has a random location in the environment and moves to the

nearest individual. We denote Dd(y) the expected distance between the ex individual

and and individual of species ey given there is a number y individuals in the environment

(similarly we denote Dd(βz) the expected distance between ex and ez). Assuming that

ey and ez individuals have a regular distribution in a d-dimensions space of size Ld, the

distance between two individuals ey is δd(y) = L
2

1
y1/d−1

, and the distance between two

individuals ez is δd(βz) = L
2

1
(βz)1/d−1

(accounting for β, the vulnerability or availability of

ez). The two first moments of the distance Dd(w) are given by

E (Dd(w)) =
1

δd(w)d

∫
...

∫ δd(w)

0

√
u2

1 + ...+ u2
d du1... dud = CE

d δd(w),

E
(
Dd(w)2

)
=

1

δd(w)d

∫
...

∫ δd(w)

0

(u2
1 + ...+ u2

d) du1... dud = CV
d δd(w)2,
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with CE
d and CV

d two constants depending on the dimension, given by

CE
1 =

1

2
, CV

1 =
1

3
;

CE
2 =

√
2 + log(1 +

√
2)

3
, CV

2 =
2

3
;

CE
3 =

6
√

3− π + log(3650401 + 2107560
√

3)

24
, CV

3 = 1.

Given that the ex individual moves at speed v, the two first moments of the time

taken by the ex individual to encounter an ew individual in a d-dimension space are given

by

θEd (w) = E

(
Dd(w)

v

)
= CE

d

δd(w)

v
,

θVd (w) = E

(
Dd(w)2

v2

)
= CV

d

δd(w)2

v2
.

Finally, given the focal individual ex has a preference α for ez individuals, and given that

the handling time of ez individuals by ex is cz, then the total expected searching time

τs,d(x, y, z) of an ey individual by an ex individual in a d-dimensions space is given by

E (τs,d(x, y, z)) =

(
y + αz

y
− 1

)(
θEd (βz) + cz

)
+ θEd (y), (A.3)

Var (τs,d(x, y, z)) = θVd (y)− θEd (y)2 +
zα

y

(
θVd (βz)− θEd (βz)2

)
(A.4)

A.3.2 Regular repartition in a 1-dimension space, Brownian motion

We assume as before that ez have weights α and β, and that ey and ez are regularly

distributed in space, with a distance δ1(y) = L/(2(y − 1) between individuals y and

δ1(βz) = L/(2(βz− 1) between individuals ez. Note that we focus here on a 1-dimension

space for simplicity. Let us denote H(l, a, b) the random variable representing the time

taken by the ex individual moving following a Brownian motion to first hit the boundary
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of a segment [a, b], given that its initial location l is random in l ∈ [a, b]. The Laplace

transformation of H(l, a, b) is

L(u) =
cosh

[
(b− 2l + a)

√
u/2
]

cosh
[
(b− a)

√
u/2
] .

The two first moments of H(l, a, b) are respectively given by ∂L(u)
∂u
|u=0 and ∂2L(u)

∂u2
|u=0 [45].

Hence, the two first moments of the time taken by an ex individual to reach either an

individual ew are respectively (with a=0 and b = δ1(w)): θEBM(w) = CE
BM δ1(w)2/v and

θVBM(w) = CV
BM δ1(w)4/v2 with CE

BM = 1
6
, CV

BM = 1
15

. Finally, given a weight α of ez

individuals an handling time of individuals ez by ex is cz, the expected searching time of

an ey individual by an ex individual in a 1D space with Brownian motion is given by

E (τs,BM(x, y, z)) =

(
y + α z

y
− 1

)(
θEBM(βz) + cz

)
+ θEBM(y),

and its variance is

Var (τs,BM(x, y, z)) = θVBM(y)− θEBM(y)2 +
zα

y

(
θVBM(βz)− θEBM(βz)2

)

A.4 Analysis of Baker et al. (2010)’s data

In the [24] experiments, the behavior of grey partridges was observed and recorded in

controlled conditions, with variable seeds densities. The feeding rate was calculated, i.e.

the number of seeds eaten per second per individual. Other behaviors were also recorded

such as the duration of vigilance bouts or handling times. The duration of observations

bouts was at most of 240 seconds. [24] derived a version of Holling Type II functional

response with vigilance in a phenomenological manner and fitted it with their data. They

showed no statistical difference between models with or without vigilance and concluding

that vigilant behaviors do not affect the feeding rates of grey partridges. Here, we derive a

functional response with vigilance from the level of the individuals (following our bottom-
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up approach). We first give the expectation and the variance of the feeding rate, and

second we fit our models on [24]’s data following a maximum likelihood approach, using

both the mean and the variance of the functional response.

A.4.1 Derivation of a functional response with vigilance

We derive the functional response with vigilance by decomposing the time T between two

successful interactions, i.e., two eaten seeds, in three steps. First, we suppose that the

time between two eaten seeds is decomposed into a time taken to approach a seed and a

time to handle it, respectively denoted by τa and τh. Supposing that the handling time

is fixed E(τh) = ch, that handling and approaching are always successful, we have

E(T ) = E(τa) + E(τh) = E(τa) + ch (A.5)

Var(T ) = Var(τa) + Var(τh) = Var(τa). (A.6)

which gives an approximation of the stochastic functional response as given by Eq.

(2). Second, we suppose that the time taken to approach a seed is decomposed into times

to successfully foraging for a seed, denoted by τf which succeeds with probability pf . We

thus have

E(τa) =
E(τf )

pf

Var(τa) =
Var(τf )

pf
+

1− pf
p2
f

E(τf )
2.

Third, we suppose that the time taken by successful foraging can be decomposed into

a succession of vigilance bouts, with duration τv and searching time denoted by τs, such

as τf = τv + τv + · · · + τs. We denote pv the probability that the animal enters in a

vigilance bout, hence the expected number of vigilance bouts before encountering a seed

is 1/(1 − pv) − 1. Finally, assuming that the vigilance times are fixed, E(τv) = cv and
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Var(τv) = 0, we have

E(τf ) =

(
1

1− pv
− 1

)
E(τv) + E(τs) =

(
1

1− pv
− 1

)
cv + E(τs)

Var(τf ) =

(
1

1− pv
− 1

)
Var(τv) +

pv
(1− pv)2

E(τv)
2 + Var(τs)

=
pv

(1− pv)2
c2
v + Var(τs).

The last step consists in determining mean and variance of the searching times, which

depends on the movement of the individual and the dimension of space and the density

of seeds y, as shown in the main text (see Eqs. (8) and (9)).

A.4.2 Likelihood ratio test

From the model given before, we can derive an approximation of the expectation and

the variance of the functional response as a function of seeds density y and the set of

parameters Θ: the time taken by a vigilance bout cv and the probability to enter in a

vigilance bout pv, the time taken by handling seeds cy, the probability that foraging suc-

ceeds pf . Our goal is to test whether vigilant behaviors significantly affect the functional

response given a data set (D) from the experiments in [24]. To answer this question,

a commonly used method is to estimate the parameters set Θ of two different models,

without (pv = 0) or with (pv 6= 0) vigilance bouts, and to compare their likelihood by a

likelihood ratio test since both models are nested.

The likelihood of the functional response R(Θ, y) given the dataset D is defined as

` (R(Θ, y)|D) ≡ P (D|R(Θ, y))

where P(E) is the probability of E. An approximation of P (D|R(Θ, y)) is given by Eq.

(2) and its derivation in App. A.4.1. The dataset D contains the feeding rate as calculated

for a given individual in eight treatments with different densities from 5 to 400 seeds.m−2.
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We looked for the maximum of log ` for different models (1D, 2D, or 3D space with

movements to the nearest and Brownian motion in a 1D space), with or without vigilance,

using the newton method in the “FindMaximum” procedure of Mathematica 10.1 [46].

Parameters estimation was constrained to adequate with their definition (for instance

probabilities must lie between 0 and 1) and with our information about the protocol of

the experiments (the time duration ∆ was estimated in our model and supposed to be

lower than 240 seconds; the scaled size of the environment λ was supposed between 1 and

20; handling times and vigilance bouts were measured in seconds). The best model was

the 2D space with movement to the nearest with vigilance (see main text).

To illustrate the importance of the fact that the parameters are estimated not only by

fitting the expectation of the functional response but also its variance, we also fitted the

models with and without vigilance using nonlinear model fitting (“NonLinearModelFit”

in Mathematica 10.1 [46]), assuming a fixed variance independent of the parameters.

Following this procedure, the model without vigilance had the lowest AIC and thus

considered as the best model, in agreement with [24]’s results and conclusions. However,

this is due only to the fact that it has one less parameter to estimate, hence the AIC

chooses the simplest model.

As shown in the main text, the AIC of the model fitted with this latter procedure

is lower than the model fitted with our framework (using Eq. (2)). The estimation of

the parameters are more constrained when both variance and expectation depends on

the ecological parameters: the fitting procedure must find a parameters set satisfying the

best trade-off between both the expectation and the variance of the functional response.

When using the information from the variance of the data to estimate parameters, the

different models show largely different log-likelihoods, showing that the difference of the

AIC both procedures is not essentially due to the difference in the number of parameters

to be estimated. Our results suggest a different conclusion than the one by [24]: since the

best model is with vigilance, we conclude that it significantly affects the feeding rate of

grey partridges in the context of this experiment. Our results and conclusions illustrate
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the importance to use the information from the variance of the feeding rate, and not

only its mean. Especially, our framework makes possible to express this variance as a

function of the ecological parameters, because of the bottom-up approach: describing

the behaviors and properties at the level of the individuals to make emerge functional

responses at the macroscopic level.
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