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Abstract:  32 

Global ecosystem models lack an explicit representation of budburst and senescence for evergreen 33 

conifers despite their primordial role in the carbon cycle. In this study we evaluated eight different 34 

budburst models, combining forcing, chilling and photoperiod, for their ability to describe spring 35 

budburst, and one model of needle senescence for temperate evergreen coniferous forests. The 36 

models’ parameters were optimized against field observations from a national forest monitoring 37 

network in France. The best fitting budburst model was determined according to a new metrics 38 

which accounts for both temporal and spatial variabilities of budburst events across sites. The best 39 

model could reproduce observed budburst dates both at the site scale (±5 days) and at regional scale 40 

(±12 days). We also showed that the budburst models parameterized at site scale lose some 41 

predictive capability when applied at coarser spatial resolution, e.g., in grid-based simulations. The 42 

selected budburst model was then coupled to a senescence function defined from needle 43 

survivorship observations in order to describe the full phenology cycle of coniferous forests. 44 

Implemented in the process-driven ecosystem model ORCHIDEE, this new conifer phenology 45 

module represented accurately the intra and inter-annual dynamics of leaf area index at both the 46 

local and regional scales when compared against MODIS remote sensing observations. A sensitivity 47 

analysis showed only a small impact of the new budburst model on the timing of the seasonal cycle 48 

of photosynthesis (GPP). Yet, due to the faster renewal of needles compared to the standard version 49 

of ORCHIDEE, we simulated an increase in the GPP by on average 15% over France, while the 50 

simulated needle turnover was doubled. Compared to 1970-2000, projections indicated an 51 

advancement of the budburst date of 10.3±2.8 and 12.3±4.1 days in average over the period 2060-52 

2100 with the best forcing and chilling-forcing models respectively. Our study suggests that 53 

including an explicit simulation of needle budburst and senescence for evergreen conifers in global 54 

terrestrial ecosystem models may significantly impact future projections of carbon budgets.  55 
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1. Introduction 56 

 57 

The phenology of conifers is strongly correlated with local climate (Steiner, 1980; Worrall, 1983; 58 

Burr et al., 1989; Leinonen & Hänninen 2002; Hänninen et al., 2007). A number of previous studies 59 

concluded that the growing-season length of conifer forests will extend with climate warming and 60 

rising CO2 concentration, thus leading to significant modifications of biogeochemical processes 61 

being controlled by phenology (Murray et al., 1994; Polgar & Primack, 2011; Gunderson et al., 62 

2012; Migliavacca et al., 2012; Richardson et al., 2013). For both deciduous and evergreen species, 63 

phenology is commonly divided into three different phases: bud dormancy, bud flush and 64 

senescence. The timing of these events partly controls the seasonal cycle of leaf area index and 65 

gross primary productivity (GPP; Chen et al., 2016). It also impacts albedo, evapotranspiration, and 66 

litter inputs to the soil, of which the latter affects soil respiration (Richardson et al., 2013). On 67 

longer time scales, phenology also impacts the competitiveness of a species and its spatial 68 

distribution (Baldocchi et al., 2001; Chuine & Beaubien, 2001; Polgar & Primack, 2011). These 69 

impacts make it essential to represent phenological events accurately in ecosystem models, both in 70 

space and in time, if we seek to improve the simulation of the future role of vegetation in carbon, 71 

water and nutrient cycling and its feedbacks on climate. Richardson et al. (2012) pointed out to 72 

shortcomings in the representation of phenological processes in global vegetation models. Almost 73 

all of the 14 vegetation models with different phenology parameterizations that they compared 74 

overestimated the length of the growing season and consequently the GPP for temperate and boreal 75 

forests.  76 

The state of the understanding of complex molecular pathway processes of dormancy and budburst 77 

mechanisms is insufficient to allow a fully mechanistic simulation in global models (Rohde & 78 

Bhalerao, 2007; Yakovlev et al., 2008; Rinne et al., 2011; Cooke et al., 2012). Thus, empirical 79 

models are used for estimating the response of budburst to temperature. Several conceptual models 80 

using temperature to determine the date of budburst have been proposed: they fall into two broad 81 

categories. The first category assumes that budburst occurs after a threshold of degree-days has 82 
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been reached during a specific period (forcing). The second class of models assumes that budburst 83 

requires both a chilling period during winter followed by a forcing from increasing temperature. We 84 

investigated models belonging to both these categories. For conifers, photoperiod, in combination 85 

with temperature, has also been proposed as a controlling variable, particularly for boreal regions 86 

where the chilling requirement can be quickly reached and photoperiod acts as a safety limitation to 87 

prevent a too early budburst and plant exposure to frost (Richardson et al., 2013; Way and 88 

Montgomery, 2015). 89 

Empirical models for budburst are generally derived from local meteorological data and observed 90 

budburst timing, and mostly focus on deciduous species. The direct use of a model calibrated on a 91 

site for gridded simulations over a region can be a source of errors, for example because of 92 

altitudinal differences not resolved at a given grid horizontal resolution or because the whole range 93 

of temperatures was not taken into account during the calibration (Olsson et al., 2013). This 94 

problem calls for a multi-site calibration of budburst models with data drawn from a wide area, 95 

typical of that used in the grid-based applications of ecosystem models. 96 

Regarding the mechanisms involved, past studies did not highlight phenological differences 97 

between deciduous and evergreen conifers for budburst. However, compared to deciduous species 98 

that shed their leaves in autumn, evergreen conifers keep most of their needles over the year. Needle 99 

lifespan can span from 2-3 years (e.g. Pinus Sylvestris) to more than 10 years (e.g. Picea abies) for 100 

evergreen conifers. Needle senescence has been less studied (Estrella & Menzel, 2006; Delpierre et 101 

al., 2009) than budburst. Some authors observed a peak of senescence during autumn (Sampson et 102 

al., 2003; Kivimäenpää & Sutinen, 2007; Wang & Chen, 2012), however integrated over all needle 103 

cohorts, needle senescence can be seen as a continuous process in evergreen species. Reich et al. 104 

(2014) showed the role of needle longevity (related to nitrogen content) and the impacts of needle 105 

senescence on carbon cycling in boreal forest, but very few studies investigated the regulation of 106 

needle yellowing and turnover (renewal rate of needles), and none of them proposed any 107 

mechanistic model for needle senescence (Muukkonen, 2005; Kayama et al., 2007). 108 
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While current global vegetation models roughly simulate phenological events for deciduous species, 109 

these processes are still lacking for evergreen species for which the common approach is to 110 

represent phenology implicitly through leaf biomass variations.  111 

In this study, we tackle the following objectives:  112 

- To calibrate empirical budburst models for temperate needleleaved species in order to 113 

reproduce field observations collected in forest monitoring plots for a range of contrasting 114 

climate conditions. 115 

  116 

- To evaluate the accuracy of these models when used at low spatial resolution (0.25 and 0.5°) 117 

typical of global models and to test the simulation results against independent remote 118 

sensing observations. 119 

 120 

- To implement a model for needle senescence on the basis of litterfall observations. 121 

 122 

- To evaluate the potential impact of these model developments in a global vegetation model 123 

(ORCHIDEE - Organizing Carbon and Hydrology In Dynamic Ecosystems; Krinner et al., 124 

2005) on the representation of forest canopies and the associated carbon balance simulated 125 

for temperate needleleaved forests in France.  126 

  127 
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2. Materials and methods 128 

 129 

We used budburst observations and litterfall samples collected from 1997 to 2011 over the 51 forest 130 

plots of the French RENECOFOR (REseau National de suivi à long terme des ECOsystèmes 131 

FORestiers) network covering the six main coniferous species in France (number of plots in 132 

parentheses): Pseudotsuga mensiezii (Douglas fir; 6), Picea abies (Norway spruce; 11), Pinus nigra 133 

(Corsican pine; 2), Pinus pinaster (Maritime pine; 7), Pinus sylvestris (Scots pine; 14) and Abies 134 

alba (Silver fir; 11). The parameters of eight different budburst models were calibrated against the 135 

RENECOFOR site observations to get the best value for a performance metrics defined specifically 136 

to account for both temporal and spatial variabilities. We selected the models that best described 137 

budburst for the temperate evergreen needleleaf plant functional type (PFT) as a whole, but also 138 

separately for each species. In addition, a new senescence model based on needle age was 139 

developed and calibrated based on a literature review of needle survivorship observations. The new 140 

phenology module (budburst+senescence) was then incorporated into the process-based model, 141 

ORCHIDEE, and evaluated spatially against leaf area index estimated from remote sensing 142 

observations. The flow chart of the model calibration and evaluation is given in Fig. 1. 143 

 144 
Fig. 1: Flow chart of the model calibration and evaluation 145 
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 146 

2.1. Data from the RENECOFOR forest monitoring network 147 

 148 

Visual observations of the timing of budburst were collected in 51 plots located in public forests 149 

and stratified according to the major commercial tree species grown in France. Those plots are part 150 

of the French national long-term forest monitoring network (RENECOFOR, part of the ICP – 151 

International and Co-operative Program - Forest Level II program (http://icp-forests.net/page/level-152 

ii)), which covers a total of 102 permanent plots (51 coniferous) monitored since 1992 (Fig. 2). 153 

 154 
Fig. 2: Distribution throughout France of the 51 RENECOFOR permanent plots dominated by 155 

evergreen coniferous tree species.  156 

 157 

Plots are in average 70y old (in 1994) with a range from 23 to 181y old. At each location, 36 trees 158 

were chosen for phenological observations (Lebourgeois et al., 2010), and observations were 159 

performed at least every week. For budburst, two different dates were measured. The first one is the 160 

day of the year when 10% of the trees have open buds for at least 20% of the crown (BD1). The 161 

second date corresponds to the day of the year when 90% of the trees have open buds for at least 162 
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20% of the crown (BD9). Observations were performed each year from 1997 to 2011. We 163 

approximated a mean bud flushing date (50%; BD5) for budburst model parameterization defined 164 

as: 165 

        
       

 
 ( 1 ) 

The final dataset contains 605 site-years of observations. Litterfall was collected seasonally from 166 

1995 to 2007 at all RENECOFOR plots using litter traps. The detailed litter sampling methodology 167 

is described in the Supplementary material (Appendix SA).  168 

 169 

2.2. Budburst models 170 

 171 

We tested two types of model for mono-cyclical budburst events, based on a temperature forcing 172 

(e.g., degree-days) during spring, or based on “chilling-forcing”, i.e., with a chilling during winter 173 

and a forcing period during spring. We used the model M1 as reference (called the static or null 174 

model) in which budburst equals the median of the budburst dates observed across all sites (Table 175 

1). A model with predictive value (spatially or temporally) should have better performance than 176 

M1. 177 

 178 

Species Mean BD5 (SD) Min BD5 Max BD5 n 

Abies alba 137.5 (11.5) 109.0 175.5 148 

Picea abies 136.8 (11.5) 107.5 169.5 132 

Pseudotsuga menziesii 130.3 (10.9) 102.5 151.0 72 

Pinus nigra 127.4 (14.7) 106.0 163.5 20 

Pinus pinaster 119.6 (18.2) 81.5 164.5 77 

Pinus sylvestris 129.5 (13.3) 97.0 175.0 156 

Table 1: Mean, minimum and maximum observed budburst date (DoY) in the RENECOFOR 179 

network over the period 1997-2011. n = number of site-year observations 180 

 181 

Eight models (M2-M9) were taken from the literature and tested (Cannell & Smith, 1983; 182 

Hänninen, 1990; Kramer, 1994; Chuine et al., 1998; Chuine, 2000; Harrington et al., 2010; Vitasse 183 

et al., 2011). The equations and parameters of each model are detailed in Appendix SB. All models 184 
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are representative of central hypotheses in budburst modeling and all of them except M9 were 185 

already applied at regional scales. The models were selected to represent different concepts, but also 186 

for their number of parameters to be small enough to allow inclusion in a global vegetation model. 187 

The list of models tested has two spring warming forcing models and six chilling-forcing models 188 

(Table 2).  189 

In addition, we performed sensitivity tests to investigate the role of photoperiod, temperature 190 

acclimation of parameters and the use of hourly or daily meteorological data (see Appendix SA for 191 

the results of the sensitivity tests).  192 

 193 

 Model Model name and reference 

Number of 

parameters 
(without to, tc and 

tc,end) 

 M1 
Reference model : median value of budburst 

dates observed in the field 
0 

S
p
ri

n
g
 

fo
rc

in
g
 

m
o
d
el

s 

M2 Thermal time model: M2 – Kramer, 1994 1 

M3 UniForc: M3 – Chuine et al., 1998 2 

C
h
il

li
n
g

-f
o
rc

in
g
 m

o
d
el

s M4 
Sequential model: M4 – Hänninen, 1990; 

Kramer, 1994 
5 

M5 
Parallel model M5 – Cannell & Smith, 1983; 

Kramer, 1994 
6 

M6 Unified model M6 – Chuine, 2000 5 

M7 Alternating model M7 – Kramer, 1994; 2 

M8 
Logistic alternating model M8 – Vitasse et al., 

2011 
3 

M9 Harrington model M9 – Harrington et al. 2010 4 

 Photoperiod 

The daily forcing temperature calculated in 

models M2-M8 is weighted by the day length 

following Blümel & Chmielewski (2012) 

+ 1 

 194 
Table 2: Names and references of the eight budburst thermal models optimized in this study and the 195 

corresponding number of optimized parameters when the starting date for chilling (tc), forcing (to) 196 

and the ending date for chilling (tcend) are fixed. See Appendix SB for a full description of the model 197 

parameters and their equations. Note that critical temperature thresholds are not optimized in this 198 

study but are estimated from the observed budburst dates. For example in M2 for which classical 199 

optimization studies optimized both the base temperature (Tb) and the critical forcing threshold 200 

(Fcrit) for budburst, here only Tb is optimized, Fcrit being the median Fcrit simulated at each 201 

observed budburst date with M2.  202 
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 203 

2.3. Budburst model selection criterion 204 

 205 

The purpose of this study being to calibrate a budburst model for regional simulations, we needed a 206 

specific performance metric that characterizes the ability of this model to capture both spatial and 207 

temporal budburst gradients. Most studies have used root mean square error (RMSE, Eqn 2) or 208 

linear regression between simulated and observed budburst dates to select the best phenological 209 

model (Vitasse et al., 2011; Olsson et al., 2013). We argue that two performance criteria are 210 

desirable: a representation of both spatial and temporal extremes of budburst across a region, and a 211 

representation with minimal systematic spatial or temporal bias. A single metric is insufficient to 212 

account for these two criteria. To select the best set of parameters for each model, we thus propose a 213 

combined metric accounting for three key aspects of the model: the ability to reproduce extreme 214 

values, the average bias to observations and the effect of outliers. This new criterion is the 215 

Euclidean distance to optima (DIST, Eqn 3) of six weighted different metrics across sites and years. 216 

This new metrics maximizes model performances by catching both spatial and temporal variabilities 217 

of budburst and by reducing the chance to converge to local minimum during calibration. This 218 

combined metric has two components of the RMSE to limit outliers, the squared bias (BS, Eqn 4) 219 

and the squared difference between standard deviation (SDSD, Eqn 5; Kobayashi & Salam, 2000) 220 

normalized by the mean natural difference observed between sites SDSDnat and BSnat; the Spearman 221 

rank correlation coefficient (Rs), the linear regression slope (lms; Eqn 6) and its associated 222 

coefficient of determination (lmR2) between observed and modeled budburst, which captures 223 

extreme values; finally the average bias (AB, Eqn 7), and temporal and spatial biases between 224 

modeled and observed budburst dates. For the purpose of large scale simulations, more weight was 225 

given to capture bias and extremes than outliers (Eqn 3), with the sum of weighting factors equaling 226 

1. With this metrics, the best performance is achieved when DIST=0. The different components of 227 

DIST are: 228 
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 229 

with x and y the observed and simulated budburst date, n the number of observations t, and SD the 230 

standard deviation. 231 

SDSDnat and BSnat were defined as the SDSD between sites in similar conditions and represent 232 

variability in the observed data. Pairs of sites being within 0.5° (~55 km) maximum distance, with a 233 

mean annual temperature difference less than 0.5 °C, are considered as having “similar conditions”. 234 

Here, species similarity was not specified as a “similar condition”, in order to have enough 235 

observations. Thus, we hypothesized that SDSDnat and BSnat are caused by species differences but 236 

also non-resolved biotic or edaphic factors (local adaptation, age, soil effect, etc...), and define the 237 

smallest value that an optimized model should approach when considering all conifers species. The 238 

RMSEnat was estimated from nine sites with “similar conditions” to 7.6±3.5 days, SDSDnat to 239 

3.16±5.09 days² and BSnat to 41.76±38.46 days². 240 

The optimization of the parameters of models based on cross-site spatial variability only (DIST-S 241 

averaging budburst years across site) resulted in a different best model to the one based on the 242 

temporal variability only (DIST-T averaging budburst dates across all the sites each year) or 243 

considering both the spatial and temporal variability (DIST-ST). Thus, we optimized below the 244 

parameters of the eight budburst models described in Table 2 and we selected as “best predictive 245 
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model” the one corresponding to the minimum value of the DIST-ST metrics. 246 

 247 

2.4. Budburst model optimization 248 

 249 

The parameters of each model were optimized to minimize the value of DIST-ST against a subset of 250 

the RENECOFOR observations (optimization dataset) consisting of 455 sites-years randomly 251 

selected from the full dataset, with at least one observation per site. The remaining 150 observations 252 

were used as cross-validation data. Note that models have different numbers of parameters (Table 253 

2), i.e., different degrees of freedom. In addition to the cross-validation, the overall model accuracy 254 

was assessed by coupling DIST-ST results to the Akaike’s information criterion corrected for 255 

sample size (AICc) in order to select the best predictive (DIST-ST) and parsimonious (AICc) 256 

model. Parsimonious models were selected by calculating the AICc difference (ΔAIC) between 257 

AICc and the minimal AICc obtained among all models. Thus, the higher is ΔAIC, the less 258 

parsimonious is a model. Models with ΔAIC higher than 10 were excluded (Burnham & Anderson, 259 

2003). 260 

We optimized models with a generalized simulated annealing algorithm (R package genSA; 261 

Chuine, 2000; Xiang et al., 2013) considering parameters 1) per species, 2) grouping pines (Pinus 262 

pinaster, Pinus sylvestris and Pinus nigra) versus firs and spruces (grouping Abies alba, Picea 263 

abies and Pseudotsuga mensiezii, hereafter ‘fir’) into two groups according to Peaucelle et al. 264 

(2016), and 3) pooling all conifer species together. Models were also fitted site by site to assess 265 

possible emerging relationships between local parameter values and environmental conditions 266 

(Appendix SA). For chilling-forcing models (M6-M9), an exponential relationship between chilling 267 

units and forcing units is commonly used to estimate budburst. However, this exponential 268 

relationship is potentially an artifact (Chuine, 2000) and is not observed for all species. We thus 269 

decided to compare relationships fitted by exponential or by linear functions (Appendices SA & 270 

SB). Different optimizations were performed by fixing or by optimizing the starting date of forcing 271 

(to; 1
st
 of January) and chilling (tc; 1st of November) in order to assess the models’ robustness with 272 
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fewer degrees of freedom. For M6 to M8 we assessed the impact of optimizing the end date for 273 

chilling accumulation (tc,end), thus representing the fulfillment of the chilling requirement, otherwise 274 

chilling is summed until budburst (Vitasse et al. 2011). 275 

 276 

2.5. Meteorological dataset 277 

 278 

We used the SAFRAN (Système d’Analyse Fournissant des Renseignements Adaptés à la 279 

Nivologie) meteorological data (Vidal et al., 2010) for model optimization and for ORCHIDEE 280 

site-scale simulations. This dataset produced by the Centre National de Recherches 281 

Météorologiques (CNRM) provides hourly weather data over France at a spatial resolution of 0.07° 282 

(8 km). At 0.07° resolution, each of the 51 coniferous forest sites is located in an independent grid 283 

cell. Once the best set of parameters was retrieved for each model, we assessed the effect of the 284 

spatial scale of climate data by applying the same models with SAFRAN data aggregated at 0.25° 285 

(~28 km) and 0.5° (~55 km) resolution respectively. At 0.25° resolution, 49 grid cells contained at 286 

least one site, and at 0.5°, 43 grid cells contained at least one site. All temperatures were corrected 287 

in a simple way for local altitude following Eqn 8 (U.S. Standard Atmosphere, 1976, Olsson & 288 

Jönsson, 2015): 289 

                         (8) 

where Tobs (°C) is the mean observed temperature of the site, Tsaf (°C) the mean temperature of the 290 

site from SAFRAN dataset, Asaf (km) the mean altitude of the SAFRAN cell and Aobs (km) the 291 

altitude of the site. 292 

 293 

2.6. Senescence model 294 

 295 

The senescence model is not a stand-alone model as is the case for the model of budburst dates, but 296 

rather a modification of the ORCHIDEE original phenology described in Krinner et al. (2005). 297 

Compared to budburst models that are functions of environmental conditions, the senescence model 298 
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is based on needle age. The original version of ORCHIDEE includes two types of senescence for 299 

needles. Firstly, a base rate of leaf mortality is applied each day (Krinner et al., 2005). It represents 300 

the probability for needles to fall independently of needle age or meteorological conditions. 301 

Secondly, senescence is triggered when needle age (calculated for four cohorts as in Section A1 of 302 

Krinner et al., 2005) reaches a pre-defined longevity parameter for each PFT. As no phenological 303 

process is explicitly defined in the default model, needle age is implicitly estimated from needle 304 

biomass with the assumption that newly assimilated biomass through photosynthesis is used to 305 

create new needles at the beginning of the year.  306 

We did not find any suitable needle senescence model for coniferous species in the literature. We 307 

thus decided to fit a senescence function against field observations of needle survival probability 308 

from different studies (all studies and species are listed in Table SC1, Appendix SC). We retrieved 309 

45 needle survivorship curves (determines the probability of needles to survive (0-1) over time 310 

according to their age) from the literature and used these to calibrate a logistic function given by: 311 

     
 

               
 

( 9 ) 

Where S(t) is the survivorship probability of a needle, t the needle age (days), and µ (days
-1

) and λ 312 

(days) parameters to be fitted on literature observations. 313 

 314 

2.7. Modification of the ORCHIDEE model 315 

The inclusion of an explicit phenology for evergreen conifers in ORCHIDEE (Krinner et al. 2005) 316 

needed the modification of the original model. The needle maximum age parameter for evergreen 317 

conifers, fixed at 910 days (average lifespan of Pinus needles) in the standard version of 318 

ORCHIDEE was modified to depend on species. This maximum age can vary considerably, going 319 

from 2 years in pine species to more than 10 years for Abies alba and Picea abies (Peaucelle et al., 320 

2016). In ORCHIDEE, the Vcmax parameter (maximal rate of the RUBISCO carboxylation activity 321 

in µmol m
-2

 s
-1

) increases with needle age, reaching a maximum value when the relative age of the 322 

needle (the ratio of the needle age to its maximum) is 0.03 and then linearly decreasing to its 323 
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minimum value when the relative age reaches 0.5. This function describing the evolution of Vcmax 324 

roughly represents species with short-lived needles such as pines (Niinemets, 2002). Observations 325 

show a rapid decrease of Vcmax after only 1 year even in high needle-longevity species (Porté & 326 

Loustau, 1998; Niinemets, 2002; Warren, 2006). We thus adapted this relationship prescribing Vcmax 327 

to reach its maximum 3 months after formation and then starting to decrease linearly after one year, 328 

until reaching 0.5 Vcmax at the maximal needle age of the species. In following simulations, we used 329 

two different needle maximum age, 1275 and 2340 days for pines and spruces/firs species, 330 

respectively (Peaucelle et al., 2016). 331 

Given the senescence function in Eqn 9, we also modified the way carbon is distributed in the 332 

crown by representing each cohort of needle (i.e. groups of needles developed the same year). All 333 

the biomass gained during the current year is placed in the youngest needle cohort. Other cohorts do 334 

not receive new biomass, but lose needles according to the senescence function from Eqn 9. To 335 

exclude simulations where budburst never occurs, we imposed a maximum needle onset at day 182 336 

(1 July), the latest observed budburst in our dataset. 337 

 338 

2.8. Validation of the phenology models 339 

 340 

Simulated budburst date was evaluated against observed data from the optimization and the cross-341 

validation dataset. We also investigated the ability of each model to predict spatial and temporal 342 

variations in budburst across sites by comparing median modeled and observed budburst dates at 343 

each site, and by looking at the interannual variability in the timing of budburst at each site.  344 

Because of the high cross-site variability, an evaluation of the senescence model could not be 345 

performed against litterfall observations, which also depend on non-modeled factors such as stand 346 

health, stand age, density, species composition and management events. Thus, observed and 347 

modeled litterfall were simply compared for information, and we validated the senescence model 348 

through the indirect comparison with satellite-derived leaf area index (Wang et al., 2004). We 349 

compared LAI simulated at a spatial resolution of 0.07° with ORCHIDEE forced by SAFRAN 350 



16 

 

against MODIS MCD15A3 LAI (1 km, 4-day frequency; Myneni et al., 2002). This local 351 

comparison between modeled and satellite LAI was performed on a few grid cells where the 352 

coverage of two representative coniferous species (Picea abies and Pinus sylvestris) exceeds 80% at 353 

1 km, based on the European tree species map of Brus et al. (2012). The correlation coefficient 354 

between modeled and estimated LAI was used to assess modeled LAI seasonality. 355 

We also performed grid-based simulations for coniferous forests in Europe at a 0.25° spatial 356 

resolution to compare simulated and satellite LAI at a larger scale over the period 2000-2007. Initial 357 

conditions and forcing data used for simulations are detailed in the Supplementary Material 358 

(Appendix SA). 359 

Finally, we ran the model over France at a resolution of 0.07° for the period 1970-2100 to assess 360 

patterns in budburst timing in future decades. The climate forcing (daily data) was from the A2 361 

scenario of ARPEGE v4 model downscaled and bias corrected by Pagé et al. (2008). In these 362 

simulations of the future, land cover was imposed from the IGBP map (Loveland & Belward, 1997) 363 

and soil depth and texture (used to derive wilting points and field capacities and thence to give plant 364 

water stress) from the FAO dataset (Vetter et al., 2008).  365 

 366 

3. Results 367 

3.1. RENECOFOR budburst and litterfall observations 368 

On average 50% of buds flushed for the sites of Fig. 2 within a range of 14 days around the 12 May 369 

(day 132; Table 1). The earliest budburst was recorded on 22 March 2007 for Pinus pinaster in “Les 370 

Landes” forest, in southwest France. The latest budburst dates were observed in mountainous 371 

regions for Abies alba and Pinus sylvestris, 24 June 1999 and 24 June 2008, respectively. On 372 

average, coniferous stands dropped 2336.5 kg ha
−1

 yr
−1 

(dry matter) of their needles as litter from 373 

1997 to 2007, which represents 65% of the total annual litterfall for all compartments on average 374 

(all stands, only considering the dominant species; 49% considering secondary species) and more 375 

than 70% for Abies alba, Picea abies and Pinus pinaster (Table 3). We could see large differences 376 
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in the mass of needles lost per year among species. Species with minimum losses were Abies alba 377 

(mean over all sites was 1892.0 kg ha
−1

 yr
−1

) and Pinus sylvestris (1859.5 kg ha
−1

 yr
−1

) whereas the 378 

maximum was observed for Pinus pinaster (3175.4 kg ha
−1

 yr
−1

). 379 

 380 

Species Leaves 

kg ha-1 yr-1 
CVL 
% 

Prop. 

% 
Total 

kg ha-1 yr-1 
CVT 

% 
n 

A.alb 1892.2 37.2 58.0 3263.2 33.0 145 
P.abi 2692.6 30.6 72.8 3698.6 30.0 121 

P.men 2036.7 31.8 84.5 2411.3 30.4 66 
P.neg 2447.2 24.3 51.6 4740.4 18.4 21 
P.pin 3175.4 30.3 76.1 4172.4 28.0 81 
P.syl 1859.5 34.6 49.6 3750.4 30.0 171 
All 2336.5 20.4 49.2 3580.4 21.4 605 

 381 

Table 3: Litterfall mass (kg dry matter ha
-1

 yr
-1

) measured in the RENECOFOR network over the 382 

period 1997-2007 for each compartment. CV corresponds to the coefficient of variation for each 383 

compartment (leaves, and total) and Prop. corresponds to the proportion of the compartment 384 

compared to the total litterfall. P.men=Pseudotsuga menziesii, P.abi=Picea abies, P.neg=Pinus 385 

negra, P.pin=Pinus pinaster, P.syl=Pinus sylvestris, A.alb=Abies alba. 386 

 387 

3.2. Budburst models comparison and selection of a best model  388 

Best models (parsimonious and predictive) retained for each species are listed in Table 4 and the 389 

corresponding model parameters are given in Table SC2 (Appendix SC). Figure SC1 shows the 390 

DIST-ST evaluation metric after parameter optimization for each model forced by daily 391 

temperatures. For all species together, the best model (DIST-ST criterion) is the simple spring 392 

forcing model M3 (DIST-ST=0.25, RMSE=12.5 days, Fig. 3) with a starting date fixed to 1 393 

January. The most parsimonious is the chilling-forcing model M7 (DIST-ST=0.39). With M3, both 394 

spatial (DIST-S=0.32, RMSE=10.7 days) and temporal (DIST-T=0.17, RMSE=7.3 days) variability 395 

was well reproduced for the validation dataset. The DIST-ST values obtained with models M2, M6, 396 

M7, M8 and M9 are close to this best model, with DIST-ST of 0.35, 0.26, 0.39, 0.4 and 0.29, 397 

respectively, but only models M7, M8 and M9 are considered parsimonious according to ΔAIC. 398 

The sequential (M4) and parallel models (M5) could not reproduce observations properly (DIST-399 

ST=1.58 to 2.56, RMSE=19.0 to 28.0 days). 400 

 401 
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 402 

Species  Model DIST-ST 

All  M3 0.25 

Firs  M7 0.47 

Pines  M7 0.46 

Abies alba  M3 0.56 

Picea abies  M7 1.25 

Pseudotsuga mensiezii  M9 0.32 

Pinus pinaster  M3 1.15 

Pinus sylvestris  M7 0.45 

 403 

Table 4: Best models retained for each species according to both the predictive power considering 404 

spatial and temporal variability (DIST-ST) and the parsimony (with the lowest number of 405 

parameters). Models were optimized against daily temperatures. See Appendix SB for a detailed 406 

description of each model. 407 

 408 

For groups of species, in the case of firs, the best model is the chilling-forcing model M7 (DIST-409 

ST=0.47, RMSE=11.9 days). The temporal variability (DIST-T=0.45) representation was 410 

equivalent to the spatial variability for M7 for firs (DIST-S=0.48). Models M2, M3, M6, M8 and 411 

M9 have performances close to M7 but only M3, M7 and M8 have a ΔAIC<10. For pines, all 412 

optimized models produced better DIST-ST values than the null model M1, but higher RMSE. The 413 

best model for pines is again the chilling-forcing model M7 (DIST-ST=0.46, RMSE=16.3 days), 414 

while the best parsimonious is M2 (DIST-ST=0.63). Model M7 better represented the spatial 415 

pattern of observed budburst (DIST-S=0.20, RMSE=10.2 days) than for temporal variability 416 

(DIST_T=0.62, RMSE=13.5 days).   417 

For individual species, the most parsimonious model is also M7. In the case of Abies alba the best 418 

DIST-ST is obtained with M6 (DIST-ST=0.48) while the best parsimonious model is the model M3 419 

(DIST-ST=0.56). For Picea abies, none of the models reproduced accurately the observations, M7 420 

having the best score and parsimony with DIST-ST=1.25 (RMSE=21.0 days). For Pseudotsuga 421 

mensiezii the best model was M9 (DIST-ST=0.32, RMSE=10.7 days), which concords with the 422 

results of Harrington et al. (2010) for this species. However, for both Pseudotsuga mensiezii and 423 
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Pinus pinaster the most parsimonious model led to high DIST-ST values, with 2.19 and 2.64 424 

respectively. For Pinus pinaster, the best DIST-ST was obtained with M8 (DIST-ST=0.33, 425 

RMSE=14.0 days), but was not selected as parsimonious. The best model was thus M3 with DIST-426 

ST=1.15. Finally, the best DIST-ST for Pinus sylvestris was obtained with M4 (DIST-ST=0.38, 427 

RMSE=12.0 days) while the most parsimonious model is again M7. 428 

Lower performances of the optimization at the species level compared to groups of species can be 429 

explained by the smaller training dataset available for parameter calibration. We argue that models 430 

calibrated with all species or groups of species should thus be more robust and more suitable for 431 

large scale simulations.  432 

 433 

 434 
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Fig. 3: Results for each site and each year for the best model with all species together (model M3). 435 

Representation of the validation dataset (150 obs.). (a) and (b) correspond to mean dates by site 436 

(Error bars correspond to the inter-annual variability), (c) and (d) correspond to mean dates by year 437 

(all sites together, error bars correspond to the inter-site variability). The y-axis of (b) represents 438 

each site for which the dominant species is represented by symbols listed in (a). For (b) and (d), 439 

black dots correspond to mean observations, red diamonds correspond to mean modeled budburst 440 

dates. 441 

 442 

Results with or without optimizing the starting date for temperature accumulation (to, tc) have 443 

similar model performance (Fig. SC1). However, we can see different performances of the same 444 

model depending on the species. For example, the optimization of model M6 with fixed tc led to 445 

better DIST-ST for Picea abies and worse DIST-ST for Pseudotsuga mensiezii compared to M6 446 

with optimized tc. Thus, we preferentially selected models with a fixed starting date for large scale 447 

simulations when optimization results were equivalent. The same conclusion applies to 448 

optimizations with varying tcend (end of chilling accumulation).  449 

 450 

For all species, pines and firs, we found quiet similar performances for both forcing and chilling-451 

forcing models. Note that chilling-forcing models may still be more physiologically realistic for 452 

future predictions where warmer winters may exacerbate the effects of incomplete fulfillment of 453 

chilling, or for applications in cold regions where chilling should be more important than in France 454 

and western Europe. We selected M3 (forcing) and M7 (chilling-forcing) for inclusion in 455 

ORCHIDEE. 456 

 457 

3.3. Model performances from site-scale to grid-based resolution  458 

 459 

We checked for model robustness at lower spatial resolutions, representative of typical forcing data 460 

for global vegetation models. At 0.25° resolution, most of DIST-ST values were higher than at a 461 

resolution of 0.07° and the best models differed. For all species, the best DIST-ST increased from 462 

0.25 (M3-to) to 0.43 (M8+to+tc). But the best parsimonious model was still M7 with a DIST-ST 463 

value of 0.49. Some models were no longer able to work correctly and DIST-ST values diverged 464 
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(DIST-ST= 132.2 for Pinus sylvestris-M8). At 0.5° the most parsimonious model remained M7 but 465 

DIST-ST increased from 0.49 to 0.77. If we compare the evolution for the best models M3 and M7 466 

at 0.07° and 0.5°, we can observe that the result is more degraded for M3 (DIST-ST increased from 467 

0.25 to 1.77) than for M7 (DIST-ST from 0.39 to 0.77), but is still a much better performance than 468 

the null model M1 with DIST-ST=9.17. 469 

At a lower spatial resolution, some models could not be used. This was the case for models with a 470 

fixed threshold for chilling accumulation (M4, M5 and M6). By averaging temperatures, the critical 471 

threshold for chilling accumulation of these models was never reached at some sites and 472 

consequently forcing temperatures could never accumulate. In the rare cases when the model 473 

succeeded in estimating a budburst date, we could see that the performance was lower than the null 474 

model M1 (DIST>10). The implications of using models derived at the site scale for low-resolution 475 

prediction are further addressed in the discussion section.  476 

 477 

3.4. Senescence model parameters 478 

 479 

The minimum and maximum needle lifespan in Eq. 9 retrieved from literature studies were 4 and 15 480 

years, respectively. Independently of environmental factors, species or tree health, needle 481 

survivorship follows almost the same pattern in each study: the needle biomass turnover is 482 

relatively low during the first years of the needle life and then rapidly increases over time. The 483 

logistic relationship we fitted on those data was strongly correlated to the needle lifespan of the tree 484 

(Eqn 10, Eqn 11) with R
2
=0.93 and 0.94 for parameters µ and λ, respectively (Fig. SC3, SC4; 485 

Appendix SC). 486 

                              
       (10) 

                       
       (11) 

with Needleage the maximal needle age.  487 

The strong correlation between senescence parameters and the maximal needle age thus allows the 488 

use of one unique relationship for all species.  489 
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 490 

3.5. Comparison against satellite data 491 

 492 

We first compared LAI simulated at site scale for two representative species (Picea abies (Fig. 4a) 493 

and Pinus sylvestris (Fig. 4b)) with MODIS satellite observations over the MODIS pixel of 1 km 494 

containing each site. Simulations were performed here with budburst results obtained for the pines 495 

and fir/spruces groups. For both models M3 (best forcing model) and M7 (best chilling-forcing 496 

model), results are equivalent. The amplitude of the LAI cycle with the improved phenology 497 

(1.4±0.1 for Pinus sylvestris; 1.2±0.1 for Picea abies - model M7) was closer to the amplitude of 498 

observed LAI (1.7±0.6; 1.9±0.7) than with the standard version of the model which does not have 499 

an explicit needle budburst equation (0.4±0.1; 0.4±0.1, respectively). For the 15 sites compared 500 

with MODIS LAI for each species, the mean correlation coefficient between modeled and estimated 501 

LAI improved from 0.45 ±0.2 to 0.77±0.1 for Picea abies and from 0.47±0.2 to 0.71±0.1 for Pinus 502 

sylvestris.  503 
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 504 

Fig. 4: Comparison between observed (MODIS) and simulated (model M7) LAI dynamics with 505 

ORCHIDEE for a) a Picea abies stand (lat=50.16º, long=5.46º) and b) a Pinus sylvestris stand 506 

(lat=49.25º, long=8.06º). All data are centered on the average observed (or simulated) LAI value 507 

(2003-2008). Gray and black lines represent the observed MODIS LAI and the moving average 508 

over a 30-days window, respectively. The orange dotted line represents the simulated LAI with the 509 

standard version of ORCHIDEE without phenological processes. The green dashed line represents 510 

the simulated LAI with ORCHIDEE including budburst and senescence processes. 511 

 512 

Figure 5 shows the correlation coefficient between satellite-observed and simulated LAI at the 513 

European scale with the best forcing model (M3 optimized with all species) and the senescence 514 

model. The spatial correlation between modeled and satellite LAI improved by 0.24 (from 515 
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R=0.48±0.3 to 0.72±0.2) over Europe even if the calibration was performed only over France. We 516 

could observe the same improvement with the best parsimonious chilling-forcing model M7 517 

(R=0.69±2). Moreover, we observed that the modeled budburst with M3 reached the imposed limit 518 

of budburst date in very high latitudes and altitudes. On the contrary, the chilling-forcing model M7 519 

was better able to predict the LAI seasonality at high altitudes and high latitude, because it never 520 

reached the imposed budburst date in these areas.  521 

 522 
Fig. 5: Spatial representation of the correlation coefficient between MODIS estimated LAI and 523 

ORCHIDEE simulated LAI at a 0.25° spatial resolution averaged over the period 2000-2007: a) in 524 

the standard configuration without explicit phenological processes, or b) with the budburst model 525 

M3 and  the senescence model. Map c) gives the absolute difference (b - a). Only the dominant 526 

species used in this study are represented (Abies alba, Picea abies, Pinus pinaster, Pinus sylvestris, 527 

Pseudotsuga mensiezii). The correlation is calculated for pixels with a minimal coniferous fraction 528 

cover of 20%.   529 

 530 

 531 

 532 

3.6.  Budburst evolution from 1970 to 2100 533 

 534 

Figure 6 shows the simulated evolution of the mean budburst date over France from 1970 to 2100 535 

with the best model M3 and the most parsimonious forcing-chilling model M7. For the two models, 536 

we simulated an earlier needle unfolding over time (mean slope=-0.126±0.01 days yr
−1

, R
2
 537 

=0.57±0.06). Compared to 1970-2000, projections indicated an advancement of the budburst date of 538 

coniferous species of 10.3±2.8 and 12.3±4.1 days in average over the period 2060-2100 with M3 539 

and M7, respectively. However, model M7 exhibited higher variability in the prediction of needle 540 

unfolding over time and an earlier budburst date on average compared to M3 (4.8±0.8 days) over 541 
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the period 1970-2100.  542 

 543 
Fig. 6 : Temporal evolution of the mean budburst dates (DOY) simulated over France from 1970 to 544 

2100 for models M3 and M7 (all species together). For each line, the corresponding colored area 545 

indicates one s.d. either side of the mean.  546 

 547 

 548 

3.7. Impact of the new conifer phenology model on GPP 549 

We assessed the impact of the new phenology model on the simulated GPP. We found in our 550 

simulations an increase of GPP by 15±1% when compared to the standard version of ORCHIDEE. 551 

For example, GPP increased from an average 5.5±0.2 g C m
−2

 d
−1 

to 6.3±0.2 g C m
−2

 d
−1

 for spruce 552 

stands over France during the historical period (2000-2010). GPP increase was mainly induced by a 553 

modification of the canopy composition. Due to the production of new needles each year and 554 

senescence removing old needles, needle cohorts forming the canopy are younger (see Materials 555 

and methods) in the new model (845.3±55.5 days for spruces versus 1740±18.8 days in the standard 556 

version of ORCHIDEE). New needles having higher photosynthetic rates, this results into a higher 557 

simulated GPP. Because old needles are already present at the beginning of the growing season (i.e. 558 

photosynthetic activity starts as soon as climate conditions are favorable) and because new needles 559 
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reach their maximal activity only 3 months after unfolding, simulated GPP was not sensitive to 560 

changes in budburst date. By imposing the needle onset (from day 90 to 160), we observed a mean 561 

GPP difference of 0.002 g C m
−2

 d
−1

, which sums up to only 0.8±0.1 g C m
−2 

over the whole year 562 

for each day difference in budburst.  563 

With the new senescence model instead of the standard parameterization, we found an increase of 564 

the needle turnover from 0.16±0.002 to 0.43±0.025 g C m
−2

 d
−1 

for spruce. Consequently, litterfall 565 

for Picea abies stands without explicit senescence has an average of 1155.0±12.6 kg ha
−1

 yr
−1

 over 566 

France while we simulated losses of 3146.5±182.7 kg ha
−1

 yr
−1

 with explicit senescence, which is 567 

closer to observations for this species (2692.6 kg ha
−1

 yr
−1

); this is a relative difference of -57% and 568 

+17%, respectively, between observed and simulated litterfalls.  569 

 570 

4. Discussion  571 

 572 

4.1. Uncertainties in model validation  573 

 574 

Phenology is a central function in stands of conifers. In this study we optimized different 575 

phenological models against in situ budburst observations for six coniferous species. We showed 576 

that most models reproduced budburst dates with a precision of ±12 days across France. However 577 

we highlighted the need to consider both spatial and temporal variability when calibrating a 578 

phenological model. Figure SC5 (Appendix SC) illustrates the differences in results for the two 579 

spring forcing models M2 and M3 considering either the simple RMSE or our more comprehensive 580 

DIST metrics to select the best model after calibration. With the model M2 the best optimization 581 

based on RMSE does not allow to simulate budburst occurring before day 130 (Fig. SC5a, b), while 582 

with the model M3 (Fig. SC5c, d) the best optimization based on RMSE resulted in a high 583 

variability of simulated budburst. Even when considering both temporal and spatial variability of 584 

budburst with the DIST metrics, our results highlighted that, while some models managed to 585 

reproduce the observed budbursts (for instance M7 for firs, section 3.2), the same model calibrated 586 
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on different dataset generally reproduce better the spatial variability than the temporal variability of 587 

budburst. The DIST metrics proposed in this study is a first attempt to take into account both 588 

temporal and spatial variability of budburst. The combination of multiple metrics is promising to 589 

improve model calibration but more investigation is needed to improve this metrics, like the number 590 

of component we need to consider and their weight.  591 

This implementation of better phenology models for evergreen conifers in the global model 592 

ORCHIDEE shows an improved ability to reproduce the seasonal LAI dynamics observed from 593 

MODIS both at the site and regional scale, despite representativeness differences between one site 594 

and a MODIS pixel, and the contribution of understory vegetation to the MODIS signals. Previous 595 

studies have shown a good correspondence between field-measured LAI and MODIS products 596 

(Jensen et al., 2011; Rautiainen et al., 2012). However, needle senescence is locally dependent of 597 

stand health, age and disturbances. We indirectly validated our senescence model against MODIS 598 

LAI data, despite uncertainties of this product. Comparisons with litterfall observations further 599 

allowed to show that our senescence model represent an improvement. By comparing site 600 

measurements of carbon fluxes and MODIS products, Verma et al. (2014) highlighted the 601 

uncertainties linked to the heterogeneity of the vegetation at a larger spatial resolution. In this study 602 

we visually checked for canopy openness at the site scale, however LAI from MODIS products 603 

integrates contributions from both the dominant species and the understory vegetation, which will 604 

result in a bias when comparing PFT specific simulations and observed amplitude and dynamics of 605 

the LAI (Wang et al., 2004; Jensen et al., 2011; Rautiainen et al., 2011; Rautiainen & Heiskanen, 606 

2013). Moreover, LAI is related to stand age and health (Pokornỳ et al., 2013), which were not 607 

taken into account in our study.  608 

The senescence model proposed in this study defines a continuous process over the needle lifespan. 609 

Moreover, we fixed the length of the period of needle accretion in ORCHIDEE, which can result in 610 

biases in LAI at the beginning of the growing season. We argue that an optimization of the 611 

senescence model parameters against carbon fluxes and remote sensing observations could further 612 
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improve the senescence model. 613 

 614 

4.2. Relevance of site-calibrated models for gridded simulations 615 

 616 

All tested models in this study could be optimized with good accuracy at the site scale 617 

(RMSE=6.0±3.4 days for M3, 4.3±2.7 days for M7) or across sites (RMSE=12.5 days with all 618 

sites). We also show that forcing models performed equally compared to chilling-forcing models at 619 

the regional scale. Olsson & Jönsson (2014) indicated that simple models with few parameters are 620 

more accurate over larger regions in general. In our study, most phenological models were more 621 

efficient than the null model (M1), i.e., setting a fixed date equal to the median observed one, even 622 

at a degraded spatial resolution. However, some models were not able to reproduce budburst events 623 

when calibrated using large-scale temperature forcing data, especially models M4 and M5. 624 

Modelers should be cautious when applying empirical models fitted at site scale for large-scale 625 

predictions for two aspects: 1) If a model developed for site scale studies does not work at larger 626 

resolutions, it means either that the model is not generic enough: the sites were too specific or some 627 

processes are missing, like adaptation or acclimation for example; 2) The spatial aggregation of 628 

temperatures can smooth and modify the response of chilling and forcing. Modelers have to check 629 

that models calibrated on sites, and thus dependent of site conditions, are still able to reproduce 630 

average responses of budburst globally and not only in limited environmental conditions. Thus the 631 

model validity should be assessed at different spatial and temporal scales. The metrics developed in 632 

our study lowers the weight of outliers in the calibration and thus limits this effect.  633 

Here, the best forcing model M3 has more degraded performance than the best chilling-forcing 634 

model M7 when applied at 0.25° and 0.5°, even if M7 exhibits a lower performance than M3 when 635 

calibrated at 0.07°. This result suggests that the model M7 may be more suitable than M3 to be used 636 

in a global model such as ORCHIDEE.  637 

We also found that the best model calibrated with in situ observations is not necessarily the best 638 

model to reproduce the seasonality of the satellite LAI cycle. Our results suggest that looking at the 639 
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whole phenological cycle, in addition to in situ observations, could be a better way of 640 

discriminating between budburst models intended to be used in global vegetation models. In a 641 

recent study, Gamon et al. (2016) demonstrated a method to track photosynthetic phenology in 642 

evergreen conifers using a remotely sensed reflectance chlorophyll/carotenoid index (CCI). This 643 

new indicator could allow an accurate calibration of phenological processes for conifers. However, 644 

because of the land cover heterogeneity over Europe, a calibration of phenological models based 645 

only on satellite observations would also benefit in the future from a very high temporal and spatial 646 

resolution dataset (Delegido et al., 2011; Verrelst et al., 2012; Klosterman et al. 2014). 647 

 648 

4.3. Impact of phenology for large-scale simulations of GPP and LAI 649 

 650 

The new phenological processes incorporated into ORCHIDEE led to a better representation of the 651 

seasonal cycle of LAI both at site and regional scale (Figs 5, 6). Simulated LAI was however not 652 

sensitive to the timing of needle onset, while the production of new needles and the use of an 653 

explicit representation of needle senescence had a strong impact on simulated variables. In our 654 

simulations, all the new needle biomass was allocated to younger needles with high photosynthetic 655 

efficiency, thus leading to simulated GPP being higher than in the original model. The explicit 656 

representation of the senescence also led to a higher needle turnover, and litterfall. A higher 657 

litterfall rate will strongly impact soil carbon pools and heterotrophic respiration. Here, the 658 

estimated amount of needle-fall was in the range of values observed in French stands, while the 659 

standard version of ORCHIDEE underestimated the amount of litter. However, the lack of 660 

information about the living needle biomass at each site did not allow an accurate comparison of 661 

simulated and observed litterfall. Needle-fall is closely related to stand age, stand health, climate 662 

and disturbances (Balster & Marshall, 2000; Choi et al., 2006; Reich et al., 2014). The relation 663 

defined in this study does not take into account all the factors influencing needle-fall and more 664 

investigation is needed.  665 

The strong correlation between the senescence parameters and the maximal age of needles (Eq. 7, 666 
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8) makes our proposed senescence model relevant for a large variety of evergreen coniferous 667 

species and may be generalized to other evergreen species in other biomes. With the generalization 668 

of models with varying traits (Pavlick et al., 2012, Verheijen et al., 2015), we argue that our 669 

senescence model could be easily implemented with trade-offs concerning the maximal age of 670 

needles, as for example relationships between the needle lifespan and mean annual temperatures, 671 

recently implemented in the CABLE model by Reich et al. (2014). As for budburst, we can expect a 672 

change in the senescence rate with global changes. The inclusions of trade-offs between needle 673 

longevity and climate in the ORCHIDEE model as it was done by Reich et al. (2014) will be a first 674 

step in understanding the impact of such changes on the carbon balance of forest ecosystems. 675 

For evergreen species, a significant amount of leaves/needles is already present at the beginning of 676 

spring. The presence of old needles thus allows the recovery of carbon and water fluxes when 677 

temperatures become favorable — this explains the low sensitivity of simulated fluxes to budburst 678 

date. However, even if the needle onset had few impacts in this study, the implementation of an 679 

explicit budburst model was shown to play a key role in other mechanisms such as ozone sensitivity 680 

of needles (Watanabe et al. 2010; Verbeke, 2015), frost risk (Hänninen, 2006; Man et al., 2015), 681 

biogenic emissions (Richardson et al., 2013) or vegetation dynamics (Lu et al., 2016). The 682 

mechanisms presented in this study could be extended to improve the representation of other 683 

evergreen species in global models. 684 

5. Conclusion 685 

Phenology plays a central role in bio-geochemical cycles in conifers stands. In this study we 686 

optimized different phenological models against budburst observations of six conifers species. We 687 

show that all models managed to reproduce needle emergence at the site scale with good accuracy 688 

(±5d). At the national scale, most models reproduce budburst dates with a precision of 12 days. 689 

However, we highlight the need to consider both spatial and temporal variability when calibrating 690 

phenological models. 691 

Different budburst models performed equally independently of their complexity and the process 692 
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they include (forcing, chilling, photoperiod) and models calibrated at a fine spatial resolution were 693 

not able to predict budburst dates when applied at coarse resolutions typical of the grid of global 694 

models. This suggests that common models developed for site scale experiments might be 695 

inadequate for large scale simulations. This first attempt in implementing an explicit phenological 696 

model for evergreen conifer PFTs for large scale simulations managed to reproduce the observed 697 

LAI dynamics both at the site and regional scale. A sensitivity analysis highlighted that the new 698 

phenology module has a significant impact on the simulated carbon fluxes. We showed that needle 699 

onset will be ±11 days earlier in 2060-2100 compared to 1970-2000 and more analysis are needed 700 

to quantify the effect of evergreen conifers phenology on the projected carbon budget. The findings 701 

will help future research to better improve current and future predictions of carbon, water, nutrient 702 

and heat cycles using ecosystem model.  703 

 704 

Acknowledgment 705 

This work was granted access to the HPC resources of TGCC under the allocation 2015-6328 made 706 

by GENCI. The authors would like to acknowledge the financial support from the European 707 

Research Council Synergy grant ERC-SyG-2013-610028 IMBALANCE-P. Many thanks go to all 708 

the people who contributed to setting up and maintaining the RENECOFOR network, to collecting 709 

data and to ensuring its quality. RENECOFOR is part of the ICP Forests monitoring program and 710 

has been continuously supported by French public funds (Office National des Forêts, Ministry of 711 

Agriculture, Ministry of Ecology, ADEME) and by the European Union from 1991 until 2006. 712 

  713 



32 

 

References 714 

Atmosphere, U.S., 1976. US standard atmosphere. National Oceanic and Atmospheric 715 

Administration. 716 

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., 717 

Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., 718 

Munger, W., Oechel, W., Paw, K.T., Pilegaard, K., Schmid, H.P., Valentini, R., Verma, S., Vesala, 719 

T., Wilson, K., Wofsy, S., 2001. FLUXNET: A New Tool to Study the Temporal and Spatial 720 

Variability of Ecosystem–Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. Bull. 721 

Am. Meteorol. Soc. 82, 2415–2434. doi:10.1175/1520-0477 722 

Balster, N.J., Marshall, J.D., 2000. Decreased Needle Longevity of Fertilized Douglas-Fir and 723 

Grand Fir in the Northern Rockies. Tree Physiol. 20, 1191–1197. doi:10.1093/treephys/20.17.1191 724 

Blümel, K., Chmielewski, F.-M., 2012. Shortcomings of classical phenological forcing models and 725 

a way to overcome them. Agric. For. Meteorol. 164, 10–19. doi:10.1016/j.agrformet.2012.05.001 726 

Brus, D.J., Hengeveld, G.M., Walvoort, D.J.J., Goedhart, P.W., Heidema, A.H., Nabuurs, G.J., 727 

Gunia, K., 2012. Statistical mapping of tree species over Europe. Eur. J. For. Res. 131, 145–157. 728 

doi:10.1007/s10342-011-0513-5 729 

Burnham, K.P., Anderson, D.R., 2003. Model Selection and Multimodel Inference: A Practical 730 

Information-Theoretic Approach. Springer Science & Business Media. 731 

Burr, K.E., Tinus, R.W., Wallner, S.J., King, R.M., 1989. Relationships among cold hardiness, root 732 

growth potential and bud dormancy in three conifers. Tree Physiol. 733 

Cannell, M.G.R., Smith, R.I., 1983. Thermal Time, Chill Days and Prediction of Budburst in Picea 734 

sitchensis. J. Appl. Ecol. 20, 951–963. doi:10.2307/2403139 735 

Chen, M., Melaas, E.K., Gray, J.M., Friedl, M.A., Richardson, A.D., 2016. A new seasonal-736 

deciduous spring phenology submodel in the Community Land Model 4.5: impacts on carbon and 737 

water cycling under future climate scenarios. Glob. Change Biol. 22, 3675–3688. 738 

doi:10.1111/gcb.13326 739 

Choi, D.S., Kayama, M., Jin, H.O., Lee, C.H., Izuta, T., Koike, T., 2006. Growth and 740 

photosynthetic responses of two pine species (Pinus koraiensis and Pinus rigida) in a polluted 741 

industrial region in Korea. Environ. Pollut. 139, 421–432. doi:10.1016/j.envpol.2005.06.006 742 

Chuine, I., 2000. A unified model for budburst of trees. J. Theor. Biol. 207, 337–347. 743 

doi:10.1006/jtbi.2000.2178 744 

Chuine, I., Beaubien, E.G., 2001. Phenology is a major determinant of tree species range. Ecol. 745 

Lett. 4, 500–510. doi:10.1046/j.1461-0248.2001.00261.x 746 

Chuine, I., Cour, P., Rousseau, D.D., 1998. Fitting models predicting dates of flowering of 747 

temperate-zone trees using simulated annealing. Plant Cell Environ. 21, 455–466. 748 

doi:10.1046/j.1365-3040.1998.00299.x 749 

Cooke, J.E.K., Eriksson, M.E., Junttila, O., 2012. The dynamic nature of bud dormancy in trees: 750 

environmental control and molecular mechanisms. Plant Cell Environ. 35, 1707–1728. 751 

doi:10.1111/j.1365-3040.2012.02552.x 752 



33 

 

Delegido, J., Verrelst, J., Alonso, L., Moreno, J., 2011. Evaluation of Sentinel-2 Red-Edge Bands 753 

for Empirical Estimation of Green LAI and Chlorophyll Content. Sensors 11, 7063–7081. 754 

doi:10.3390/s110707063 755 

Delpierre, N., Dufrêne, E., Soudani, K., Ulrich, E., Cecchini, S., Boé, J., François, C., 2009. 756 

Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in 757 

France. Agric. For. Meteorol. 149, 938–948. doi:10.1016/j.agrformet.2008.11.014 758 

Estrella, N., Menzel, A., 2006. Responses of leaf colouring in four deciduous tree species to climate 759 

and weather in Germany. Clim. Res. 32, 253. 760 

Gamon, J.A., Huemmrich, K.F., Wong, C.Y.S., Ensminger, I., Garrity, S., Hollinger, D.Y., 761 

Noormets, A., Peñuelas, J., 2016. A remotely sensed pigment index reveals photosynthetic 762 

phenology in evergreen conifers. Proc. Natl. Acad. Sci. 113, 13087–13092. 763 

doi:10.1073/pnas.1606162113 764 

Gunderson, C.A., Edwards, N.T., Walker, A.V., O’Hara, K.H., Campion, C.M., Hanson, P.J., 2012. 765 

Forest phenology and a warmer climate – growing season extension in relation to climatic 766 

provenance. Glob. Change Biol. 18, 2008–2025. doi:10.1111/j.1365-2486.2011.02632.x 767 

Hänninen, H., 2006. Climate warming and the risk of frost damage to boreal forest trees: 768 

identification of critical ecophysiological traits. Tree Physiol. 26, 889–898. 769 

Hänninen, H., 1990. Modelling bud dormancy release in trees from cool and temperate regions. 770 

Acta For. Fenn. 213, 1–47. 771 

Hänninen, H., Slaney, M., Linder, S., 2007. Dormancy release of Norway spruce under climatic 772 

warming: testing ecophysiological models of bud burst with a whole-tree chamber experiment. Tree 773 

Physiol. 27, 291–300. doi:10.1093/treephys/27.2.291 774 

Harrington, C.A., Gould, P.J., St.Clair, J.B., 2010. Modeling the effects of winter environment on 775 

dormancy release of Douglas-fir. For. Ecol. Manag., doi:10.1016/j.foreco.2009.06.018 776 

Jensen, J.L.R., Humes, K.S., Hudak, A.T., Vierling, L.A., Delmelle, E., 2011. Evaluation of the 777 

MODIS LAI product using independent lidar-derived LAI: A case study in mixed conifer forest. 778 

Remote Sens. Environ. 115, 3625–3639. doi:10.1016/j.rse.2011.08.023 779 

Kayama, M., Kitaoka, S., Wang, W., Choi, D., Koike, T., 2007. Needle longevity, photosynthetic 780 

rate and nitrogen concentration of eight spruce taxa planted in northern Japan. Tree Physiol. 27, 781 

1585–1593. 782 

Kivimäenpää, M., Sutinen, S., 2007. Microscopic structure of Scots pine (Pinus sylvestris (L.)) 783 

needles during ageing and autumnal senescence. Trees 21, 645–659. doi:10.1007/s00468-007-0157-784 

8 785 

Klosterman, S.T., Hufkens, K., Gray, J.M., Melaas, E., Sonnentag, O., Lavine, I., Mitchell, L., 786 

Norman, R., Friedl, M.A., Richardson, A.D., 2014. Evaluating remote sensing of deciduous forest 787 

phenology at multiple spatial scales using PhenoCam imagery. Biogeosciences 11, 4305–4320. 788 

doi:10.5194/bg-11-4305-2014 789 

Kobayashi, K., Salam, M.U., 2000. Comparing simulated and measured values using mean squared 790 

deviation and its components. Agron. J. 92, 345–352. 791 

Kramer, K., 1994. Selecting a Model to Predict the Onset of Growth of Fagus sylvatica. J. Appl. 792 

Ecol. 31, 172–181. doi:10.2307/2404609 793 



34 

 

Krinner, G., Viovy, N., Noblet-Ducoudré, N. de, Ogée, J., Polcher, J., Friedlingstein, P., Ciais, P., 794 

Sitch, S., Prentice, I.C., 2005. A dynamic global vegetation model for studies of the coupled 795 

atmosphere-biosphere system. Glob. Biogeochem. Cycles 19, 33. doi:200510.1029/2003GB002199 796 

Lebourgeois, F., Pierrat, J.-C., Perez, V., Piedallu, C., Cecchini, S., Ulrich, E., 2010. Simulating 797 

phenological shifts in French temperate forests under two climatic change scenarios and four 798 

driving global circulation models. Int. J. Biometeorol. 54, 563–581. doi:10.1007/s00484-010-0305-799 

5 800 

Leinonen, I., Hänninen, H., 2002. Adaptation of the timing of bud burst of Norway spruce to 801 

temperate and boreal climates. Silva Fenn. 802 

Loveland, T.R., Belward, A.S., 1997. The IGBP-DIS global 1km land cover data set, DISCover: 803 

First results. Int. J. Remote Sens. 18, 3289–3295. doi:10.1080/014311697217099 804 

Lu, X., Wang, Y.-P., Wright, I.J., Reich, P.B., Shi, Z., Dai, Y., 2016. Incorporation of plant traits in 805 

a land surface model helps explain the global biogeographical distribution of major forest functional 806 

types. Glob. Ecol. Biogeogr. n/a-n/a. doi:10.1111/geb.12535 807 

Man, R., Colombo, S., Lu, P., Dang, Q.-L., 2015. Effects of winter warming on cold hardiness and 808 

spring budbreak of four boreal conifers. Botany 94, 117–126. doi:10.1139/cjb-2015-0181 809 

Migliavacca, M., Sonnentag, O., Keenan, T.F., Cescatti, A., O’Keefe, J., Richardson, A.D., 2012. 810 

On the uncertainty of phenological responses to climate change, and implications for a terrestrial 811 

biosphere model. Biogeosciences 9, 2063–2083. doi:10.5194/bg-9-2063-2012 812 

Murray, M.B., Smith, R.I., Leith, I.D., Fowler, D., Lee, H.S.J., Friend, A.D., Jarvis, P.G., 1994. 813 

Effects of elevated CO2, nutrition and climatic warming on bud phenology in Sitka spruce (Picea 814 

sitchensis) and their impact on the risk of frost damage. Tree Physiol. 14, 691–706. 815 

doi:10.1093/treephys/14.7-8-9.691 816 

Muukkonen, P., Lehtonen, A., 2004. Needle and branch biomass turnover rates of Norway spruce 817 

(Picea abies). Can. J. For. Res. 34, 2517–2527. doi:10.1139/x04-133 818 

Myneni, R.B., Hoffman, S., Knyazikhin, Y., Privette, J.L., Glassy, J., Tian, Y., Wang, Y., Song, X., 819 

Zhang, Y., Smith, G.R., Lotsch, A., Friedl, M., Morisette, J.T., Votava, P., Nemani, R.R., Running, 820 

S.W., 2002. Global products of vegetation leaf area and fraction absorbed PAR from year one of 821 

MODIS data. Remote Sens. Environ., 83, 214–231. doi:10.1016/S0034-4257(02)00074-3 822 

Niinemets, Ü., 2002. Stomatal Conductance Alone Does Not Explain the Decline in Foliar 823 

Photosynthetic Rates with Increasing Tree Age and Size in Picea Abies and Pinus Sylvestris. Tree 824 

Physiol. 22, 515–535. doi:10.1093/treephys/22.8.515 825 

Olsson, C., Bolmgren, K., Lindström, J., Jönsson, A.M., 2013. Performance of tree phenology 826 

models along a bioclimatic gradient in Sweden. Ecol. Model. 266, 103–117. 827 

doi:10.1016/j.ecolmodel.2013.06.026 828 

Olsson, C., Jönsson, A.M., 2015. Budburst model performance: The effect of the spatial resolution 829 

of temperature data sets. Agric. For. Meteorol. 200, 302–312. doi:10.1016/j.agrformet.2014.10.003 830 

Olsson, C., Jönsson, A.M., 2014. Process-based models not always better than empirical models for 831 

simulating budburst of Norway spruce and birch in Europe. Glob. Change Biol. 20, 3492–3507. 832 

doi:10.1111/gcb.12593 833 



35 

 

Pagé, C., Terray, L., Boé, J., 2008. Projections climatiques à échelle fine sur la France pour le 834 

21ème siècle: les scénarii SCRATCH08. Clim. Model. Glob. Change CERFACS. 835 

Pavlick, R., Drewry, D., Bohn, K., Reu, B., Kleidon, A., 2012. The Jena Diversity-Dynamic Global 836 

Vegetation Model (JeDi-DGVM): a diverse approach to representing terrestrial biogeography and 837 

biogeochemistry based on plant functional trade-offs. Biogeosciences Discuss 9, 4627–4726. 838 

Peaucelle, M., Bellassen, V., Ciais, P., Peñuelas, J., Viovy, N., 2016. A new approach to optimal 839 

discretization of plant functional types in a process-based ecosystem model with forest 840 

management: a case study for temperate conifers. Glob. Ecol. Biogeogr. doi:10.1111/geb.12557 841 

Pokornỳ, R., Stojnič, S., others, 2013. Leaf area index of Norway spruce stands in relation to age 842 

and defoliation. Beskydy 5, 173–180. 843 

Polgar, C.A., Primack, R.B., 2011. Leaf-out phenology of temperate woody plants: from trees to 844 

ecosystems. New Phytol. 191, 926–941. doi:10.1111/j.1469-8137.2011.03803.x 845 

Porté, A., Loustau, D., 1998. Variability of the Photosynthetic Characteristics of Mature Needles 846 

Within the Crown of a 25-Year-Old Pinus Pinaster. Tree Physiol. 18, 223–232. 847 

doi:10.1093/treephys/18.4.223 848 

Rautiainen, M., Heiskanen, J., 2013. Seasonal contribution of understory vegetation to the 849 

reflectance of a boreal landscape at different spatial scales. IEEE Geosci. Remote Sens. Lett. 10, 850 

923–927. 851 

Rautiainen, M., Mõttus, M., Heiskanen, J., Akujärvi, A., Majasalmi, T., Stenberg, P., 2011. 852 

Seasonal reflectance dynamics of common understory types in a northern European boreal forest. 853 

Remote Sens. Environ. 115, 3020–3028. doi:10.1016/j.rse.2011.06.005 854 

Reich, P.B., Rich, R.L., Lu, X., Wang, Y.-P., Oleksyn, J., 2014. Biogeographic variation in 855 

evergreen conifer needle longevity and impacts on boreal forest carbon cycle projections. Proc. 856 

Natl. Acad. Sci. 111, 13703–13708. doi:10.1073/pnas.1216054110 857 

Richardson, A.D., Anderson, R.S., Arain, M.A., Barr, A.G., Bohrer, G., Chen, G., Chen, J.M., 858 

Ciais, P., Davis, K.J., Desai, A.R., Dietze, M.C., Dragoni, D., Garrity, S.R., Gough, C.M., Grant, 859 

R., Hollinger, D.Y., Margolis, H.A., McCaughey, H., Migliavacca, M., Monson, R.K., Munger, 860 

J.W., Poulter, B., Raczka, B.M., Ricciuto, D.M., Sahoo, A.K., Schaefer, K., Tian, H., Vargas, R., 861 

Verbeeck, H., Xiao, J., Xue, Y., 2012. Terrestrial biosphere models need better representation of 862 

vegetation phenology: results from the North American Carbon Program Site Synthesis. Glob. 863 

Change Biol. 18, 566–584. doi:10.1111/j.1365-2486.2011.02562.x 864 

Richardson, A.D., Keenan, T.F., Migliavacca, M., Ryu, Y., Sonnentag, O., Toomey, M., 2013. 865 

Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. 866 

Agric. For. Meteorol. 169, 156–173. doi:10.1016/j.agrformet.2012.09.012 867 

Rinne, P.L.H., Welling, A., Vahala, J., Ripel, L., Ruonala, R., Kangasjärvi, J., Schoot, C. van der, 868 

2011. Chilling of Dormant Buds Hyperinduces FLOWERING LOCUS T and Recruits GA-869 

Inducible 1,3-β-Glucanases to Reopen Signal Conduits and Release Dormancy in Populus. Plant 870 

Cell 23, 130–146. doi:10.1105/tpc.110.081307 871 

Rohde, A., Bhalerao, R.P., 2007. Plant dormancy in the perennial context. Trends Plant Sci. 12, 872 

217–223. doi:10.1016/j.tplants.2007.03.012 873 



36 

 

Sampson, D.A., Albaugh, T.J., Johnsen, K.H., Allen, H.L., Zarnoch, S.J., 2003. Monthly leaf area 874 

index estimates from point-in-time measurements and needle phenology for Pinus taeda. Can. J. 875 

For. Res. 33, 2477–2490. doi:10.1139/x03-166 876 

Steiner, K.C., 1980. Patterns of variation in bud-burst timing among populations in several Pinus 877 

species. Silvae Genet. 878 

Verbeke, T., 2015. Développement et quantification des impacts de l’ozone sur la biosphère 879 

continentale dans un modèle global de végétation. PhD thesis. Saint Quentin en yveline, Saint 880 

Quentin en yveline, France. 881 

Verheijen, L.M., Aerts, R., Brovkin, V., Cavender-Bares, J., Cornelissen, J.H.C., Kattge, J., van 882 

Bodegom, P.M., 2015. Inclusion of ecologically based trait variation in plant functional types 883 

reduces the projected land carbon sink in an earth system model. Glob. Change Biol. 21, 3074–884 

3086. doi:10.1111/gcb.12871 885 

Verma, M., Friedl, M., Richardson, A., Kiely, G., Cescatti, A., Law, B., Wohlfahrt, G., Gielen, B., 886 

Roupsard, O., Moors, E., others, 2013. Remote sensing of annual terrestrial gross primary 887 

productivity from MODIS: an assessment using the FLUXNET La Thuile dataset. Biogeosciences 888 

BG 10, 11627–11669. 889 

Verrelst, J., Muñoz, J., Alonso, L., Delegido, J., Rivera, J.P., Camps-Valls, G., Moreno, J., 2012. 890 

Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for 891 

Sentinel-2 and -3. Remote Sens. Environ. 118, 127–139. doi:10.1016/j.rse.2011.11.002 892 

Vetter, M., Churkina, G., Jung, M., Reichstein, M., Zaehle, S., Bondeau, A., Chen, Y., Ciais, P., 893 

Feser, F., Freibauer, A., Geyer, R., Jones, C., Papale, D., Tenhunen, J., Tomelleri, E., Trusilova, K., 894 

Viovy, N., Heimann, M., 2008. Analyzing the causes and spatial pattern of the European 2003 895 

carbon flux anomaly using seven models. Biogeosciences 5, 561–583. 896 

Vidal, J.-P., Martin, E., Franchistéguy, L., Baillon, M., Soubeyroux, J.-M., 2010. A 50-year high-897 

resolution atmospheric reanalysis over France with the Safran system. Int. J. Climatol. 30, 1627–898 

1644. doi:10.1002/joc.2003 899 

Vitasse, Y., François, C., Delpierre, N., Dufrêne, E., Kremer, A., Chuine, I., Delzon, S., 2011. 900 

Assessing the effects of climate change on the phenology of European temperate trees. Agric. For. 901 

Meteorol. 151, 969–980. doi:10.1016/j.agrformet.2011.03.003 902 

Wang, R., Chen, J.M., 2012. Seasonal leaf area index variations derived from needle growth and 903 

fall measurements in two eastern white pine (Pinus Strobes L.) stands, in: 2012 IEEE 4th 904 

International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications. 905 

pp. 413–417. doi:10.1109/PMA.2012.6524866 906 

Wang, Y., Woodcock, C.E., Buermann, W., Stenberg, P., Voipio, P., Smolander, H., Häme, T., 907 

Tian, Y., Hu, J., Knyazikhin, Y., Myneni, R.B., 2004. Evaluation of the MODIS LAI algorithm at a 908 

coniferous forest site in Finland. Remote Sens. Environ. 91, 114–127. 909 

doi:10.1016/j.rse.2004.02.007 910 

Warren, C., 2006. Why does photosynthesis decrease with needle age in Pinus pinaster? Trees - 911 

Struct. Funct. 20, 157–164. doi:10.1007/s00468-005-0021-7 912 

Watanabe, M., Matsuo, N., Yamaguchi, M., Matsumura, H., Kohno, Y., Izuta, T., 2010. Risk 913 

assessment of ozone impact on the carbon absorption of Japanese representative conifers. Eur. J. 914 

For. Res. 129, 421–430. doi:10.1007/s10342-009-0316-0 915 



37 

 

Way, D. A., & Montgomery, R. A. (2015). Photoperiod constraints on tree phenology, performance 916 

and migration in a warming world. Plant, Cell & Environment, 38(9), 1725-1736. 917 

 918 

Worrall, J., 1983. Temperature–bud-burst relationship in amabilis and subalpine fir provenance 919 

tests replicated at different elevations. Silvae Genet. 920 

Xiang, Y., Gubian, S., Suomela, B., Hoeng, J., 2013. Generalized simulated annealing for global 921 

optimization: the GenSA Package. R J. 5. 922 

Yakovlev, I.A., Asante, D.K.A., Fossdal, C.G., Partanen, J., Junttila, O., Johnsen, O., 2008. 923 

Dehydrins expression related to timing of bud burst in Norway spruce. Planta 228, 459–472. 924 

doi:10.1007/s00425-008-0750-0 925 

 926 

 927 

Supporting information captions 928 

Appendix SA: Litter sampling methodology, initial conditions and forcing data used for 929 

ORCHIDEE simulations, sensitivity analysis 930 

Appendix SB: Description, equations and parameters for the eight budburst models  931 

Appendix SC: Supplementary figures and tables 932 



38 

 

 


