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 11 

Abstract 12 

The river-floodplain network plays an important role in the carbon (C) budget of the Amazon 13 

basin, as it transports and processes a significant fraction of the C fixed by terrestrial 14 

vegetation, most of which evades as CO2 from rivers and floodplains back to the atmosphere. 15 

There is empirical evidence that exceptionally dry or wet years have an impact on the net C 16 

balance in the Amazon. While seasonal and interannual variations in hydrology have a direct 17 

impact on the amounts of C transferred through the river-floodplain system, it is not known 18 

how far the variation of these fluxes affects the overall Amazon C budget.  19 

Here, we introduce a new wetland forcing file for the ORCHILEAK model, which improves 20 

the representation of floodplain dynamics and allows us to closely reproduce data-driven 21 

estimates of net C exports through the river-floodplain network. Based on this new wetland 22 

forcing and two climate forcing datasets, we show that across the Amazon, the percentage of 23 

NPP lost to the river-floodplain system is highly variable at the interannual timescale and wet 24 

years fuel aquatic CO2 evasion. However, at the same time overall net ecosystem productivity 25 

(NEP) and C sequestration is highest during wet years, partly due to reduced decomposition 26 

rates in water-logged floodplain soils. It is years with the lowest discharge and floodplain 27 

inundation, often associated with El Nino events, that have the lowest NEP and the highest 28 

total (terrestrial plus aquatic) CO2 emissions back to atmosphere. Furthermore, we find that 29 

aquatic C fluxes display greater variation than terrestrial C fluxes, and that this variation 30 

significantly dampens the interannual variability in NEP of the Amazon basin. These results 31 



call for a more integrative view of the C fluxes through the vegetation-soil-river-floodplain 32 

continuum, which directly places aquatic C fluxes into the overall C budget of the Amazon 33 

basin. 34 

 35 

1. Introduction 36 

The land-ocean aquatic continuum (LOAC) is now well established as an important 37 

component of the global carbon (C) cycle (Ciais et al., 2013). Atmospheric C fixed in 38 

terrestrial ecosystems and wetlands can be lost through respiration, and stored in biomass and 39 

soil, but can also be transferred laterally to the LOAC as dissolved organic carbon (DOC), 40 

particulate organic carbon (POC) and dissolved CO2. Along the LOAC this C can in turn 41 

undergo biogeochemical transformations, be lost back to the atmosphere via CO2 evasion, 42 

transferred further downstream to estuaries and the coast, or undergo sedimentation in 43 

wetlands (incl. lakes and reservoirs). It has been demonstrated at the catchment (Cole & 44 

Caraco, 2001) to global scale (Battin et al., 2009; Regnier et al., 2013; Ciais et al. in review), 45 

that these fluxes are important and should not be neglected in land C budgets. 46 

Globally, there remains a high degree of uncertainty associated with the amounts of C being 47 

transferred through and processed within the LOAC. Estimates of the total amount of 48 

terrestrial C inputs to inland waters range widely from 1.1 to 5.1 Pg C yr-1 (Cole at al., 2007; 49 

Aufdenkampe et al., 2011; Regnier et al., 2013; Drake et al., 2017), reflecting the fact that 50 

this flux is indirectly derived by summing estimates of aquatic CO2 evasion, C exports to the 51 

coast and burial in the LOAC. Of the three constituent fluxes, CO2 evasion is the largest 52 

(Drake et al., 2017) and thus uncertainties in CO2 evasion dominate the subsequent 53 

uncertainty in the export of terrestrial C to inland waters. Moreover, aquatic CO2 evasion is 54 

highly spatially variable and hotspot regions have been identified; the boreal and tropical 55 



regions contributing disproportionately to global CO2 evasion from lakes (Hastie et al., 2018) 56 

and rivers (Lauerwald et al., 2015), respectively. 57 

In the Tropics, high terrestrial net primary productivity (NPP) and high rainfall drive a large 58 

export of C to inland waters and in turn high aquatic CO2 evasion.  In 2002, Richey et al. 59 

extrapolated observed pCO2 measurements to estimate a total CO2 evasion flux of 0.47 Pg C 60 

yr-1 from the inland waters of the Amazon Basin (upstream of Obidos, see Fig. S1), 13 times 61 

greater than their 36 Tg C yr-1 estimate of the total organic C (TOC) export to the coast. In 62 

2013, Rasera et al. calculated a substantially higher CO2 evasion of 0.8 Pg C yr-1 over the 63 

same basin area, largely as a result of higher values of gas exchange velocity (K600). More 64 

recently, Sawakuchi et al. (2017) added observations from the basin area downstream of 65 

Obidos and concluded that CO2 evasion from the entire Amazon Basin (down to mouth) 66 

could potentially be as high as 1.39 Pg C yr-1. 67 

Previous studies have shown that there is considerable seasonal variation in aquatic CO2 68 

evasion. Richey et al. (2002), found that the partial pressure of CO2 (pCO2) and in turn CO2 69 

evasion was tightly coupled to discharge, increasing and decreasing with rising and falling 70 

water respectively. Moreover, they measured exceptionally high pCO2 values (>44,000 µatm) 71 

on the floodplain of the mainstem of the Amazon, and speculated that the source of the C is 72 

likely to be organic matter exported from flooded forests. 73 

This was later confirmed by Abril et al. (2014) who demonstrated that Amazonian wetlands 74 

export around 50% of their GPP to inland waters in contrast to the typical values of <2% 75 

exported from terrestrial landscapes. They went on to conclude that the lateral C flux from 76 

wetlands is enough to account for around 210 Tg C yr-1 of the total CO2 evasion flux from the 77 

inland waters of the Amazon river-floodplain network. A recent study by Almeida et al 78 

(2017) demonstrated that in addition to seasonal variation, large flood events also drive 79 



interannual variation in CO2 evasion from the Madeira River (a tributary of the Amazon), 80 

namely that years with extreme flooding evade 20% more CO2 to the atmosphere per unit 81 

area than years without. Another flux linked to flood events is C burial and a recent study 82 

estimated the POC burial flux in Amazon floodplain lakes at 16 Tg C yr-1 (Sanders et al., 83 

2017), at least an order of magnitude lower than estimates of CO2 evasion. 84 

These observed seasonal and interannual signals in C fluxes are particularly important given 85 

that the region is increasingly vulnerable to extreme climatic events such as droughts and 86 

floods (Marengo et al., 2011; Chou et al., 2013; Gloor et al., 2013; Zulkafli et al., 2016). 87 

Indeed, recent studies have shown substantial decreases in terrestrial net primary productivity 88 

(NPP), and in turn C uptake from the atmosphere as a result of the 2005 and 2010 droughts 89 

(Zhao & Running, 2010; Potter et al, 2011; Gatti et al., 2014; Doughty et al., 2015 and 90 

Feldpausch et al., 2016). However, most of these studies do not account for LOAC fluxes. 91 

For these reasons, it is important that we understand the interannual variation in LOAC fluxes 92 

and how they influence the overall net ecosystem production (NEP) of the entire Amazon 93 

Basin. 94 

With this in mind, we aim to tackle the following research questions: 95 

 To what extent do the LOAC fluxes (aquatic CO2 evasion and C export to the coast) 96 

vary inter-annually and seasonally throughout the entire Amazon Basin? 97 

 How does interannual variation in discharge and flooding affect the LOAC fluxes, 98 

terrestrial NPP, soil heterotrophic respiration (SHR) and ultimately the NEP of the 99 

Amazon Basin, particularly in the context of increasing climatic extremes? More 100 

specifically, does the incorporation of LOAC fluxes amplify or dampen variation in 101 

NEP?  102 



Upscaling studies and empirical models are useful in providing estimates of individual 103 

components of the LOAC fluxes for the present day. However, these methods cannot 104 

represent the interaction between the different aspects of the Amazon Basin C cycle. A more 105 

complex and integrated modelling approach is required to understand and, ultimately, predict 106 

the longer-term variation in LOAC fluxes and how this variation affects the net C balance of 107 

these ecosystems. 108 

In 2017, Lauerwald et al. developed the first full Land Surface Model (ORCHILEAK model) 109 

approach to represent the lateral C fluxes along the LOAC in the Amazon Basin and similarly 110 

demonstrated the significance of wetlands, concluding that 51% of total CO2 evasion comes 111 

from the floodplains. The study estimated a total CO2 evasion of 379 C Tg yr-1, close to the 112 

value produced by Richey et al. from up-scaling of measurements. In addition, they 113 

substantiated the idea that wetlands are a disproportionately important source of C to rivers, 114 

calculating that the CO2 inputs from root and heterotrophic respiration in flooded soils are 115 

almost twice that from non-flooded soils. 116 

The land surface model approach undertaken by Lauerwald et al. (2017) provides a valuable 117 

tool for further research, in particular the capability to make future projections of the LOAC 118 

C fluxes. However, while they were able to reproduce the seasonality in discharge on the 119 

main stem of the Amazon, the total flooded area was substantially underestimated when 120 

compared to the observed data of Richey et al., 2013 (after Hess et al., 2003). This is because 121 

Lauerwald et al. (2017) relied on the coarse (0.25°) global inundation dataset of Prigent et al. 122 

(2007), which tends to underestimate the total floodable area (Lauerwald et al., 2017).  Given 123 

previous estimates of the magnitude of the CO2 evasion flux from the Amazon floodplain, the 124 

importance of wetlands, and the region’s increasing vulnerability to climatic extremes; it is 125 

vital that we can accurately model its floodplain dynamics. 126 



In this study, an improved representation of floodplain and wetland dynamics is achieved 127 

through the production of a new floodplain forcing file for the ORCHILEAK model, from the 128 

high resolution (100m or 0.0008°) synthetic aperture radar (SAR) dataset of Hess et al. 129 

(2015). We use this new forcing file to improve the simulation of the interannual variation of 130 

LOAC fluxes. In turn, we are able to address the research questions previously outlined, and 131 

more specifically to evaluate the impact of flood extent on the dynamics of LOAC fluxes, and 132 

ultimately how interannual variation in these aquatic C fluxes influences the overall variation 133 

in NEP in the Amazon.  134 

 135 

2. Methods 136 

2.1 A brief description of the ORCHILEAK land surface model 137 

ORCHILEAK (Lauerwald et al., 2017) is a new model branch of ORCHIDEE (Organizing 138 

Carbon and Hydrology in Dynamic Ecosystems) (Krinner et al. 2005), the land surface 139 

component of the Institut Pierre-Simon Laplace (IPSL) earth system model (ESM). It 140 

simulates the production of DOC in the canopy and soils, the leaching of DOC and CO2 from 141 

soils to the river network, DOC mineralization and the subsequent CO2 evasion from the 142 

water surface. Crucially, it also simulates the exchange of C between litter, soils and water on 143 

floodplains and in swamps. The representation of these fluxes is in turn closely coupled to the 144 

hydrology scheme, namely the representation of precipitation, throughfall, surface runoff, 145 

drainage, and the routing of discharge along the river-floodplain network.  At the same time, 146 

ORCHILEAK also simulates vegetation dynamics of 12 plant functional types, 5 of which 147 

are present in the Amazon, as well as the C balance of biomass, litter and soils. In short, 148 

ORCHILEAK integrates LOAC fluxes within a full representation of the terrestrial C cycling 149 

as simulated by ORCHIDEE.  However, in its current form ORCHILEAK does not account 150 



for the burial of POC in fluvial and floodplain sediments or the evasion of C to the 151 

atmosphere as CH4. These fluxes are further discussed later. While the model does not 152 

simulate the lateral transport of POC, it does account for the decomposition of submerged 153 

litter as a substantial source of DOC and dissolved CO2 to the water column; in other words, 154 

POC from submerged litter is assumed to decompose locally in ORCHILEAK. The model is 155 

described in more detail in the proceeding sections. For a full model description, as well as a 156 

discussion on model assumptions and limitations, please refer to Lauerwald et al. (2017). 157 

2.2 Overview of the hydrology, soil C scheme, and the transport and transformation of 158 

aquatic C fluxes in ORCHILEAK 159 

Precipitation and other meteorological input parameters are prescribed by a forcing file. The 160 

hydrology module of ORCHILEAK, just like that of the standard version of ORCHIDEE, 161 

partitions the precipitation between interception loss in the vegetation canopy and throughfall 162 

to the ground.  The throughfall is further partitioned into infiltration and surface runoff. The 163 

soil water storage is refilled by infiltration and depleted by evapotranspiration and drainage. 164 

The soil hydrology is represented using a 2 m soil column vertically discretized into 11 layers 165 

of geometrically increasing thickness from top to bottom. These processes are all represented 166 

at a 30 min time step (see d’Orgeval et al., 2008, Rosnay et al., 2002 for details). 167 

ORCHILEAK incorporates a soil C module largely based on ORCHIDEE-SOM (Camino-168 

Serrano, 2018). The soil module uses the hydrological module outputs to simulate microbial 169 

production and consumption of DOC, sorption and desorption of DOC on soil organic matter, 170 

the advection and diffusion of DOC and dissolved CO2 within the soil column and their 171 

subsequent lateral export via runoff and drainage as well as the throughfall of DOC onto the 172 

soil or water surface. There are 3 pools of DOC in the soil which are defined by their source 173 

material and residence times (𝜏carbon); the active, slow and passive pool. ORCHILEAK 174 



distinguishes between flooded and non-flooded soils; decomposition rates of litter, SOC and 175 

DOC being 3 times lower in flooded soils. Furthermore, it simulates the input of C to the 176 

water column from flooded soils; DOC from litter and SOC decomposition from the top 4.5 177 

cm of the soil column feeds directly to the DOC pool of the overlying waterbody.  178 

The river routing module of ORCHILEAK routes the runoff and drainage from the hydrology 179 

module and the corresponding dissolved C fluxes from the soil C module as river flow at a 180 

daily time-step along a gridded river routing scheme at 0.5° resolution (Vorosmarty et al., 181 

2000). The river network is connected to two sorts of wetland, floodplains and swamps. 182 

Where a swamp is present, a constant fraction of the river flow is feeding into the bottom of 183 

the soil column. Where a floodplain is present, a temporary water body of time-variant 184 

surface and volume may be formed beside the river channel and it is fed by a fraction of river 185 

flow when bank-full discharge is surpassed. In the case of the Amazon basin, the bankfull 186 

discharge threshold was defined as the median discharge simulated over the period 1980-187 

2000 (see Lauerwald et al., 2017). From the inundated floodplain, water and dissolved C may 188 

infiltrate back into the soil or flow back into the river channel, while water may also 189 

evaporate. The maximal floodable area (MFF) and the areal fraction of swamps (MFS) per 190 

simulation grid is prescribed by a forcing file.  The water that infiltrates back into the soil is 191 

returned to the hydrology module. The dissolved C contained in that water is returned to the 192 

soil C module. 193 

ORCHILEAK simulates the transport and decomposition of terrestrial C inputs within the 194 

routing scheme, with the assumption that the lateral transport of DOC and CO2 are 195 

proportional to discharge. Within the water column, DOC is separated into a labile and 196 

refractory pool, with half-life times of 2 and 80 days, respectively. The labile pool 197 

corresponds to the active pool of the soil C scheme, while the refractory pool is derived from 198 

the slow and passive soil solution DOC pools combined. In order to ensure numerical 199 



precision, CO2 production and evasion from the water column, as well CO2 inputs from 200 

flooded litter and SOC are simulated at the high temporal resolution of 1/240 day (6 min). 201 

pCO2 is calculated at the same 6 min time-step based on the dissolved CO2 concentration, and 202 

the temperature-dependent solubility of CO2. pCO2 is then used along with a gas exchange 203 

velocity and a diurnally variable water surface area, to calculate CO2 evasion. Fixed gas 204 

exchange values of 3.5 m d-1 and 0.65 m d-1 are used for rivers (and open floodplains) and 205 

forested floodplains, respectively. Flooded forests are given a lower gas exchange velocity 206 

due to the reduced impact of wind (i.e. lower wind speeds). For a more detailed explanation, 207 

see Lauerwald et al. (2017). 208 

2.3 New wetland forcing files 209 

The original routing scheme of ORCHIDEE used universal MFF and MFS derived from the 210 

Global Lakes and Wetlands Database (GLWD, Lehner and Doll, 2004) that were shown to 211 

considerably underestimate inundated areas in the Amazon (Guimberteau et al., 2012). As a 212 

result, Guimberteau et al. developed new MFF and MFS based on the 0.25° datasets of 213 

Prigent et al. (2007) and Martinez and Le Toan (2007), respectively. This led to some 214 

improvement but inundation was still substantially underestimated in the Amazon Basin.  215 

In the Guimberteau datasets, “swamps”, defined as the vegetated part of maximum 216 

floodplain, were subtracted from the MFF and used to create the separate swamp (MFS) 217 

forcing file. In ORCHILEAK (Lauerwald et al., 2017), swamps were reincorporated into the 218 

MFF forcing file, creating a larger, more realistic MFF, and representing the total flooded 219 

area from which inland water CO2 is evading. While these modifications again led to some 220 

improvement in the representation of floodplains and swamps in ORCHILEAK, it 221 

fundamentally still relied on a low resolution (0.25°) dataset, missing smaller areas of 222 



inundation, and meaning that the overall maximum floodplain extent was too small 223 

(Lauerwald et al., 2017).   224 

With these limitations in mind, we created a new maximal fraction of floodplain (MFF, 225 

Fig.1) forcing file for the ORCHILEAK model based on the 100m Synthetic Aperture Radar 226 

(SAR) data described in Hess et al. (2015, see Fig.1 a). This dataset represents different 227 

wetland types during the 1996 May-June flood season. Firstly, we merged all of the wetland 228 

categories in Fig. 1 a) into one class, with the exception of the ‘non-wetland within the 229 

Amazon Basin’, ‘Open water’ and ‘Elevation >= 500 m, in Basin’ categories.  We then 230 

aggregated the merged dataset to a resolution of 0.5° (Fig.1 b).  Note that in the MFF we 231 

included three classes of land cover that were not flooded during the 1996 flood season, 232 

namely ‘non-flooded shrubs’, ‘non-flooded woodlands’ and ‘non-flooded forest’ (classes 44, 233 

66 and 88). This decision is based on the justification provided in Hess et al. that these “areas 234 

not flooded on either date, but adjacent to flooded areas and displaying landforms consistent 235 

with wetland geomorphology”. In other words, while these areas were not flooded in 1996, 236 

they are likely prone to inundation in other years with greater precipitation and thus should be 237 

included in maximum flood extent.  Across the Amazon basin, the new forcing file prescribes 238 

an average MFF of 13.6%, approximately twofold greater than the 6.3% produced with the 239 

original ORCHILEAK forcing derived from Prigent et al. (2007) (Fig. 1 c, d).  The addition 240 

of the 44, 66 and 88 land cover classes makes a moderate difference; we produce an average 241 

MFF of 10% without these 3 classes. For comparison, we also aggregated the 232m 242 

resolution wetland dataset of Gumbricht et al. (2017).  Assuming that all of the wetland 243 

categories in Gumbricht et al. (2017) contribute to the maximum flood extent, we produce an 244 

average MFF of 14.9%. However, we chose to use the MFF derived from Hess et al. (2015) 245 

as it is measured at a higher resolution and considers wetlands as synonymous with 246 

floodplains, while Gumbricht et al. (2017) has a wider definition. In order to account for the 247 



uncertainty associated with the MFF forcing file we created two new versions of it; one in 248 

which the MFF of each grid was systematically increased by 7% (excluding “highland” areas 249 

>=500m identified in Hess et al., 2015) (MFF+7), and another where the MFF was decreased 250 

by 7% (MFF-7). We chose a value of 7% as this is the inferred error of the original dataset, 251 

described in Hess et al. (2015). Across the Amazon basin, the MFF-7 forcing gives an 252 

average MFF of 9.3% while the MFF+7 gives an average of 18.3%. This range also envelops 253 

the uncertainty associated with the inclusion or exclusion of classes 44, 66 and 88, as well as 254 

that associated with the difference between the Hess and Gumbricht datasets. 255 

 256 

Figure 1. a) Wetland classification within the Amazon Basin (Hess et al., 2015), b); the new 257 

maximal fraction of floodplain (MFF) forcing file derived from Hess et al. (2015) data, c) the 258 

previous MFF forcing file (Guimberteau et al., 2012) and d) the difference between the new 259 

and old MFF. In pane d), “+ve” refers to an increase in MFF with the new MF forcing, while 260 

“-ve” refers to a decrease. Maps in panels b-d are at a resolution of 0.5°. 261 

 262 



We also created a new ORCHILEAK maximal fraction of swamps (MFS, Fig. 2) forcing file 263 

based on the 232 m resolution tropical wetland dataset of Gumbricht et al (2017), as the Hess 264 

et al. (2015) dataset does not define an explicit “swamp” category.  We extracted class 30 265 

(Swamps incl. bogs) and 40 (Fens), before merging these classes and aggregating them to the 266 

0.5° resolution. Across the Amazon basin, the new forcing file prescribes an average MFS of 267 

5.4% (Fig.2, b) which is comparable to the 6% produced with the previous approach 268 

(Guimberteau et al., 2012) (Fig. 2, c, d). 269 

 270 

 271 

 272 

Figure 2. a) Swamps and ferns classification within Amazon Basin from Gumbricht et al 273 

(2017)) b); the new maximal fraction of swamps (MFS) forcing file derived from Gumbricht 274 

et al. (2017) data, c); the previous MFS forcing file (Lauerwald et al., 2017) and d) the 275 

b) a) 

c) d) 



difference between the new and old MFS. In pane d), “+ve” refers to an increase in MFF with 276 

the new MF forcing, while “-ve” refers to a decrease. Maps in panels b-d are at a resolution 277 

of 0.5°. 278 

 279 

2.4 Simulation Set-up 280 

Model configuration 281 

The model was initially run from 1980 until 2000 using two different climate forcing 282 

datasets, namely Princeton GPCC (Sheffield et al., 2006), and a regionally updated version of 283 

NCC (Ngo-Duc et al., 2005) which was introduced by Guimberteau et al. (2012). This was 284 

done in order to test which dataset is able to better recreate observed discharge and the 285 

associated seasonal and interannual variability in floodplain inundation, as well as to account 286 

for the uncertainty associated with choice of climate forcing. With the combination of the two 287 

climate forcing files and the three MFF forcing files, we ran six different model 288 

configurations. Model parameterisation can also cause uncertainty such as the setting of 289 

decomposition rate constants for labile and refractory DOC within ORCHILEAK. However, 290 

the impact of these parameters was already investigated via a sensitivity analyses in the paper 291 

describing the development of the ORCHILEAK model (Lauerwald et al., 2017). As such, 292 

we chose to focus on climate forcing and floodplain area as sources of uncertainty in 293 

combination with substantial validation against observations and model outputs from the 294 

literature. 295 

The original ORCHILEAK simulation (Lauerwald et al., 2017) used only the updated NCC 296 

climate forcing. Here, we ran four simulations with the NCC climate forcing dataset; one 297 

with the new versions of MFF (hereafter referred to as “standard MFF”) and MFS, two more 298 

to account for the uncertainty in MFF (MFF+7 & MFF-7), and another with the old MFF 299 

(Lauerwald et al., 2017), in order to determine the impact of the new wetland forcing files. 300 



We ran the Princeton GPCC simulations with the new versions of MFF and MFS only (three 301 

runs). Model parameterisation follows Lauerwald et al. (2017). 302 

Hydrology statistics 303 

Following Lauerwald et al. (2017), we calculated a series of statistical parameters in order to 304 

calibrate the flood dynamics of the model in a robust and consistent manner.  After an initial 305 

run, we calculated bank-full discharge and the median water storage for each grid cell (1980-306 

2000), for each model configuration. Any discharge in excess of the median water storage 307 

will overtop and begin to inundate the floodplains. After updating bank-full discharge and re-308 

running each model configuration, we calculated the 95th percentile of all simulated water 309 

level heights (1980-2000) for each grid cell. This represents the maximum water level, at 310 

which the maximum floodable area is inundated. Once this was updated, each model 311 

configuration was re-run once more.   312 

Soil carbon spin up 313 

In order to reach a steady state soil carbon pool, we spun-up the model for a total of 314 

approximately 7,000 years, looping over 10 years of climate forcing data (1948-1957). To 315 

reach steady state more quickly, we first ran the model for 2000 years with the default soil 316 

carbon residence time (𝜏carbon) values halved and a constant atmospheric CO2 concentration of 317 

350 µatm. Land-cover, representative of the first year of climate forcing data (1948), 318 

remained constant over these spin-up runs.  After this procedure, all of the soil C pools were 319 

approximately at steady state (<0.01% change over the last century of the spin up). Note that 320 

it is assumed that soil C pools were in quasi steady state before significant human impact. 321 

Transient simulations 322 

We then performed a transient (industrial) run from 1860, until the year that the particular 323 

climate forcing dataset starts from (for example to 1948 for Princeton GPCC), again looping 324 



over 10 years of climate data but with transient land-cover (LUH-CMIP5) and atmospheric 325 

CO2. Finally, we performed a fully transient simulation (land-cover, atmospheric CO2 and 326 

climate) to the final year of each climate forcing dataset. Note that the NCC climate forcing 327 

data is only available until 2000 while the Princeton GPCC data runs until 2010.  328 

2.5 Model evaluation and analysis of simulation results 329 

We started by evaluating the hydrology, concentrating on flooded area as this was 330 

underestimated in the original ORCHILEAK model set up (Lauerwald et al., 2017). The new 331 

MFF and MFS forcing files meant that we had to re-evaluate both discharge and floodplain 332 

inundation dynamics. We firstly focused on recreating observed discharge at Obidos (Fig. 333 

S1), the most downstream gauging station for which an observed time-series is available 334 

(Cochonneau et al., 2006). Total flooded area of the central quadrant of the Amazon basin 335 

(Fig. S1) was tested against remote sensing data (Melack et al., 2011). Note that the Melack 336 

et al. dataset uses the same wetland mask as we use here, but the seasonality and area of 337 

inundation is completely independent. We then performed a model validation for the DOC 338 

and aquatic CO2 evasion fluxes using the same validation data and methodology as described 339 

in Lauerwald et al. (2017), as well as an in-depth comparison of our results to those of 340 

previous studies. In addition, we examined the interannual variation of both the terrestrial 341 

(meaning NPP and SHR) and aquatic C fluxes (also referred to as LOAC fluxes, and meaning 342 

CO2 evasion from the water surface and the export flux of C to the coast) of the Amazon, and 343 

assessed how this variation relates to rainfall and temperature variation through linear 344 

regression analysis. As we found long-term (decadal) trends in several of the fluxes, most 345 

notably NPP (Tables S2 & S3), we detrended the annual times series using the Detrend 346 

function within the “SpecsVerification” package in R (R Core Team 2013), before 347 

performing the regression analyses using STATISTICATM. Finally, we sum the various C 348 



fluxes to calculate the net C balance of the Amazon Basin (see 2.6) and examine the 349 

importance of the LOAC fluxes to the overall C balance.  350 

2.6 Calculating the net carbon balance of the Amazon 351 

In order to estimate the net C balance of the Amazon basin, we summed the terrestrial and 352 

aquatic C fluxes to estimate Net Ecosystem Production (NEP) and Net Biome Production 353 

(NBP). Positive values of NEP and NBP correspond to a net sink. 354 

We define NEP as follows: 355 

                           𝑁𝐸𝑃 = 𝑁𝑃𝑃 + 𝑇𝐹 − 𝑆𝐻𝑅 − 𝐹𝐶𝑂2 − 𝐿𝐸Aquatic                                              (1)      356 

Where NPP is terrestrial net primary production, TF is the throughfall flux of DOC, SHR is 357 

soil heterotrophic respiration (only the part evading from the soil surface); FCO2 is CO2 358 

evasion from the water surface and 𝐿𝐸Aquatic is the export flux of C to the coast. NBP is the 359 

same as NEP but with the addition of the C lost (or gained) through land use change (LUC, 360 

including fires and the export of woody biomass) and crop harvest (Harvest): 361 

                              𝑁𝐵𝑃 = 𝑁𝐸𝑃 − (𝐿𝑈𝐶 + 𝐻𝑎𝑟𝑣𝑒𝑠𝑡)                                                                (2)                                362 

 363 

3. Results  364 

3.1 Representation of Hydrology  365 

The model is able to reproduce river discharge at Obidos (1980-2000), the farthest 366 

downstream river gauge (Fig. S1), both in terms of total magnitude and seasonal variability. 367 

Simulation with the old floodplain/swamp forcing used by Lauerwald et al. (2017) and 368 

simulations based on the new floodplain/swamp forcing file showed a similarly good 369 

performance (Fig.3-1a-c, Table 1). There was no substantial difference in the simulated 370 



discharge from the Amazon basin after the implementation of the new floodplain. However, 371 

the new floodplain forcing substantially improved the ability of the model to reproduce the 372 

seasonality in flooded area (Fig. 3-2a-c); Nash Sutcliffe-Efficiency (NSE) and Root Mean 373 

Square Error (RMSE) were 0.91 and 12% respectively with the new floodplain forcing, 374 

compared to -0.75 and 32% with the old (Table 1).  375 

Comparing model runs driven by the two different climate forcing, NCC and Princeton 376 

GPCC climate data, we find a similarly good performance as well. With both forcing data 377 

sets, we were able to recreate the observed mean magnitude and seasonality in discharge at 378 

Obidos (1980-2000) (Fig. 3-1 a, b) and flooded area in the central (Fig. S1) Amazon (1981-379 

1996) (Fig. 3-2 a, b).  380 

While the model was mostly able to reproduce the observed interannual variation in 381 

discharge, there was some minor difference in performance related to the choice of climate 382 

forcing (Figure 4, Table S1).  The simulation driven by the Princeton GPPC data had an NSE 383 

of 0.79 and a RMSE of 4% against observations, compared to 0.50 and 7% for the NCC run 384 

(Figure 4, Table S1). The year with the highest observed discharge was 1989 with a mean of 385 

199 103 m3s-1. The Princeton GPCC run correctly simulated 1989 as the year with the highest 386 

discharge, with a mean of 194  103 m3s-1.  The NCC run ranks 1989 as the year with the 387 

second highest discharge, and actually predicts a higher 1989 mean discharge of 203 103 m3s-388 

1. With NCC, the year with highest discharge is 1982, which is the 5th highest discharge in 389 

the observed time series. Conversely, the NCC simulation correctly modelled 1992 as the 390 

year with the lowest discharge (146 103 m3s-1) while the run driven with Princeton ranked 391 

1992 second lowest (Figure 4, Table S1). It is important to note that the differences in 392 

observed discharge between both the highest (1989) and second highest (1994), and lowest 393 

(1992) and second lowest (1983) are minor (Figure 4, Table S1).  394 
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 397 

 398 

 399 

Figure 3- 1: Seasonality of simulated versus observed discharge 

(Cochonneau et al., 2006) at Obidos (1980-2000 monthly mean), 

with a) NCC climate forcing with standard MFF b) Princeton GPCC 

climate forcing with standard MFF and c) NCC with old MFF & 

MFS. 2: Seasonality of simulated versus observed flooded area 

(Melack et al., 2011) in the central Amazon basin (1981-1996 

monthly mean) with a) NCC climate forcing with standard MFF b) 

Princeton GPCC climate forcing with standard MFF and c) NCC 

with old MFF & MFS. 
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Figure 4. Annual variation of simulated vs 

observed discharge (Cochonneau et al., 

2006) at Obidos (1980-2000) for a); run with 

NCC climate forcing with standard MFF, b) 

Princeton GPCC climate forcing with 

standard MFF and c) NCC climate forcing 

with old MFF & MFS 
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Table 1. Performance statistics for modelled versus observed discharge Q at Obidos 
and flooded area in the central Amazon basin for different climate forcing 
configurations 

Seasonality in Q at Obidos 
(1980-2000) 

Flooded area in central 
Amazon (1981-1996) 

Interannual variation in Q 
at Obidos (1980-2000) 

Climate 
forcing 

RSME NSE R2 RSME NSE R2 RSME NSE R2 

NCC 
 

9% 0.91 0.95 12% 0.91 0.91 7% 0.50 0.66 

Princeton 
GPCC  

6% 0.94 0.95 13% 0.89 0.90 4% 0.79 0.81 

NCC (old 
MFF & 
MFS)  

6% 0.95 0.95 32% -0.75 0.97 6% 0.62 0.67 

 413 

3.2 Carbon fluxes along the Amazon Basin 414 

We estimate a long-term mean (1980-2000 across six model runs) NPP rate of 1,214 (1,204-415 

1,223) g C m-2 yr-1 (range represents the variation caused by the combination of the two 416 

climate forcing and the three MFF forcing files; standard, MFF +7 and MFF-7), amounting to 417 

a total NPP of 6.81 (6.75-6.86) Pg C yr-1 for the entire Amazon Basin (5.6 x 106 km2).  If we 418 

only consider the uncertainty associated with climate forcing alone, the range is reduced to 419 

6.77-6.85 Pg C yr-1. The effect of the new MFF and MFS on NPP was negligible; mean 420 

annual NPP being 1,220 g C m-2 yr-1 (total of 6.84 Pg C yr-1) and 1,222 g C m-2 yr-1 (total of 421 

6.85 Pg C yr-1) with the original (Lauerwald et al., 2017) and new forcing files, respectively, 422 

both driven by NCC. We estimate a mean annual soil heterotrophic respiration (SHR) of 5.87 423 

(5.62-6.16) Pg C yr-1.  The new forcing file had a significantly greater effect on SHR than on 424 

NPP; the original forcing file (with NCC) produces a higher mean annual SHR of 6.30 Pg C 425 



yr-1, compared to 5.94 Pg C yr-1 (with NCC) this difference due to the greater suppression of 426 

organic matter decomposition with the new MFF (Rueda-Delgado et al., 2006). We estimate 427 

a mean annual throughfall DOC flux (TF) of 79 (78-79) Tg C yr-1. 428 

We simulate a mean annual (1980-2000) CO2 evasion of 746 (526-998) Tg C yr-1 from the 429 

water surfaces of the Amazon basin, a 97% increase from the 379 Tg C yr-1 produced with 430 

the original ORCHILEAK configuration (Lauerwald et al., 2017). If we only include the 431 

uncertainty associated with climate forcing, we produce a mean of 729 Tg C yr-1 and the 432 

range is substantially reduced to 700-758 Tg C yr-1, meaning that the majority of the 433 

uncertainty in the evasion flux comes from the MFF forcing. We attribute approximately 75% 434 

of the CO2 evasion flux to the floodplain compared to 51% in the original study (Lauerwald 435 

et al., 2017). With the new MFF forcing, we moderately improved the reproduction of 436 

observed CO2 evasion fluxes during low (monthly avg. discharge < yearly avg. discharge) 437 

and high flow (monthly avg. discharge > yearly avg. discharge) periods at three sites in the 438 

Amazon (Rasera et al., 2013, Fig. 5) (R2 =0.80, RMSE = 1.4 µmol CO2 m
−2 s −1 vs R2 =0.69, 439 

RMSE = 1.9 µmol CO2 m
−2 s −1, with new (a) and old MFF (c) respectively, both driven by 440 

NCC). The performance was further improved with the Princeton GPCC climate data; R2 441 

=0.93, RMSE = 1.4 µmol CO2 m
−2 s −1 (Fig. 5, b).   442 

 443 



 444 

 445 

 446 

 447 

 448 

 449 

We simulate a mean annual (1980-2000) DOC export to the coast (downstream of Obidos) of 450 

38 (33-44) Tg C yr-1. In Figure 6, we compare simulated DOC flux against the observations 451 

at several sites (see Fig. S1 for locations) and find that the model can recreate the temporal 452 

Figure 5. Observed versus simulated CO2 evasion rates per water surface area for a); run 

with NCC climate forcing (standard MFF), b) Princeton GPCC climate forcing (standard 

MFF) and c) NCC climate forcing with old MFF & MFS. Observed data are from Rasera 

et al. (2013). Reported are means of the observed values, 2006 -2010. The simulated 

values refer to the mean evasion rate during low (monthly avg. discharge < yearly avg. 

discharge) and high flow periods (monthly avg. discharge > yearly avg. discharge) (1981–

2000), see Figure 3. Note that the scale of the axes c) is slightly different to a) and b). 

 



variation in DOC relatively well (Table S5). The effect of the new forcing files is mixed, with 453 

the performance improving at some sites but worsening at others (Fig. 6). The largest impact 454 

can be seen at Obidos where the new forcing files result in a substantially larger DOC flux 455 

during high flow. The model run using the old MFF and MFS appears to perform better at 456 

moderate discharge, while the new set up appears to perform better during periods when 457 

observed DOC is very high (i.e. 1990).  Both appear to overestimate DOC flux at Obidos 458 

during low flow. We simulate a mean annual flux (to the coast) of dissolved CO2 of 7.1 (6.8-459 

7.7) Tg C yr-1. 460 

 461 

  462 

 463 

 464 

3.3 The net carbon balance of the Amazon Basin 465 

The long-term mean (1980-2000) C balance; that is the components of the Net Ecosystem 466 

Production (NEP, equation 1), is presented in Fig. 7.  We estimate a mean (1980-2000) NEP 467 

of 0.23 (0.15-0.33) Pg C yr-1 and a mean Net Biome Production (NBP, equation 2) of 0.04 (-468 

Figure 6. Simulated versus observed DOC fluxes for the 

Amazon and its tributaries. Observed data are taken from the 

CAMREX data set (Richey et al., 2008). 

 



0.04-0.14) Pg C yr-1. Using the original floodplain and swamp forcing files (with NCC), we 469 

estimate a mean annual NEP of 0.17 Pg C yr-1. Using the same set up (with NCC) but with 470 

the new MFF and MFS forcing files we produce a higher sink of 0.21 Pg C yr-1. 471 

 472 

3.4 Interannual variation of the C fluxes within the Amazon Basin 473 

Our results show considerable interannual variation in NPP, from a mean low of 6.41 (6.29- 474 

6.52) Pg C yr-1 in 1983, to a high of 7.16 (7.14- 7.16) Pg C yr-1 in 1996 (Fig.8-a), though the 475 

Princeton GPCC simulation, which runs until 2010, has several years (2006-2009 inclusive) 476 

with slightly higher NPP. This variation has a strong positive correlation with precipitation 477 

(detrended R2 =0.48, p<0.001 with NCC; detrended R2 =0.43, p<0.0001 with Princeton 478 

GPCC, Table S6 & S7, Fig. 9-a) and a strong negative correlation with temperature 479 

(detrended R2 =0.56, p<0.0001 with NCC; detrended R2 =0.43, p<0.0001 with Princeton 480 

GPCC, Table S6 & S7, Fig. 9-b).  In addition, NPP is inversely correlated with the 481 

multivariate ENSO index (MEI, sum of monthly MEI from July of preceding year to June of 482 

concurrent year, detrended R2 =0.40, p<0.01 with NCC; detrended R2 =0.35, p<0.001 with 483 

Figure 7. Simulated annual C budget 

(NEP) for the Amazon basin annual 

mean (1980-2000), where NEP is 

net ecosystem production, NPP is 

terrestrial net primary productivity, 

TF is throughfall, SHR is soil 

heterotrophic respiration, FCO2 is 

aquatic CO2 evasion, LOAC is C 

leakage to the land-ocean aquatic 

continuum (FCO2 + to coast), and 

𝐿𝐸Aquatic is the export C flux to the 

coast. Numbers refer to mean across 

the six simulations while numbers in 

parentheses refer to range. 

 



Princeton GPCC, Table S6 & S7, Fig. 9-c) (Wolter et al., 2011). We also find substantial 484 

interannual variation in SHR from a mean (across the two runs with new floodplain forcing) 485 

low of 5.69 (5.41- 6.03) Pg C yr-1 in 1982 to a high of 6.06 (5.91- 6.24) Pg C yr-1 in 1998 486 

(Fig. 8-b). Conversely to NPP, SHR is positively correlated with temperature, and negatively 487 

correlated with rainfall, though these relationships are relatively weak (relationship with 488 

temperature not significant with NCC, detrended temperature R2= 0.13 with Princeton 489 

GPCC, p<0.05; detrended rainfall R2 =0.19, p<0.05 with NCC, detrended rainfall R2 = 0.24, 490 

p<0.01 with Princeton GPCC). 491 

 492 
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 495 

 496 

 497 

 498 



Figure 8. Simulated annual variation in NEP and its components over the Amazon Basin 499 

from 1980-2000 (2010 in case of Princeton GPCC). 500 

 501 

Our results also show considerable inter-annual (1980-2000) variation in inland water CO2 502 

evasion from a mean low of 571 (402- 759) Tg C yr-1 in 1980 to a high of 920 (633- 1,267) 503 

Tg C yr-1 in 1982 (Fig.8-c), strongly correlated with precipitation (detrended R2 = 0.55, 504 

p<0.001 with NCC; detrended R2  = 0.64, p<0.0001 with Princeton GPCC, Table S6 & S7) 505 

and inversely correlated with temperature (detrended R2 = 0.21, p<0.05 with NCC; detrended 506 

R2  = 0.18, p<0.05 with Princeton GPCC, Table S6 & S7). While both model runs rank 1982 507 

as having the highest CO2 evasion over the simulation period (1980-2000), there is some 508 

divergence in regards to the lowest ranking year. The NCC run ranks 1980 lowest with 584 509 

(422-759) Tg C yr-1 whereas the Princeton GPCC run ranks 1998 lowest with a total of 538 510 

(399-685) Tg C yr-1.  In 1980 the Amazon rainy season was exceptionally dry (Andreoli et 511 

al., 2012), while 1998 coincides with a strong El Nino event (Fig.9-c) and associated 512 

anomalously low precipitation and high temperatures (Wenhong et al., 2011; Gloor et al., 513 

2013, 2015). Conversely, 1982 experienced an exceptionally wet rainy season (Andreoli et 514 

al., 2012). These temporal patterns are also exhibited in the rainfall and temperature 515 

parameters from both of the climate forcings used in this study (Fig.9).  516 

At the interannual timescale, aquatic CO2 evasion is only weakly to moderately correlated 517 

with NPP (detrended R2 = 0.19, p<0.05 NCC run; detrended R2 = 0.28, p<0.01 with 518 

Princeton GPCC run, Table S6 & S7) and therefore the proportion of NPP lost through the 519 

LOAC is variable, ranging from 9% to 13%. In contrast, inland water CO2 evasion is strongly 520 

inversely correlated with SHR (detrended R2 = 0.76, p<0.0001 NCC run; detrended R2 = 521 

0.66, p<0.0001 with Princeton GPCC run, Table S6 & S7), indicating that years with less 522 

SHR have more evasion, and vice versa. Again, we find considerable interannual variation in 523 



C flux to the coast (Fig. 8 d) displaying a similar pattern to aquatic CO2 evasion (aquatic CO2 524 

evasion versus C flux to coast R2 =0.48 for NCC, p<0.001; R2 =0.64 p<0.0001 for Princeton 525 

GPCC, Table S6 & S7). Overall, and in relative terms, the LOAC fluxes show far greater 526 

interannual variation than the terrestrial C fluxes. For example, aquatic CO2 evasion (NCC, 527 

1980-2000) has a coefficient of variation (CV) of 11.7%, while the lateral flux of C to the 528 

coast has a CV of 13.6%. In contrast, NPP and SHR have a CV of only 2.9% and 1.5%, 529 

respectively.  530 

 531 



 532 

 533 

 534 

As with its constituent components, simulated NEP shows considerable interannual variation 535 

(Figure 8-e) from a low of -0.05 (-0.11 – 0.03) Pg C yr-1 in 1983 to a high of 0.52 (0.41- 0.64) 536 

Pg C yr-1 in 1996. NEP is positively correlated with rainfall (detrended R2 = 0.27, p<0.05 537 

NCC run; detrended R2 = 0.25, p<0.01 with Princeton GPCC run, Table S6 & S7) and 538 

negatively correlated with temperature (detrended R2 = 0.45, p<0.001 NCC run; detrended R2 539 

= 0.41, p<0.001 with Princeton GPCC run, Table S6 & S7). The association with ENSO  540 

(detrended R2 = 0.35, p<0.01 NCC run; detrended R2 = 0.26, p<0.01 with Princeton GPCC 541 

run, Table S6 & S7) can be clearly seen in the simulated time series of NEP. Of the top six 542 

years with the lowest NEP (largest source of C to the atmosphere), four coincide with strong 543 

El Nino events, namely 1983, 1988, 1987 and 1998. Conversely, several of the years with the 544 

highest NEP (largest sink of atmospheric CO2) take place during La Nina events, notably the 545 

strong La Nina event of 1988-1989, which results in the second highest simulated NEP; note 546 

that 2011 was one of the strongest La Nina on record but is not included in our forcing 547 

period. Taking the Princeton GPCC run alone, 2010 has the lowest NEP being a net CO2 548 

source to the atmosphere of -0.12 Pg C yr-1 (-0.14- -0.07) and coincides with another El Nino 549 

event combined with anomalously high Atlantic sea surface temperatures (SSTs) (Lewis et 550 

al., 2011). 551 

We diagnosed the covariance between aquatic CO2 evasion and the terrestrial C balance 552 

(defined as NPP-SHR) to determine how the variance in aquatic CO2 evasion contributes to 553 

the overall variance in NEP across the simulation period. We find a negative covariance 554 

between aquatic CO2 evasion and the terrestrial C balance of -0.024 and -0.022 for NCC and 555 

Princeton GPCC, respectively. Moreover, the terrestrial C balance is substantially more 556 

Figure 9. Interannual variation in a) rainfall and 

b) temperature. c) Monthly multivariate ENSO 

Index from 1980-2010 (Wolter et al., 2011) 



sensitive to changes in both precipitation and temperature than NEP (Tables S8-S11). For 557 

example (NCC run, Table S8), across the Amazon basin we find that the terrestrial C balance 558 

increases by 120 Tg C yr-1 for every 100mm increase in rainfall, while NEP only increases by 559 

57 Tg C yr-1. Note that these values are based on simple linear regression and thus the 560 

sensitivity to rainfall may be exaggerated but this is the case for both values. 561 

As a consequence of this change in sensitivity, the variation of the budget is less pronounced 562 

once the aquatic components are incorporated; the terrestrial C balance has a SD of 0.20 Pg C 563 

yr-1 and 0.24 Pg C yr-1 with NCC and Princeton GPCC respectively, while NEP has a SD of 564 

0.15 Pg C yr-1 and 0.17 Pg C yr-1.  These results concur with the idea of CO2 evasion having a 565 

moderating effect on overall heterotrophic respiration and suggest that accounting for CO2 566 

evasion from the river-floodplain network dampens the interannual variation in NEP.  567 

 568 

4. Discussion 569 

Our value of mean (across two models) NPP rate of 1,214 g C m-2 yr-1 matches closely to 570 

previous estimates in the Amazon. Rodig et al. (2018) estimated a mean annual NPP of 1,130 571 

g C m-2 yr-1 using the forest gap FORMIND model, while a value of 1,030 g C m-2 yr-1 was 572 

derived from MODIS remote-sensing data (Zhao & Running, 2010). 573 

Our estimate of mean total annual aquatic CO2 evasion of 746 (526-998) Tg C yr-1 is 574 

relatively close to the 800 Tg C yr-1 proposed by Rasera et al. (2013) from upscaling of 575 

observations, over a larger basin area of 6 × 106 km2. If we adjust our estimate (calculated 576 

across a smaller basin area of 5.6 × 106 km2) to the same area, then we get a closer estimate 577 

of 799 Tg C yr-1. Moreover, if we only base our mean CO2 evasion estimate on the same 578 

years as Rasera et al. (i.e. 2006- 2010), we actually produce a larger value of 887 Tg C yr-1 579 

(based on Princeton GPCC run only). We also estimate a similar distribution of CO2 evasion 580 



between low and high flow periods (Table S4).  Like those of Rasera et al. (2013), our results 581 

exhibit a strong seasonal cycle in CO2 evasion, with the high flow season (monthly avg. 582 

discharge > yearly avg. discharge) contributing approximately 75% of the annual total. In 583 

contrast, our results are considerably higher than those of Richey et al. (Table S4). It is 584 

encouraging that our results are similar to those of Rasera et al. (2013) as their upscaling was 585 

based on an extensive 5-year field campaign where the flux of CO2 was directly measured 586 

while those of Richey et al. (2002) were derived indirectly from pCO2 measurements. In 587 

terms of flood extent, the Rasera et al. study used the same assumptions for water surface 588 

area as Richey et al (2002), who in turn used an older version (Hess et al., 2002) of the Hess 589 

et al. (2015) floodplain product use in this study.  590 

For the central quadrant of the Amazon basin alone (area = 1.77× 106 km2), we simulate a 591 

mean annual aquatic CO2 evasion (1980-2000) of 341 and 318 Tg C yr-1 with NCC and 592 

Princeton GPPC, respectively, close to the 360 Tg C yr-1 estimated by Rasera et al. (2013), 593 

but considerably higher than the 210 Tg C yr-1 of Richey et al. (2002) and the 229 Tg C yr-1 of 594 

Lauerwald et al. (2017). Our results concur with both previous upscaling studies that the 595 

central Amazon basin contributes approximately 45% of the basin wide aquatic CO2 evasion 596 

(Table S4). The differences between our CO2 evasion estimates and those of Richey et al. 597 

(2002) are largely due to gas exchange velocity; we applied a fixed k600 rate of 3.5 m day-1 for 598 

rivers, while they used very conservative gas exchange velocities of 1.2 to 2.3 m day-1. 599 

Conversely, the differences between our results and those of Lauerwald et al. (2017) are 600 

largely a result of the increase in maximal fraction of floodplain (MFF) across the basin, and 601 

the resultant increase in direct C inputs to inundated areas from canopy through-fall, 602 

submerged litter and soils. Our estimated DOC export to the coast (downstream of Obidos) of 603 

34 (34-44) Tg C yr-1 is relatively high; Lauerwald et al. (2017), Richey et al. (1990) and 604 



Moreira-Turcq et al. (2003) estimated this flux at 23.4 Tg C yr-1  , 24.4 Tg C yr-1  and 27 Tg C 605 

yr-1, respectively. 606 

Our results for the mean NEP of 0.23 (0.15-0.33) generally concur with previous estimates. 607 

Tian et al. (1998) used the Terrestrial Ecosystem Model to estimate a mean annual NEP, 608 

without considering the LOAC loop of the carbon cycle (undisturbed ecosystems, 1980-609 

1994), of 0.2 ±0.9 Pg C yr-1. Another modelling study (S. Sitch, B. Smith and J. Kaplan, 610 

unpublished but cited in Prentice and Lloyd, 1998, page 620) also settled on a mean annual 611 

NEP of around 0.2 ±1.2 Pg C yr-1 over the same 15-year period. A 2016 review (Grace, 612 

2016), compiled all of the existing literature to produce two estimates of the net C balance of 613 

the Amazon Basin; one ‘bottom-up’ approach using “plot data and remote sensing” and one 614 

‘top-down approach’ using “aircraft-based measurements in the planetary boundary layer”, 615 

the latter based on Gatti et al. (2014). These two approaches include perturbation fluxes such 616 

as deforestation and harvesting and evasion emissions in the atmospheric inversion estimate 617 

of Gatti et al. and are thus equivalent to our estimate of NBP. The bottom-up approach 618 

concludes that the Amazon Basin is a net C source to the atmosphere of 0.11 Pg C yr-1 when 619 

including land use change emissions but with an uncertainty of ± 0.16, in other words not 620 

markedly different from zero. The top-down approach came to a similar conclusion; that the 621 

Amazon is a net source to the atmosphere of only 0.06 Pg C yr-1 in a ‘normal year’ but only 622 

two years (2010 and 2011) were analyzed in Gatti et al. Again, the near neutral balance of 623 

Gatti et al. (2014) intrinsically includes aquatic CO2 evasion (though not the lateral fluxes of 624 

C to the coast). They argue that the impact of riverine CO2 evasion on the Amazon C balance 625 

is minimal as the “riverine organic carbon loop is very nearly closed”. In other words, the 626 

vast majority of LOAC export to aquatic systems return to the atmosphere before leaving the 627 

Amazon Basin. In summary, the results of Gatti et al. (2014) are arguably the most 628 

comparable to our own and it is therefore encouraging that we produce a relatively similar 629 



NBP of 0.04 (-0.04-0.14) Pg C yr-1 (a difference of 100 Tg C-1 but with overlapping 630 

uncertainty ranges). It is important to note that ORCHILEAK does not incorporate methane 631 

fluxes. Indeed, if we include the recent estimate of the annual methane flux of approximately 632 

40 Tg C-1 (Pangala et al., 2017) measured from the lower troposphere via aircraft; our NBP 633 

reduces to a neutral C balance. 634 

While the new maximal fraction of floodplain (MFF) forcing leads to a dramatic increase in 635 

aquatic CO2 evasion, it actually causes an overall decrease in the flux of CO2 from the entire 636 

Amazon basin to the atmosphere. The greater inundation leads to a reduction in 637 

decomposition rates of litter, and soil organic matter. This suppression of organic matter 638 

decomposition has been observed in further field experiments (Dos Santos & Nelson, 2013), 639 

in addition to the study that informed the model configuration (Rueda-Delgado et al., 2006). 640 

This means that there is an additional net land C sink of approximately 40 Tg C yr-1 per year 641 

with the new floodplain compared to the old floodplain. While in a single year these 642 

differences are not so substantial, over long time periods they could lead to significant 643 

differences in the long-term net C balance of the Amazon.   644 

We found that the interannual variation in NPP is positively correlated with rainfall and 645 

negatively correlated with temperature and our results concur with previous research showing 646 

that drought years have significantly lower NPP. In our outputs, two of the years with the 647 

lowest NPP are 1983 and 1988, coinciding with two strong El Nino events (1982-1983 and 648 

1987-1988, Figure 9), and corroborating the findings of Asner & Townsend (2000) based on 649 

analysis of remote sensing data from 1982-1993. Previous modelling studies such as Botta et 650 

al (2002) have also found 1983 and 1988 to be years with anomalously low NPP in the 651 

Amazon. Moreover, a 2011 study that combined remote sensing and modelling (Potter et al., 652 

2011) estimated that the 2010 drought caused a reduction in NPP in the Amazon of 7% 653 

relative to the La Nina year 2008, and we produce a similar value of 8% (0.58 Pg C). 654 



However, a more recent study (Doughty et al., 2015) contradicts these findings. Doughty et 655 

al. (2015) measured NPP, autotrophic respiration and heterotrophic respiration at thirteen 1ha 656 

plots across South America from 2009-2011 and found that NPP remained relatively constant 657 

throughout the period. They observed a reduction in CO2 uptake via photosynthesis by 0.38 658 

Pg C yr-1 during the 2010 drought, but this was offset by a concurrent reduction in 659 

autotrophic respiration. They observed that the trees prioritised investment in growth (canopy 660 

tissue), while they reduced autotrophic respiration investment in tissue maintenance and 661 

defence, which ultimately may have caused an increase in tree mortality post drought 662 

(Doughty et al., 2015). The inability of dynamic global vegetation models (DGVMs), as well 663 

as remote sensing driven algorithms (Zhao & Running, 2010; Medlyn, 2011; Wang et al., 664 

2013) to represent these complex biological interactions is a major limitation in current 665 

efforts to estimate NPP at the regional to global scale. 666 

Our results show that both the seasonality and interannual variation in aquatic CO2 evasion, 667 

are closely correlated with discharge. In Figure 10 a) we show the relationship between 668 

simulated monthly discharge and CO2 evasion on the Madeira River at Porto Velho (R2=0.81) 669 

(see Fig. S1 for location). The Madeira basin contains approximately one fourth of 670 

Amazonian wetlands (Melack and Hess 2010), including the extensive Llanos de Moxos and 671 

was the subject of a recent CO2 evasion field campaign (Almeida et al., 2017). Our 672 

relationship follows a sigmoid curve where aquatic CO2 evasion increases slowly at first 673 

while discharge remains in bank. Once the river over-tops its banks, CO2 evasion increases 674 

rapidly before levelling out once the full area of the floodplain is saturated. Thus, at the basin 675 

scale, aquatic CO2 evasion not only increases because of larger floodplain surface area, but 676 

also because of higher areal rates. This highlights the disproportionate importance of 677 

floodplains as a source of C and supports the findings of Almeida et al. (2017, Fig. 10, b). 678 

While they found a similarly strong relationship between observed discharge and aquatic CO2 679 



evasion at Porto Velho (R2=0.85), as well as a similar range of values, the relationship does 680 

not follow precisely the same shape as ours. Their increase in evasion rate is more gradual 681 

and they do not observe a plateauing of CO2 evasion above a certain discharge. This perhaps 682 

suggests that we underestimate the maximum extent of the floodplain in this specific model 683 

grid, and indeed, the location of Porto Velho, is in the minority of model grids where the 684 

maximum inundation actually decreases with the implementation of the new MFF forcing 685 

file.   686 

 687 

 688 

Figure 10.  a); Monthly (1980-2000) simulated (NCC) aquatic CO2 evasion vs simulated 689 

discharge on the Madeira River at Porto Velho and b); Observed aquatic CO2 evasion vs 690 

observed on the Madeira River at Porto Velho, measured between 2009 and 2011. 691 

 692 

The pattern of interannual variation in NEP over the 1980s and 1990s in our results is 693 

consistent with that found in previous modelling studies over the same period (Prentice and 694 

Lloyd, 1998; Tian et al., 1998). Interestingly we find smaller interannual variation than these 695 

previous modelling studies that did not include inland water fluxes, further supporting the 696 

idea that incorporating aquatic fluxes dampens the interannual variation in NEP. Indeed, a 697 

2013 study (Wang et al., 2013) found results to suggest that some DGVMs overestimate the 698 

sensitivity of net ecosystem exchange (NEE) to precipitation. The relationship between our 699 

simulated NEP and precipitation is generally weaker than that found in previous models 700 

across the tropical region (Wang et al., 2013, in this case NEE), and the addition of the 701 



aquatic C fluxes appears to be at least partly responsible for this; the sum of terrestrial fluxes 702 

(NPP-SHR) is more strongly correlated with precipitation (detrended R2 = 0.58, p<0.0001 703 

NCC run; detrended R2 = 0.51, p<0.0001 with Princeton GPCC run) than NEP (detrended R2 704 

= 0.27, p<0.05 NCC run; detrended R2 = 0.25, p<0.01 with Princeton GPCC run), which 705 

includes aquatic components.  706 

Despite some of the limitations of DGVMs discussed, namely their inability to fully capture 707 

the complex effects of droughts on NPP, the response of our model to drought events concurs 708 

with observational based studies, and most significantly to those based on the measurement 709 

of atmospheric CO2 fluxes.  The 2010 Amazon drought was one of the most severe ever 710 

recorded and related to another El Nino event, as well as anomalous SSTs (Lewis et al., 711 

2011). Gatti et al. (2014) used small aircraft to measure CO2 fluxes just above the Amazon 712 

rainforest (lower-troposphere) and found that in 2010, the Amazon basin was a net source to 713 

the atmosphere of 0.48± 0.18 Pg C yr-1. A 2015 study (van der Laan-Luijkx et al., 2015), 714 

further constrained the results of Gatti et al. using remote sensing data and estimated a 715 

smaller atmospheric CO2 source between 0.07 and 0.31 Pg C yr-1 for 2010. Based on our 716 

Princeton GPCC run, we similarly estimate that in 2010, the Amazon was an overall CO2 717 

source for the atmosphere of 0.33 (0.35 - 0.29) Pg C yr-1 (based on NBP). Additionally, using 718 

a combined remote sensing and modelling approach, Potter et al. (2011) estimated that the 719 

2010 drought caused a loss of biomass in the Amazon of 0.5 Pg C yr-1 relative to the strong 720 

La Nina year of 2008, and we produce a similar NEP deficit 0.51 Pg C yr-1. 721 

In Figure 11, we show our simulated C budget for a drought year, 1998, and an anomalously 722 

wet year, 1989, to illustrate how both terrestrial and aquatic C fluxes react to climatic 723 

extremes. In 1989, high aquatic CO2 evasion to the atmosphere driven by high rainfall and 724 

large floodplain inundation, partly offsets a relatively large terrestrial sink, caused by high 725 

terrestrial NPP and low SHR. In 1998 the opposite occurs; low rainfall results in a low flux of 726 



CO2 from inland waters to the atmosphere, which moderates a relatively high SHR flux and 727 

low terrestrial NPP. As previously noted, aquatic CO2 evasion is highly sensitive to rainfall 728 

and in turn both discharge and inundation, and displays greater interannual variation than the 729 

terrestrial C fluxes. Aquatic CO2 evasion is positively correlated with NPP but the two fluxes 730 

represent opposite signals in terms of C exchange with the atmosphere, while aquatic CO2 731 

evasion is inversely correlated to SHR, both fluxes being C sources for the atmosphere. For 732 

these two reasons, the aquatic fluxes generally act to compensate the difference between 733 

terrestrial NPP and SHR and thus dampen overall interannual variation in the net C balance.  734 

Another process not accounted for in our model is C sequestration on floodplains. 735 

Interestingly, a 2003 study (Aalto et al., 2003) showed that, sediment accumulation on 736 

Amazon floodplains is closely linked to the ENSO cycle. Like our findings for aquatic CO2 737 

evasion, sediment accumulation was found to be higher during La Nina years, and most 738 

notably in 1988. Despite not accounting for this C sink term in our model, the comparison of 739 

our net C balance for the Amazon (NBP) against observations (Grace et al., 2016) suggests 740 

that if anything we are still underestimating the net flux of C from the Amazon basin to the 741 

atmosphere.  742 



743 

Figure 11. Simulated annual C budget for left; the Amazon basin for the year 1989, and right; 744 

the Amazon basin for the year 1998, where NEP is net ecosystem production, NPP is 745 

terrestrial net primary productivity, TF is throughfall, SHR is soil heterotrophic respiration, 746 

FCO2 is aquatic CO2 evasion, LOAC is C leakage to the land-ocean aquatic continuum 747 

(FCO2 + to coast), and 𝐿𝐸Aquatic is the export C flux to the coast. Numbers refer to mean 748 

across the six simulations while numbers in parentheses refer to range. 749 

4.2 The importance of integrating the LOAC within the land carbon cycle 750 

The Amazon is facing a number of threats including climate change, land use change and 751 

dam construction (Nobre et al., 2016). Climatic events such as droughts and floods are 752 

becoming more frequent (Marengo et al., 2011; Gloor et al., 2013; Zulkafli et al., 2016), 753 

while southern Amazonia has experienced a general lengthening of the dry season (Fu et al., 754 

2013). The region is also undergoing a boom in dam construction with 140 dams under 755 

construction or already in operation, and a further 288 planned (Latrubesse et al., 2017) with 756 

direct impact on the C retention efficiency within the LOAC (Maavara et al., 2017). In 757 

addition, a recent study demonstrated that the lowland floodplain forests of the Amazon are 758 

less resilient to fires than terra firme forests (Flores et al., 2017). 759 



For these reasons, it is vital that the flood dynamics of the Amazon can be correctly 760 

represented in biogeochemical models. The implementation of a new floodplain forcing file 761 

based on high resolution SAR data substantially improves our ability to accurately simulate 762 

the seasonality in observed flooding. Moreover, it leads to a 97% increase in our estimate of 763 

mean annual CO2 evasion from the river-floodplain aquatic continuum and supports some 764 

larger previous estimates based on simple upscaling approaches (Table S4). Our results show 765 

that the LOAC fluxes, highly sensitive to hydrological variation, display greater interannual 766 

variation than the terrestrial C fluxes (NPP – SHR), and are thus disproportionately important 767 

to the overall variation of the net C balance, relative to their magnitude. We also find that the 768 

percentage of NPP lost to the LOAC is variable at the interannual timescale (Fig. 11).  769 

Our results suggest that the linkage between the terrestrial and aquatic environment may be 770 

larger than previously thought and our estimate of aquatic CO2 evasion from the Amazon is 771 

of a globally significant magnitude in terms of aquatic C fluxes. However, these results must 772 

be placed within the context of their overall impact on the net C balance of the Amazon 773 

Basin. While greater inundation increases aquatic CO2 evasion, it simultaneously decreases 774 

the decomposition of organic matter in litter and soils and we show that the net impact of 775 

greater flooding is in fact a reduction in the flux of CO2 from the Amazon basin to the 776 

atmosphere. It is during years with the lowest precipitation, often associated with El Nino 777 

events that highest net flux of CO2 to the atmosphere are simulated. Indeed, we find that 778 

aquatic C fluxes partly compensate terrestrial C fluxes, and therefore moderate the overall 779 

interannual variation in NEP. Thus, DGVMs that do not account for aquatic fluxes may 780 

overestimate the magnitude of interannual variation in NEP. This calls for a fully integrated 781 

view of the land carbon cycle, which cannot be achieved with empirical studies alone and 782 

highlights the value of a model that can integrate the terrestrial and aquatic C cycles. 783 
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