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ABSTRACT
We present three schemes to go beyond the electric-dipole approximation in x-ray absorption spectroscopy calculations within a four-
component relativistic framework. The first is based on the full semi-classical light–matter interaction operator and the two others on a
truncated interaction within the Coulomb gauge (velocity representation) and multipolar gauge (length representation). We generalize the
derivation of the multipolar gauge to an arbitrary expansion point and show that the potentials corresponding to different expansion points
are related by a gauge transformation, provided that the expansion is not truncated. This suggests that the observed gauge-origin dependence
in the multipolar gauge is more than just a finite-basis set effect. The simplicity of the relativistic formalism enables arbitrary-order imple-
mentations of the truncated interactions, with and without rotational averaging, allowing us to test their convergence behavior numerically
by comparison to the full formulation. We confirm the observation that the oscillator strength of the electric-dipole allowed ligand K-edge
transition of TiCl4, when calculated to the second order in the wave vector, becomes negative but also show that inclusion of higher-order
contributions allows convergence to the result obtained using the full light–matter interaction. However, at higher energies, the slow con-
vergence of such expansions becomes dramatic and renders such approaches at best impractical. When going beyond the electric-dipole
approximation, we therefore recommend the use of the full light–matter interaction.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0003103., s

I. INTRODUCTION

The importance of relativistic effects in chemistry is illustrated
by the fact that without relativity, gold would have the same color as
silver,1–3 mercury would not be liquid at room temperature,4,5 and
your car, if using a lead battery, would not start.6 The present work
highlights another aspect of relativity, namely, its essential role in
light–matter interactions.

A semi-classical treatment invoking the electric-dipole (ED)
approximation is a common starting point for a theoretical descrip-
tion of light–matter interactions. The latter approximation assumes
that the spatial extent of the molecular system is small compared to

the wavelength of the electromagnetic field such that the molecule
effectively sees a uniform electric field, while the magnetic field com-
ponent is neglected. Formally, it corresponds to retaining only the
zeroth-order term of an expansion of the interaction operator in
orders of the length of the wave vector. While this is often well-
justifiable for the most commonly used optical laser sources and
intensities, the availability of (i) high-energy x-ray photons, with
wavelengths comparable to the molecular target,7–9 and (ii) intense
laser sources, creating high-energy electrons strongly influenced by
the magnetic component of the Lorentz force,10–12 motivates inves-
tigations into the effects of going beyond this simplification. Clearly,
in either limit, relativistic effects become increasingly important, as
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the velocity of the electron being probed or driven by the laser field
reaches a substantial fraction of the speed of light.

In this work, we focus on going beyond the electric-dipole (BED)
approximation in relativistic simulations of near-edge x-ray absorp-
tion spectroscopy. While non-dipolar corrections to the total cross
sections first enter at the second order and are generally quite small
(5%–10% for dipole-allowed K-edge transitions in the soft x-ray
region, reaching up ∼20% in the hard x-ray region8), the important
K pre-edge features may, as is often the case in transition metal com-
plexes, be (near) electric-dipole-forbidden.13–15 In general, meth-
ods for going beyond the ED approximation have been based on
multipole expansions of the minimal coupling light–matter inter-
action operator, which, in truncated form, may introduce unphys-
ical gauge-origin dependence into the molecular properties.16 This
is particularly problematic for molecular systems where no natu-
ral choice of gauge origin exists. In a seminal paper, Bernadotte et
al. presented an approach for the calculation of origin-independent
intensities within the non-relativistic framework, beyond the ED
approximation, by truncating the oscillator strength, rather than the
interaction operator, in orders of the wave vector.17 In the veloc-
ity representation, they could demonstrate origin independence of
oscillator strengths to arbitrary orders and could confirm this by cal-
culation to the second order. Bernadotte et al., furthermore, trans-
formed the interaction operator truncated to the second order in the
wave vector from its velocity representation to a multipolar form (for
earlier demonstrations of this transformation, see Refs. 18 and 19).
This would imply origin independence of oscillator strengths to
arbitrary orders also in the length representation, but this was not
observed in calculations to the second order and attributed to the
finite basis approximation. Further complications were reported
by Lestrange et al.20 who found that including the second-order
oscillator strength of the ED allowed ligand K-edge transition of
TiCl4 made the total oscillator strength negative. Negative oscilla-
tor strengths to the second order were also reported by Sørensen
et al.21 in metal K-edge transitions of [FeCl4]−, but only for certain
basis sets, which led them to conclude that they were due to incom-
plete basis sets rather than missing higher-order contributions to the
oscillator strength. In a second paper,22 where [FeCl4]− is revisited,
Sørensen et al. speculated that the fourth-order electric-octupole–
electric-octupole contribution may reverse the sign “provided that
no other higher terms also grow disproportionately large.”

To avoid the above issues, we recently proposed using the full
semi-classical light–matter interaction operator in the context of
linear absorption spectroscopy in the non-relativistic regime.8 In a
Gaussian basis, the necessary integrals over the light–matter interac-
tion operator can be identified as Fourier transforms of overlap dis-
tributions, as shown by Lehtola et al. for dynamic structure factors,23

and can be easily evaluated within standard integral schemes, such
as McMurchie–Davidson8 or Gauss–Hermite quadrature.24 In a sec-
ond paper,25 we presented a mixed analytical–numerical approach
to isotropically average oscillator strengths computed with the full
light–matter interaction operator.25 This novel approach has been
followed up by Sørensen et al.24,26 Some other works using full light–
matter interaction may be mentioned: Markin and Kaplan calculated
the photoionization cross section of the H2 molecule in both a non-
relativistic27 and relativistic setting.28 More recent works along these
lines include Refs. 9, 29, and 30. A recent review has been given by
Wang et al.31

In the following, we present three schemes for computing lin-
ear absorption cross sections beyond the ED approximation within
a four-component relativistic framework: (i) the full semi-classical
light–matter interaction as well as two approaches based on trun-
cated interaction either using a (ii) multipolar gauge (mg) (length
representation) or a (iii) Coulomb gauge (velocity representation).
The latter may be viewed as an extension of the work by Bernadotte
et al.17 to the relativistic domain. For all three schemes, we present
methods for rotational averaging; for the full interaction, we use
the mixed analytical–numerical approach already reported for non-
relativistic calculations,25 whereas for truncated interaction, we have
developed a fully analytical approach. As will become clear below,
in addition to providing a more general framework, the relativis-
tic formalism is simpler than the non-relativistic counterpart and
facilitates general, easily programmable expressions. In fact, we have
in the DIRAC package32 implemented the two schemes for truncated
interaction to arbitrary orders, with and without rotational averag-
ing. This allows us to test numerically the convergence behavior of
these schemes and compare to the formulation based on the full
semi-classical light–matter interaction.

The paper is organized as follows: In Sec. II A, we briefly review
the description of semi-classical light–matter interactions in both
relativistic and non-relativistic frameworks. Section II B presents
the working expressions for oscillator strengths for the full light–
matter interaction operator, followed by a derivation of the two dif-
ferent truncated light–matter interaction formulations in Sec. II C.
In Sec. II D, we describe schemes for obtaining isotropically averaged
oscillator strengths in each of the three cases. In Sec. IV, we investi-
gate the performance of the three different schemes for going beyond
the electric-dipole approximation before concluding in Sec. V.

We also provide four appendixes: In Appendix A, we explain
how electronic spectra are simulated in the DIRAC package in the
framework of time-dependent response theory. In Appendix B, we
discuss the multipolar gauge and, contrary to previous works, dis-
cuss the gauge transformation between different expansion points.
In Appendix C, we present the trivariate beta function, which plays
a key role in the fully analytic approach to rotational averaging.
Finally, in Appendix D, we give technical details about integrals
over full and truncated light-matter interaction in Gaussian- and
Slater-type orbitals.

II. THEORY
We start by reviewing the theory of interactions of molecules

with electromagnetic radiation within a relativistic but semi-classical
description before deriving three different schemes for comput-
ing oscillator strengths beyond the ED approximation. Finally, we
present expressions for isotropically averaged oscillator strengths for
each case. The resulting expressions have been implemented in a
development version of the DIRAC program.32

A. Coupling particles and fields
External fields are introduced into the Hamiltonian Ĥ through

the substitutions,

p̂→ π̂ = p̂ − qA, Ĥ → Ĥ + qϕ, (1)

where q is the particle charge, ϕ is the scalar potential, A is the vec-
tor potential, p̂ is the linear momentum, and π̂ is the mechanical
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momentum. The expectation value of the resulting interaction
Hamiltonian may then be expressed as

⟨Ĥint⟩ = ∫ ρ(r, t)ϕ(r, t)d3r − ∫ A(r, t) ⋅ j(r, t)d3r, (2)

where the scalar potential is seen to couple to the charge density ρ
and the vector potential to the current density j. The substitutions
in Eq. (1) have been termed the principle of minimal electromag-
netic coupling33 since it only refers to a single property of the par-
ticles, namely, charge. Interestingly, it arises from the interaction
Lagrangian proposed by Schwarzschild34 in 1903, two years before
the annus mirabilis of Einstein. The expectation value of the inter-
action Hamiltonian, Eq. (2), can be expressed compactly in terms of
4-current jμ and 4-potential Aμ,

⟨Ĥint⟩ = −∫ jμ(r, t)Aμ(r, t)d3r, {jμ = (j, icρ)
Aμ = (A, i

cϕ),
(3)

(c is the speed of light) thus manifestly demonstrating its relativistic
nature. In fact, one may very well argue that in the non-relativistic
limit, electrodynamics reduces to electrostatics and that magnetic
induction, in addition to retardation, is a relativistic effect.35 Yet,
the minimal substitution is customarily employed also in calcula-
tions denoted as “non-relativistic.” Such calculations in reality use
a non-relativistic description of particles, but a relativistic treat-
ment of their coupling to external electromagnetic fields. This is
perfectly justified from a pragmatic point of view, but it should be
kept in mind that if the sources of the electromagnetic waves were
to be included in the system under study, their magnetic component
would vanish.

A point we would like to emphasize in the present work is that
the non-relativistic use of the minimal substitution in Eq. (1) leads
to a more complicated formalism than the fully relativistic approach,
since the former mixes theories of different transformation prop-
erties. This can be seen by comparing the non-relativistic and rel-
ativistic Hamiltonian operators obtained by minimal substitution.
We may write the non-relativistic free-electron Hamiltonian in two
different forms,

ĥNR
0 =

p̂2

2me
= (σ ⋅ p̂)

2

2me
, (4)

where me is the electron mass and σ are the Pauli spin matrices.
These two forms are equivalent as long as external fields are not
invoked. Upon minimal substitution, one obtains

ĥNR = p̂2

2me
+

e
2me
(p ⋅A + A ⋅ p) +

e2A2

2me
− eϕ +

eh̵
2me
(σ ⋅ B), (5)

where −e is the electron charge and h̵ is the reduced Planck constant.
The final term in Eq. (5), representing the spin–Zeeman interaction,
only appears if one starts from the second form of Eq. (4). Spin can
be thought of as hidden in the non-relativistic free-electron Hamilto-
nian. On the other hand, the first form of Eq. (4) can be thought of as
a manifestation of the economy of Nature’s laws: neither charge nor
spin is required for the description of the free electron. We may con-
trast the non-relativistic Hamiltonian [Eq. (5)] with its relativistic
counterpart,

ĥR = βmec2 + c(α ⋅ p̂) + ec(α ⋅A) − eϕ, (6)

where α and β are the Dirac matrices. Here, the three terms describ-
ing magnetic interaction in the non-relativistic framework have been
reduced to a single one, which is linear in the vector potential.

B. Full light–matter interaction
The Beer–Lambert law,

I = I0e−Nσl, (7)

expresses the attenuation of the intensity I0 of incoming light in
terms of the effective number of absorbing molecules, given as the
product of the number densityN of absorbing molecules, the length l
of the sample, and the absorption cross section σ. To find an expres-
sion for the absorption cross section, we start from two equivalent
expressions for the rate of energy exchange between (monochro-
matic) light and molecules: (i) as intensity times absorption cross
section σ or (ii) as photon energy h̵ω times the transition rate wf←i,
that is,

I(ω)σ(ω) = h̵ωwf←i(ω). (8)

The intensity is expressed in terms of the electric constant ε0 and the
electric field strength Eω,

I(ω) = 1
2
ε0cE2

ω. (9)

Starting from a time-dependent interaction operator of the form

V̂(t) = V̂(ω)e−iωt + V̂(−ω)e+iωt ; V̂(−ω) = V̂†(ω), (10)

an expression for the transition rate wf←i may be found from time-
dependent perturbation theory,36

wf←i(ω) =
2π
h̵2 ∣⟨ f ∣V̂(ωfi)∣i⟩∣

2f (ω,ωfi, γfi). (11)

This formula is often referred to as Fermi’s golden rule. However,
the rule actually pertains to the transition from a discrete state to a
continuum of states (see Ref. 37) but may be applied to a discrete
final state, provided that it has a finite lifetime,38 here manifested by
the line shape function f (ω,ωfi, γfi). Setting

V̂(ω) = −1
2

EωT̂(ω) (12)

gives an expression for the absorption cross section,

σ(ω) = πω
ε0h̵c
∣⟨ f ∣T̂(ωfi)∣i⟩∣

2
f (ω,ωfi, γfi), (13)

in terms of an effective interaction operator T̂(ω) (see below).
Closely related is the oscillator strength, defined as

ffi(ω) =
2ω
h̵e2 ∣⟨ f ∣T̂(ωfi)∣i⟩∣

2
f (ω,ωfi, γfi). (14)

In this work, we consider linearly polarized monochromatic
light with electric and magnetic components,

E(r, t) = Eωϵ sin[k ⋅ r − ωt + δ],

B(r, t) = Eω
ω
(k × ϵ) sin[k ⋅ r − ωt + δ],

(15)
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where k is the wave vector with length

k = ω
c
= 2π

λ
, (16)

ϵ is the polarization vector, and δ is the phase. Such an electromag-
netic wave is conventionally represented in the Coulomb (radiation)
gauge by the scalar and vector potentials,

ϕ̃(r, t) = 0, Ã(r, t) = −Eω
ω
ϵ cos[k ⋅ r − ωt + δ]. (17)

Starting from the Dirac Hamiltonian in Eq. (6), this leads to an
effective interaction operator of the form

T̂full(ω) =
e
ω
(cα ⋅ ϵ)e+i(k⋅r+δ), T̂†

full(ω) = T̂full(−ω). (18)

It is clear from Eq. (5) that the corresponding effective interac-
tion operator in the non-relativistic framework will have a more
complicated expression. However, simplifications are introduced
by invoking a weak-field approximation such that the third term,
the diamagnetic contribution, is neglected. Also, the fifth term, the
spin–Zeeman contribution, is often ignored.

One straightforwardly establishes that use of the full interaction
operator assures gauge-origin independence of intensities.8 Upon
a change of gauge-origin O → O + a, a constant complex phase is
introduced in the interaction operator,

T̂full(ω;O) → T̂full(ω;O + a) = T̂full(ω;O)e+i(k⋅a). (19)

This phase is, however, canceled by its complex conjugated partner
when the interaction operator is inserted into the expressions for the
absorption cross section [Eq. (13)] or oscillator strength [Eq. (14)].

The ED approximation assumes that the dimensionless quan-
tity ⟨kr⟩ ≪ 1 such that the interaction operator may be approxi-
mated by

T̂V(ω) =
e
ω
(cα ⋅ ϵ)e+iδ δ=0Ð→ e

ω
(cα ⋅ ϵ), (20)

which physically corresponds to the absorbing molecule effectively
seeing a uniform electric field. The subscript “V” refers to the veloc-
ity representation. To convert to the length representation, we use
the following expression for the velocity operator:

v̂ = − i
h̵
[r, ĥ], (21)

obtained from the Heisenberg equation of motion, an observation
that can be traced back at least to the first edition (1930) of Dirac’s
monograph.39 In the non-relativistic case, this leads to a veloc-
ity operator of the form v̂NR = p̂/me, which is straightforwardly
related to the corresponding classical expression. In the relativistic
case, one obtains the less intuitive form40,41 v̂R = cα, expressing the
Zitterbewegung of the electron, which facilitates the connection

⟨ f ∣T̂V(ω)∣i⟩ = ⟨ f ∣T̂L(ω)∣i⟩, (22)

T̂L(ω) = −ie+iδ(
ωfi

ω
)μ̂ ⋅ ϵ δ=π/2Ð→

ω=ωfi
μ̂ ⋅ ϵ, μ̂ = −er. (23)

We prefer to refer to these forms as representations rather than
gauges (see also Ref. 42 and references therein). Gauge freedom

arises from the observation that the longitudinal component of the
vector potential does not contribute to the magnetic field, and gauges
are accordingly fixed by imposing conditions on this component.
For instance, the condition ∇ ⋅A = 0 of the Coulomb gauge states
that the longitudinal component of the vector potential is zero.
Although the underlying potentials of the length and velocity repre-
sentations are related by a gauge transformation, there is, as far as we
can see, no gauge condition separating them. Both satisfy Coulomb
gauge, but this is no longer the case for the length representa-
tion when going beyond the ED approximation, as demonstrated in
Appendix B.

At this point, it should be noted that whereas the time-
dependent effective interaction operator T̂full(t) is necessarily Her-
mitian, this is generally not the case for the frequency-dependent
component T̂full(ω), as seen from Eq. (18). We shall, however, insist
that the effective interaction operators are Hermitian within the ED
approximation. This leads to the following choices for the phase δ of
the electromagnetic plane wave [Eq. (15)],

δ = {0 (velocity representation)
π/2 (length representation).

(24)

In the present work, we report the implementation of three dif-
ferent schemes for the simulation of electronic spectra beyond the
ED approximation within a linear response framework. More details
about the underlying theory and the implementation are given in
Appendix A. Two features of the present implementation of the
full light–matter interaction operator should be stressed: (i) inte-
grals over the effective interaction operator [Eq. (18)] in a Gaus-
sian basis are identified as Fourier transforms with simple analytic
expressions8 and (ii) the effective interaction operator [Eq. (18)] is
a general operator, and thus, it may be split into Hermitian and
anti-Hermitian parts,

T̂H(ω) =
e
ω
(cα ⋅ ϵ) cos(k ⋅ r), (25)

T̂A(ω) =
e
ω
(icα ⋅ ϵ) sin(k ⋅ r). (26)

The Hermitian and anti-Hermitian operators are time-antisymmetric
and time-symmetric, respectively. In accordance with the quater-
nion symmetry scheme of DIRAC,43 an imaginary i will be inserted
in the Hermitian part to make it time-symmetric. The components
can be further broken down on spatial symmetries using

e±i(k⋅r) = cos(kxx) cos(kyy) cos(kzz) (Γ0)
− sin(kxx) sin(kyy) cos(kzz) (ΓRz)
− sin(kxx) cos(kyy) sin(kzz) (ΓRy)
− cos(kxx) sin(kyy) sin(kzz) (ΓRx)
∓ i sin(kxx) sin(kyy) sin(kzz) (Γxyz)
± i cos(kxx) cos(kyy) sin(kzz) (Γz)
± i cos(kxx) sin(kyy) cos(kzz) (Γy)
± i sin(kxx) cos(kyy) cos(kzz) (Γx). (27)

Here, Γ0 refers to the totally symmetric irrep, (Γx,Γy, Γz) refers
to the symmetries of the coordinates, (ΓRx , ΓRy , ΓRz) refers to the
symmetry of the rotations, and Γxyz refers to the symmetry of
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the function xyz. Together, these eight symmetries form the eight
irreps of the D2h point group, whereas some symmetries coalesce
for subgroups. In the present implementation, for an excitation of
given (boson) symmetry, we only invoke the relevant contribution
from e±i(k⋅r).

C. Truncated light–matter interaction
In this section, we derive expressions for the absorption cross

section or oscillator strength truncated to finite order in the length
of the wave vector. In the first subsection, we develop a compact for-
malism based directly on an expansion of the effective interaction
operator [Eq. (18)]. Next, we provide the relativistic extension of the
theory developed by Bernadotte and co-workers,17 where oscillator
strengths are expressed in terms of electric and magnetic multipoles.
We shall, however, obtain these expressions in a more straightfor-
ward manner by using the multipolar gauge. The two approaches
can, to some extent, be thought of as generalizations of the velocity
and length representations, respectively, to arbitrary orders in the
wave vector.

1. Coulomb gauge: Velocity representation
A direct approach for obtaining the absorption cross section

(or oscillator strength) to some order in the wave vector is to per-
form a Taylor-expansion of the absorption cross section in Eq. (13)
in orders of the length of the wave vector, that is,

σ(ω) = πω
ε0h̵c

∞

∑
n=0

kn

n!
dn

dkn [⟨ f ∣T̂full(ωfi)∣i⟩⟨ f ∣T̂full(ωfi)∣i⟩∗]k=0
f(ω,ωfi, γfi)

= πω
ε0h̵c

∞

∑
n=0

n

∑
m=0
⟨ f ∣T̂[n−m]

full (ωfi)∣i⟩⟨ f ∣T̂[m]full (ωfi)∣i⟩∗f (ω,ωfi, γfi),

(28)

where Taylor coefficients

T̂[n]full (ω) =
kn

n!
dn

dkn [
e
ω
(cα ⋅ ϵ)e+i(k⋅r)]

k=0
= e
ω

1
n!
(cα ⋅ ϵ)(ik ⋅ r)n

(29)

appear in the corresponding expansion of the effective interaction
operator [Eq. (18)] with the phase δ = 0, according to the phase
convention in Eq. (24). From inspection, we find that even- and
odd-order operators are time-antisymmetric and time-symmetric,
respectively. It should be noted that the underlying, truncated vector
potential satisfies the Coulomb gauge.

We may separate the absorption cross section into even- and
odd-order contributions with respect to the wave vector, that is,

σ[2n](ω) = πω
ε0h̵c

n

∑
m=0
(2 − δm0)Re{⟨ f ∣T̂[n−m]

full (ωfi)∣i⟩⟨ f ∣T̂[n+m]
full (ωfi)∣i⟩∗}

× f (ω,ωfi, γfi), (30)

σ[2n+1](ω) = πω
ε0h̵c

n

∑
m=0

2Re{⟨ f ∣T̂[n+m+1]
full (ωfi)∣i⟩⟨ f ∣T̂[n−m]

full (ωfi)∣i⟩∗}

× f (ω,ωfi, γfi) = 0. (31)

The odd-order contributions vanish identically because the two
interaction operators of each term, contrary to the even-order terms,

will have opposite symmetry with respect to time reversal such
that the product of their transition moments will be imaginary (see
Appendix A).

The demonstration of formal gauge-origin independence in the
generalized velocity representation at each order n in the wave vec-
tor follows straightforwardly from Eq. (28), being nth order deriva-
tives of a term that is gauge-origin independent for all values of
k. This result was obtained earlier in the non-relativistic frame-
work by Bernadotte et al. but in a somewhat elaborate manner (see
Appendix C of Ref. 17). Their derivation, however, highlights the
challenge of achieving gauge-origin independence in practical cal-
culations, and so, we shall give a slightly more compact version here:
Upon a change of gauge-origin O→O + a, the nth order interaction
operator in the velocity representation may be expressed as

T̂[n]full (ω;O) → T̂[n]full (ω;O + a) =
n

∑
m=0

1
m!
(ik ⋅ a)mT̂[n−m]

full (ω;O), (32)

which follows from Eq. (19). The nth order absorption cross section
at the new gauge origin may then be expressed as

σ[n](ω;O + a) =
n

∑
m=0
⟨ f ∣T[n−m]

full (ω;O + a)∣i⟩⟨ f ∣T[m]full (ω;O + a)∣i⟩∗

=
n

∑
m=0

n−m

∑
p=0

m

∑
q=0

1
p!q!
(−1)q(ik ⋅ a)p+q

×⟨ f ∣T[n−m−p]
full (ω;O)∣i⟩⟨ f ∣T[m−q]

full (ω;O)∣i⟩∗. (33)

If we take the orders for each pair of interaction operators as indices
of a matrix, we see that the pairs (n − m, m) from the first line fill
the antidiagonal of a square matrix with indices running from 0 to
n, whereas the pairs (n − m − p, n − q) from the second line fill the
triangle above as well. This suggests to replace indices m and p by
u = n − m − p and v = m − q. After rearrangement, this leads to the
expression

σ[n](ω;O + a) =
n

∑
v=0

n−v

∑
u=0
⟨ f ∣T[u]full (ω;O)∣i⟩⟨ f ∣T[v]full (ω;O)∣i⟩∗

× (ik ⋅ a)
n−(u+v)

(n − (u + v))! ×M, (34)

where

M =
n−(u+v)

∑
q=0
((n − (u + v))

q )(−1)q = (1 − 1)n−(u+v). (35)

The factor M is zero unless u = n – v, which reduces the second line
of Eq. (33) to the same form as the first line, hence demonstrating
that σ[n](ω;O + a) = σ[n](ω;O), that is, the oscillator strengths are
indeed gauge-origin independent. However, one should note that
the lower-order interaction operators introduced in Eq. (32) upon a
change of gauge origin involve multiplication with powers of the dis-
placement as well as the wave vector. This may eventually introduce
numerical issues, as will be shown in Sec. IV A 2.

2. Multipolar gauge: Length representation
A very convenient way of introducing electric and magnetic

multipoles is through the use of multipolar gauge,36,44–46 also known
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as Bloch gauge,47,48 Barron–Gray gauge,18 or Poincaré gauge,49–52

reflecting a history of multiple rediscoveries. In Appendix B, we pro-
vide a compact derivation of the multipolar gauge, avoiding exces-
sive use of indices. In multipolar gauge, the potentials are given in
terms of the electric and magnetic fields and their derivatives at some
expansion point a. When inserted into the interaction Hamiltonian
in Eq. (2), they automatically provide an expansion of the light–
matter interaction in terms of electric and magnetic multipoles of
the molecule.

We first consider the form of the effective interaction in the
multipolar gauge, starting from the electromagnetic plane wave,
Eq. (15), represented by the potentials in Eq. (17). In accordance
with the discussion in Sec. II B and the phase convention of Eq. (24),
we set the phase of the plane wave to δ = π/2. The potentials in the
multipolar gauge (mg) are then given by

ϕ(r, t) = −1
2
(δ ⋅ Eω)

∞

∑
n=0

1
(n + 1)!{(ik ⋅ δ)

nei(k⋅a−ωt)

+ (−ik ⋅ δ)ne−i(k⋅a−ωt)}, δ = r − a, (36)

A(r, t) = −1
2
(δ × Bω)

∞

∑
n=1

n
(n + 1)!{(ik ⋅ δ)

n−1ei(k⋅a−ωt)

+ (−ik ⋅ δ)n−1e−i(k⋅a−ωt)}. (37)

Setting the expansion point a = 0, we find that the effective
interaction operator may be expressed as

T̂mg =
∞

∑
n=0

T̂[n]mg , (38)

where
T̂[0]mg (ω) = −e(r ⋅ ϵ), (39)

T̂[n]mg (ω) = −e[ 1
(n + 1)!(r ⋅ ϵ)(ik ⋅ r)

n − i
ω

n
(n + 1)!

×(ik × ϵ) ⋅ (r × cα)(ik ⋅ r)n−1], n ≠ 0. (40)

Further insight is obtained by writing the effective interaction oper-
ator on component form as

T̂mg(ω) = Q̂[1]p ϵp +
∞

∑
n=1

inϵpkj1 kj2 . . . kjn X̂[n]j1...jn ;p(ω). (41)

In the above expression, we employ the Einstein summation con-
vention and introduce the multipole operator X̂[n] associated with
O(kn),

X̂[n]j1...jn ;p(ω) =
1

(n + 1)! Q̂[n+1]
j1...jn ,p −

i
ω

1
n!

m̂[n]j1...jn−1 ;rεrjnp, (42)

where εijk is the Levi–Civita symbol. This operator is in turn built
from the electric and magnetic multipole operators,

Q̂[n]j1...jn
= −erj1 rj2 . . . rjn , (43)

m̂[n]j1...jn−1 ;jn
= n

n + 1
rj1 rj2 . . . rjn−1(r × ĵ)jn , ĵ = −ecα. (44)

Again, we would like to stress the simplicity of the relativistic for-
malism compared to the non-relativistic one: the magnetic multipole
operators m̂[n] contain the current density operator ĵ, which in the
relativistic form is simply electron charge times the velocity opera-
tor, allowing straightforward implementation of the magnetic mul-
tipole operator to arbitrary orders. The non-relativistic form is more
involved, containing contributions from the mechanical momen-
tum operator as well as the curl of the spin magnetization.53 One
may note that the electric and magnetic multipole operators are
time-symmetric and time-antisymmetric, respectively. However, in
Eq. (42), the magnetic multipole operator is multiplied with imag-
inary i such that the multipole operator X̂[n] is time-symmetric,
fitting well into the quaternion symmetry scheme of DIRAC.

Inserting the effective interaction operator T̂mg(ω) into the
expression for the absorption cross section in Eq. (13) and expand-
ing in orders of the wave vector, we find that odd-order contribu-
tions to the absorption cross section vanish, as was also the case
in the velocity representation, whereas the even-order ones may be
expressed as

σ[2n](ω) = πω
ε0h̵c

n

∑
m=0
(−1)m(2 − δm0)ϵpϵqkj1 kj2 . . . kj2n

× Re{⟨ f ∣X̂[n+m]
j1...jn+m ;p(ω)∣i⟩⟨ f ∣X̂

[n−m]
jn+m+1...j2n ;q(ω)∣i⟩

∗}

× f (ω,ωfi, γfi). (45)

We may connect the interaction operators of multipolar gauge
with those of the Coulomb gauge in the velocity representation.
Starting from Eq. (29), we use the relation

(ik × ϵ) ⋅ (r × cα) = (cα ⋅ ϵ)(ik ⋅ r) − (r ⋅ ϵ)(ik ⋅ cα) (46)

to obtain

T[n](ω) = e
ω

1
(n + 1)!{(cα ⋅ ϵ)(ik ⋅ r)

n + n(r ⋅ ϵ)(ik ⋅ cα)(ik ⋅ r)n−1}

+
e
ω

n
(n + 1)!(ik × ϵ) ⋅ (r × cα)(ik ⋅ r)n−1. (47)

Comparing with Eq. (40), we see that the second term above contains
the nth-order magnetic multipole operator, which implies that we
may extract from the first term the (n + 1)th-order electric multipole
operator in the velocity representation. Next, we use

− i
h̵
[(r ⋅ ϵ)(ik ⋅ r)n, ĥ] = (cα ⋅ ϵ)(ik ⋅ r)n + n(r ⋅ ϵ)(ik ⋅ cα)(ik ⋅ r)n−1

(48)
to arrive at

T[n](ω) = −ie
h̵ω

1
(n + 1)! [(r ⋅ ϵ)(ik ⋅ r)

n, ĥ]

+
e
ω

n
(n + 1)!(ik × ϵ) ⋅ (r × cα)(ik ⋅ r)n−1. (49)

In order to complete the derivation, we have to form transition
moments, which provide the connection

⟨ f ∣T̂[n]full (ω)∣i⟩ = −i⟨ f ∣T̂[n]mg (ω)∣i⟩ (50)

between velocity and length representations and generalize Eq. (22)
to arbitrary orders in the wave vector; in Eq. (22), the negative imag-
inary phase is canceled by choosing the phase δ = π/2, which is
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not done here. At this point, one should note that the derivation is
greatly simplified by the fact that the relativistic velocity operator cα
commutes with the coordinates, contrary to the non-relativistic one.
Furthermore, as discussed at the end of Appendix B, the appear-
ance of a commutator involving the Hamiltonian can be taken as
an indication of a gauge transformation, and indeed, we show that
the operator appearing together with the Hamiltonian in Eq. (48) is
the gauge function of the multipolar gauge [Eq. (B4)] obtained by
inserting the vector potential [Eq. (17)] of a linear plane wave and
retaining the term of order n in the wave vector.

The multipolar gauge has mostly been discussed in the frame-
work of atomic physics where the nuclear origin provides a nat-
ural expansion point. In a molecule, there is generally no natu-
ral expansion point, and gauge-origin independence becomes an
issue. Starting from Eq. (32) and using the connection Eq. (50), one
straightforwardly derives

⟨ f ∣T̂[n]mg (ω;O)∣i⟩ → ⟨ f ∣T̂[n]mg (ω;O + a)∣i⟩

=
n

∑
m=0

1
m!
(ik ⋅ a)m⟨ f ∣T̂[n−m]

mg (ω;O)∣i⟩, (51)

from which gauge-origin independence of absorption cross sections
to all orders in the wave vector follows using the same demonstra-
tion as for the Coulomb gauge (velocity representation) in Sec. II C 1.
However, the demonstration this time hinges on the connection
Eq. (50), which is established using commutator relations involving
the Hamiltonian that do not necessarily hold in a finite basis and
which effectively amounts to a gauge transformation. We have not
been able to show gauge-origin independence of absorption cross
sections while staying within the multipolar gauge, except for the
zeroth order term (electric-dipole approximation) where it follows
from orthogonality of states. In fact, in Appendix B, we show that
potentials derived with respect to two different expansion points are
related by a gauge transformation, but apparently only to the extent
that the expansion is not truncated. This suggests that the lack of ori-
gin invariance of oscillator strengths observed by Bernadotte et al.17

and others, including us (see below), in calculations using an effec-
tive interaction operator on multipolar form is more than a finite
basis set effect. It also makes sense since truncating the Taylor expan-
sion of electric and magnetic fields inevitably conserves only local
information.

D. Rotational averages
1. General

An often encountered experimental situation involves freely
rotating molecules, and we will therefore have to consider rotational
averaging. However, rather than rotating the molecules, we shall
rotate the experimental configuration. To this end, we use the unit
vectors of the spherical coordinates,

er = ex sin θ cosϕ + ey sin θ sinϕ + ez cos θ,
eθ = ex cos θ cosϕ + ey cos θ sinϕ − ez sin θ,
eϕ = −ex sinϕ + ey cosϕ,

(52)

which reduce to (ez , ex, ey) when the angles θ and ϕ are both set to
zero. More precisely, we shall align the wave unit vector ek with the

radial unit vector er . The polarization vector ϵ is then in the plane
spanned by the unit vectors eθ and eϕ. Accordingly, we set

ek = er , ϵ = cos χeθ + sin χeϕ, (53)

introducing a third angle χ. The rotational average is defined as

⟨g(r)⟩θ,ϕ,χ =
1

8π2 ∫
2π

0
∫

2π

0
∫

π

0
g(r) sin θdθdϕdχ. (54)

2. Full light–matter interaction
Starting from Eq. (13), the rotationally averaged absorption

cross section reads (for any choice of the phase δ)

⟨σ(ω)⟩θ,ϕ,χ =
πω
ε0h̵c
( e
ωfi
)

2

⟨ϵpϵq⟨ f ∣cαpe+i(k⋅r)∣i⟩

× ⟨ f ∣cαqe+i(k⋅r)∣i⟩∗⟩
θ,ϕ,χ

f (ω,ωfi, γfi). (55)

We first note that the χ-dependence only enters the polarization
vector ϵ so that we may write

⟨σ(ω)⟩θ,ϕ,χ =
πω
ε0h̵c
( e
ωfi
)

2

⟨⟨ϵpϵq⟩χ⟨ f ∣cαpe+i(k⋅r)∣i⟩

× ⟨ f ∣cαqe+i(k⋅r)∣i⟩∗⟩
θ,ϕ

f (ω,ωfi, γfi). (56)

The χ-average has a simple analytic expression in terms of the
components of the radial unit vector,

⟨ϵpϵq⟩χ =
1
2
(eθ;peθ;q + eϕ;peϕ;q) =

1
2
(δpq − er;per;q), (57)

which follows from the orthonormality of the unit vectors [Eq. (52)].
The (θ,ϕ)-average, on the other hand, will be handled numerically
using Lebedev quadrature,54–59 which we, in our corresponding non-
relativistic work, have found to converge quickly.25

3. Truncated light–matter interaction
In the generalized velocity representation of Sec. II C 1, the

rotational average initially reads

⟨σ[2n](ω)⟩
θ,ϕ,χ
= πω
ε0h̵c
( e
ωfi
)

2 n

∑
m=0

(−1)m

(n + m)!(n −m)!(2 − δm0)

×(
ωfi

c
)

2n
⟨⟨ϵpϵq⟩χer;j1 er;j2 . . . er;j2n⟩θ,ϕ

×Re{⟨ f ∣icαprj1 . . . rjn+m ∣i⟩⟨ f ∣icαqrjn+m+1 . . . rj2n ∣i⟩∗}
× f (ω,ωfi, γfi), (58)

whereas in the generalized length representation (multipolar gauge),
the corresponding expression is

⟨σ[2n](ω)⟩
θ,ϕ,χ
= πω
ε0h̵c

n

∑
m=0
(−1)m(2 − δm0)(

ωfi

c
)

2n

×⟨⟨ϵpϵq⟩χer;j1 er;j2 . . . er;j2n⟩θ,ϕ

×Re{⟨ f ∣X̂[n+m]
j1...jn+m ;p(ω)∣i⟩⟨ f ∣X̂

[n−m]
jn+m+1...j2n ;q(ω)∣i⟩

∗}

× f (ω,ωfi, γfi). (59)
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In both cases, the central quantity to evaluate is

⟨⟨ϵpϵq⟩χer;j1 er;j2 . . . er;j2n⟩θ,ϕ

= 1
4π ∫

2π

0
∫

π

0
⟨ϵpϵq⟩χer;j1 er;j2 . . . er;j2n sin θdθdϕ. (60)

Since the integrand is fully symmetric in indices (j1, . . . j2n), we can
collect contributions to the three components of the wave unit vector
to give

⟨⟨ϵpϵq⟩χer;j1 er;j2 . . . er;j2n⟩θ,ϕ

= 1
8π ∫

2π

0
∫

π

0
(δpq − er;per;q)ei

r;xej
r;yek

r;z sin θdθdϕ;

i + j + k = 2n. (61)

The calculation of the rotational averages thus hinges on the evalua-
tion of expressions of the form

Etuv =
1

8π ∫
2π

0
∫

π

0
et

r;xeu
r;yevr;z sin θdθdϕ

= 1
8π ∫

2π

0
cost ϕ sinu ϕ∫

π

0
cosv θ sint+u+1 θdθdϕ. (62)

A computational useful expression is obtained in two steps.
First, we use the relations

∫
π

0
cosp θ sinq θdθ = [1 + (−1)p]∫

π/2

0
cosp θ sinq θdθ, (63)

∫
2π

0
cosp ϕ sinq ϕdϕ = [1 + (−1)p][1 + (−1)q]∫

π/2

0
cosp ϕ sinq dϕ

(64)

to reduce the angular integration to the (+, +, +) octant of Euclidean
space,

Etuv =
1

8π
[1 + (−1)t][1 + (−1)u][1 + (−1)v]

× ∫
π/2

0
∫

π/2

0
et

r;xeu
r;yevr;z sin θdθdϕ. (65)

This provides a powerful selection rule, showing that the expression
Etuv is zero unless all integer exponents t, u, and v are even. In pass-
ing, we note that the selection rule is the same for both terms appear-
ing in Eq. (61) for p = q. Second, we use the integral representation
(see Appendix C),

B(a, b, c) = Γ(a)Γ(b)Γ(c)
Γ(a + b + c)

= 4∫
π/2

0
∫

π/2

0
e2a−1

r;x e2b−1
r;y e2c−1

r;z sin θdθdϕ, (66)

to express the rotational average in terms of the trivariate beta
function B(a, b, c),

Etuv =
1

32π
[1 + (−1)t][1 + (−1)u][1 + (−1)v]

×B( t + 1
2

,
u + 1

2
,
v + 1

2
). (67)

The final result is thereby

Etuv =
⎧⎪⎪⎨⎪⎪⎩

(t−1)‼(u−1)‼(v−1)‼
2(t+u+v+1)‼ , t, u, v even

0, otherwise,
(68)

where we have used the identity

Γ( t + 1
2
) = (t − 1)‼

√ π
2t (69)

for the evaluation of the trivariate beta function.
Our approach is different from the conventional approach to

rotational averages using linear combinations of fundamental Carte-
sian isotropic tensors.60–65 The fundamental Cartesian isotropic
tensors of even rank are given by products of Kronecker deltas
δij, whereas an additional Levi–Civita symbol ϵijk appears at odd
rank.66–68 For instance, connecting to the notation of Barron,19 the
rotational average appearing in the second-order contribution σ[2]
to the absorption cross section is

⟨⟨ϵαϵβ⟩χer;γer;δ⟩
θ,ϕ
= ⟨iαiβkγkδ⟩ =

1
30
(4δαβδγδ − δαγδβδ − δαδδβδ).

(70)
The established procedure for generating a suitable linearly inde-
pendent set of fundamental Cartesian isotropic tensors involves the
construction of standard tableaux from Young diagrams.61,69 For
even rank, one can connect to our approach from the observation
that the integer exponents t, u, and v in the expression for Etuv
[Eq. (67)] must all be even. This implies a pairing of indices, which
can be expressed through strings of Kronecker deltas. Simple combi-
natorics suggests that the possible number of pairings of 2n indices
and thus the number of fundamental Cartesian isotropic tensors of
even rank 2n are (2n − 1)!!. However, starting at rank eight, linear
dependencies (syzygies) occur,60,62,70 e.g.,

RRRRRRRRRRRRRRRRR

δi1i5 δi1i6 δi1i7 δi1i8

δi2i5 δi2i6 δi2i7 δi2i8

δi3i5 δi3i6 δi3i7 δi3i8

δi4i5 δi4i6 δi4i7 δi4i8

RRRRRRRRRRRRRRRRR

= 0, (71)

which requires proper handling. In fact, the number of linearly inde-
pendent fundamental Cartesian isotropic tensors of a given rank is
given by Motzkin sum numbers,71 which for rank 8 is 91 rather than
105, suggested by the double factorial derived for even rank above.
Such considerations are not needed in the present approach, which
in addition is well-suited for computer implementation.

III. COMPUTATIONAL DETAILS
Unless otherwise stated, the calculated results presented in

this paper have been obtained by time-dependent density func-
tional theory (TD-DFT) calculations, based on the Dirac–Coulomb
Hamiltonian and within the restricted excitation window (REW)
approach72,73 using the PBE074,75 exchange-correlation functional
and the dyall.ae3z basis sets.76,77 The small component basis sets
were generated according to the condition of restricted kinetic bal-
ance, and the (SS|SS) integrals are replaced by an interatomic SS
correction.78 A Gaussian model was employed for the nuclear charge
distribution.79 A 86-point Lebedev grid (Lmax = 12) was used for
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TABLE I. Comparison of isotropically averaged oscillator strengths for Cl 1s → Ti 3d transitions of TiCl4 for the full semi-classical interaction operator and accumulated to
various orders, as indicated by the superscripted number in parenthesis, within the multipolar gauge (lr: length representation) and Coulomb gauge (vr: velocity representation),
computed at the 4c-TD-PBE0 and Lévy-Leblond (LL) level of theory with different basis sets. Contributions from degenerate states have been summed. An 86-point (Lmax = 12)
Lebedev grid was used to obtain the isotropically averaged full BED oscillator strengths. The gauge origin is placed on the Ti atom.

Final state ΔE (eV) Gauge 103f (→0) 103f (→2) 103f (→4) 103f (→6) 103f (→8) 103f (→10) 103f (→12) 103f full

6-31+G∗—LL

1T1 2763.004 298 lr 0.000 16.616 −6.599 7.867 2.748 3.913 3.730 3.730
vr 0.000 16.616 −6.598 7.877 2.715 3.900 3.709

2763.004 474a vr 0.000 16.62 . . . . . . . . . . . . . . .

1E 2763.004 339 lr 0.000 6.762 −1.188 3.360 1.814 2.164 2.112 2.096
vr 0.000 6.640 −1.109 3.288 1.816 2.141 2.090

2763.004 515a vr 0.000 6.64 . . . . . . . . . . . . . . .

1T2 2763.004 306 lr 7.434 −16.230 15.073 −3.955 2.669 1.198 1.408 1.396
vr 7.246 −16.033 14.988 −3.943 2.690 1.180 1.422

2763.004 482a vr 7.44 −15.84 . . . . . . . . . . . . . . .

Sum lr 7.434 7.147 7.286 7.273 7.231 7.275 7.249 7.222
vr 7.246 7.222 7.221 7.222 7.221 7.222 7.221

dyall.ae3z—LL

1T1 2762.623 981 lr 0.000 17.964 −7.142 8.505 2.959 4.230 4.026 4.040
vr 0.000 17.964 −7.166 8.504 2.948 4.222 4.017

1E 2762.623 987 lr 0.000 7.192 −1.179 3.553 1.976 2.322 2.269 2.267
vr 0.000 7.151 −1.161 3.536 1.971 2.314 2.261

1T2 2762.623 987 lr 7.880 −17.335 16.149 −4.230 2.893 1.276 1.533 1.503
vr 7.836 −17.305 16.137 −4.232 2.890 1.273 1.531

Sum lr 7.880 7.821 7.828 7.829 7.828 7.828 7.828 7.809
vr 7.836 7.809 7.809 7.809 7.809 7.809 7.809

dyall.ae3z—4c

1T1 2773.351 719 lr 0.000 17.976 −7.344 8.560 2.879 4.191 3.979 3.993
vr 0.000 17.976 −7.372 8.561 2.866 4.183 3.970

1E 2773.351 723 lr 0.000 7.199 −1.251 3.569 1.945 2.308 2.249 2.248
vr 0.000 7.156 −1.229 3.548 1.943 2.298 2.242

1T2 2773.351 725 lr 7.825 −17.413 16.369 −4.360 2.948 1.272 1.543 1.510
vr 7.781 −17.380 16.353 −4.358 2.942 1.271 1.540

Sum lr 7.825 7.763 7.775 7.769 7.772 7.772 7.771 7.752
vr 7.781 7.752 7.752 7.752 7.752 7.752 7.752

aData in row taken from Ref. 20.

the isotropic averaging of the oscillator strengths based on the full
light–matter interaction operator. The gauge origin was placed in
the center-of-mass, and spatial symmetry was invoked in all cases
except for the gauge-origin dependence calculations.

The geometry of TiCl4 was taken from Ref. 17 where it was
obtained using the BP86 exchange-correlation functional80,81 and
the TZP basis set.82 To enable a direct comparison to previous
work,20 additional results on TiCl4 have been obtained using the

non-relativistic Lévy-Leblond Hamiltonian83 employing a point-
nucleus model and the 6-31+G∗ basis set,84–87 the latter as imple-
mented in the Gaussian16 package.88

To study the apparent divergences of oscillator strengths for
core excitations using truncated interaction, we carried out time-
dependent Hartree–Fock (TD-HF) calculations of ns1/2→ 7p1/2 exci-
tations of the radium atom. In these calculations, integral screening
was turned off and the (SS|SS) integrals are included.
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TABLE III. Gauge-origin dependency of the isotropically averaged oscillator strengths for the 1T2 set of Cl 1s→ Ti 3d transitions of TiCl4 for the full semi-classical light–matter
interaction operator and accumulated to various orders within the multipolar gauge (lr: length representation) and Coulomb gauge (vr: velocity representation), computed at the
4c-TD-PBE0 level of theory and the dyall.ae3z basis set. Numbers in parentheses are exponents of 10. At this level, the excitation energy is calculated as 2773.351 145 eV.
Contributions from the degenerate set have been summed. An 86-point (Lmax = 12) Lebedev grid was used to obtain the isotropically averaged full BED oscillator strengths. The
gauge origin is shifted along the x-axis (dx ) where dx = 0.0 a0 corresponds to gauge-origin in the Ti atom.

dx (a0) Gauge f (→0) f (→2) f (→4) f (→6) f (→8) f (→10) f (→12) f full

0 lr 7.825(−03) −1.741(−02) 1.637(−02) −4.360(−03) 2.948(−03) 1.272(−03) 1.543(−03) 1.510(−03)
vr 7.781(−03) −1.738(−02) 1.635(−02) −4.358(−03) 2.943(−03) 1.271(−03) 1.540(−03)

10.0 lr 7.825(−03) −1.755(−02) 1.670(−02) −4.738(−03) 3.238(−03) 1.097(−03) 1.670(−03) 1.510(−03)
vr 7.781(−03) −1.738(−02) 1.635(−02) −4.358(−03) 2.943(−03) 1.271(−03) 1.540(−03)

50.0 lr 7.825(−03) −2.045(−02) 1.422(−01) −2.951(+00) 4.429(+01) −5.055(+02) 6.495(+03) 1.510(−03)
vr 7.781(−03) −1.738(−02) 1.635(−02) −4.358(−03) 2.943(−03) 1.271(−03) 1.546(−03)

100.0 lr 7.825(−03) −3.148(−02) 2.398(+00) −2.223(+02) 1.343(+04) −6.178(+05) 3.198(+07) 1.510(−03)
vr 7.781(−03) −1.738(−02) 1.635(−02) −4.358(−03) 2.943(−03) 1.021(−03) 4.785(−02)

FIG. 1. Non-dipolar effects on electronic absorption of radium: (a) the valence and
(b) K-edge spectra for Ra within and beyond the ED approximation (ED and BED,
respectively) at the 4c-TD-PBE0/dyall.ae3z level of theory using the Coulomb
gauge (velocity representation) for the former and the full interaction operator in
Eq. (56) and an 86-point (Lmax = 12) Lebedev grid for the latter. The labels indi-
cate the character of the receiving orbital. Note the differences in scales on the
axes in the valence and x-ray region. Oscillator strengths are summed over con-
tributions from transitions within each degenerate (same ΔJ components) and
near-degenerate (different ΔJ components) set, and the sticks have been con-
voluted with a Lorentzian lifetime broadening of 1000 cm−1. The experimental 1s
ionization energy is 103 922 ± 7.2 eV.92

Unless otherwise stated, the data reported in this paper have
been obtained with a development version of the DIRAC electronic
structure code32 (Tables I–III, Fig. 1: Revision 52c65be; Table IV,
Fig. 2: Revision 5a7d81c).

IV. RESULTS AND DISCUSSION
In this section, we demonstrate our implementation and study

the behavior of the three presented schemes to go beyond the ED
approximation. First, we consider the Cl K-edge in TiCl4, repre-
senting a case where there is no natural choice of gauge origin. It
has previously been studied in the context of non-dipolar effects in
linear x-ray absorption using low-order multipole expansions. In
particular, it was used to demonstrate the appearance of negative
oscillator strengths20 upon truncation of the light–matter interaction
in the generalized velocity representation in a non-relativistic frame-
work.17 Below, we will revisit this case. We further study numerically
the gauge-origin dependence of the three schemes in the case of
soft x-ray absorption. We then turn to their performance across the
spectral range, including hard x-rays, by considering atomic valence
and core transitions in the radium atom. Given its high nuclear
charge, radium shows strong relativistic effects both in the core and
valence, and it is therefore a good example for comparing oscillator
strengths within and beyond the ED approximation in a relativistic
framework.

A. Cl K -edge absorption of TiCl4
Ligand K-edge absorption spectroscopy supposedly provides

direct information on the covalency of metal–ligand bonds due
to the admixture of the ligand p-orbitals with the metal d-
orbitals.89,90 The Cl K-edge absorption of TiCl4 has been studied
both experimentally and also theoretically within and beyond the ED
approximation using truncated multipole-expanded expressions.
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FIG. 2. Convergence behavior of the oscillator
strengths for ns1/2 → 7p1/2 transitions of radium
at various orders (colored lines) in the wave
vector within the Coulomb gauge (velocity repre-
sentation): (a)–(g) correspond to n = 7, 6, . . ., 1.
Vertical dashed lines indicate ω = c. Excitation energies
(ωfi ) are in a.u.

Its experimental spectrum features a broad pre-edge peak that
requires a two-peak fit (in toluene: at 2821.58 eV and 2822.32 eV
with an approximate intensity ratio of 0.84).91 In Td symmetry, the
five 3d-orbitals of Ti belong to the e and t2 irreducible representa-
tions, and the pre-edge bands can be assigned to excitations from
the a1 and t2 Cl 1s-orbitals into the e and t2 sets of 3d-orbitals on Ti,
respectively. Here, we focus on the eight lowest-lying transitions (a1,
t2 → e), which give rise to three degenerate sets (E, T1, and T2) of
which the latter is ED allowed.

1. Full vs truncated light–matter interaction

Table I collects the isotropically averaged oscillator strengths
for the pre-edge transitions computed in four-component relativis-
tic and non-relativistic frameworks with the full light–matter inter-
action operator as well as accumulated to increasing orders (up to
12th order) in the wave vector within the Coulomb gauge (velocity
representation) and multipolar gauge (length representation). First,
we note that the trends are similar across the considered basis sets
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and Hamiltonians. In line with the results of Lestrange et al.,20 we
find negative oscillator strengths at the second order for the 1T2
excitations in both length and velocity representations. The same
issue appears for the 1T1 and 1E sets, but at the fourth order. As dis-
cussed previously,20,21 this behavior is expected when the cross terms
involving the lower-order moments to f [n] dominate the diagonal
contributions. As evident from the underlying contributions given
in Table II, the multipole expansions are alternating, and beyond
fourth order, the correction is reduced at each order. Indeed, the
expansions converge to the full expression at about 12th order irre-
spective of the employed basis set. For the dipole-allowed 1T2 set, the
correction introduced by non-dipolar effects is significant, reducing
the oscillator strength by a factor of ∼5. As seen from the compar-
ison of the ED and full (BED) oscillator strengths summed over
the three sets of transitions, included in Table I, the implication of
going beyond the ED approximation is a redistribution of inten-
sity among transitions. In particular, the ED forbidden 1T1 and 1E
transitions gain intensity beyond that of the T2 set. We note, how-
ever, that this intensity redistribution has no consequence for the
absorption band because of the near-degeneracy of the electronic
transitions.

2. Origin-dependence
The above results were computed with the gauge-origin placed

at the Ti atom. We now proceed to a numerical evaluation of their
dependency on the gauge origin (O + a). As discussed above, the
formulations based on the full semi-classical interaction operator
and truncated interaction in the velocity representation are formally
gauge invariant. In practical calculations, however, as discussed in
Sec. II C 1, invariance in the latter case relies on the accurate cancel-
lation of lower-order contributions multiplied with powers (k ⋅ a),
where a is the displacement. In contrast, as discussed in Sec. II C 2,
in the multipolar gauge, formal gauge-origin invariance appears to
only be achieved in the practically unreachable limit of the complete
expansion of the fields.

Table III collects the total isotropic oscillator strength for the
dipole-allowed 1T2 set for each of the three schemes for going
beyond the ED approximation using different choices for the gauge
origin. As expected, the results for the full light–matter interaction
operator remain unchanged, providing a numerical verification of its
gauge-origin invariance. The same is true for the oscillator strengths
in the generalized velocity representation. However, numerical noise
from the cancellation of many terms in powers of the displacement
becomes apparent at large displacements. For a displacement of 100
a0, instabilities start to appear at 10th order, and at 12th order, the
oscillator strength exceeds the full result by one order of magni-
tude. This will be further discussed in Sec. IV B 2. The oscillator
strengths in the multipolar gauge already at the second order differ
significantly upon shifting the origin from the Ti atom.

B. Radium
1. Full light–matter interaction

In the valence region, the influence of non-dipolar effects is
expected to be small except for ED forbidden transitions. Based on
our previous study in a non-relativistic framework, we expect the
effect on dipole-allowed core excitations to be modest (∼10%) as a
result of the compactness of the core hole.8

Figure 1 shows the valence and K-edge spectra of Ra within
and beyond the ED approximation, the latter computed with the
full light–matter interaction operator. Expectedly, all ED forbidden
transitions, except for excitations associated with change in total
angular momentum quantum number ΔJ = 0, gain intensity upon
going beyond the ED approximation. In the valence region, how-
ever, they remain several orders of magnitude smaller than the ED
counterparts such that ED and BED spectra are essentially identi-
cal. In the x-ray region, the main contributions from the 1s1/2 → 6d
manifold correspond to ΔJ = 2 transitions, while the ED allowed
ΔJ = 1 transitions dominate for the 1s1/2 → 7/8p manifold. Note
that the small energy differences between different ΔJ components
in a given set make them indiscernible in the spectrum, and we have
therefore combined their oscillator strengths in Fig. 1. Upon inclu-
sion of non-dipolar effects, intensity is primarily redistributed from
the 1s1/2 → 7/8p3/2 sets (a ∼20% reduction compared to ∼13% for the
1s1/2 → 7/8p1/2 excitations) to the 6d transitions.

2. Truncated light–matter interaction
When carrying out equivalent calculations using the truncated

light–matter interaction formulations, both in the velocity and the
length representation, nonsensical results were obtained. Rather
than reporting these numbers, we shall illustrate and analyze this
behavior using a simpler computational setup. Table IV reports
anisotropic oscillator strengths for radium ns1/2 → 7p1/2 (n = 1, . . .,
7) excitations at various orders in the generalized velocity represen-
tation as well as obtained using the full light–matter interaction. The
orbital rotation operator [Eq. (A3)] is restricted to the ns1/2 and the
7p1/2 orbitals of the selected excitation, and we only report results for
the B1u irreducible representation of the D2h point group. To avoid
issues of numerical integration, we have performed TD-HF rather
than TD-DFT calculations. Furthermore, to avoid possible numer-
ical noise due to rotational averaging, we have chosen an oriented
experiment, with the wave and polarization vectors oriented along
the y- and z-axes, respectively.

We see that for the 7s1/2 → 7p1/2 excitation, the electric-dipole
approximation holds since the zeroth-order oscillator strength f [0]

reproduces the oscillator strength f full, using the full interaction, to
within the reported digits. For other excitations, the second-order
oscillator strength f [2] has to be included in order to get reasonable
agreement with the full interaction. For the 1s1/2 → 7p1/2 transition,
however, higher-order contributions to the oscillator strength blow
up. A similar behavior, but to a lesser degree, is observed for the 2s1/2
→ 7p1/2 transition, and we also note that the oscillator strength for
the 3s1/2 → 7p1/2 transition, accumulated to 12th order, is negative.
Very similar behavior is observed for the multipolar gauge (data not
shown). In Table IV, we list for each excitation the corresponding
norm k = ω/c of the wave vector. Interestingly, the apparent diver-
gence in the expansion of the full light–matter interaction occurs
when k ≈ 1 a−1

0 . Indeed, if we do not set ω = ωfi, where h̵ωfi is the
excitation energy and instead treat ω as a variable, so as to artifi-
cially vary k appearing in the interaction operator, we find that the
oscillator strengths for all excitations blow up around k = 1 a−1

0
(Fig. 2). In passing, we note that the excitation energies for Cl 1s
→ Ti 3d transitions of TiCl4 reported in Table I correspond to
k ≈ 0.74 a−1

0 . It seems reasonable that the convergence behavior
of an expansion of oscillator strengths in orders of the norm of the
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wave vector should change when k ≈ 1 a−1
0 . However, this conclu-

sion requires some caution since k is not a dimensionless quantity.
The proper expansion parameter is rather the dimensionless quan-
tity kr, and the above observations suggest that the effective radius
r ≈ 1 a0. For the valence 7s1/2 → 7p1/2 excitation, the effective radius
r is more diffuse, which explains why the apparent divergence sets in
for k < 1 a−1

0 , as shown in Fig. 2.
The oscillator strengths of the given (even) order are calculated

according to Eq. (30). We have also investigated to what extent tran-
sition moments over effective interaction operators T̂[n]full of order n
in the wave vector [Eq. (29)] sum up to transition moments over
the full interaction operator and find apparent divergences for core
excitations. Again, when treating ω as a variable and not setting it
equal to ωfi, we find that these apparent divergences occur for all
ns1/2 → 7p1/2 excitations when k > 1 a−1

0 . Going deeper in our anal-
ysis, we note that transition moments are obtained by contracting
the property gradient of the selected operator with the solution vec-
tor for the selected excitation [Eq. (A14)]. Due to the restrictions on
the orbital rotation operator in our particular case, the scalar prod-
uct is reduced to the multiplication of two numbers. We find that an
expansion of the property gradient of the full interaction in orders of
the wave vector displays the same apparent divergence for core exci-
tations as we observed for both oscillator strengths and transition
moments. Again, by artificially varying k, we find that these apparent
divergences occur when k > 1 a−1

0 for all excitations.
With our particular orientation of the experiment, the full and

truncated effective interaction operators at order n are given by

T̂full(ω) =
e
ω

cαze+iky, T̂[n]full (ω) =
e
ω

in

n!
cαz(ky)n. (72)

Elements of the property gradient [Eq. (A7)] of the truncated effec-
tive interaction operator are accordingly given by

gT[n] ;ai = −
e
ω
(ik)n{⟨φL

a ∣cσz
yn

n!
∣φS

i ⟩ + ⟨φS
a∣cσz

yn

n!
∣φL

i ⟩}, (73)

where superscripts L and S refer to the large and small components
of molecular orbital φp, respectively. In practice, as implemented
in the DIRAC package, the property gradient is compounded from
products of an atomic-orbital (AO) integral with two expansion
coefficients on the form

c∗μa⟨χμ∣c
yn

n!
∣χν⟩cνi, (74)

with the factor outside the curly brackets in Eq. (73) multiplied on at
the end. In the present case, the coefficients are real due to symme-
try.43 Each component of the Dirac spinor is expanded in Cartesian
Gaussian-type orbitals (CGTOs),

Gα
ijk(r) = Nα

ijkxiyjzke−αr2

, i + j + k = ℓ. (75)

For n = 12, we find that the largest contribution, in terms of
magnitude, to the property gradient comes from a small com-
ponent py function with exponent α1 = 1.56556662(−02) a−2

0
combined with a large component py function with exponent α2

= 1.249 643 69(−02) a−2
0 . These are the most diffuse s and p

functions, respectively, of the large component dyall.ae3z basis
set. The resulting AO-integral has a value −1.19 437 467(+6) a.u.

and is multiplied with a coefficient c1 = −4.55 940 113(−8) from
1s1/2 and a coefficient c2 = −0.844 080 786 from 7p1/2. By cal-
culating AO-integrals with high precision using Mathematica,93

we find that the above AO-integrals, provided by the HERMIT
integral package,94 are very stable. On the other hand, the very
small c1 coefficient is at the limits of the precision one can
expect from the diagonalization of the Fock matrix, in partic-
ular, given its ill-conditioning due to the presence of negative-
energy solutions. We have, however, investigated the sensitiv-
ity of our results with respect to the HF convergence (in terms
of the gradient) and find that they are quite stable at tight
thresholds.

The final step of our analysis is to study the convergence of the
AO-integrals over the truncated interaction toward the correspond-
ing integral over the full interaction operator. Restricting attention
to our particular case in Eq. (72) and Gaussian py functions, the case
in which only even-order terms contribute, we have

⟨Gα1
010∣T̂full(ω)∣Gα2

010⟩ =
∞

∑
m=0
⟨Gα1

010∣T̂
[2m]
full (ω)∣G

α2
010⟩. (76)

After eliminating common factors on both sides, we find an equiva-
lent expression,

−(4Q2 − 2)e−Q2

=
∞

∑
m=0
(−1)mam, am = Q2m (2m + 2)(2m + 1)

(m + 1)! ,

(77)

in terms of a dimensionless parameter Q,

Q = k
2
√
α1 + α2

. (78)

(further details are given in Appendix D). The right-hand side
expression has the form of an alternating series, and using the Leib-
niz criterion, we first note that lim

m→∞
am = 0. On the other hand, the

coefficients am decrease monotonically only beyond a critical value
of the summation index,

mc =
1
4
[(2Q2 − 3) +

√
4Q4 + 12Q2 + 1]. (79)

For the 1s1/2 → 7p1/2 excitation and the above choice of exponents,
we find that mc ≈ Q2 = 6998.7. For this value of Q, the left-hand side
of Eq. (77) is essentially zero, whereas the right-hand side converges
extremely slowly toward this value. In fact, using Mathematica,93 no
convergence was observed even after summing 10 000 terms. Con-
sidering instead the 2s1/2 → 7p1/2 excitation for which mc ≈ 240,
reasonable convergence is found after summing 282 terms.

In summary, we have found that for increasing excitation ener-
gies, the use of truncated light–matter interaction becomes increas-
ingly problematic because of the slow convergence of such expan-
sions. This is not a problem that can be alleviated by increasing
the basis set, since we observe this slow convergence at the level
of the individual underlying AO-integrals. In particular, for core
excitations, we have observed extremely slow convergence for inte-
grals involving Cartesian Gaussian-type orbitals with diffuse expo-
nents. This can be understood since such diffuse functions will be
less efficient than tight ones in damping the increasing Cartesian
powers appearing in an expansion of the full light–matter interac-
tion in orders of the norm of the wave vector [see Eqs. (42) and (29)].
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This in turn suggests that the use of Slater-type orbitals, which have
slower decay than CGTOs, will be even more problematic. This is
indeed the case as we show in Appendix D.

V. CONCLUSION
We have presented the implementation of three schemes

for describing light–matter interactions beyond the electric-dipole
approximation in the context of linear absorption within the four-
component relativistic domain: (i) the full semi-classical field–
matter interaction operator in which the electric and magnetic inter-
actions are included to all orders in the wave vector, in addition to
two formulations based on a truncated interaction using either (ii)
the Coulomb gauge (generalized velocity representation) or (iii) the
multipolar gauge (generalized length representation). In the latter
gauge, potentials are given in terms of the values of the electric and
magnetic field and their derivatives at some expansion point. We
have generalized the derivation of the multipolar gauge to arbitrary
expansion points and shown that potentials associated with different
expansion points are related by a gauge transformation but also that
this is only guaranteed to the extent that the expansion is not trun-
cated. We have further presented schemes for rotational averaging of
the oscillator strength for each of the three cases. In particular, the
simple form of the light–matter interaction operator in the relativis-
tic formulation allowed for arbitrary-order implementations of the
two truncated schemes with and without rotational averaging. We
believe that this is a unique feature of our code.

Next, we have exploited the generality of our formulations
and implementation to study, both analytically and numerically, the
behavior of the two truncated schemes relative to the full light–
matter interaction with particular focus on the x-ray spectral region.
This analysis has highlighted the following important points:

● Oscillator strengths using truncated interaction in the
Coulomb gauge (generalized velocity representation) are
gauge-origin invariant at each order in the wave vector.
This was originally shown in Ref. 17 but follows straight-
forwardly from our alternative derivation starting from a
Taylor expansion of the full expression for the oscillator
strength rather than that of the transition moments. A prac-
tical realization of this gauge-origin independence, however,
relies on an accurate cancellation of terms multiplied by
powers of the origin displacement. Thus, while origin invari-
ance is numerically achievable at low frequencies and small
displacements, it becomes increasingly difficult and even
unreachable at higher frequencies and displacements.

● Formal gauge-origin invariance of oscillator strengths in the
multipolar gauge hinges on commutator expressions that do
not necessarily hold in a finite basis. This explains the noto-
rious lack of order-by-order gauge-origin independence in
practical calculations beyond the electric-dipole approxi-
mation based on any truncated multipolar gauge formula-
tion.20,21 However, we would like to stress that these com-
mutator relations, involving the Hamiltonian, correspond to
a gauge transformation from the length to the velocity repre-
sentation. In other words, gauge-origin independence in the
multipolar gauge is shown by transforming to another gauge
for which origin-independence holds. We have not been

able to show gauge-origin invariance while staying within
the multipolar gauge. An interesting feature of the multipo-
lar gauge is that gauge freedom resides within the choice of
expansion point. We show that a change of expansion point,
that is, gauge origin, corresponds to a gauge transformation,
but only if the expansion of the fields is not truncated.

● The appearance of negative oscillator strengths through the
second order in the wave vector previously reported at the
Cl K-edge for TiCl4 in the velocity representation20 is indeed
a consequence of a too early truncation of the expansion, as
previously suggested.20,22 In this case, convergence to the full
light–matter interaction result is achieved at 12th order in
the wave vector irrespective of the basis set used.

● While the oscillator strengths formulated using truncated
interaction in the Coulomb gauge (velocity representation)
are formally convergent across all frequencies, the series
converges extremely slowly at high frequencies, an obser-
vation valid also for the multipolar gauge. We report a
detailed investigation of a test case where we have studied
convergence of the expansion in terms of the wave vec-
tor all the way from oscillator strengths to the underlying
AO-integrals. For the latter quantities, the expansion in the
dimensionless quantity kr is replaced by an expansion in
terms of the dimensionless quantity Q = k/2√α1 + α2, where
α1 and α2 are the Gaussian exponents. We find that the con-
vergence of integrals over the truncated interaction toward
integrals over the full interaction is extremely slow, requir-
ing at least Q2 terms. The convergence will depend on the
decay of the basis functions. It will be particularly slow for
diffuse exponents, as can be seen from the form of Q, and
will be worse for Slater-type orbitals than for the Gaussian-
type orbitals used in the present work. The onset of this
complication is approximately defined by ω = c (∼3728 eV),
although it also depends on the size of the given transi-
tion moments. Numerical instabilities using the Coulomb
gauge in the generalized velocity representation can thus be
expected already in the higher-energy end of the soft x-ray
region even though the onset may be delayed by the order-
of-magnitude smaller transition moments associated with
core excitations. Caution is therefore necessary while using
this formulation in simulations of x-ray absorption beyond
the electric-dipole approximation because of its practical
inapplicability beyond a certain frequency region.

The general numerical stability of the full light–matter inter-
action formulation to gauge-origin transformations and across fre-
quencies as well as its ease of implementation in the context of linear
absorption, demonstrated in this work and previously,8,24,25 makes
this approach the method of choice for simulating linear absorption
beyond the electric-dipole approximation. A possible complication
of this approach, though, is that the underlying AO-integrals become
dependent on the wave vector, hence excitation energies, and must
generally be calculated on the fly.
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APPENDIX A: SIMULATION OF ELECTRONIC SPECTRA
FROM TIME-DEPENDENT RESPONSE THEORY

In this appendix, we provide a brief overview of the simula-
tion of electronic spectra using time-dependent Hartree–Fock (HF)
theory as implemented in the DIRAC package32 under the restriction
of a closed-shell reference. The formalism carries over with modest
modifications to time-dependent Kohn–Sham (KS) theory. A fuller
account is given in Ref. 95 and references therein.

We start from a Hamiltonian on the form

Ĥ = Ĥ0 + V̂(t), V̂(t) =
+N
∑

k=−N
V̂(ωk)e−iωkt ,

V̂(ωk) = ∑
X
εX(ωk)ĥX ,

(A1)

where εX(ωk) represent the perturbation strengths. All frequen-
cies ωk are assumed to be integer multiples of a fundamental fre-
quency ωT = 2π/T such that the Hamiltonian is periodic of period
T, allowing us to use the quasienergy formalism.46,96,97 We employ a
unitary exponential parametrization of the closed-shell HF (or KS)
determinant,

∣0̃(t)⟩ = exp[−κ̂(t)]∣0⟩, (A2)

in terms of an anti-Hermitian, time-dependent orbital rotation
operator

κ̂(t) = ∑
ai
{κai(t)a†

aai − κ
∗

ai(t)a†
i aa},

κpq(t) =
+N

∑
k=−N

κpq(ωk)e−iωkt .
(A3)

Here and in the following, indices (i, j . . .), (a, b, . . .), and (p, q, . . .)
refer to occupied, virtual and general orbitals, respectively. The lin-
ear response of the system with respect to some perturbation ĥB is
found from the first-order response equation,

(E[2]0 − h̵ωbS[2])XB(ωb) = −E[1]B , (A4)

where

E[2]0 = [
A B
B∗A∗];

Aai,bj = ⟨0∣[−â†
i âa , [â†

b âj , Ĥ0]]∣0⟩,

Bai,bj = ⟨0∣[â†
i âa , [â†

j âb , Ĥ0]]∣0⟩,
(A5)

is the electronic Hessian,

S[2] = [ Σ Δ
−Δ∗−Σ∗];

Σai,bj = ⟨0∣[â†
i âa , â†

b âj ]∣0⟩ = δabδij,

Δai,bj = ⟨0∣[â†
i âa ,−â†

j âb]∣0⟩ = 0,
(A6)

is the generalized metric, and

E[1]B = [
gB

ΘhBg∗B
]; gB;ai = −hB;ai, (A7)

is the property gradient. An important generalization above is that,
in addition to Hermitian operators ĥB (ΘhB = +1) imposed by the
tenets of quantum mechanics, we also allow anti-Hermitian ones
(ΘhB = −1). It may seem awkward to speak about hermiticity of a
vector, but the elements of the vector are, as seen from Eq. (A7),
two-index quantities selected from a matrix and accordingly inherit
the symmetries of that matrix.

The solution vector collects first-order frequency-dependent
amplitudes,

XB(ωb) = [
Z
Y∗],

Zai= [
∂κai(ωb)
∂εB(ωb)

]
ε=0
= κB

ai(ωb),

Yai=[
∂κai(−ωb)
∂εB(ωb)

]
ε=0
= κB

ai(−ωb),
(A8)

and linear response functions are obtained by contracting solution
vectors with property gradients, that is,

⟨⟨Â; B̂⟩⟩ωb = E
[1]†
A XB. (A9)

Excitation energies and corresponding transition moments, on the
other hand, are found from the closely related general eigenvalue
problem,

(E[2]0 − h̵λmS[2])Xm = 0. (A10)

From the structure of the electronic Hessian E[2]0 [Eq. (A5)]
and the general matrix S[2] [Eq. (A6)], it can be shown that solu-
tion vectors of both the first-order response equation [Eq. (A4)] and
the eigenvalue equation [Eq. (A10)] come in pairs,

λ+;m = +∣ωm∣, X+;m = [Zm
Y∗m
],

λ−;m = −∣ωm∣, X−;m = [Ym
Z∗m
].

(A11)

For Hermitian operators ĥA, transition moments are obtained by the
contractions

⟨0∣ĥA∣n⟩ = E[1]†A X+;n =X†
−;nE

[1]
A ,

⟨n∣ĥA∣0⟩= X†
+;nE

[1]
A =E[1]†A X−;n,

ΘhA = +1. (A12)

A particular feature of the DIRAC package32 is that a symmetry
scheme, based on quaternion algebra, is applied at the self-consistent
field level and provides automatically the maximum point group
and time-reversal symmetry reduction of the computational effort.43

However, the symmetry scheme is restricted to time-symmetric
operators only since their matrix representations in a finite basis
can be block diagonalized by a quaternion unitary transformation.98

In order to accommodate time-antisymmetric, Hermitian operators,
they are made time-symmetric, anti-Hermitian by multiplication
with imaginary i,99 that is,

ĥA → ĥA′ = iĥA ⇒ E[1]A → E[1]A′ = iE[1]A . (A13)
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For consistency, we therefore have to generalize the above relations
[Eq. (A12)] to

⟨0∣ĥA∣n⟩ = ΘhAE
[1]†
A X+;n = X†

−;nE
[1]
A ,

⟨n∣ĥA∣0⟩= X†
+;nE

[1]
A = ΘhAE

[1]†
A X−;n.

(A14)

An important observation is that whereas the matrix of time-
dependent amplitudes κpq(t) is anti-Hermitian, the matrix of fre-
quency-dependent amplitudes κpq(ωk), from which solution vectors
are built [cf. Eq. (A8)], is general, that is,

κpq(t) = −κ∗qp(t) ⇒ κ∗qp(−ωk) = −κpq(ωk). (A15)

A key to computational efficiency is to consider a decomposition of
solution vectors in terms of components of well-defined hermiticity
and time reversal symmetry.46,99 Using a pair of solution vectors X+
and X−, we may form Hermitian and anti-Hermitian combinations,

Xh =
1
2
(X+ + X−) = [ Z + Y

Y∗ + Z∗] = [
h
h∗], (A16)

Xa =
1
2
(X+ − X−) = [ Z − YY∗ − Z∗] = [

a
a∗]. (A17)

The inverse relations therefore provide a separation of solution
vectors into Hermitian and anti-Hermitian contributions,

X+ = Xh + Xa, X− = Xh − Xa. (A18)

Further decomposition of each contribution into time-symmetric
and time-antisymmetric parts gives vectors that are well-defined
with respect to both hermiticity and time reversal symmetry,

U†(Θh,Θt) = [c† d† ΘtcT ΘtdT ΘhcT ΘhdT ΘhΘtc† ΘhΘtd†],

{cai = xai,
dai = xai,

(A19)

where the index overbar refers to Kramers’ partner in a Kramers-
restricted orbital set. The scalar product of such vectors is given by46

U†
1(Θh1,Θt1)U2(Θh2,Θt2) = (1 + Θh1Θh2Θt1Θt2)[z + Θh1Θh2z∗];

z = (c†1c2 + d†
1d2), (A20)

and one may therefore distinguish three cases

U†
1(Θh1,Θt1)U2(Θh2,Θt2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, Θh1Θh2 = −Θt1Θt2

4Re[z], Θh1Θh2 = Θt1Θt2 = +1
4iIm[z], Θh1Θh2 = Θt1Θt2 = −1.

(A21)

One may show that hermiticity is conserved when multiplying a vec-
tor [Eq. (A19)] by the electronic Hessian, whereas it is reversed by
the generalized metric. On the other hand, both the electronic Hes-
sian and the generalized metric conserve time reversal symmetry.
The implication is that the time-symmetric and time-antisymmetric
components of a solution vector do not mix upon solving the gen-
eralized eigenvalue problem [Eq. (A10)] or the first-order response
equation [Eq. (A4)] and one can dispense with one of them. From a
physical point of view, this can be understood from the observation

that excited states can be reached through both time-symmetric and
time-antisymmetric operators. From a more practical point of view,
this leads to computational savings corresponding to those obtained
by re-expressing the generalized eigenvalue problem [Eq. (A10)] as
a Hermitian one of half the dimension and involving the square of
transition energies. Such a transformation can be done exactly in
non-relativistic theory,100–102 but only through approximations in
the relativistic domain.103,104 In the present scheme, we obtain the
same computational savings without resorting to any transforma-
tions or approximations. In order to employ the quaternion sym-
metry scheme, we choose to work with the time-symmetric vectors.
It follows from Eq. (A21) that their scalar products are either zero
or real. In practice, a property gradient is therefore always con-
tracted with the component of the solution vector having the same
hermiticity so that all transition moments are real.

APPENDIX B: MULTIPOLAR GAUGE
In this appendix, we present a compact derivation of the multi-

polar gauge, following to a large extent Bloch47 and avoiding indices.
We shall write the Taylor expansion of the scalar and vector potential
about a reference point a as

ϕ̃(r, t) =
∞

∑
n=0

1
n!
[(δa ⋅∇′)

nϕ̃(r′, t)]r′=a,

Ã(r, t) =
∞

∑
n=0

1
n!
[(δa ⋅∇′)

nÃ(r′, t)]r′=a,
δa = r − a. (B1)

We then use the relation E = −∇ϕ − ∂tA to rewrite the scalar
potential as

ϕ̃(r, t) = ϕ̃(a, t) −
∞

∑
n=1

1
n!
[(δa ⋅∇′)

n−1(δa ⋅ E(r′, t))]
r′=a

− ∂t

∞

∑
n=1

1
n!
[(δa ⋅∇′)

n−1(δa ⋅ Ã(r′, t))]
r′=a

. (B2)

The scalar potential now has the form of a gauge transformation,

ϕ̃(r, t) = ϕ(r, t) − ∂tχ(r, t), (B3)

where the gauge function χ is given by

χ(r, t) =
∞

∑
n=1

1
n!
[(δa ⋅∇′)

n−1(δa ⋅ Ã(r′, t))]
r′=a

. (B4)

Using the partner relation

Ã(r, t) = A(r, t) +∇χ(r, t), (B5)

we first work out the gradient of the gauge function to be

∇χ(r, t) =
∞

∑
n=0

1
(n + 1)! [(δa ⋅∇′)

nÃ(r′, t)]r′=a

+
∞

∑
n=1

n
(n + 1)! [(δa ⋅∇′)

n−1
∇
′(δa ⋅ Ã(r′, t))]

r′=a
. (B6)
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Further manipulation then gives

A(r, t) =
∞

∑
n=1

n
(n + 1)!

× [(δa ⋅∇′)
n−1{(δa ⋅∇′)Ã(r′, t) −∇′(δa ⋅ Ã(r′, t))}]

r′=a
.

(B7)

Finally, using the relation

δ × B = δ × (∇ × Ã) = ∇(δ ⋅ Ã) − (δ ⋅∇)Ã, (B8)

we arrive at the final form of the potentials

ϕa(r, t) = ϕ̃(a, t) −
∞

∑
n=0

1
(n + 1)! [(δa ⋅∇′)

n(δa ⋅ E(r′, t))]r′=a,

Aa(r, t) = −
∞

∑
n=1

n
(n + 1)! [(δa ⋅∇′)

n−1(δa × B(r′, t))]
r′=a

.
(B9)

An alternative derivation of the multipolar gauge,44,49,105,106

which we here generalize to an arbitrary expansion point, is obtained
by integrating Eq. (B5) along a line from expansion point a to
observer point r and setting the gauge condition

δa ⋅ ∫
1

0
A(λδa + a, t)dλ = 0. (B10)

The gauge function is then found to be

χa(r, t) = ∫
1

0
δa ⋅ Ã(λδa + a, t)dλ, (B11)

and the resulting potentials read

ϕa(r, t) = ϕ̃(a, t) − δa ⋅ ∫ 1
0 E(λδa + a, t)dλ,

Aa(r, t) = −∫ 1
0 λ[δa × B(λδa + a, t)]dλ,

(B12)

where we have used Eq. (B8). The equivalence of the expressions
of the present paragraph with those of the preceding one is seen
by expanding the functions of r′ = λδa + a in the integrands about
r′ = a.

In passing, we note that the divergence of the vector potential
is given by

∇ ⋅A(r, t) = ∫
1

0
λδa ⋅ (∇ × B(λδa + a, t))dλ, (B13)

= ∫
1

0
λ2δa ⋅ (μ0j(λδa + a, t) +

1
c2 ∂tE(λδa + a, t))dλ,

(B14)

where μ0 is the magnetic constant and j is the current density. The
Ampère–Maxwell law was used in the final step. This relation shows
that the multipolar gauge is equivalent to the Coulomb gauge only
in the absence of external currents and for static electric fields.

In the multipolar gauge, the potentials are given in terms of the
fields and their derivatives at the selected expansion point, which
seems to eliminate any gauge freedom. However, this is incorrect.
The gauge freedom is retained in the free choice of the expansion
point. Consider now the gauge transformation taking us from poten-
tials (Aa, ϕa), defined with respect to expansion point a, to a new

set of potentials (Ab, ϕb), defined with respect to expansion point b.
Clearly, the gauge function χa→b satisfies

∂tχa→b(r, t) = ϕa(r, t) − ϕb(r, t), (B15)

∇χa→b(r, t) = Ab(r, t) −Aa(r, t). (B16)

Starting from Eq. (B15), we find that

∇∂tχa→b(r, t) =
∞

∑
n=1

n
(n + 1)!{[(δb ⋅∇′)

n−1
∇
′(δb ⋅ E(r′, t))]

r′=b

−[(δa ⋅∇′)
n−1
∇
′(δa ⋅ E(r′, t))]

r′=a
}

+
∞

∑
n=0

1
(n + 1)!{[(δb ⋅∇′)

nE(r′, t)]r′=b

−[(δa ⋅∇′)
nE(r′, t)]r′=a}. (B17)

On the other hand, starting from Eq. (B16), we find that

∂t∇χa→b(r, t) =
∞

∑
n=1

n
(n + 1)!{[(δb ⋅∇′)

n−1
∇
′(δb ⋅ E(r′, t))]

r′=b

−[(δa ⋅∇′)
n−1
∇
′(δa ⋅ E(r′, t))]

r′=a
}

−
∞

∑
n=1

n
(n + 1)!{[(δb ⋅∇′)

nE(r′, t)]r′=b

−[(δa ⋅∇′)
nE(r′, t)]r′=a},

where we have used Faraday’s law

∇ × E + ∂tB = 0. (B18)

Due to the commutation of space and time derivatives, the two
expressions should be the same, provided that the potentials at the
two expansion points are related by a gauge transformation. At
first sight, this does not seem to be the case since the second sum
of the above expressions differ. However, actually calculating the
difference gives

∇∂tχa→b(r, t) − ∂t∇χa→b(r, t) =
∞

∑
n=0

1
n!
{[(δb ⋅∇′)

nE(r′, t)]r′=b

−[(δa ⋅∇′)
nE(r′, t)]r′=a} = 0,

(B19)

which is zero since the final line is the difference of the Taylor expan-
sions of E(r, t) at the two different expansion points. However, a
very important observation is that this cancellation, and hence gauge
freedom, is only assured if the expansions are not truncated.

Before closing this brief overview of the multipolar gauge, we
remark that in some sources, a distinction is made between mini-
mal coupling and multipolar Hamiltonians.18,107–111 This terminol-
ogy arises from the observation that gauge transformations in quan-
tum mechanics (also beyond) may be induced by a local unitary
transformation of the wave function52,112,113

ψ(r, t) → ψ′(r, t) = U(r, t)ψ(r, t); U(r, t) = e−
i
h̵ qχ(r,t), (B20)

where q is the particle charge, with the corresponding time-
dependent wave equation

(Ĥ(A,ϕ) − ih̵∂t)ψ(r, t) = 0 → (Ĥ′(A′,ϕ′) − ih̵∂t)ψ′(r, t) = 0
(B21)
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expressed in terms of a transformed Hamiltonian

Ĥ′ = UĤU−1 − ih̵U∂t(U−1) = UĤU−1 + q∂tχ (B22)

with potentials

A′ = A −∇χ, ϕ′ = ϕ + ∂tχ. (B23)

Accordingly, the multipolar or Power–Zienau–Woolley Hamilto-
nian114–118 is obtained from transforming the non-relativistic min-
imal coupling Hamiltonian by using the multipolar gauge function
[Eq. (B4)]. However, this is possibly misleading terminology since
minimal coupling is a general procedure for coupling particles to
fields,33,46 and indeed, the multipolar Hamiltonian can equivalently
be obtained by plugging in the multipolar gauge potentials [Eq. (B9)]
into the free-particle Hamiltonian according to the principle of
minimal electromagnetic coupling.109,119

A final observation is that the transformed Hamiltonian
[Eq. (B22)] using the Baker–Campbell–Hausdorff (BCH) expan-
sion can alternatively be expressed as a sequence of increasingly
nested commutators involving the gauge function and the original
Hamiltonian

Ĥ′ = Ĥ + q∂tχ − q
i
h̵
[χ, Ĥ] − q2

2h̵2 [χ, [χ, Ĥ]] + . . . . (B24)

An illuminating example is to start from the gauge function associ-
ated with multipolar gauge [Eq. (B4)]. If we introduce the potentials
[Eq. (17)] associated with linearly polarized monochromatic light in
the Coulomb gauge, the gauge function for expansion point a = 0
can be expressed as

χ(r, t) = χ(r,ω)e−iωt + χ(r,−ω)e+iωt ;

χ(r,ω) = −Eω
2ω

∞

∑
n=0

1
(n + 1)!(ik ⋅ r)

n(r ⋅ ϵ)eiδ .
(B25)

Using Eq. (48), we find

− i
h̵
[χ(r,ω), Ĥ] = −Eω

2ω

∞

∑
n=0

1
(n + 1)!(cα ⋅ ϵ)(ik ⋅ r)

neiδ

− Eω
2ω

∞

∑
n=0

n
(n + 1)!(r ⋅ ϵ)(ik ⋅ cα)(ik ⋅ r)

n−1eiδ ,

(B26)

whereas [χ, [χ, Ĥ]] and all higher-order commutators in the BCH
expansion vanish, as can be seen from Eqs. (B25) and (B26).

Starting from the light–matter interaction operator [Eq. (12)]
in the Coulomb gauge,

V̂full(r,ω) = −e
Eω
2ω
(cα ⋅ ϵ)ei(k⋅r+δ), (B27)

we find that the transformed operator reads

V̂′(r,ω) = V̂full(r,ω) + ieωχ(r,ω) +
ie
h̵
[χ(r,ω), Ĥ]

= 1
2

iEωT̂mgeiδ = −1
2

EωT̂mg, (B28)

where we have used Eq. (46) and recognize the effective interaction
in the multipolar gauge [Eq. (38)]. The final form is obtained by
setting the phase δ = π/2 in accordance with the phase convention

Eq. (24). This derivation thereby demonstrates that the change from
velocity to length representation, Eq. (22) and its generalization in
Eq. (50), is obtained by a gauge transformation.

APPENDIX C: THE TRIVARIATE BETA FUNCTION
In this appendix, we demonstrate the integral representation

[Eq. (66)] of the trivariate beta function. We start from the integral
representation of the gamma function,120

Γ(a) = 2∫
∞

0
e−x2

x2a−1dx, (C1)

and consider the triple product

Γ(a)Γ(b)Γ(c) = 8∫
∞

0
∫
∞

0
∫
∞

0
e−(x2+y2+z2

)x2a−1y2b−1z2c−1dxdydz.

(C2)

Noting that the integration is limited to the (+, +, +) octant of
Euclidean space, we switch to spherical coordinates

Γ(a)Γ(b)Γ(c) = 8∫
π/2

0
∫

π/2

0
∫
∞

0
e−r2

r2(a+b+c)−3

× e2a−1
r;x e2b−1

r;y e2c−1
r:z r2 sin θdrdθdϕ, (C3)

= 4Γ(a + b + c)∫
π/2

0
∫

π/2

0
e2a−1

r;x e2b−1
r;y e2c−1

r;z

× sin θdθdϕ, (C4)

which leads directly to the introduction of the trivariate beta func-
tion and its integral representation as given in Eq. (66).

APPENDIX D: SPECIFIC INTEGRALS OVER FULL
AND TRUNCATED LIGHT–MATTER INTERACTION

In the test case analyzed in Sec. IV B 2, the wave k and polariza-
tion ϵ vectors are oriented along the y- and z-axes, respectively, such
that the full and truncated effective interaction operators at order
n are given by Eq. (72). We want to study the convergence of the
underlying AO-integrals over the truncated interaction toward the
corresponding AO-integral over the full interaction. These involve
only the scalar parts of the operators, so in practice, we study the
expression

⟨χμ∣e+iky∣χν⟩ =
∞

∑
n=0

(ik)n

n!
⟨χμ∣yn∣χν⟩, (D1)

where χμ and χν are scalar basis functions. We shall limit attention
to py functions since the largest integrals in our study involved such
basis functions with diffuse exponents.

The calculations presented in this paper are based on Cartesian
Gaussian-type orbitals (CGTOs) [Eq. (75)]. With these basis func-
tions, the volume integrals on both sides of Eq. (D1) factorize into
integrals over the three Cartesian components. After elimination of
common factors, Eq. (D1) reduces to

⟨Gα1
j1
∣e+iky∣Gα2

j2
⟩

y
=
∞

∑
n=0

(ik)n

n!
⟨Gα1

j1
∣yn∣Gα2

j2
⟩

y
; Gα

j = Nα
j yje−αy2

. (D2)
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The left-hand side integral corresponds to a Fourier transform. To
evaluate the integral, we use the formula121

F [e−αy2

](k) = ∫
+∞

−∞

e−αy2

eikydy =
√π

α
e−k2

/4α, (D3)

as well as

(−i∂k)nF [ f (y)](k) = ∫
+∞

−∞

ynf (y)eikydy, (D4)

to obtain

⟨Gα1
j1
∣e+iky∣Gα2

j2
⟩

y
= Nα1

j1
Nα2

j2

√
π

α1 + α2
( i

2
√
α1 + α2

)
j1+j2

e−Q2

H(j1+j2)(Q)

(D5)

in terms of Hermite polynomials Hj and the dimensionless parame-
ter Q [Eq. (78)]. For the right-hand side integral, we obtain

⟨Gα1
j1
∣yn∣Gα2

j2
⟩

y
= Nα1

j1
Nα2

j2

1
2
[1 + (−1)(j1+j2+n)]

× (α1 + α2)−(j1+j2+n+1)/2Γ( j1 + j2 + n + 1
2

), (D6)

where we have used the integral representation of the gamma func-
tion

Γ(a) = 2∫
∞

0
x2a−1e−x2

dx. (D7)

In our particular case, we have j1 = j2 = 1, and so, one sees from
the expression in square brackets of Eq. (D6) that only even n = 2m
contributions will be non-zero. Again eliminating common factors,
we arrive at Eq. (77).

Further insight is provided by comparing with corresponding
integrals obtained with Slater-type orbitals (STOs). We shall again
limit attention to py functions, which we express as

Sζy = Nζy exp[−ζr]. (D8)

In this case, factorization of integrals over Cartesian components is
no longer possible. For the full interaction, we get

⟨Sζ1
y ∣e+iky∣Sζ2

y ⟩y = 32πNζ1 Nζ2 ζ̄(ζ̄
2 − 5k2)[ζ̄2 + k2]−4

; ζ̄ = ζ1 + ζ2,

(D9)

where we have used the Fourier transform121

F [e−ζr](k) = 8π
ζ

(ζ2 + k2)2 . (D10)

For the truncated interaction, we obtain

⟨Sζ1
y ∣yn∣Sζ2

y ⟩ =
2π

n + 3
[1 − (−1)n+3]Nζ1 Nζ2 ∫

∞

0
rn+4 exp[−ζ̄r]dr,

(D11)

where the expression in square brackets, coming from angular inte-
gration, again shows that only even n = 2m contributions will be
non-zero. The radial integral is found as

∫
∞

0
r2m+4 exp[−ζ̄r]dr = ∂2m+4

ζ̄ ∫
∞

0
exp[−ζ̄r]dr

= (2m + 4)!ζ̄−(2m+5). (D12)

After elimination of common factors, Eq. (D1) may, in this case, be
expressed as

8(1 − 5Q̃2)[1 + Q̃2]−4 =
∞

∑
m=0
(−1)mãm;

ãm = Q̃2m(2m + 4)(2m + 2)(2m + 1), (D13)

where we have introduced the dimensionless variable

Q̃ = k
ζ1 + ζ2

. (D14)

As in the case of CGTOs, the right-hand side has the form of an alter-
nating series, but now, convergence becomes even more problematic
since lim

m→∞
ãm = ∞. We also note the limit

lim
m→∞

ãm+1

ãm
= Q̃2 lim

m→∞

(m + 3)(2m + 3)
(m + 1)(2m + 1) = Q̃2, (D15)

which is zero in the case of CGTOs. Numerically, we only find
convergence of the right-hand side of Eq. (D13) for Q̃ < 1.

REFERENCES
1N. E. Christensen and B. O. Seraphin, Phys. Rev. B 4, 3321 (1971).
2P. Romaniello and P. L. de Boeij, J. Chem. Phys. 122, 164303 (2005).
3K. Glantschnig and C. Ambrosch-Draxl, New J. Phys. 12, 103048 (2010).
4F. Calvo, E. Pahl, M. Wormit, and P. Schwerdtfeger, Angew. Chem., Int. Ed. 52,
7583 (2013).
5K. G. Steenbergen, E. Pahl, and P. Schwerdtfeger, J. Phys. Chem. Lett. 8, 1407
(2017).
6R. Ahuja, A. Blomqvist, P. Larsson, P. Pyykkö, and P. Zaleski-Ejgierd, Phys. Rev.
Lett. 106, 018301 (2011).
7M. Göppert-Mayer, Ann. Phys. 401, 273 (1931).
8N. H. List, J. Kauczor, T. Saue, H. J. A. Jensen, and P. Norman, J. Chem. Phys.
142, 244111 (2015).
9P. V. Demekhin, J. Phys. B: At., Mol. Opt. Phys. 47, 025602 (2014).
10T. Katsouleas and W. B. Mori, Phys. Rev. Lett. 70, 1561 (1993).
11H. R. Reiss, Prog. Quantum Electron. 16, 1 (1992).
12H. Reiss, Phys. Rev. A 63, 013409 (2000).
13G. R. Shulman, Y. Yafet, P. Eisenberger, and W. E. Blumberg, Proc. Natl. Acad.
Sci. U. S. A. 73, 1384 (1976).
14G. Dräger, R. Frahm, G. Materlik, and O. Brümmer, Phys. Status Solidi B 146,
287 (1988).
15T. Yamamoto, X-Ray Spectrom. 37, 572 (2008).
16S. D. George, T. Petrenko, and F. Neese, Inorg. Chim. Acta 361, 965 (2008).
17S. Bernadotte, A. J. Atkins, and C. R. Jacob, J. Chem. Phys. 137, 204106 (2012).
18L. D. Barron and C. G. Gray, J. Phys. A: Math., Nucl. Gen. 6, 59 (1973).
19L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge
University Press, 2004).
20P. J. Lestrange, F. Egidi, and X. Li, J. Chem. Phys. 143, 234103 (2015).
21L. K. Sørensen, M. Guo, R. Lindh, and M. Lundberg, Mol. Phys. 115, 174 (2017).
22L. K. Sørensen, R. Lindh, and M. Lundberg, Chem. Phys. Lett. 683, 536 (2017).
23J. Lehtola, M. Hakala, A. Sakko, and K. Hämäläinen, J. Comput. Chem. 33, 1572
(2012).
24L. K. Sørensen, E. Kieri, S. Srivastav, M. Lundberg, and R. Lindh, Phys. Rev. A
99, 013419 (2019).
25N. H. List, T. Saue, and P. Norman, Mol. Phys. 115, 63 (2017).
26M. Khamesian, I. F. Galván, M. G. Delcey, L. K. Sørensen, and R. Lindh, Annual
Reports in Computational Chemistry (Elsevier, 2019), Vol. 15, pp. 39–76.
27A. P. Markin and I. G. Kaplan, Dokl. Akad. Nauk SSSR 184, 66 (1969) (in
Russian), available at http://mi.mathnet.ru/eng/dan/v184/i1/p66.

J. Chem. Phys. 152, 184110 (2020); doi: 10.1063/5.0003103 152, 184110-21

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1103/physrevb.4.3321
https://doi.org/10.1063/1.1884985
https://doi.org/10.1088/1367-2630/12/10/103048
https://doi.org/10.1002/anie.201302742
https://doi.org/10.1021/acs.jpclett.7b00354
https://doi.org/10.1103/physrevlett.106.018301
https://doi.org/10.1103/physrevlett.106.018301
https://doi.org/10.1002/andp.19314010303
https://doi.org/10.1063/1.4922697
https://doi.org/10.1088/0953-4075/47/2/025602
https://doi.org/10.1103/physrevlett.70.1561
https://doi.org/10.1016/0079-6727(92)90008-j
https://doi.org/10.1103/physreva.63.013409
https://doi.org/10.1073/pnas.73.5.1384
https://doi.org/10.1073/pnas.73.5.1384
https://doi.org/10.1002/pssb.2221460130
https://doi.org/10.1002/xrs.1103
https://doi.org/10.1016/j.ica.2007.05.046
https://doi.org/10.1063/1.4766359
https://doi.org/10.1088/0305-4470/6/1/006
https://doi.org/10.1063/1.4937410
https://doi.org/10.1080/00268976.2016.1225993
https://doi.org/10.1016/j.cplett.2017.05.003
https://doi.org/10.1002/jcc.22987
https://doi.org/10.1103/physreva.99.013419
https://doi.org/10.1080/00268976.2016.1187773
https://doi.org/10.1016/bs.arcc.2019.08.004
https://doi.org/10.1016/bs.arcc.2019.08.004
http://mi.mathnet.ru/eng/dan/v184/i1/p66


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

28A. P. Markin and I. G. Kaplan, Sov. Phys. JETP 37, 216 (1973), available at
http://www.jetp.ac.ru/cgi-bin/e/index/e/37/2/p216.
29G. M. Seabra, I. G. Kaplan, and J. V. Ortiz, J. Chem. Phys. 123, 114105 (2005).
30I. E. Brumboiu, O. Eriksson, and P. Norman, J. Chem. Phys. 150, 044306 (2019).
31M.-X. Wang, S.-G. Chen, H. Liang, and L.-Y. Peng, Chin. Phys. B 29, 013302
(2020).
32DIRAC, a relativistic ab initio electronic structure program, release DIRAC19,
written by A. S. P. Gomes, T. Saue, L. Visscher, H. J. Aa. Jensen, and R. Bast,
with contributions from I. A. Aucar, V. Bakken, K. G. Dyall, S. Dubillard,
U. Ekström, E. Eliav, T. Enevoldsen, E. Faßhauer, T. Fleig, O. Fossgaard, L. Hal-
bert, E. D. Hedegård, B. Heimlich-Paris, T. Helgaker, J. Henriksson, M. Iliaš, Ch.
R. Jacob, S. Knecht, S. Komorovský, O. Kullie, J. K. Lærdahl, C. V. Larsen, Y. S.
Lee, H. S. Nataraj, M. K. Nayak, P. Norman, G. Olejniczak, J. Olsen, J. M.
H. Olsen, Y. C. Park, J. K. Pedersen, M. Pernpointner, R. di Remigio, K. Ruud,
P. Sałek, B. Schimmelpfennig, B. Senjean, A. Shee, J. Sikkema, A. J. Thorvald-
sen, J. Thyssen, J. van Stralen, M. L. Vidal, S. Villaume, O. Visser, T. Winther,
and S. Yamamoto, available at https://doi.org/10.5281/zenodo.3572669, see also
http://www.diracprogram.org, 2019.
33M. Gell-Mann, Il Nuovo Cimento 4, 848 (1956).
34K. Schwarzschild, Gött. Nach., Math.-Phys. Kl. 1903, 126, available at
http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002499665.
35T. Saue, Adv. Quantum Chem. 48, 383 (2005).
36P. Norman, K. Ruud, and T. Saue, Principles and Practices of Molecular Proper-
ties: Theory, Modeling and Simulations (Wiley, Hoboken, NJ, 2018).
37P. Atkins, Molecular Quantum Mechanics (Oxford University Press, 1996).
38C. Cohen-Tannoudji and D. Guéty-Odelin, Advances in Atomic Physics: An
Overview (World Scientific, 2011), pp. 33–151.
39P. A. M. Dirac, The Principles of Quantum Mechanics, International Series
of Monographs on Physics (Oxford, England) (Clarendon Press, Oxford, 1930),
p. 232.
40G. Breit, Proc. Natl. Acad. Sci. U. S. A. 14, 553 (1928).
41T. Saue, ChemPhysChem 12, 3077 (2011).
42C. W. Bauschlicher, Jr. and S. R. Langhoff, Theor. Chim. Acta 79, 93 (1991).
43T. Saue and H. J. A. Jensen, J. Chem. Phys. 111, 6211 (1999).
44D. H. Kobe, Am. J. Phys. 50, 128 (1982).
45A. M. Stewart, J. Phys. A: Math. Gen. 32, 6091 (1999).
46T. Saue, in Relativistic Electronic Structure Theory. Part 1. Fundamentals, edited
by P. Schwerdtfeger (Elsevier, Amsterdam, 2002). p. 332.
47F. Bloch, in W. Heisenberg und die Physik unserer Zeit, edited by F. Bopp
(Vieweg & Sohn, Braunschweig, 1961).
48P. Lazzeretti, Theor. Chim. Acta 87, 59 (1993).
49W. E. Brittin, W. R. Smythe, and W. Wyss, Am. J. Phys. 50, 693 (1982).
50B. -S. K. Skagerstam, Am. J. Phys. 51, 1148 (1983).
51C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons et Atomes
(Savoirs Actuels, New York, 1987).
52J. D. Jackson and L. B. Okun, Rev. Mod. Phys. 73, 663 (2001).
53R. Bast, J. Jusélius, and T. Saue, Chem. Phys. 356, 187 (2009).
54V. I. Lebedev, USSR Comput. Math. Math. Phys. 15, 44 (1975).
55V. I. Lebedev, USSR Comput. Math. Math. Phys. 16, 10 (1976).
56V. I. Lebedev, Sib. Math. J. 18, 99 (1977).
57V. I. Lebedev and A. L. Skorokhodov, Russ. Acad. Sci. Dokl. Math. 45, 587
(1992), available at https://zbmath.org/?q=an%3A0795.41026.
58V. I. Lebedev, Russ. Acad. Sci. Dokl. Math. 50, 283 (1995), available at
https://zbmath.org/?q=an%3A0863.41018.
59V. I. Lebedev and D. N. Laikov, Dokl. Math. 59, 477–481 (1999), avail-
able at https://zbmath.org/?q=an%3A0960.65029, angular quadrature parameters
available from http://server.ccl.net/cca/software/SOURCES/FORTRAN/Lebedev-
Laikov-Grids/index.shtml.
60E. A. Kearsley and J. T. Fong, J. Res. Nat. Bur. Stand. B. Math. Sci. 79B, 49 (1975).
61D. L. Andrews and T. Thirunamachandran, J. Chem. Phys. 67, 5026 (1977).
62D. L. Andrews and W. A. Ghoul, J. Phys. A: Math. Gen. 14, 1281 (1981).
63D. L. Andrews and N. P. Blake, J. Phys. A: Math. Gen. 22, 49 (1989).
64D. H. Friese, M. T. P. Beerepoot, and K. Ruud, J. Chem. Phys. 141, 204103
(2014).

65J.-H. Ee, D.-W. Jung, U.-R. Kim, and J. Lee, Eur. J. Phys. 38, 025801 (2017).
66H. Weyl, The Classical Groups (Princeton University Press, 1939).
67P. G. Hodge, Am. Math. Monthly 68, 793 (1961).
68H. Jeffreys, Math. Proc. Cambridge Philos. Soc. 73, 173 (1973), Jeffreys acknowl-
edges previous work by M. Pastori.
69G. F. Smith, Tensor 19, 79 (1968).
70R. S. Rivlin, J. Ration. Mech. Anal. 4, 681 (1955).
71See http://oeis.org/A005043 for information about Motzkin sums.
72M. Stener, G. Fronzoni, and M. de Simone, Chem. Phys. Lett. 373, 115
(2003).
73C. South, A. Shee, D. Mukherjee, A. K. Wilson, and T. Saue, Phys. Chem. Chem.
Phys. 18, 21010 (2016).
74J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
75C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
76K. G. Dyall, J. Phys. Chem. A 113, 12638 (2009).
77K. G. Dyall, Theor. Chem. Acc. 131, 1217 (2012).
78L. Visscher, Theor. Chem. Acc. 98, 68 (1997).
79L. Visscher and K. G. Dyall, At. Data Nucl. Data Tables 67, 207 (1997).
80A. D. Becke, Phys. Rev. A 38, 3098 (1988).
81J. P. Perdew, Phys. Rev. B 33, 8822 (1986); Erratum, 34, 7406 (1986).
82E. Van Lenthe and E. J. Baerends, J. Comput. Chem. 24, 1142 (2003).
83J.-M. Lévy-Leblond, Commun. Math. Phys. 6, 286 (1967).
84W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 56, 2257 (1972).
85P. C. Hariharan and J. A. Pople, Theor. Chim. Acta 28, 213 (1973).
86M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees,
and J. A. Pople, J. Chem. Phys. 77, 3654 (1982).
87V. A. Rassolov, J. A. Pople, M. A. Ratner, and T. L. Windus, J. Chem. Phys. 109,
1223 (1998).
88M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J.
R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li,
M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Men-
nucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-
Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Hen-
derson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang,
M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr.,
J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin,
V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.
P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene,
C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J.
B. Foresman, and D. J. Fox, GAUSSIAN 16, Revision C.01, Gaussian, Inc.Wallingford,
CT, 2016.
89T. Glaser, B. Hedman, K. O. Hodgson, and E. I. Solomon, Acc. Chem. Res. 33,
859 (2000).
90E. I. Solomon, B. Hedman, K. O. Hodgson, A. Dey, and R. K. Szilagyi, Coord.
Chem. Rev. 249, 97 (2005).
91S. DeBeer George, P. Brant, and E. I. Solomon, J. Am. Chem. Soc. 127, 667
(2005).
92J. A. Bearden and A. F. Burr, Rev. Mod. Phys. 39, 125 (1967).
93Mathematica, Version 11.3, Wolfram Research, Inc., Champaign, IL, 2018.
94T. Helgaker and P. R. Taylor, HERMIT, A Molecular Integral Code, University
of Oslo, Oslo, Norway, 1986.
95R. Bast, H. J. A. Jensen, and T. Saue, Int. J. Quantum Chem. 109, 2091 (2009).
96H. Sambe, Phys. Rev. A 7, 2203 (1973).
97O. Christiansen, P. Jørgensen, and C. Hättig, Int. J. Quantum Chem. 68, 1
(1998).
98N. Rösch, Chem. Phys. 80, 1 (1983).
99T. Saue and H. J. A. Jensen, J. Chem. Phys. 118, 522 (2003).
100P. Jørgensen and J. Linderberg, Int. J. Quantum Chem. 4, 587 (1970).
101P. Jorgensen, Annu. Rev. Phys. Chem. 26, 359 (1975).
102M. Casida, in Recent Advances in Density Functional Methods: Part I, edited by
D. P. Chong (World Scientific, Singapore, 1995), p. 155.
103D. Peng, W. Zou, and W. Liu, J. Chem. Phys. 123, 144101 (2005).

J. Chem. Phys. 152, 184110 (2020); doi: 10.1063/5.0003103 152, 184110-22

Published under license by AIP Publishing

https://scitation.org/journal/jcp
http://www.jetp.ac.ru/cgi-bin/e/index/e/37/2/p216
https://doi.org/10.1063/1.2043087
https://doi.org/10.1063/1.5083649
https://doi.org/10.1088/1674-1056/ab5c10
https://doi.org/10.5281/zenodo.3572669
http://www.diracprogram.org
https://doi.org/10.1007/bf02748000
http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002499665
https://doi.org/10.1016/s0065-3276(05)48020-x
https://doi.org/10.1073/pnas.14.7.553
https://doi.org/10.1002/cphc.201100682
https://doi.org/10.1007/bf01127098
https://doi.org/10.1063/1.479958
https://doi.org/10.1119/1.13029
https://doi.org/10.1088/0305-4470/32/33/307
https://doi.org/10.1007/bf01113529
https://doi.org/10.1119/1.12731
https://doi.org/10.1119/1.13109
https://doi.org/10.1103/revmodphys.73.663
https://doi.org/10.1016/j.chemphys.2008.10.040
https://doi.org/10.1016/0041-5553(75)90133-0
https://doi.org/10.1016/0041-5553(76)90100-2
https://doi.org/10.1007/bf00966954
https://zbmath.org/?q=an%3A0795.41026
https://zbmath.org/?q=an%3A0863.41018
https://zbmath.org/?q=an%3A0960.65029
http://server.ccl.net/cca/software/SOURCES/FORTRAN/Lebedev-Laikov-Grids/index.shtml
http://server.ccl.net/cca/software/SOURCES/FORTRAN/Lebedev-Laikov-Grids/index.shtml
https://doi.org/10.6028/jres.079b.005
https://doi.org/10.1063/1.434725
https://doi.org/10.1088/0305-4470/14/6/008
https://doi.org/10.1088/0305-4470/22/1/011
https://doi.org/10.1063/1.4901563
https://doi.org/10.1088/1361-6404/aa54ce
https://doi.org/10.2307/2311997
https://doi.org/10.1017/s0305004100047587
https://doi.org/10.1007%2F978-1-4612-2416-7_62
http://oeis.org/A005043
https://doi.org/10.1016/s0009-2614(03)00543-8
https://doi.org/10.1039/c6cp00262e
https://doi.org/10.1039/c6cp00262e
https://doi.org/10.1103/physrevlett.77.3865
https://doi.org/10.1063/1.478522
https://doi.org/10.1021/jp905057q
https://doi.org/10.1007/s00214-012-1217-8
https://doi.org/10.1007/s002140050280
https://doi.org/10.1006/adnd.1997.0751
https://doi.org/10.1103/physreva.38.3098
https://doi.org/10.1103/physrevb.33.8822
https://doi.org/10.1103/physrevb.34.7406.3
https://doi.org/10.1002/jcc.10255
https://doi.org/10.1007/bf01646020
https://doi.org/10.1063/1.1677527
https://doi.org/10.1007/bf00533485
https://doi.org/10.1063/1.444267
https://doi.org/10.1063/1.476673
https://doi.org/10.1021/ar990125c
https://doi.org/10.1016/j.ccr.2004.03.020
https://doi.org/10.1016/j.ccr.2004.03.020
https://doi.org/10.1021/ja044827v
https://doi.org/10.1103/revmodphys.39.125
https://doi.org/10.1002/qua.22065
https://doi.org/10.1103/physreva.7.2203
https://doi.org/10.1002/(SICI)1097-461X(1998)68:1<1::AID-QUA1>3.0.CO;2-Z
https://doi.org/10.1016/0301-0104(83)85163-5
https://doi.org/10.1063/1.1522407
https://doi.org/10.1002/qua.560040606
https://doi.org/10.1146/annurev.pc.26.100175.002043
https://doi.org/10.1063/1.2047554


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

104F. Wang, T. Ziegler, E. van Lenthe, S. van Gisbergen, and E. J. Baerends,
J. Chem. Phys. 122, 204103 (2005).
105D. H. Kobe, Am. J. Phys. 51, 105 (1983).
106D. H. Kobe and R. Dale Gray, Il Nuovo Cimento B 86, 155 (1985).
107E. A. Power and T. Thirunamachandran, Phys. Lett. A 87, 449 (1982).
108Molecules in Laser Fields, edited by A. D. Bandrauk (Marcel Dekker, 1994).
109V. Chernyak and S. Mukamel, Chem. Phys. 198, 133 (1995).
110A. Salam, Phys. Rev. A 56, 2579 (1997).
111R. Anzaki, Y. Shinohara, T. Sato, and K. L. Ishikawa, Phys. Rev. A 98, 063410
(2018).
112V. Fock, Z. Phys. 39, 226 (1926).
113V. A. Fock - Selected Works: Quantum Mechanics and Quantum Field Theory,
edited by L. Faddeev, L. Khalfin, and I. Komarov (CRC Press, 2019).

114E. A. Power and S. Zienau, Philos. Trans. R. Soc., A 251, 427 (1959).
115P. W. Atkins, R. G. Woolley, and C. A. Coulson, Philos. Trans. R. Soc., A 319,
549 (1970).
116R. G. Woolley and C. A. Coulson, Philos. Trans. R. Soc., A 321, 557 (1971).
117E. Rousseau and D. Felbacq, Sci. Rep. 7, 11115 (2017).
118D. L. Andrews, G. A. Jones, A. Salam, and R. G. Woolley, J. Chem. Phys. 148,
040901 (2018).
119M. Babiker, R. Loudon, and G. W. Series, Philos. Trans. R. Soc., A 385, 439
(1983).
120G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical Methods for Physicists
(Academic Press, Amsterdam, 2013).
121R. S. Strichartz, A Guide to Distribution Theory and Fourier Transforms (CRC
Press, Boca Raton, 1993), pp. 41, 50.

J. Chem. Phys. 152, 184110 (2020); doi: 10.1063/5.0003103 152, 184110-23

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.1899143
https://doi.org/10.1119/1.13463
https://doi.org/10.1007/bf02721529
https://doi.org/10.1016/0375-9601(82)90755-1
https://doi.org/10.1016/0301-0104(95)00122-5
https://doi.org/10.1103/physreva.56.2579
https://doi.org/10.1103/physreva.98.063410
https://doi.org/10.1007/bf01321989
https://doi.org/10.1098/rsta.1959.0008
https://doi.org/10.1098/rspa.1970.0192
https://doi.org/10.1098/rspa.1971.0049
https://doi.org/10.1038/s41598-017-11076-5
https://doi.org/10.1063/1.5018399
https://doi.org/10.1098/rspa.1983.0022

