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Abstract

Non-pharmaceutical interventions have been implemented worldwide to curb the
spread of COVID-19. However, the effectiveness of such governmental measures in
reducing the mortality burden remains a key question of scientific interest and public
debate. In this study, we leverage digital mobility data to assess the effects of reduced
human mobility on excess mortality, focusing on regional data in England and Wales
between February and August 2020. We estimate a robust association between mobil-
ity reductions and lower excess mortality, after adjusting for time trends and regional
differences in a mixed-effects regression framework and considering a five-week lag be-
tween the two measures. We predict that, in the absence of mobility reductions, the
number of excess deaths could have more than doubled in England and Wales during
this period, especially in the London area. The study is one of the first attempts to
quantify the effects of mobility reductions on excess mortality during the COVID-19
pandemic.

Keywords: SARS-CoV-2 · non-pharmaceutical interventions · human mobility · digital trace data

1 Introduction

After the first cases of COVID-19 were identified in Wuhan City, China, in December 2019, the
outbreak rapidly spread globally reaching pandemic proportions. As of December 27, 2020, over
79 million cases of infections and 1.75 million deaths have been reported worldwide (World Health
Organization, 2021), although these values are likely underestimated due to cross-country differ-
ences in disease monitoring and reporting, asymptomatic cases, medically unattended cases, and
deaths indirectly related to COVID-19 (Havers et al., 2020; Pullano et al., 2020).

Local and national governments across the globe implemented various non-pharmaceutical in-
terventions (NPIs) aimed at reducing human mobility and close contacts in the population and,
consequently, the probability of transmission of the SARS-CoV-2 virus. These measures include
travel bans, cancellations of public gatherings, social distancing, school closures, recommendations
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to work from home and stay at home, and nationwide lockdowns (Brauner et al., 2020; Hale et al.,
2020). In Europe, such interventions were introduced in the first half of 2020, with considerable
cross-country differences in terms of strictness, timing and duration. Most of these measures were
then lifted during the summer as the number of new infections and deaths declined, but also to
alleviate their long-term socioeconomic costs on society and citizens. A second wave of infections
and deaths prompted the re-introduction of NPIs after the summer, again with different strategies
across Europe (Kupferschmidt, 2020).

A growing body of literature has documented the link between the introduction of NPIs and
the reduction of the SARS-CoV-2 virus’ transmission (Brauner et al., 2020; Davies et al., 2020;
Dehning et al., 2020; Flaxman et al., 2020; Hsiang et al., 2020) and the human cost of letting the
virus spread unchecked (Buss et al., 2021). However, it still remains unclear how to measure the
effectiveness of such interventions in alleviating the mortality burden of COVID-19. Estimating
the impact of NPIs on mortality reductions is critical for policy makers to make informed decisions,
in the context of both current and future pandemics.

In this article, we study the relationship between human mobility and excess mortality at
the sub-national level in England and Wales during the first wave of the COVID-19 pandemic,
specifically from February 15 to August 14, 2020. Note that at the time of writing (February
2021), the second wave of infections and deaths is still unfolding in the UK and the inclusion
of these data could lead to misleading findings. Approximately 51,500 COVID-19 deaths were
registered during this period of time (Office for National Statistics, 2020b), which includes almost
one month before any NPIs were put in place. The British government applied various mobility
restrictions strategies between March 12 and 24, 2020, including encouragement of social distancing,
closure of schools, ban of public events, and total lockdown (Cameron-Blake et al., 2020; Flaxman
et al., 2020). The goal of this paper is to estimate the impact of these governmental decisions, and
consequent reduction in human movements, on excess all-cause mortality.

Human mobility plays a key role in the spread of infectious diseases (Riley, 2007; Tatem et al.,
2006; Wilson, 1995). In our contemporary societies, where millions of people travel and commute
every day within and across cities and regions, infectious diseases have the opportunity to spread
more rapidly, and on a larger scale, than ever before. Population movement can in fact increase
the disease prevalence by introducing new pathogens into susceptible populations, or by increasing
social contacts between susceptible and infected individuals (Wesolowski et al., 2016). Timely,
accurate, and comparative data on human mobility are therefore critical for informing public
health interventions, but generally not available or easily accessible, and the ongoing COVID-
19 pandemic has once again amplified this long-standing issue. Recent work has highlighted the
potential benefits of harnessing geo-located smartphone data to inform policy makers (Oliver et al.,
2020) and to assess the impact of mobility restrictions on social distancing in near real-time (Badr
et al., 2020; Davies et al., 2020; Pepe et al., 2020; Schlosser et al., 2020).

In this study, we exploit a publicly available human mobility dataset, the Google COVID-19
Mobility Reports (GCMR) (Google LLC, 2021). The GCMR reports changes in mobility of Google
Maps users across different categories (e.g. supermarkets and pharmacies, workplaces, residential
areas) with respect to the start of 2020. This dataset has been leveraged to monitor national
mobility in the United Kingdom following the implementation of NPIs (Drake et al., 2020), and it
has been employed (alongside social contacts data) to estimate the effect of tiered restrictions in
England and the lockdown in Wales implemented in October 2020 (Davies et al., 2020).

We model the association between the reduction in human mobility and the excess all-cause
mortality during the first wave of the COVID-19 pandemic. Given the high uncertainty surrounding
the number of infections and deaths, we choose to estimate excess mortality, which indicates the
number of deaths above what would be expected in a non-crisis period. This measure overcomes
potential issues of incorrect death classification and registration, and is largely considered the
best indicator of the pandemic’s impact on mortality (Kontis et al., 2020; National Academies of
Sciences, Engineering, and Medicine, 2020). Given that changes in mobility are not immediately
reflected in changes in mortality, we analyse different time lags between the two measures to
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calibrate the length of the expected delay in the effect of mobility restrictions on mortality. We
expect reduction in mobility to first decrease the number of close social contacts in the population,
leading to fewer new infections and, eventually, fewer deaths.

2 Material and methods

2.1 Data

We employ two data sources in our study: the UK Office for National Statistics (ONS) for mor-
tality and population data, and the Google COVID-19 Community Mobility Reports (GCMR) for
mobility data.

The ONS reports the weekly number of deaths registered in England and Wales, broken down
by age group, sex and region of usual residence (Office for National Statistics, 2021). In the
ONS classification, weekly data do not refer to calendar weeks, but to rolling 7-day periods, from
Saturday to Friday, and we keep this notation throughout the article. For our purposes, we retrieve
the weekly number of deaths by region for the years 2015–2020. We consider a total of ten regions
based on the NUTS-1 (Nomenclature of Territorial Units for Statistics) subdivision, namely Wales
plus nine regions in England (North East, North West, Yorkshire and The Humber, East Midlands,
West Midlands, East, London, South East and South West). We focus our analysis on the first
wave of the COVID-19 pandemic, hence we use data until week 2020-33 (i.e. until August 14,
2020). We obtain data on total population in each region for the years 2015–2019 from the ONS
(Office for National Statistics, 2020a).

The GCMR reports daily mobility data in six categories of location: residential, workplaces,
supermarket and pharmacy (grocery), transit, retail, and parks (Google LLC, 2021). Data are
provided as percentage variations in number of visits or time spent in each category, relative to a
pre-COVID-19 baseline period, defined from January 3 to February 6, 2020. The data account for
weekly seasonality of movement by estimating a set of seven baseline weekdays using the median
value for each particular weekday during the 5-week baseline period. Daily relative change is
estimated as the percentage change with respect to the corresponding baseline weekday for any
given report date. To protect users’ privacy, absolute mobility values are not available.

We obtain mobility data for each category of the GCMR for 108 sub-national regions (the
GCMR’s sub region 1 variable), covering a geographic area inhabited by 99% of the population of
England and Wales, from February 15 (the first available date in the dataset) to August 14, 2020.
We aggregate the GCMR data by week (from Saturday to Friday, for consistency with mortality
data) and region (taking the weighted average across all counties belonging to a given region, with
weights equal to their population sizes) to make it comparable to the mortality data.

Relying on a fixed baseline period ignores yearly seasonality of movement, which may be af-
fected by weather patterns, national holidays, vacation periods, etc. Important bank holidays,
extreme weather events, or other major events during the 5-week long baseline period can affect
the estimates of future relative changes in visits to grocery stores. We have no access to the raw
mobility data used to produce the GCMR, but we find no evidence of any major events in England
or Wales that could have systematically biased the Google mobility data during the baseline period.
Furthermore, the baseline week is based on the median value, which would be largely unaffected
by short-lived temporary fluctuations in absolute mobility values. Finally, the baseline period is
not affected by restrictions on movement, which where first introduced on March 12, 2020.

2.2 Computing excess mortality

Weekly mortality data generally show strong cyclical behavior. As such, we opt for a modulation
model that accounts for seasonal patterns using week-specific coefficients for the death counts.

For a given region, let D = (dw,t) denote a matrix containing the registered number of deaths
in week w = 1, . . . , 53 and year t = 2015, . . . , 2020, i.e., weekly registered deaths from week 2015-01
to week 2020-33. In alternative to the conventional Poisson distribution, we assume that the dw,t
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are realisations of a random variable Dw,t that follows a Negative Binomial distribution. We thus
allow for the overdispersion typically displayed in mortality data, i.e., the variance associated with
the process is expected to be larger than what would be implied by the expected value in a Poisson
model. The main source of overdispersion in the data is likely the varying strength of the seasonal
pattern, which is mainly due to variation in the yearly influenza epidemics.

Let µw,t = E (Dw,t) denote the expected value of the Negative Binomial process. We model
the expected number of deaths using a Generalized Additive Model (GAM) with logarithmic link,
exposures as offset, and time-specific covariates:

ln(µw,t) = ln(ew,t) + f(xw,t) + α0 + αw, (1)

where ew,t denotes the exposure to the risk of death, the function f(·) is a smooth function over the
observations xw,t = 1, . . . ,m, where m denotes the total number of observations, α0 is an intercept
and αw are week-specific coefficients. To ensure identifiability of the αw coefficients, the first week
is taken as the reference group (i.e. α1 = 1). Exposures over weeks and years are obtained by
linear interpolation of mid-year populations in years t = 2015, . . . , 2019 and linear extrapolation
for the year 2020.

Whereas the coefficients αw capture the typical pattern of mortality in registered week w
(including cyclical behavior of weekly mortality data, bank holidays effects, etc.), the smooth time
component aims to describe long-term mortality trends. Given that mortality data are recorded
by registration rather than occurrence, such a specification provides a better description of the
data than including trigonometric functions for the seasonal pattern of deaths. Estimation of the
model described in Equation (1) is performed in R (R Development Core Team, 2020) using the
mgcv package (Wood, 2019).

For each region independently, we model data for the pre-pandemic period (from week 2015-01
to week 2020-06, corresponding to a total of m = 267 observations) and predict the expected
number of deaths d̂w for the COVID-19 period (from week 2020-07 to week 2020-33). We use week
2020-06 as last estimated week before prediction for consistency with the Google mobility data,
for which the baseline period runs from week 2020-02 to week 2020-06. Consequently, the effect of
the pandemic is not captured by the time trend of the model, and d̂w,2020 for the predicted weeks
could be interpreted as the number of deaths that would have occurred in 2020 in the absence of
the COVID-19 pandemic.

This approach allows us to readily evaluate the excess number of deaths δ̂w for the weeks 07–33
in 2020 as the difference between the observed and the expected ones, i.e. δ̂w = dw − d̂w. In order
to account for regional differences in population, we then compute the excess mortality rate, or per
capita excess mortality, yw = δ̂w/ew, dividing excess deaths by the (extrapolated) region-specific
exposures in week w of 2020.

In addition to fitting the GAM, we perform a sensitivity analysis on the computation of the
excess mortality rate. In particular, we derive another estimate of yw by computing, for each week,
the expected number of deaths as the average of the observed deaths between 2015 and 2019.

2.3 Combining Google categories into a single index

For each region analysed in the paper, we aim to extract the most relevant signals from the
different categories of the GCMR by merging them into a single “Combined Google index”. Ideally,
all three dimensions of the GCMR (Google categories, regions and time) should be considered
simultaneously. This rules out region-independent principal component analysis (PCA) of the
mobility data over time. A solution is instead given by a multilinear principal component analysis
(MPCA) (Lu et al., 2008). Whereas standard PCA reduces the dimensionality of a two-dimensional
data set, MPCA allows to extract features of a multidimensional object such as the GCMR. In
both approaches, the goal is to retain as much as possible the variation present in the original data
set.

To do so, we construct a tensor object (a multidimensional array) containing the three types
of data, and we extract the first component of the MPCA for the dimensions time and region. We
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thus obtain a “combined Google index” for each region over time retaining most of the information
regarding the mobility during the period analysed. In R, this can be achieved by using the rTensor
package (Li et al., 2018).

2.4 Modelling the relationship between excess mortality and mobility

Given the estimated excess mortality rate for each week and region, we intend to assess whether
an association with the change in mobility exists, and its magnitude. The spread of COVID-19
mainly occurs through contacts between infectious and susceptible individuals (Zhang et al., 2020).
Hence, a reduction in mobility should lead to a reduction in social contacts, then in the infection
spread and, ultimately, in the COVID-related mortality. However, this process requires time, as we
would expect the reduction in physical mobility observed today to possibly have an impact on the
infection spread and the related mortality in the coming weeks. This calls for the introduction of
a time lag of x weeks in the mobility data, which corresponds to the amount of time necessary for
the change in mobility to have an impact on mortality. In other words, we analyse the relationship
between excess mortality and changes in human mobility that occurred x weeks before.

Moreover, we work with rates that vary over weeks and for different regions. While the mortality
trend will be assumed to remain constant in space, we need to account for the regional heterogeneity
in excess mortality and response to mobility changes, given that data within each region are likely
correlated. This setting calls for a mixed-effects modelling approach, since we aim to know whether
an association between excess mortality and human mobility over time still exists, after controlling
for the variation across regions.

Let yr,w denote the excess mortality rate for a given region r in week w. We model yr,w as
follows:

yr,w = β0 + ur + (γ0 + γr) gr,w−x +
n∑
s=1

βsBs(w) + εr,w, (2)

where β0 is the common intercept and ur are the region-specific random intercepts, added to capture
average regional differences; γ0 is the common mobility coefficient, which can be interpreted as the
average change in per capita excess mortality for a unit change in the mobility indicator (with
respect to the baseline period), and γr are the region-specific random slopes that modify the effect
of mobility change for region r during the (lagged) week w− x, i.e., gr,w−x. Random intercepts ur
and random slopes γr are normally distributed with mean zero and variance σ2

u and σ2
γ , respectively,

with their dependence captured by the covariance term σu,γ , which allows the computation of a
model-based correlation coefficient. Evidence for σ2

u and σ2
γ being greater than zero implies the

existence of regional differences in the baseline levels of mortality and heterogeneity in the responses
to mobility changes, respectively. The baseline mortality time trend is modelled in a flexible way
using a non-parametric approach based on B-spline bases Bs, with βs denoting the associated
coefficients. Finally, εr,w is the vector of the residuals, distributed as εr,w ∼ N(0, σ2) and assumed
to be independent of the random effects ur and γr.

To account for uncertainty in the estimates, related to both the computation of excess mortality
and the mixed-effects regression in our estimates, we employ a bootstrap approach to derive 95%
pointwise confidence intervals for the model results. Specifically, we generate 1,000 simulated death
counts from the deviance residuals of the GAM; for each simulation, we compute the regression in
Equation (2) and derive fitted excess mortality rates. We fit the model in R using the lme4 package
(Bates et al., 2015), and we compute B-spline bases using the splines package (R Development
Core Team, 2020).

Finally, all data and source codes necessary for the reproducibility of our results are avail-
able at the following [blind for peer-review] repository: https://osf.io/4pfb7/?view_only=

3155acef790e4e5f8ac96f4c2c6ede71
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3 Results

3.1 Time series of excess mortality rate and Google mobility

We compute the excess mortality rate and the combined “Google mobility index” at the regional
level in England and Wales during weeks 8–33 of 2020. Figure 1 shows the time series of the two
variables in the region of London, plus: (i) a forward lag of five weeks for the mobility data, (ii)
the time period that we will analyse in our regression framework (weeks 13–33, highlighted in the
grey shaded area), and (iii) the start of NPIs on March 12 (week 11) and the enforcement of the
lockdown on March 24 (week 13).

The figure shows the drastic and sustained mobility reduction since week 11, resulting from
the various NPIs implemented between March 12 and 24, 2020. The graph also exhibits the sharp
increase in the excess mortality rate during weeks 13-22, which peaked at week 16 before returning
to levels close to zero. Finally, the five-week forward shift of the mobility data highlights the
correspondence between the decrease in (forward) mobility and the reduction in excess mortality
starting from week 17 onwards.

We provide a series of additional graphs related to these two variables in Appendix A. Specifi-
cally, the estimation of the excess mortality rate using the GAM is exemplified for two regions in
Figure A.1. Figure A.2 shows the time series of the six categories of the GCMR across the ten
regions analysed, as well as their aggregation into the combined Google index. Moreover, Figures
A.3 and A.4 report the same information shown in Figure 1 for the other nine regions under study.

March April May June July August

8 10 12 14 16 18 20 22 24 26 28 30 32

0

5

10

15

20

25

−20

−15

−10

−5

0

5

10

15

20

London

e
x
c
e

s
s
 m

o
rt

a
lit

y
 r

a
te

 (
p

e
r 

1
0

0
,0

0
0

)

c
h

a
n

g
e

 in
 G

o
o

g
le

 m
o

b
ili

ty
 in

d
e
x

start of NPIs

lockdown

5 weeks

week, month

Figure 1. Time series of excess mortality rate per 100,000 individuals (red line) and change
in Google mobility index at week t (dashed blue line) and with a five-week forward shift (solid
blue line) in the region of London during weeks 8–33 of 2020. Solid lines in the grey shaded
area correspond to values analysed as described in the “Statistical analysis” section. Vertical lines
indicate the start of NPIs on March 12 (week 11) and the lockdown ordered on March 24 (week 13),
respectively. The Google index was multiplied by 10 for illustration purposes. Source: Authors’
own elaboration based on data from Office for National Statistics (2020a, 2021) and Google LLC
(2021).

3.2 Statistical analysis

We investigate the relationship between excess mortality and mobility using a mixed-effects regres-
sion approach. To account for the delay between the two phenomena, we analyse excess mortality
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with respect to mobility changes that occurred five weeks in the past. We found this lag to be the
shortest one displaying a positive relationship between mortality and mobility (see Table A.1 as
well as Figures A.5 and A.6 in Appendix A). We perform sensitivity analysis on the lag selection,
and find that our results do not change for lags of 6 or 7 weeks (see Table A.1 in Appendix A).

We find a strong and significant association between mobility reduction and excess mortality
after five weeks, after controlling in the regression model for the pandemic time trend and for
regional differences. Table 1 reports the results of the mixed-effects regression models, considering
the combined Google index and the six categories of the GCMR independently. The models include
a smooth function of time (using 5 B-splines), as well as random intercepts and random slopes
for each region. We standardise the mobility data to aid the interpretation and comparison of the
estimated coefficients from the various models.

Table 1. Estimated coefficients and 95% confidence intervals from the linear mixed-effects re-
gression between excess mortality rate (per 100,000 individuals) and changes in mobility occurred
five weeks before, measured separately for each model with the combined Google index and the
six categories of the GCMR: grocery, workplaces, residential, transit, retail and parks. For the
parks category, we considered only random intercepts since the the model with both random inter-
cepts and slopes did not converge. Estimation is performed using restricted maximum likelihood.
Source: Authors’ own elaboration based on data from Office for National Statistics (2020a, 2021)
and Google LLC (2021).

Dependent variable: excess mortality rate (per 100,000)

Linear mixed-effects regression

Google index grocery workplaces residential transit retail parks
Fixed effects

Mobility changes
5 weeks before

3.75 2.56 3.11 -3.53 2.93 3.64 0.70

(95% CI) (2.7, 4.81) (1.78, 3.35) (2.02, 4.2) (-4.61, -2.44) (1.86, 3.99) (2.46, 4.81) (-0.15, 1.54)

Random effects
(variance)

Region (intercept) 2.67 1.82 2.31 3.11 3.46 2.47 1.45
Mobility (slope) 0.66 0.83 0.86 0.62 0.73 1.20 –
Residual 3.35 3.26 3.56 3.56 3.78 3.47 5.60

Observations 210 210 210 210 210 210 210
Groups 10 10 10 10 10 10 10
Log-Likelihood -437.42 -434.56 -443.69 -443.03 -449.61 -441.62 -480.42
AIC 896.84 891.12 909.37 908.06 921.22 905.24 978.84
BIC 933.66 927.94 946.19 944.87 958.04 942.06 1008.97

We estimate that a reduction of one standard deviation in the combined Google mobility index
is associated with a reduction of 3.75 in the excess mortality rate per 100,000 individuals five
weeks later. This is a strong effect, given that the Google index changed by almost 4 standard
deviations across all regions following the introduction of the NPIs (see Figure A.2 in Appendix
A). Moreover, five out of six categories of mobility indicators reported by Google display a similar
robust relationship with excess mortality, while the parks category is the only one which does
not display a significant association. This could be related to the greater volatility of the parks
mobility time series with respect to the other ones.

These results are robust to a series of sensitivity analysis, which are reported in Appendix B.
The estimated coefficients are robust to a change in the computation of the excess mortality rate.
The historical-based approach to estimate excess mortality is shown and compared to the GAM in
Figures B.1 and B.2, while Table B.1 reports the models’ results using this different computation
of the excess mortality rate. Similarly, the number of B-splines employed to describe the time
trend of the epidemic does not change the estimated mobility coefficients by a great extent. As a
matter of fact, our choice of 5 B-splines produces the most conservative estimate of the effect of
mobility on excess mortality (see Table B.2). Finally, the exclusion of the region of London from
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the analysis does not influence the magnitude and significance of the estimated coefficients (see
Table B.3).

It is important to analyse cross-sectional differences across regions in terms of both excess
mortality and response to mobility reductions. The regression model can account for such variations
by means of region-specific random intercepts (corresponding to different levels of excess mortality)
and random slopes (corresponding to different responses to mobility changes). Focusing on the
model with the combined Google index (here and in the remainder of the section), Figure 2 shows
that the intercept and the slope have a positive correlation of 0.77 across the regions, so that those
with larger intercepts (i.e. higher excess mortality levels) also have larger slopes (i.e. larger effects
of reduction in mobility).
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Figure 2. Estimated region-specific intercepts and mobility slopes, as well as their estimated
correlation r from the mixed-effects regression in England and Wales by region during weeks 13–
33 of 2020. Source: Authors’ own elaboration based on data from Office for National Statistics
(2020a, 2021) and Google LLC (2021).

Finally, the estimated model allows us to estimate the number of deaths averted by mobility
reductions. This is achieved by simulating a counterfactual worst-case scenario in which mobility
is assumed not to have dropped following the introduction of the NPIs but rather remained at the
levels observed before the implementation of such measures. Table 2 reports the results of this
analysis, as well as the estimates of observed excess mortality during the period analysed. The fit
of the model and the counterfactual analysis for the region of London are shown in Figure 3, and
the graphs for the remaining nine regions are shown in Figure A.7 of Appendix A. We estimate
that about 62,100 excess deaths occurred in England and Wales during the weeks 13–33 of 2020,
and that an additional 93,700 excess deaths (95% confidence intervals 85,400–102,500) would have
occurred if mobility had not reduced. These absolute estimates display expected significant regional
variations, ranging from a minimum of 3,600 excess deaths averted in North East to a maximum
of 22,200 excess deaths averted in London.

4 Discussion

Local and national governments around the world have implemented a variety of policies aimed at
reducing social contacts to curb the transmission of and deaths from COVID-19. We investigated
the relationship between excess mortality and changes in human mobility to assess the effectiveness
of non-pharmaceutical interventions. Specifically, we leveraged digital data derived from the Google
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Table 2. Population size, estimated number of excess deaths, and estimated number of deaths
averted by the mobility reductions (counterfactual analysis) with 95% confidence intervals by region
in England and Wales during weeks 13–33 of 2020. Estimates have been rounded to the nearest
hundredth to avoid giving a false sense of precision in the presence of uncertainty (as in Kontis
et al., 2020); as such, figures for the Total row may differ from the sum of the regions. Source:
Authors’ own elaboration based on data from Office for National Statistics (2020a, 2021) and
Google LLC (2021).

Region
Population

(2019)
Estimated

excess deaths
Deaths averted

(counterfactual)
95% CI

North East 2,669,941 4,100 3,600 (3,300 ; 4,100)
North West 7,341,196 9,000 12,600 (11,600 ; 13,500)
Yorkshire and The Humber 5,502,967 5,100 6,200 (5,600 ; 7,100)
East Midlands 4,835,928 4,400 5,900 (5,200 ; 6,700)
West Midlands 5,934,037 7,200 10,600 (9,700 ; 11,400)
East 6,236,072 6,300 9,500 (8,600 ; 10,500)
London 8,961,989 11,000 22,200 (20,900 ; 23,100)
South East 9,180,135 9,300 12,800 (11,700 ; 14,400)
South West 5,624,696 3,800 6,400 (5,700 ; 7,400)
Wales 3,152,879 1,900 3,800 (3,300 ; 4,400)

Total 59,439,840 62,100 93,700 (85,400 ; 102,500)
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Figure 3. Observed and estimated excess mortality rate (per 100,000 individuals) from the mixed-
effects model in the baseline and counterfactual scenarios for the region of London during weeks
13–33 of 2020. Source: Authors’ own elaboration based on data from Office for National Statistics
(2020a, 2021) and Google LLC (2021).

COVID-19 Community Mobility Reports (Google LLC, 2021) to explore the association between
mobility and excess mortality at the regional level in England and Wales.

We found a strong positive relationship between the mobility of Google Maps users and
population-level excess mortality, which is considered to be the best indicator of the impact of
the pandemic on mortality (National Academies of Sciences, Engineering, and Medicine, 2020).
Our analysis determined that a time lag of at least five weeks is needed to reveal a positive associa-
tion between mobility and mortality, while smaller lags display a negative relationship. A five-week
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time period is consistent with preliminary estimates of the disease duration from infection to death,
with the incubation period (i.e., from infection to symptom onset) that can last up to two weeks
(11.5 days with a 95% CI of 8.2 to 15.6 days (Lauer et al., 2020)), and the course of disease (i.e.,
from symptom onset to death) that can last up to three weeks (17.8 days with a 95% CI of 16.9 to
19.2 days (Verity et al., 2020)). This is also consistent with preliminary studies in the US, where
mobility reductions assessed via mobile phone data were found to anticipate the exponential decay
of COVID-deaths by 6 weeks (Kogan et al., 2020). Finally, the period of time between infection
and death is also related to the individual-level Susceptible-Exposed-Infectious-Recovered (SEIR)
compartmental models that have been proposed to describe the spread of COVID-19 (Lin et al.,
2020).

Furthermore, our findings are aligned with the existing evidence that mobility restrictions and
stay-at-home measures are effective NPIs in the context of a global pandemic (Brauner et al.,
2020; Davies et al., 2020; Dehning et al., 2020; Del Fava et al., 2020; Flaxman et al., 2020; Lai
et al., 2020). The government’s handling of the COVID-19 pandemic in England and Wales has
been heavily criticised, particularly given the delayed introduction of NPIs as compared to other
countries in Europe (Hale et al., 2020). Nevertheless, the residents of England and Wales appeared
to have followed the government guidelines to stay at home when they were issued, as evidenced
by: (i) the drastic reduction in mobility of Google Maps users after mid-March, (ii) the large
reduction in the daily number of face-to-face contacts per person after the introduction of the
physical distancing guidelines (Del Fava et al., 2020; Jarvis et al., 2020), and (iii) the large adoption
of social distancing measures and reduction in mobility following the implementation of NPIs as
reported through online surveys (Perrotta et al., 2020).

We estimate that about 62,100 excess deaths occurred in England and Wales during weeks
13–33 of 2020 with respect to what was expected from previous years, in line with other findings
(Aburto et al., 2021; Office for National Statistics, 2020b). Furthermore, we estimate that an
additional 93,700 excess deaths were averted by the reduced mobility following the introduction
of the NPIs. The number of lives that could have been saved if earlier and stricter measures had
been put in place is unknown, but our results suggest that the potential number of excess deaths
could have been much higher in the absence of these interventions.

A limitation of our analysis is that, given the almost simultaneous introduction of different
NPIs in March 2020 and the resulting reduction in mobility, we cannot disentangle the individual
contribution of each intervention to the change in mobility and mortality. Moreover, the relation-
ship between mobility data and excess mortality is necessarily based on location-based measures,
and as such it may be prone to ecological fallacy. Nonetheless, our methodology allows us to isolate
and estimate the effect of mobility reductions on excess mortality controlling for (i) the time trend
of the epidemic and (ii) all other unobserved region-specific factors, which are allowed for through
the random-effect specification of the model.

In our work, we exploit the potential of digital-trace data to estimate human mobility and ex-
plain excess mortality, but we are also aware of the shortcomings related to this data source. These
are in particular due to the lack of detail concerning the collection and processing of the mobility
data. One limitation is that Google does not share absolute numbers in their reports, but only
relative changes with respect to the beginning of 2020. Back-engineering the underlying absolute
measurements does not seem possible or desirable, given privacy concerns in sparsely populated
areas. Moreover, no information is provided on the population composition of Google Maps users,
such as age-group or sex breakdowns, thus limiting our ability to assess the representativeness
of the data. This lack of detail makes the data less informative than it could possibly be, if all
raw measures were made available together with the description of the algorithms used to produce
them.

Nonetheless, we believe that the Google mobility data provide a first and valuable approxima-
tion to the changes in human mobility occurred during the COVID-19 pandemic. Such data are
necessarily affected by biases related to population sampling, which depends on the market share of
the operator providing the data and the different usage across socio-demographic groups. However,
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we are reassured by existing evidence on Internet penetration rates and Google Maps coverage in
the UK, and by the high consistency in mobility estimates provided by Google. England and Wales
have in fact one of the highest rates of Internet penetration in the world and one of the lowest
degrees of gender inequality in Internet access (Garcia et al., 2018). Furthermore, around three
quarters of mobile phones worldwide use an Android operating system, on which Google Maps is
installed by default (StatCounter, 2020), and survey results indicate that approximately 60% of
Android users in the UK have Google Location History reporting enabled (Ruktanonchai et al.,
2018). In addition, existing evidence shows very high levels of consistency in mobility estimates
obtained from Google and from call detail records (Ruktanonchai et al., 2020). Finally, we are
reassured by the similar general patterns of the Google mobility data as compared to other digital
sources, such as Apple and Facebook (which only report data for England and Wales as a whole
and not at the sub-national level, see Figure A.8 in Appendix A). Thus, we are confident that this
data source approximates well the overall mobility trends at the regional level.

Our study provides evidence on the positive impact of NPIs to mitigate the mortality burden
of COVID-19. We conclude by encouraging private companies such as Google to continue sharing
data to foster academic research in areas of public interest. Further improvements include more
transparency about the data-generating process and the sharing of raw data, keeping as a priority
the privacy of users. An increasing number of studies are showing the great potential of digital
data for public health research (Coppersmith et al., 2018; Eichstaedt et al., 2018; Oliver et al.,
2020; Reece and Danforth, 2017), and the current COVID-19 pandemic further highlights the need
for an open conversation on how these data can be used ethically to help save lives.
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A Additional Results

In this Appendix, we report additional results of our analysis. We start by presenting the results of
computing the excess mortality rate using the GAM. Figure A.1 shows the results of this approach
for two specific regions, London and South East. The grey shaded areas in the panels correspond
to the first wave of the COVID-19 pandemic analysed in the paper, and for which corresponding
death counts are not employed in the estimation of the GAM. The figure shows that the fitted
model captures well the seasonal pattern of the mortality data, as well as the peculiarities of the
registration of deaths in some specific weeks (i.e. the lower number of registered deaths during
holidays, such as bank holidays and the last week of the year). The lower panels display the excess
mortality rate for the two regions: despite being characterised by different absolute numbers of
deaths, the regional excess rates have similar values due to different population sizes. Finally, the
spike in number of deaths and excess mortality resulting from the COVID-19 pandemic is clearly
visible in the period analysed (grey shaded area).
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Figure A.1. Observed (dots) and fitted (lines) weekly number of deaths (upper panels) and excess
mortality rate (per 100,000 individuals, lower panels) in the regions of London and South East for
the years 2015–2020. The grey shaded area corresponds to the COVID-19 period analysed in the
paper. Source: Authors’ own elaboration based on data from Office for National Statistics (2020a,
2021).

Figure A.2 shows the six categories of the Google COVID-19 Mobility Reports (Google LLC,
2021) (GCMR) – residential, workplaces, supermarket and pharmacy (grocery), transit, retail,
and parks – and the combined Google mobility index for the ten regions of England and Wales
during weeks 8–33 of 2020. In order to derive the combined indicator, we employ multilinear
principal component analysis (MPCA) on five categories of the GCMR. We do not include the
parks category in the MPCA for several reasons: (i) its pattern is more volatile than those of other
categories, (ii) the category is subject to a higher proportion of missing data (see Figure A.9), and
(iii) its inclusion decreases the amount of explained Frobenius norm (a measure comparable to the
overall variance). The right panel of the figure shows that the combined index captures most of
the peculiarities found in the Google mobility data, as the explained Frobenius norm amounts to
86.6%. For example, mobility in the region of London decreased considerably more than in other
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regions, and this is well captured by the Google index.
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Figure A.2. Six categories of the GCMR and their combination into the Google mobility index
in England and Wales by region during weeks 8–33 of 2020. Source: Authors’ own elaboration
based on data from Google LLC (2021).

Next, we present the graphs corresponding to Figure 1 for all the regions analysed in our study.
Figure A.3 shows the time series of the excess mortality rate (per 100,000 individuals) and the
change in the Google mobility index for the ten regions of England and Wales during the weeks
8–33 of 2020. In addition, Figure A.4 shows the time series of the two variables for each of the ten
regions side-by-side. Common patterns and regional variations clearly appear from the figure.

Furthermore, we analyse the relationship between the excess mortality rate and changes in
mobility, considering a wide range of possible lags for the latter variable. Figures A.5 and A.6
clearly show that the relationship between excess mortality and mobility varies according to the
length of time lags. When we consider none or short time lags (between one and three weeks), the
relationship between the two variables is negative, i.e., a decrease in mobility is associated with
a (future) higher excess mortality. However, for longer time lags (greater or equal to five weeks),
we can observe a positive relationship between the two variables, i.e., a decrease in mobility is
associated with a (future) lower excess mortality. This holds true for the combined Google mobility
index as well as for four categories of the GCMR: grocery, retial, transit and workplaces. For the
residential category, the relationship is reversed because time spent at home increased following the
implementation of the NPIs (see Figure A.2); for the parks category, the relationship is negative
for all lags of time.

Next, we analyse the role played by different time lags in the relationship between excess mor-
tality and mobility within our regression approach. Table A.1 shows the mixed-effects regression
models between excess mortality rate and changes in the Google mobility index occurred 3, 4, 5,
6 and 7 weeks prior. The relationship between excess mortality and mobility changes according to
the time lag considered: for shorter time lags (3 and 4 weeks), the two variables have a negative
or null association. For time lags of 5 or more weeks, the relationship becomes positive and sig-
nificant at the 95% confidence level, and the magnitude of the estimated coefficient reduces as the
lag increases.
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Figure A.3. Time series of excess mortality rate per 100,000 individuals (red lines) and change
in Google mobility index in week t (dashed blue lines) and with a five-week forward shift (solid
blue lines) in England and Wales by region during weeks 8–33 of 2020. The Google index was
multiplied by 10 for illustration purposes. Source: Authors’ own elaboration based on data from
Office for National Statistics (2020a, 2021) and Google LLC (2021).
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Figure A.4. Time series of excess mortality rate per 100,000 individuals and change in Google
mobility index in England and Wales by region during weeks 8–33 of 2020. Source: Authors’ own
elaboration based on data from Office for National Statistics (2020a, 2021) and Google LLC (2021).

Figure A.7 shows, for each region analysed, the fit of the estimated mixed-effects regression
model as well as the counterfactual analysis which assumes that mobility did not reduce after the
introduction of the NPIs.
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Figure A.5. Linear relationship (with slope equal to β) between excess mortality rate (per
100,000 individuals) and change in the Google mobility index in ten regions of England and Wales
during weeks 8–33 of 2020, considering different lags of time for mobility data. Source: Authors’
own elaboration based on data from Office for National Statistics (2020a, 2021) and Google LLC
(2021).
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Figure A.6. Linear relationship (with slope equal to β) between excess mortality rate (per
100,000 individuals) and (scaled) change in workplace mobility in ten regions of England and Wales
during weeks 8–33 of 2020, considering different time lags for mobility data. Source: Authors’ own
elaboration based on data from Office for National Statistics (2020a, 2021) and Google LLC (2021).

Figure A.8 compares the GCMR with the mobility data provided by Apple (2020) and Facebook
(2020). For the latter two, only country-level data are available for England and Wales (i.e. not at
the sub-national level). The figure shows that the six Google categories of mobility indicators are
aligned with those of other providers, hence capturing the general mobility patterns throughout
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Table A.1. Estimated coefficients and 95% confidence intervals of linear mixed-effects regression
between excess mortality rate (per 100,000 individuals) and changes in Google mobility index
occurred x weeks before, using five choices of time lags between the two time series. Note: AIC
and BIC values should not be compared here due to different number of observations, and they
have been reported for completeness only. Source: Authors’ own elaboration based on data from
Office for National Statistics (2020a, 2021) and Google LLC (2021).

Dependent variable: excess mortality rate (per 100,000)

Linear mixed-effects regression

3-week lag 4-week lag 5-week lag 6-week lag 7-week lag
Fixed effects

Mobility changes
x weeks before

-6.44 -1.26 3.75 2.73 1.26

(95% CI) (-7.80, -5.08) (-2.64, 0.12) (2.70, 4.81) (1.52, 3.94) (0.31, 2.20)

Random effects
(variance)

Region (intercept) 1.95 1.46 2.67 2.44 1.48
Mobility (slope) 1.05 0.66 0.66 0.95 –
Residual 7.26 7.58 3.35 3.82 7.55

Observations 230 220 210 200 190
Groups 10 10 10 10 10
Log-Likelihood -559.88 -539.16 -437.42 -428.07 -462.03
AIC 1141.76 1100.32 896.84 878.15 940.05
BIC 1179.58 1137.65 933.66 914.43 966.03
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Figure A.7. Observed and estimated excess mortality rate (per 100,000 individuals) from the
mixed-effects model in the baseline and counterfactual scenarios for the ten regions in England and
Wales during weeks 13–33 of 2020. Source: Authors’ own elaboration based on data from Office
for National Statistics (2020a, 2021) and Google LLC (2021).

England and Wales.
Finally, Figure A.9 shows the share of the missing data, computed as percentage of the regional
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Figure A.8. Comparison of mobility indicators provided by Apple (categories driving, transit
and walking), Facebook (category mobility) and Google (categories residential, workplaces, gro-
cery, transit, retail and parks) for England and Wales in weeks 1–33 of 2020. Note: the sign
of the residential category of Google is reversed for illustrative purposes. Source: Authors’ own
elaboration based on data from Apple (2020), Google LLC (2021) and Facebook (2020).

population, for the six categories of the Google mobility data by region and week. For most weeks,
regions and categories, missing data are relatively low. Only the parks and residential categories,
particularly in the Welsh territory, are characterised by some degree of missing data.

B Sensitivity Analysis

In this Appendix, we perform a sensitivity analysis of the results shown in the paper.

B.1 Different estimation of excess mortality

The results shown in our paper are robust to the computation of expected deaths d̂t derived from
the GAM. Specifically, we re-run all our analysis using a different estimate of the excess mortality
rate. Instead of using the d̂t predicted from the GAM, we computed d̂t for each week in 2020 as
the average number of deaths observed in the corresponding weeks between the years 2015–2019.
Figure B.1 shows the estimated numbers of expected deaths and excess mortality rate using the
GAM and the historical weekly means of the observed death counts. The excess mortality rates
estimated with the two approaches are very similar. In both cases, the decreasing time trend
estimated by the GAM predicts a lower number of deaths in the period under study (grey area)
as compared to the historical average, resulting in slightly higher excess mortality. Figure B.2
shows the excess mortality rate obtained with the two approaches for all ten regions of England
and Wales during the period analysed.

Furthermore, Table B.1 reports the corresponding results of the mixed-effect regression mod-
els obtained from using this different computation of the excess mortality rate. Given that the
estimates of the excess mortality rates are very similar to those of the GAM, it is not surprising
that the results do not change by a great extent when using this alternative computation of excess
mortality.
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Figure A.9. Share of missing population in the GCMR by region, week and category (residential,
workplaces, grocery, transit, retail and parks) for ten regions in England and Wales in weeks 8–33
of 2020. Source: Authors’ own elaboration based on data from Google LLC (2021).
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Figure B.1. Observed (dots) and fitted (lines) weekly number of deaths (upper panels) and
excess mortality rate (per 100,000 individuals, lower panels) using two different approaches (GAM
in orange, weekly historical mean in blue) in the regions of London and South East for the years
2015–2020. Source: Authors’ own elaboration based on data from Office for National Statistics
(2020a, 2021).
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Figure B.2. Excess mortality rate (per 100,000 individuals) computed with two different ap-
proaches (GAM in orange, weekly historical mean in blue) in the ten regions of England and Wales
during the weeks 8–41 of 2020. Source: Authors’ own elaboration based on data from Office for
National Statistics (2020a, 2021).

Table B.1. Estimated coefficients and 95% confidence intervals of linear mixed-effects regression
between excess mortality rate (per 100,000 individuals) and changes in mobility occurred five weeks
before, measured separately for each model with the combined Google index and the six categories
of the GCMR: grocery, workplaces, residential, transit, retail and parks. Note: the excess mortality
rate (per 100,000 individuals) is computed from the historical average of weekly deaths instead of
the GAM employed in Table 1. Source: Authors’ own elaboration based on data from Office for
National Statistics (2020a, 2021) and Google LLC (2021).

Dependent variable: excess mortality rate (per 100,000)

Linear mixed-effects regression

Google index grocery workplaces residential transit retail parks
Fixed effects

Mobility changes
5 weeks before

3.53 2.56 3.00 -3.23 2.62 3.63 0.62

(95% CI) (2.53, 4.54) (1.94, 3.18) (1.97, 4.02) (-4.24, -2.23) (1.64, 3.6) (2.47, 4.79) (-0.21, 1.45)

Random effects
(variance)

Region (intercept) 1.47 0.49 1.16 1.82 2.09 1.33 0.52
Mobility (slope) 0.66 – 0.84 0.60 0.73 1.20 –
Residual 3.40 4.31 3.61 3.61 3.85 3.52 5.66

Observations 210 210 210 210 210 210 210
Groups 10 10 10 10 10 10 10
Log-Likelihood -434.45 -451.02 -439.35 -440.55 -447.46 -437.24 -477.9
AIC 890.89 920.05 900.71 903.09 916.91 896.48 973.81
BIC 927.71 950.17 937.52 939.91 953.73 933.3 1003.93

B.2 Other sensitivity analyses

The results shown in our paper are further robust with respect to the number of B-splines employed
to describe the time trend of the epidemic. Table B.2 shows the mixed-effects regression models
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between excess mortality rate and changes in the Google mobility index occurred 5 weeks prior
for five different choice of B-spline bases. From the table, it emerges that the estimated mobility
coefficient does not change to a great extent, taking values between 3.75 and 5.77 according to
different number of bases. Moreover, the estimated coefficient is always statistically significant at
the 95% confidence level.

Table B.2. Estimated coefficients and 95% confidence intervals of linear mixed-effects regression
between excess mortality rate (per 100,000 individuals) and changes in Google mobility index
occurred five weeks before, using five different choices of B-spline bases for describing the time
series of the epidemic. Source: Authors’ own elaboration based on data from Office for National
Statistics (2020a, 2021) and Google LLC (2021).

Dependent variable: excess mortality rate (per 100,000)

Linear mixed-effects regression

3 B-splines 4 B-splines 5 B-splines 6 B-splines 7 B-splines
Fixed effects

Mobility changes
5 weeks before

5.77 4.22 3.75 5.46 4.79

(95% CI) (5.03, 6.52) (3.48, 4.97) (2.7, 4.81) (4.36, 6.55) (3.77, 5.8)

Random effects
(variance)

Region (intercept) 3.18 2.81 2.67 3.20 2.99
Mobility (slope) 0.48 0.64 0.66 0.60 0.63
Residual 5.13 3.17 3.35 2.98 2.92

Observations 210 210 210 210 210
Groups 10 10 10 10 10
Log-Likelihood -481.06 -433.97 -437.42 -426.27 -422.71
AIC 980.12 887.93 896.84 876.54 871.42
BIC 1010.24 921.4 933.66 916.71 914.94

Finally, our results are also robust to the exclusion of the region of London from the analysis.
Analysing Figure A.4, London appears as an outlier compared to the other regions since its level
of excess mortality and mobility decreased considerably more than in other regions. For this
reason, we re-run all our analysis excluding London from the observations employed in our study.
Table B.3 shows that the estimated mobility coefficients vary marginally with respect to those
estimated in the presence of London, remaining significant at the 95% confidence level. Finally,
Figure B.3 shows that the positive correlation between random slopes and random intercepts in
the mixed-effects model reduces only slightly when excluding London from the analysis.

24



Table B.3. Estimated coefficients and 95% confidence intervals of linear mixed-effects regression
between excess mortality rate (per 100,000 individuals) and changes in mobility occurred five weeks
before, measured separately for each model with the combined Google index and the six categories
of the GCMR: grocery, workplaces, residential, transit, retail and parks. Note: the region of
London was removed from the analysis. Source: Authors’ own elaboration based on data from
Office for National Statistics (2020a, 2021) and Google LLC (2021).

Dependent variable: excess mortality rate (per 100,000)

Linear mixed-effects regression

Google index grocery workplaces residential transit retail parks
Fixed effects

Mobility changes
5 weeks before

3.80 2.64 3.05 -3.67 3.09 3.51 0.83

(95% CI) (2.64, 4.97) (1.91, 3.38) (1.91, 4.20) (-4.91, -2.43) (1.93, 4.24) (2.36, 4.66) (-0.01, 1.66)

Random effects
(variance)

Region (intercept) 1.66 1.47 1.48 1.52 1.79 1.7 1.55
Mobility (slope) 0.51 0.51 0.51 0.48 0.37 0.55 –
Residual 3.53 3.08 3.78 3.75 3.91 3.61 4.92

Observations 189 189 189 189 189 189 189
Groups 9 9 9 9 9 9 9
Log-Likelihood -395.41 -383.96 -401.41 -399.74 -403.92 -397.42 -420.07
AIC 812.82 789.93 824.83 821.47 829.85 816.85 858.13
BIC 848.48 825.59 860.49 857.13 865.50 852.51 887.31
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Figure B.3. Estimated region-specific intercepts and mobility coefficients, as well as their es-
timated correlation r from the mixed-effects regression in nine regions of England and Wales
(excluding London) during weeks 13–41 of 2020. Source: Authors’ own elaboration based on data
from Office for National Statistics (2020a, 2021) and Google LLC (2021).
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