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Abstract

Following the outbreak of COVID-19, a number of non-pharmaceutical interventions have
been implemented to contain the spread of the pandemic. Despite the recent reduction in the
number of infections and deaths in Europe, it is still unclear to which extent these govern-
mental actions have contained the spread of the disease and reduced mortality. In this article,
we estimate the effects of reduced human mobility on excess mortality using digital mobility
data at the regional level in England and Wales. Specifically, we employ the Google COVID-19
Community Mobility Reports, which offer an approximation to the changes in mobility due to
different social distancing measures. Considering that changes in mobility would require some
time before having an effect on mortality, we analyse the relationship between excess mortal-
ity and lagged indicators of human mobility. We find a negative association between excess
mortality and time spent at home, as well as a positive association with changes in outdoor
mobility, after controlling for the time trend of the pandemic and regional differences. We
estimate that almost 130,000 excess deaths have been averted as a result of the increased time
spent at home. In addition to addressing a key scientific question, our results have important
policy implications for future pandemics and a potential second wave of COVID-19.

1 Introduction and Background

The COVID-19 pandemic started in December 2019 and rapidly spread globally. As of July 1,
2020, over 10 million cases of infections and 500,000 deaths have been reported worldwide (World
Health Organization, 2020). This is likely an underestimate of the burden of the disease because of
several reasons, including under-reporting related to cross-country differences in disease monitoring
and classification, asymptomatic cases, medically unattended cases, and deaths indirectly related

to COVID-19.

Due to the absence of immediate effective treatment or a vaccine, local and national govern-
ments have implemented non-pharmaceutical interventions (NPIs) as a strategy to curb the spread
of COVID-19 during the first half of 2020. These measures include travel bans, cancellations of
public gatherings, social distancing, school closures, recommendations to work from home and to
stay at home, up to nationwide lockdowns (Hale et al., 2020). In several countries, particularly
in Europe, some of these public health interventions have been gradually lifted — at the time of
writing — following the decline in the number of new infections and deaths, and in order to ease
the economic impact of the epidemic. However, it remains unclear how to assess the effectiveness
of the various NPIs in reducing infections and saving lives.

In this paper, we examine the relationship between excess mortality and reduced human mo-
bility in England and Wales during the COVID-19 pandemic, specifically from February 15 to



June 19, 2020. The British government applied various control strategies by first encouraging
social distancing on March 16, 2020, then ordering the closure of schools on March 21, 2020, and
finally banning public events and ordering a total lockdown on March 24, 2020. The goal of this
paper is to assess the impact of these governmental decisions, and consequent reduction in human
movements, on mortality during the pandemic. Indeed, human mobility plays a key role in the
spread of infectious diseases (Wilson, 1995; Tatem et al., 2006; Riley, 2007). In our contemporary
society, where millions of people travel and commute every day within and across cities and regions,
infectious diseases have the opportunity to spread more rapidly, and on a large scale, than ever
before. Human mobility can in fact increase the disease prevalence by introducing new pathogens
into susceptible populations or by increasing social contacts between susceptible and infected in-
dividuals (Wesolowski et al., 2016). Timely, accurate, and comparative data on human mobility
are therefore critical, but generally not available or easily accessible. The ongoing COVID-19
pandemic has highlighted the potential benefit of geo-located smartphone data to inform public
health (Oliver et al., 2020) and assess the impact of mobility restrictions on social distancing in
near real-time (Pepe et al., 2020; Badr et al., 2020).

In this study, we use the publicly available data provided by Google COVID-19 Mobility
Reports (GCMR) (Google LLC, 2020a), which is one of the best data sources to assess changes in
mobility or the lack thereof (i.e., time spent at home) since the beginning of the pandemic (Drake
et al., 2020). The GCMR reports percentage changes in mobility of Google Maps users compared
to a baseline period before the pandemic (from January 3 to February 6, 2020) in various settings
(e.g. supermarkets and pharmacies, public transports, workplaces, residential areas). We focus on
the ‘residential’ category of the GCMR, a measure of the relative change in the time that users
spent at their home addresses, as provided to or estimated by Google Maps.

We link the reduction in human mobility to all-cause mortality during the COVID-19 pan-
demic. Given the high uncertainty surrounding the number of infections and deaths, we chose to
estimate the excess mortality rate, which indicates the number of deaths above what would be
expected in a non-crisis period, controlling for the size of the population. This choice is also in line
with the growing general consensus in the scientific community that excess mortality is the best
indicator to assess the impact of the pandemic (National Academies of Sciences, Engineering, and
Medicine, 2020).

We anticipate that a potential effect of changes in mobility on mortality would not be immedi-
ate, but mediated by a time lag. One would expect mobility reductions to first affect the number
of social contacts in the population; the decrease in contacts should then reduce the number of
newly infected individuals, and eventually the number of deaths from the disease. As such, in
this paper we analyse the association between excess mortality and past values of human mobility,
considering different time lags between the two measures. Accounting for a time lag of five or
more weeks, we find a positive correlation between increased mobility and excess mortality, and
a negative correlation between time spent at home and excess mortality. These relationships are
significant within a mixed-effects regression setting that controls for the time trend of the pandemic
and different regional effects. We estimate that almost 130,000 excess deaths have been averted
as a result of the increased time spent at home following the NPIs implemented in England and
Wales. As such, we argue that NPIs have been effective to limit the potential negative effects of
the pandemic on mortality. Our findings not only address an ongoing debate on the actual benefit
of NPIs as a strategy to control the spread of COVID-19, but also reveal important implications
for public health decision-making in the event of a second wave of infections or future pandemics.
Moreover, we hope that our methodologically-informed reflections will help generate a broader
conversation on the type of information that private companies could provide to help the scientific
community improve the understanding of the course of the epidemic, while also taking into account
the ethical, privacy, and commercial constraints that private companies have to consider.

In the following sections, we describe the data used in the analysis and the methodological



approach we use to measure the effect of reduced mobility on excess mortality during the COVID-
19 pandemic. Then we present our findings and close with a discussion and an outlook for future
work.

2 Data Description

2.1 Mortality Data for England and Wales

The weekly number of deaths registered in England and Wales was obtained from the Office for
National Statistics (ONS) (2020a). The ONS reports weekly mortality data broken down by age
group, sex and region of usual residence. Note that, in the ONS classification, weekly data do
not refer to calendar weeks, but to rolling 7-day periods, from Saturday to Friday, and we will
keep this notation throughout the manuscript. For our purposes, we retrieved the weekly number
of deaths by region for the years 2015-2020. Specifically, the total number of deaths in England
and Wales is divided into ten territories: nine NUTS-1 regions for England, and a single region
comprising Wales. The nine regions in England are: North East, North West, Yorkshire and The
Humber, East Midlands, West Midlands, East, London, South East and South West. At the time
of writing, the data were available until week 2020-25 (i.e. until June 19, 2020). Finally, data on
the total population by region for the years 2015-2019 were obtained from the Office for National
Statistics (2020D).

2.2 Google Mobility Data

We estimate human mobility from February 15 to June 19, 2020, using the freely-available Google
COVID-19 Community Mobility Reports (GCMR) dataset (Google LLC, 2020a). The potential
of this data has been recognized (Drake et al., 2020), but, to the best of our knowledge, it has not
been linked to excess mortality outcomes yet. Specifically, the GCMR uses the data underlying
the ‘Popular Times’ feature of Google Maps.! The GCMR reports mobility as percentage changes
relative to a baseline period (from January 3 to February 6, 2020). Absolute mobility values are
not available to protect users’ privacy. The data account for weekly seasonality of movement by
estimating a set of seven baseline weekdays using the median value for each particular weekday
during the 5-week baseline period. Daily relative change is estimated as the percentage change
with respect to the corresponding baseline weekday for any given report date. In the UK, the
GCMR data are aggregated by Local Authority, category of place (e.g. supermarket and phar-
macy, workplaces, residential) and report date, but contains no individual-level information and
no demographic characteristics of users such as sex, age, or educational attainment.

In this paper, we focus on the residential category of the GCMR, which is defined as the time
users spent at home, using the home addresses provided to or estimated by Google Maps. Our
focus on a variable related to time use and duration of events is consistent with the epidemiological
literature on time use and the spread of close-contact infectious diseases (Zagheni et al., 2008;
De Cao et al., 2014).

The time spent at home is measured as the relative change in the duration of stay in residential
areas on a given day relative to the duration of stay in the corresponding weekday of the baseline
period. We aggregate the GCMR data by week (from Saturday to Friday, for consistency with
mortality data) and region (taking the average across all Local Authorities belonging to a given
region) to make it comparable to the mortality data. Relying on a fixed baseline period ignores
yearly seasonality of movement, which may be affected by weather patterns, national holidays,
vacation periods, etc. Important bank holidays, extreme weather events, or other major events
during the 5-week long baseline period can affect the estimates of the future relative change in

ncluding all Google Map users, irrespective of the type of device and operating system, as long as users have not
opted-out of the “Location History” feature. Popular times data are only available for businesses that get “enough
visits from users”: https://support.google.com/business/answer/62635317hl=en-GB.



time spent at home. We have no access to the raw mobility data used to produce the GCMR,
but we find no evidence of any major events in England or Wales, such as major bank holidays
or extreme weather events, that could have systematically biased the Google mobility data during
the baseline period. Furthermore, the baseline week is based on the median value, which would be
largely unaffected by short-lived temporary fluctuations in absolute mobility values. Finally, the
baseline period is not affected by restrictions on movement, which where first introduced in late
March (Ganyani et al., 2020).

3 Methods

In this section, we introduce the methodology that we use in our article. Specifically, we first
describe the model that we employ to estimate excess mortality in Subsection 3.1. Then, Subsection
3.2 illustrates the approach that we use to measure the effect of changes in mobility on excess
mortality.

3.1 Computing excess mortality

Weekly mortality data generally show strong cyclical behavior. As such, we opt for a modulation
model that accounts for seasonal patterns using sine and cosine functions.

For a given region, let d = (d;) denote a vector containing the observed number of deaths over
time, i.e., weekly registered deaths from week 2015-01 to week 2020-25 (until June 19, 2020). In
alternative to the conventional Poisson distribution, we assume that d; are realizations of a random
variable D; that follows a Negative Binomial distribution. We thus take into account overdispersion
typically displayed in mortality data, i.e., the variance associated with the process is expected to
be larger than what implied by the expected value. The main source of overdispersion in the data
is likely the varying strength of the seasonal pattern, which is mainly due to variation in the yearly
influenza epidemics.

Let py = E(D;) denote the expected value of the Negative Binomial process. We model the
expected number of deaths using a Generalized Additive Model with logarithmic link, exposures
as offset, and time-specific covariates:

In (pe) = In(er) + o + a1 cos (w) + ag sin (w) + vy, (1)

where e; denotes the exposure to the risk of death, v; is a smooth function of time, w = 27/p,
and p is the period (e.g. p = 52 for normal years, p = 53 for leap years). Whereas sine and cosine
functions capture the cyclical behavior of weekly mortality data, the smooth time component aims
to describe eventual long-term mortality trends. A similar model with additional varying-coefficient
components has been proposed by Eilers et al. (2008) to describe seasonal time series and incidence
tables. Here, estimation of the model described in Equation (1) is performed in R (R Development
Core Team, 2020) using the mgcv package (Wood, 2019).

For each region independently, we model data for the pre-pandemic period (from week 2015-01
to week 2020-06) and predict expected number of deaths d; for the COVID-19 period (from week
2020-07 to week 2020-25). In particular, we use week 2020-06 as a threshold for consistency with
the Google mobility data, for which the baseline period runs from week 2020-02 to week 2020-06.
Consequently, the effect of the pandemic is not captured by the time trend of the model, and dy
for the predicted weeks could be interpreted as the number of deaths that would have occurred in
2020 in the absence of COVID-19.

This approach allows us to readily evaluate the excess number of deaths o, for the weeks 7-25
in 2020 as the difference between the observed and the expected ones, i.e. St =dy — cft. In order
to account for regional differences in population, we then compute the excess mortality rate, or
per capita excess mortality, y; = o /er by dividing excess deaths by the region-specific mid-year



population in 2019 (i.e., we use population data from the previous year, since data for 2020 are
still not available).

3.2 Modelling the relationship between excess mortality and mobility

Given the estimated excess mortality rate for each week and region, we intend to assess whether
an association with the change in physical mobility exists or not. The spread of COVID-19 mainly
occurs through social contacts between infectious and susceptible individuals (Zhang et al., 2020).
Hence, a reduction in mobility, as well as an increase in the time spent at home, should lead to
a reduction in social contacts, then in the infection spread and, ultimately, in the COVID-related
mortality. However, this process requires time, as we would expect the reduction in physical mo-
bility observed today to possibly have an impact on the infection spread and the related mortality
in the coming weeks. This calls for the introduction of a time lag in the mobility data, which
corresponds to the amount of time necessary for the change in mobility to have an impact on
mortality. In what follows, a time lag of x will indicate that we analyse the relationship between
excess mortality and changes in human mobility that occurred x weeks in the past.

Moreover, we work with rates that vary over weeks and for different regions. Whereas the
effect of mobility and the mortality trend will be assumed to remain constant over space, we need
to account for the regional heterogeneity in excess mortality given that data within each region are
likely correlated. This setting calls for a mixed-effects modelling approach, since we aim to know
whether an association between excess mortality and human mobility over time still exists, after
controlling for the variation in regions.

Let y,+ denote the excess mortality rate for a given region r in week t. We model this variable
as follows:

n
Yrt = 50 +ur+m Grt—x + Z Bs Bs(wt) + Erty (2)
s=1

where u, are the region-specific random intercepts, which are normally distributed with mean zero
and variance o2, 3y is the common intercept, and ~; is the coefficient associated to the mobility
data in each region r during the (lagged) week t — z, i.e., grt—o. The time trend is modelled in a
flexible way using the B-spline bases B, where (3, are the associated coefficients. Finally, €, is
the vector of the residuals, distributed as &,; ~ N(0,0?) and assumed to be independent of the
random effects u,..

In our model, the baseline mortality trend is assumed to be a non-parametric function of the
series of weeks, which is modelled with a series of n B-splines. This choice gives us sufficient
flexibility to capture the pattern of the pandemic over time. Mobility data from the GCMR are
considered as an additional fixed effect, and the associated regression coefficient will be interpreted
as the change in per capita excess mortality for a unit change in the mobility indicator, always as
compared to the baseline period (cf. Section 2.2). A random intercept for each of the ten regions
is added since we expect the mortality-mobility relationship within regions to be correlated. If
the random effect variance o2 is significantly large, then some regions will have a lower or higher

u
excess mortality trend to begin with, given their series of mobility data.

We fit the model in R using the 1me4 package (Bates et al., 2015), and we compute B-spline
bases using the splines package (R Development Core Team, 2020).

4 Results

In this section, we show the results of the methods that we employ in this paper. Specifically,
subsection 4.1 shows the results of the computation of excess mortality. In subsection 4.2, we
investigate the correlation between excess mortality and time spent at home, considering differ-



ent lags for the latter variable. Finally, subsection 4.3 presents the results of the mixed-effects
regression.

4.1 Estimating excess mortality

We first consider excess mortality, estimated using the Generalized Additive Model (GAM) of
subsection 3.1. Figure 1 shows the results of this approach for two specific regions, namely, East
Midlands and Wales. The grey shaded areas in the panels correspond to the COVID-19 pandemic
period that we will analyse in the remainder of the paper, and for which corresponding death
counts are not employed in the estimation of the GAM.

East Midlands Wales
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Figure 1. Observed (dots) and fitted (lines) weekly number of deaths (upper panels) and excess
mortality rate (per 100,000 individuals, lower panels) in East Midlands and Wales for the years
2015-2020. The grey shaded area corresponds to the COVID-19 period analysed in the remainder of
the paper. Source: Author’s elaborations on data from the Office for National Statistics (2020a,b).

Figure 1 shows that the fitted model captures well the seasonal pattern of the mortality data,
and that the smooth time trends allows for different amplitudes of the cyclical behaviour. The
lower panels display the excess mortality rate for the two regions: despite being characterized by
different absolute numbers of deaths, the regional excess rates have similar values due to different
population sizes. Finally, the spike in number of deaths and excess mortality resulting from the
COVID-19 pandemic is clearly visible in the last weeks of 2020 (grey shaded area).

In addition to employing the GAM, we perform a sensitivity analysis on the computation of
excess mortality by estimating, for each week, the expected number of deaths as the average of
the observed deaths between 2015 and 2019. Figure A.1 in the Appendix A shows the results
of this approach; in particular, the estimated excess mortality rates (and the results in the next
subsections) are very similar to those obtained with the GAM.

4.2 Correlation of excess mortality and time spent at home

Having estimated excess mortality, we can investigate its relationship with changes in time spent
at home during the COVID-19 pandemic. Figure 2 shows the time series of the excess mortality
rate and the residential category of Google data for the weeks 8-25 (the first week available for
Google data and the last available data point, respectively) by region. In addition, the figure shows:
(i) the forward lag of five weeks for the Google data, (ii) the weeks that will be analysed in the
regression setting in Subsection 4.3 (grey shaded area), and (iii) the start of two non-pharmaceutical



interventions: the encouragement of social distancing (March 16) and
lockdown (March 24).
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Figure 2. Time series of excess mortality rate (per 100,000 individuals, in red), change in time
spent at home at time ¢ (dashed lines, light blue) and with a five-week lag (solid lines, dark blue)
by region in England & Wales for the weeks 8-25 in 2020. Solid lines correspond to values that
will be analysed in the regression setting of subsection 4.3. Source: Author’s elaborations on data
from the Office for National Statistics (2020a,b) and Google LLC (2020a).

The combination of several non-pharmaceutical interventions between March 12 and 24 (na-
tionwide school closure, advice to avoid public places and to self-isolate in presence of symptoms,
in addition to distancing and lockdown) led to a significant increase of time spent in residence,
which peaked around week 15 and remained relatively high in subsequent weeks. A similar increase
is observable for the excess mortality rate across regions, which occurred about two weeks after the
increase in residential permanence. Moreover, excess mortality peaked in weeks 1617, returning
to low levels at the end of the observation period.

We can now turn to analyse the correlation between excess mortality rate and changes in time
spent at home, considering a wide range of possible lags for the latter variable. Figure 3 clearly
shows that the relationship between excess mortality and residential permanence changes according
to the length of time lags. When we consider none or short time lags (between one and three weeks),
the relationship between the two variables is positive, i.e., an increase in residential permanence
is associated with a (future) increase in excess mortality. However, for longer time lags (greater
or equal to five weeks), we can observe a negative correlation between the two variables, i.e., an
increase in time spent at home is associated with a (future) reduction of excess mortality.

Very similar correlation patterns, albeit with the reversed sign, are observable for the other
categories of Google data. Figures A.2 and A.3 in Appendix A show the correlations between
excess mortality rate and the grocery and workplaces categories reported by Google. For these
and the remaining categories, we observe positive correlations between excess mortality and lagged
values of outdoor mobility, i.e., a decrease in mobility is associated with a (future) reduction of
excess mortality.



Lag O Lag 1 Lag 2
- .3 s
20+ T e v
YT, s Y Lt
01 r=066 . gaiv r=0.68 .iw; KX R
< ';.'.-:_ R ot d.. . ‘et .
e stged T LG K .
0 SR . &-,9.*’- e F=0.55 «da . .
() Lag 3 Lag 4 Lag 5
i)
o - . . ‘ . " week
2 20+ . 8
= ¢ . - °
g 'y, oe -::' L se 12
Q10 o > s >~
E7 ]z - - e N A ¥ - 10
@ £20.29 ";i‘:" c. r=-0.09 3‘.'{':"" 3 r=-0.51 '%;- . 20
 0- — Y. "’l‘.'.‘.-l. ., 'Q'.g ' oo, L 4% SR
o 24
x
(1]
Lag 6 Lag 7 Lag 8
% o .r
R i 0.82 i 0.77
o e * r=-0. . r=-0.
.. L . 53,
018, " s o R ER
. & . A .
¥ r=-081 AT I M Soer o B . E'. . . ‘e '-{&
0- . ,?f{- oo . 1{‘?.‘! g . . o'.". .q
0 10 20 0 0 10 20 0 0 10 20 30

Change in stay—at—home time (%)

Figure 3. Linear relationship and Pearson correlation (r) between excess mortality rate (per
100,000 individuals) and change in time spent at home in ten regions of England & Wales during
weeks 8-25 in 2020, considering different lags of time for residential permanence. Source: Author’s
elaborations on data from the Office for National Statistics (2020a,b) and Google LLC (2020a).

4.3 Model results

In this subsection, we investigate whether the negative relationship between excess mortality and
lagged changes in time spent at home is statistically significant or not. To do so, we analyse the
two variables within a regression setting, using the mixed-effects modeling approach introduced
in Subsection 3.2. We consider a lag of five weeks for the changes in mobility as reported by the
Google data. We select this lag because it is the first one to display a stronger negative correlation
with excess mortality (cf. Figure 3), and it allows us to analyse a longer period of time with respect
to choosing greater lags. Moreover, it is consistent with preliminary estimates of the incubation
period (from infection to the onset of symptoms) up to almost two weeks (Lauer et al., 2020) and
of the course of the disease (from the onset of symptoms to death) up to almost three weeks (Verity
et al., 2020). As such, we analyse the weeks from 13 to 25, because Google data starts from week
8, and we bring the mobility data five weeks forward (cf. Figure 2). Nonetheless, the regression
results are robust to different lags choices, given that the lag is greater than 5 weeks. Table 1
shows the results of this analysis; in addition, we also run a plain linear regression with the same
covariates, without taking into account the random effects for the different regions.

It is interesting to observe that the estimated coefficients for the time spent at home differ
between the linear and the mixed-effect model. In addition to the theoretical considerations out-
lined in Subsection 3.2, statistical criteria such as the AIC or the BIC, as well as an ANOVA test,
between the two models suggest that the mixed-model setting is a more appropriate approach in
this context. In the mixed-effect model, a one percentage point increase in time spent at home
is associated to a reduction of 1.1 in the excess mortality rate (per 100,000 individuals). This is
a rather strong effect, given that the residential category of Google data changed by about 20-30
percentage points in all regions following the introduction of the NPIs. Furthermore, the intraclass
correlation coefficient, calculated as the ratio between the variance of the region-specific random



Dependent variable: excess mortality rate

linear regression | linear mixed-effects regression

ML ML REML
Fixed effects
change in stay-at-home
time (log — 5) 0.23 (0.12) | -1.10 (0.15)  -1.10 (0.16)
[95% conf. intervall [0.47,0.01] | [[1.38,-0.81]  [-1.40, - 0.79]
Random effects (variance)
region (intercept) 5.75 6.46
residual 3.13 3.51
Observations 130 130 130
Log-Likelihood -303.16 -274.70 -256.87
AIC 636.31 581.40 545.74
BIC 679.32 627.29 591.62

Table 1. Estimated coefficients (with associated standard errors, in parenthesis) and 95% confi-
dence intervals of regressing the excess mortality rate (per 100,000 individuals) on changes in time
spent at home five weeks before using linear regression and linear mixed-effects regression with
maximum likelihood (ML) and restricted ML (REML) estimations. The models consider a smooth
function of time (using 12 B-splines), and the mixed-effects model includes a random intercept
for each region. Source: Author’s elaborations on data from the Office for National Statistics
(2020a,b) and Google LLC (2020a).

effects (02) and the total variance (02 + 02), shows that 64.8% of the whole data variability can

be attributed to the variability between regions.

It is worth pointing out that the estimated coefficient for the stay-at-home time is robust to
the choice of number of B-splines chosen to model the pandemic. In the regressions shown in Table
1, we selected 12 B-spline bases, as this choice minimizes the AIC and BIC values with respect
to smaller number of B-splines. However, we performed a sensitivity analysis by using different
numbers of B-splines in the mixed-effect model. Table A.2 in Appendix A shows the results of this
analysis. A further sensitivity analysis considered the different categories of mobility data reported
by Google. Table A.1 in Appendix A shows the results of regressing excess mortality rate on the
different mobility indicators available.

Figure 4 shows the observed and fitted excess mortality rate from the mixed-effects model in
Table 1 with 95% confidence intervals by region. The fitted curves capture well the time-series of
excess mortality by regions, and investigation of the model residual does not display systematic
biases.

Finally, the estimated model allows us to compute the number of deaths averted by the in-
crease of time spent at home. Figure 4 further displays the estimated excess mortality in the
counterfactual scenario in which residential permanence would have not changed during the period
analysed. We estimate that an additional 128,609 excess deaths would have occurred in England
and Wales in the absence of the observed increase in residential time. These estimates display
significant regional variations, ranging from a minimum of 5,093 excess deaths in North East to
a maximum of 24,382 excess deaths in London. Table 2 reports the additional cumulative excess
mortality rate and total number of excess deaths avoided for this counterfactual scenario by region.
Clearly, these estimates are highly dependent on the modeling approach as well as the data inputs,
which are characterized by some degree of uncertainty. We are currently working to quantify the
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Figure 4. Observed and fitted excess mortality rate (per 100,000 individuals) from the mixed-
effect model with 95% confidence intervals for the ten regions in England & Wales during the weeks
13-25. Source: Author’s elaborations on data from the Office for National Statistics (2020a,b) and
Google LLC (2020a).

uncertainty associated to these point estimates, in order to provide confidence intervals around
them.

Region Population Cumulative excess Total number of

(2019) mortality rate excess deaths
North East 2,669,941 190.76 5,093.25
North West 7,341,196 200.53 14,721.26
Yorkshire and The Humber 5,502,967 191.19 10,521.39
Wales 3,152,879 203.21 6,406.85
East Midlands 4,835,928 200.27 9,684.88
West Midlands 5,934,037 202.50 12,016.54
East 6,236,072 218.02 13,595.78
London 8,961,989 272.06 24,382.42
South East 9,180,135 225.23 20,676.26
South West 5,624,696 204.64 11,510.18
Total 59,439,840 2108.41 128,608.80

Table 2. Counterfactual analysis showing the estimated additional excess mortality rate (per
100,000 individuals) and number of excess deaths that would have occurred if time spent at home
would have not changed during the weeks 13-25 of 2020. Source: Author’s elaborations on data
from the Office for National Statistics (2020a,b) and Google LLC (2020a).

5 Discussion

Local and national governments across the world have implemented a variety of policies aimed
at reducing social contacts to mitigate the transmission and deaths of COVID-19 during the first
half of 2020. We investigated the relationship between excess mortality and changes in human
mobility considering that the value and effectiveness of non-pharmaceutical interventions (NPIs)
is still under debate. Specifically, we leveraged digital data derived from the Google COVID-19
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Community Mobility Reports (Google LLC, 2020a) to explore the association between stay-at-home
measures and excess mortality at the regional level in England and Wales during the COVID-19
pandemic.

We found a strong negative correlation between the time that Google Map users spent at
home and population-level excess mortality, which is considered the best indicator of the impact
of the pandemic (National Academies of Sciences, Engineering, and Medicine, 2020). Our analysis
determined that a time lag of at least five weeks was necessary for the association between mobility
and mortality to materialize. We are unaware of previous scientific evidence regarding the time span
that would be required for mobility changes to influence mortality outcomes during the COVID-
19 pandemic. However, we found that this period of five weeks is consistent with preliminary
estimates of the whole COVID-19 timeline from infection to death, namely, an incubation period
(i.e., from infection to the onset of symptoms) that can last up to two weeks (11.5 days with a
95%CI of 8.2 to 15.6 days (Lauer et al., 2020)), and a course of disease (i.e., from symptoms onset
to death) that can last up to three weeks (17.8 days with a 95% CI of 16.9 to 19.2 days (Verity
et al., 2020)).

Using a mixed-effects regression approach, we found that an increase in time spent at home
was associated with lower levels of excess mortality rate across all regions of England and Wales.
These effects are strong, significant, and robust to different model specifications. Our findings are
consistent with the existing evidence that stay-at-home measures are effective NPIs in the context of
a global pandemic (Lai et al., 2020; Flaxman et al., 2020; Del Fava et al., 2020). The government’s
handling of the COVID-19 pandemic in England and Wales has been heavily criticized, particularly
given the delayed introduction of stay-at-home measures as compared to other countries in Europe
(Hale et al., 2020). Nevertheless, by and large, residents of England and Wales appeared to have
followed the government guidelines to stay at home when they were issued, as evidenced by: (i) a
relative increase in the time that Google Map users spent at home after mid-March, and (ii) the
large reduction in the number of face-to-face contacts per day per person after the introduction
of the physical distancing guidelines, with respect to the pre-COVID-19 period (Del Fava et al.,
2020).

We estimate that almost 130,000 excess deaths were averted by the increased time spent at
home following the introduction of the NPIs in England and Wales. The number of lives that
could have been saved if earlier and stricter measures had been put in place is unknown, but our
results suggest that the potential number of excess deaths could have been much higher indeed in
the absence of these interventions. Our estimates are sensitive to modeling choices as well as data
inputs, which are characterized by some degree of uncertainty. Work is currently carried out to
provide confidence intervals around the estimate by quantifying the uncertainty in our study.

We exploit the potential of Google data to estimate human mobility and explain excess mortal-
ity, but we are also aware of the shortcomings related to this data source. These are in particular
due to the lack of details concerning the collection and processing of the mobility data. One
limitation is that Google does not share absolute visitor numbers in their reports, but only rel-
ative changes with respect to the beginning of 2020. Back-engineering the underlying absolute
measurements does not seem possible or desirable, given privacy concerns in sparsely populated
areas. Furthermore, categories are not standard across regions and may contain different types
of places (parks, for example, may include castles, public gardens, observation decks, etc.). This
lack of conceptual clarity also affects the ‘residential’ category used in our main analyses, which is
only loosely defined in the GCMR documentation (Google LLC, 2020b). This lack of detail makes
the data much less informative that it could possibly be, if all raw measures were made available
together with the description of the algorithms used to produce them.

The lack of data and algorithmic transparency also limits our ability to assess the represen-
tativeness of the data. Nonetheless, there are reasons to believe that the Google mobility data
provide a first and accurate approximation to the changes in human mobility occurred during the
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COVID-19 pandemic. England and Wales have one the the highest rates of internet penetration in
the world and one of the lowest degrees of gender inequality in internet access (Garcia et al., 2018).
Furthermore, around three quarters of mobile phones in the UK use an Android operating system,
in which Google Maps is installed by default.? Thus, we are confident that the aggregation of the
data from daily Local Authorities inputs to regional weekly estimate approximates well the main
mobility trends at the macro-region level. Finally, we are reassured by the strong and consistent
relationships between some of the categories of mobility data and excess mortality, after controlling
for time-specific trends of the epidemic and regional differences.

Our study provides important evidence on the positive impact of NPIs to mitigate the negative
effects of the spread of COVID-19. We conclude by encouraging private companies such as Google
to continue sharing data to foster academic research in areas of public interest. Further improve-
ments include more transparency about the data-generating process and the sharing of raw data,
keeping as a priority the privacy of users. The use of digital data clearly has great potential for
public health research (see, e.g., Coppersmith et al., 2018; Reece and Danforth, 2017; Eichstaedt
et al., 2018). We understand and share the privacy concerns related to the use of digital trace data
in academic research. The current COVID-19 pandemic highlights the urgent need for an open
conversation about how these data can be used ethically and, potentially, help save lives.

Authors’ contributions

UB and EZ conceived the study. UB, DAG and EDF retrieved and elaborated data. UB and CGC
performed analyses. All authors wrote the manuscript. All authors provided critical feedback and
helped shape the research, analysis and manuscript. All authors approved the final version of the
manuscript.

References

Badr, H. S., Du, H., Marshall, M., Dong, E., Squire, M. M., and Gardner, L. M. (2020). Association
between mobility patterns and COVID-19 transmission in the USA: a mathematical modelling
study. The Lancet Infectious Diseases, 0(0).

Bates, D., Méchler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effects models
using lme4. Journal of Statistical Software, 67(1):1-48.

Coppersmith, G., Leary, R., Crutchley, P., and Fine, A. (2018). Natural language processing of
social media as screening for suicide risk. Biomedical informatics insights, 10:1178222618792860.

De Cao, E., Zagheni, E., Manfredi, P., and Melegaro, A. (2014). The relative importance of
frequency of contacts and duration of exposure for the spread of directly transmitted infections.
Biostatistics, 15(3):470-483.

Del Fava, E., Cimentada, J., Perrotta, D., Grow, A., Rampazzo, F., Gil-Clavel, S., and Zagheni,
E. (2020). The differential impact of physical distancing strategies on social contacts relevant
for the spread of COVID-19. medRxiv, page 2020.05.15.20102657.

Drake, T. M., Docherty, A. B., Weiser, T. G., Yule, S., Sheikh, A., and Harrison, E. M. (2020).
The effects of physical distancing on population mobility during the COVID-19 pandemic in the
UK. The Lancet Digital Health, page S2589750020301345.

Eichstaedt, J. C., Smith, R. J., Merchant, R. M., Ungar, L. H., Crutchley, P., Preotiuc-Pietro,
D., Asch, D. A.; and Schwartz, H. A. (2018). Facebook language predicts depression in medical
records. Proceedings of the National Academy of Sciences, 115(44):11203-11208.

*https://www.statista.com /statistics /272698 /global-market-share-held-by-mobile-operating-systems-since-2009/

12



Eilers, P. H. C., Gampe, J., Marx, B. D., and Rau, R. (2008). Modulation models for seasonal
time series and incidence tables. Statistics in Medicine, 27(17):3430-3441.

Flaxman, S., Mishra, S., Gandy, A., Unwin, H. J. T., Mellan, T. A., Coupland, H., Whittaker,
C., Zhu, H., Berah, T., Eaton, J. W., Monod, M., Imperial College COVID-19 Response Team,
Ghani, A. C., Donnelly, C. A., Riley, S. M., Vollmer, M. A. C., Ferguson, N. M., Okell, L. C.,
and Bhatt, S. (2020). Estimating the effects of non-pharmaceutical interventions on COVID-19
in Europe. Nature.

Ganyani, T., Kremer, C., Chen, D., Torneri, A., Faes, C., Wallinga, J., and Hens, N. (2020).
Estimating the generation interval for COVID-19 based on symptom onset data. preprint,
Infectious Diseases (except HIV/AIDS).

Garcia, D., Mitike Kassa, Y., Cuevas, A., Cebrian, M., Moro, E., Rahwan, I., and Cuevas, R.
(2018). Analyzing gender inequality through large-scale Facebook advertising data. Proceed-
ings of the National Academy of Sciences, 115(27):6958-6963. Publisher: National Academy of
Sciences _eprint: https://www.pnas.org/content/115/27/6958.full.pdf.

Google LLC (2020a). Google COVID-19 Community Mobility Reports. Available at https:
//www.google.com/covidl9/mobility/. Accessed on June 30th, 2020.

Google LLC (2020b). Google COVID-19 Community Mobility Reports: Understand the data.
Available at https://support.google.com/covid19-mobility/answer/98254147hl=en&ref _
topic=9822927. Accessed on June 26th, 2020.

Hale, T., Petherick, A., Phillips, T., and Webster, S. (2020). Variation in government responses
to covid-19. Blavatnik school of government working paper, 31.

Lai, S., Ruktanonchai, N. W., Zhou, L., Prosper, O., Luo, W., Floyd, J. R., Wesolowski, A.,
Santillana, M., Zhang, C., Du, X., Yu, H., and Tatem, A. J. (2020). Effect of non-pharmaceutical
interventions to contain COVID-19 in China. Nature.

Lauer, S. A., Grantz, K. H., Bi, Q., Jones, F. K., Zheng, Q., Meredith, H. R., Azman, A. S., Reich,
N. G., and Lessler, J. (2020). The Incubation Period of Coronavirus Disease 2019 (COVID-
19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal
Medicine, 172(9):577-582.

National Academies of Sciences, Engineering, and Medicine (2020). FEwvaluating Data Types: A
Guide for Decision Makers using Data to Understand the Extent and Spread of COVID-19. The
National Academies Press, Washington, DC.

Office for National Statistics (2020a). Deaths registered weekly in Eng-
land and  Wales, provisional. Available at  https://www.ons.gov.uk/
peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/
weeklyprovisionalfiguresondeathsregisteredinenglandandwales. Accessed on June

30th, 2020.

Office for National Statistics (2020b).  Estimates of the population for the UK, Eng-
land and Wales, Scotland and Northern Ireland. Available at https://www.ons.gov.
uk/peoplepopulationandcommunity/populationandmigration/populationestimates/
datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland.

Accessed on June 2nd, 2020.

Oliver, N., Lepri, B., Sterly, H., Lambiotte, R., Deletaille, S., Nadai, M. D., Letouzé, E., Salah,
A. A., Benjamins, R., Cattuto, C., Colizza, V., Cordes, N. d., Fraiberger, S. P., Koebe, T.,
Lehmann, S., Murillo, J., Pentland, A., Pham, P. N., Pivetta, F., Saraméki, J., Scarpino, S. V.,
Tizzoni, M., Verhulst, S., and Vinck, P. (2020). Mobile phone data for informing public health
actions across the COVID-19 pandemic life cycle. Science Advances, 6:eabc0764.

13


https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/
https://support.google.com/covid19-mobility/answer/9825414?hl=en&ref_topic=9822927
https://support.google.com/covid19-mobility/answer/9825414?hl=en&ref_topic=9822927
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/weeklyprovisionalfiguresondeathsregisteredinenglandandwales
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/weeklyprovisionalfiguresondeathsregisteredinenglandandwales
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/weeklyprovisionalfiguresondeathsregisteredinenglandandwales
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland

Pepe, E., Bajardi, P., Gauvin, L., Privitera, F., Lake, B., Cattuto, C., and Tizzoni, M. (2020).
Covid-19 outbreak response: a first assessment of mobility changes in italy following national
lockdown. medRziv.

R Development Core Team (2020). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

Reece, A. G. and Danforth, C. M. (2017). Instagram photos reveal predictive markers of depression.
EPJ Data Science, 6(1):1-12.

Riley, S. (2007). Large-scale spatial-transmission models of infectious disease.  Science,
316(5829):1298-1301.

Tatem, A. J., Rogers, D. J., and Hay, S. I. (2006). Global transport networks and infectious disease
spread. Advances in parasitology, 62:293-343.

Verity, R., Okell, L. C., Dorigatti, I., Winskill, P., Whittaker, C., Imai, N., Cuomo-Dannenburg,
G., Thompson, H., Walker, P. G. T., Fu, H., Dighe, A., Griffin, J. T., Baguelin, M., Bhatia,
S., Boonyasiri, A., Cori, A., Cucunubd, Z., FitzJohn, R., Gaythorpe, K., Green, W., Hamlet,
A., Hinsley, W., Laydon, D., Nedjati-Gilani, G., Riley, S., Elsland, S. v., Volz, E., Wang, H.,
Wang, Y., Xi, X., Donnelly, C. A.; Ghani, A. C., and Ferguson, N. M. (2020). Estimates of the
severity of coronavirus disease 2019: a model-based analysis. The Lancet Infectious Diseases,
20(6):669-677.

Wesolowski, A., Buckee, C. O., Engg-Monsen, K., and Metcalf, C. J. E. (2016). Connecting
mobility to infectious diseases: the promise and limits of mobile phone data. The Journal of
infectious diseases, 214(suppl_4):5414-S420.

Wilson, M. E. (1995). Travel and the emergence of infectious diseases. Emerging infectious diseases,
1(2):39.
Wood, S. N. (2019). mgcv: Mized GAM Computation Vehicle with GCV/AIC/REML Smoothness

Estimation. R package version 1.8-31.

World Health Organization (2020). Coronavirus disease 2019 (COVID-19): Situation Report
— 163. https://www.who.int/docs/default-source/coronaviruse/situation-reports/
20200701-covid-19-sitrep-163.pdf?sfvrsn=c202f05b_2. (Accessed on July 3, 2020).

Zagheni, E., Billari, F. C., Manfredi, P., Melegaro, A., Mossong, J., and Edmunds, W. J. (2008).
Using time-use data to parameterize models for the spread of close-contact infectious diseases.
American journal of epidemiology, 168(9):1082-1090.

Zhang, J., Litvinova, M., Liang, Y., Wang, Y., Wang, W., Zhao, S., Wu, Q., Merler, S., Viboud, C.,
Vespignani, A.; Ajelli, M., and Yu, H. (2020). Changes in contact patterns shape the dynamics
of the COVID-19 outbreak in China. Science.

14


https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200701-covid-19-sitrep-163.pdf?sfvrsn=c202f05b_2
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200701-covid-19-sitrep-163.pdf?sfvrsn=c202f05b_2

A Sensitivity analysis

In this Appendix, we perform a sensitivity analysis of the results shown in the paper.

A.1 Different estimation of excess mortality

The results shown in our paper are robust to the computation of expected deaths d; derived from
the Generalized Additive Model (GAM) of Equation (1) (cf. Subsection 3.1). Specifically, we re-
run all our analysis using a different estimate of the excess mortality rate. Instead of using the
dy predicted from the GAM, we computed d; for each week in 2020 as the average number of
deaths observed in the corresponding weeks between the years 2015-2019. Figure A.1 shows the
estimated numbers of expected deaths and excess mortality rate using the GAM and the historical
weekly means of the observed death counts. The excess mortality rates estimated with the two
approaches are very similar, especially in the period under study (grey area in 2020). As such, it
is not surprising that the results shown in Section 4 do not change by a great extent when using
this alternative computation of excess mortality.
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Figure A.1. Observed (dots) and fitted (lines) weekly number of deaths (upper panels) and excess
mortality rate (5,5 /e per 100,000 individuals, lower panels) using two different approaches (GAM
in orange, weekly historical mean in blue) in East Midlands and Wales for the years 2015-2020.
Source: Author’s elaborations on data from the Office for National Statistics (2020a,b).
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A.2 Exploring other Google mobility indicators

In this subsection, we investigate the relationship between excess mortality rate and other mobility
indicators provided by Google LLC (2020a). Following the results shown in Section 4, we start
from the correlation analysis between excess mortality and two additional categories: grocery and
workplace mobility. Figures A.2 and A.3 shows these correlation, considering different lags of time
for the mobility variables.
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Figure A.2. Linear relationship and Pearson correlation coefficient (r) between excess mortality
rate (per 100000) and change in grocery mobility in England & Wales for the weeks 8-25 in 2020,
considering different time lags for grocery mobility. Source: Author’s elaborations on data from
the Office for National Statistics (2020a,b) and Google LLC (2020a).

Results for outdoor mobility are consistent with those for the residential category (cf. Fig. 3),
although with the opposite sign. Initially, changes in outdoor mobility are negatively correlated
with excess mortality. However, when we consider lags greater or equal to five weeks, the relation-
ship between the two variables becomes positive, i.e., an increase in outdoor mobility is associated
with a (future) increase in excess mortality.

Next, we run additional mixed-model regressions between excess mortality and changes in
mobility, considering all the remaining categories provided by Google. Table A.1 shows the results
of the regressions. This analysis provides additional evidence that lagged reductions in outdoor
mobility are associated with declines in excess mortality; specifically, the categories of workplaces,
transit and grocery display stronger associations, while retail and recreation and parks do not show
a significant association. It should be noted that we run these regressions with a single mobility
indicator at a time due to the correlation between the different categories, which would likely
introduce multicollinearity in regressions with more than one mobility covariate at a time.
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Figure A.3. Linear relationship and Pearson correlation coefficient (r) between excess mortality
rate (per 100000) and change in workplace mobility in England & Wales for the weeks 8-25 in 2020,
considering different time lags for workplace mobility. Source: Author’s elaborations on data from
the Office for National Statistics (2020a,b) and Google LLC (2020a).

Dependent variable: excess mortality rate

Linear mixed-effects regression

workplaces grocery transit retail parks
Fixed effects
‘Eiznﬁe 5“)1 mobility 0.48 (0.10) | 0.33 (0.15) | 0.25 (0.06) | 0.01 (0.12) | -0.09 (0.04)
[95% conf. interval] [0.29, 0.67] | [0.04, 0.63] | [0.13, 0.37] | [-0.23, 0.24] | [-0.16, -0.01]
Random effects (variance)
region (intercept) 4.39 1.81 4.86 1.90 2.01
residual 4.20 5.12 4.44 5.33 5.05
Observations 130 130 130 130 130
Log-Likelihood -265.43 -272.32 -269.40 -274.95 -273.41
AIC 562.85 576.64 570.81 581.91 578.81
BIC 608.73 622.52 616.69 627.79 624.69

Table A.1. Estimated coefficients (with associated standard errors, in parenthesis) and 95%

confidence intervals of linear mixed-effects regression between excess mortality rate (per 100,000
individuals) and changes in outdoor mobility five weeks before, measured with other categories of
Google data: workplaces, grocery, transit, retail and parks. The models consider a smooth function
of time (using 12 B-splines) and a random intercept for each region. Estimation is performed using
restricted maximum likelihood. Source: Author’s elaborations on data from the Office for National
Statistics (2020a,b) and Google LLC (2020a).
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A.3 Different number of B-spline bases

Here, we re-run the mixed-effect linear regression of Subection 4.3 using a different number B-
spline bases. Table A.2 shows the results of this analysis. In particular, it is important to notice
that the estimated mobility coefficients are in line with those found in the main analysis, ranging
between -0.77 and -1.01 according to the number of B-splines. Similarly, the degree of random
effect variance captured by the regional intercepts varies between 43.5% and 50.0%.

Dependent variable: excess mortality rate

Linear mixed-effects regression

4 B-splines 6 B-splines 8 B-splines 10 B-splines
Fixed effects
change in stay-at-home oo 17y | _1.01 (0.14) | -0.88 (0.14) | -0.77 (0.14)
time (lag = 5) . : : . . . . :
[95% conf. interval] [-1.08, - 0.67] | [-1.29, - 0.73] | [1.16, - 0.61] | [-1.04, - 0.49]
Random effects (variance)
region (intercept) 4.77 5.67 4.91 4.31
residual 6.19 5.68 5.29 4.52
Observations 130 130 130 130
Log-Likelihood -308.39 -300.53 -292.12 -277.69
AIC 632.78 621.06 608.25 583.37
BIC 655.72 649.74 642.66 623.52

Table A.2. Estimated coefficients (with associated standard errors, in parenthesis) and 95%
confidence intervals of regressing the excess mortality rate (per 100,000 individuals) on time spent
at home five weeks before using linear mixed-effects regression with restricted maximum likelihood
estimation. The models consider a smooth function of time with different numbers of B-splines
and a random intercept for each region. Source: Author’s elaborations on data from the Office for
National Statistics (2020a,b) and Google LLC (2020a).

18



	Introduction and Background 
	Data Description
	Mortality Data for England and Wales
	Google Mobility Data

	Methods
	Computing excess mortality
	Modelling the relationship between excess mortality and mobility

	Results
	Estimating excess mortality
	Correlation of excess mortality and time spent at home
	Model results

	Discussion
	Sensitivity analysis
	Different estimation of excess mortality
	Exploring other Google mobility indicators
	Different number of B-spline bases


