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Abstract
Litter production is a fundamental ecosystemprocess, which plays an important role in regulating
terrestrial carbon and nitrogen cycles. However, there are substantial differences in the litter
production simulations among ecosystemmodels, and a global benchmarking evaluation tomeasure
the performance of thesemodels is still lacking. In this study, we generated a global dataset of
aboveground litterfall production (i.e. cLitter), a benchmark as the defined reference to testmodel
performance, by combining systematicmeasurements taken from a substantial number of surveys
(1079 sites)with amachine learning technique (i.e. random forest, RF). Our study demonstrated that
the RFmodel is an effective tool for upscaling local litterfall production observations to the global
scale. On average, themodel predicted 23.15 PgC yr−1 of aboveground litterfall production. Our
results revealed substantial differences in the aboveground litterfall production simulations among
thefive investigated ecosystemmodels. Compared to the reference data at the global scale,most of
models could reproduce the spatial patterns of aboveground litterfall production, but themagnitude
of simulations differed substantially from the reference data. Overall, ORCHIDEE-MICTperformed
the best among thefive investigated ecosystemmodels.

1. Introduction

Litterfall is a particularly key process for determining
the carbon and nutrient cycling of terrestrial ecosys-
tems, and it controls themain respiration substrates on
the forest floor (Roig et al 2005, Chen and Chen 2018).
The magnitude of litterfall regulates the rate of soil
respiration and soil organic carbon content indirectly
(Sayer 2006, Hansen et al 2009, Neumann et al 2018).
Moreover, litterfallmaintains the soil fertility as it is the
most important resource of soil organicmatter and soil
nutrients (Gairola et al 2009). Litterfall can also regulate
the properties of the underlying surface by changing
the hydraulic conductivity and albedo (Liu et al 1997),
and impact the responses and feedbacks of terrestrial

ecosystems to climatic conditions (Winkler et al 2010).
Therefore, litterfall is one of the key parameters in
measuring, modeling and predicting terrestrial ecosys-
temdynamics (Liski et al 2005).

All ecosystemmodels have simulated litterfall pro-
duction and its spatial variability, however, to date,
different models remain inconclusive regarding the
magnitude of production. For example, Rotmans and
Den Elzen (1993) used an empirical model to estimate
total litterfall flux (including aboveground and below-
ground) on a global scale at 47.5 Pg C yr−1, which is
3.28 times the estimate of 14.5 Pg C yr−1, reported by
Lonsdale (1988). These results imply that the models,
which have been well validated on parameters related
to productivity (and then are in good agreements), are
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totally different in simulating litterfall production, and
have not been compared against data. Therefore, these
models should be evaluated over regional scales
against defined references (i.e. benchmarks) that can
be used to diagnose their strengths and deficiencies for
future improvement. However, to our knowledge, no
study has been conducted to evaluate model perfor-
mance with respect to the litterfall production, and
there is still very limited knowledge of the perfor-
mance capabilities. Therefore, benchmark analysis is
urgently needed to evaluate ecosystem models against
observations as it allows us to identify uncertainties in
predictions, as well as guides the priorities for model
development (Luo et al 2012).

The most critical component of any benchmark
analysis is to define the benchmarks, which must be
objective, effective, and reliable for evaluating model
performance. Currently, as advanced empirical mod-
els, machine learning methods have been increasingly
developed for explicitly quantifying carbon cycle vari-
ables regionally and globally (Jung et al 2010, Xia et al
2018). Several approaches including artificial neural
networks, regression trees, support vector regression,
and random forest (RF) have been widely employed to
predict regional biomass and other carbon cycle vari-
ables. Machine learning methods are independent of
the relationships between response variables and pre-
dictive variables, especially when compared with tra-
ditional empirical models such as linear regression
that requires a Gaussian distribution for the input
variables. More importantly, the increasing observa-
tions now available cover a wide range of geographic
and climate regions, which is of clear value for upscal-
ing site-level observations to the regional scale. In this
study, we combined four global aboveground litterfall
production datasets and the related environmental
conditions. The primary objectives of this study were
to: (1) develop the RF model for predicting above-
ground litterfall production by using adequate site
observations, (2) quantify the aboveground litterfall
production based on the RF model, and (3) conduct a
benchmarking evaluation of ecosystem models
regarding to the aboveground litterfall production.

2.Data andmethods

2.1. Aboveground litterfall production datasets
In forest ecosystems, aboveground litter includes
mainly foliage, branches, bark, and reproductive
organs, and usually, foliage litterfall occupies a major
fraction of total litterfall (Liu et al 2003).

In this study, we used four datasets of observed
aboveground litterfall production data (Zhang et al
2014, Holland et al 2014, Jia et al 2016, Neumann
et al 2018) and some other relevant studies were also
included (Mina 1955, Remezov et al 1959, Marchenko
and Karlov 1962, Rodin and Bazilevich 1967,

Goryshina 1974a 1974b, Ranawat and Vyas 1975,
Gaur and Pandey 1978, Djhalilov and Safarov 1981,
Jakucs 1985, Breymeyer 1991, Berg et al 1993,
Vedrova 1995). These observations were collected
from published studies, and have been critically
reviewed and incorporated into comprehensive forest
litterfall datasets. Litterfall data were measured by lit-
terfall-trap experiments. Replicate measurements
obtained from a series of plots or litterfall traps at a
single site were averaged. In these datasets, litterfall
production referred to plant material shed in one year,
and was composed primarily of leaves, twigs (<2.5 cm
in diameter), flowers, fruits and bark. Dead roots and
coarse woody detritus (CWD) were not included.
CWD include a wide variety of types and sizes ofmate-
rials. Generally, items larger than 2.5 cm in diameter
are referred to as CWD. In total, the litterfall datasets
included measurements from 1079 study sites. The
observation sites dispersed across various climate
zones with latitudes from −42.45 to 71.3 and long-
itudes from −156.7 to 176.3, and covered different
forest types (figure 1). To match our observed above-
ground litterfall data, CWD were excluded from the
aboveground litterfall outputs of the five ecosystem
models.

2.2. Random forest
RF is a machine learning method for classification and
regression. It combines tree predictors, such that each
tree depends on the values of a random vector that is
sampled independently, with the same distribution for
all trees in the forest. RF operates by constructing a
multitude of decision trees for a given training time and
outputting the class that is the mode of the classes
(classification) or themeanprediction (regression) of the
individual trees. The generalization error for RF con-
verges to a limit as the number of trees in the forest
increases. The first algorithm for random decision
forests was created by Ho (1998) using the random
subspacemethod,which is an extension of the algorithm
developed by Breiman (2001). This study constructed
the aboveground litterfall production model based on
RF inR. TheRpackage ‘randomForest’used in the study
has been modified by Liaw andWiener (2002) from the
original Fortran by Breiman and Cutler (https://cran.r-
project.org/web/packages/randomForest/).

We developed a predictive aboveground litterfall
productionmodel using RF. The explanatory variables
included: mean air temperature, maximum air temp-
erature, minimum air temperature, precipitation,
relative humidity, wind speed, solar radiation and the
normalized difference vegetation index (NDVI), by
year and by the four seasons (i.e. winter, spring, sum-
mer and autumn), for a total of 8 variables. The period
of the time series of all these variables was from 1982 to
2013. NDVI were derived from the Global Inventory
Modeling and Mapping Studies (GIMMS) datasets

2

Environ. Res. Lett. 14 (2019) 084020

https://cran.r-project.org/web/packages/randomForest/
https://cran.r-project.org/web/packages/randomForest/


and the rest meteorological factors were derived from
the CRU-NCEP (National Centers for Environmental
Prediction) v8 datasets. We used complete combina-
torial method to produce the optimal combination
out of the 8 variables. Full combinations of 2–8 vari-
ables were examined, and totally there are combina-
tions of 247 variables (1235 combinations for four
seasons and one year). To select the best model, we
evaluated the performance of each model based on
their root mean squared error (RMSE). For each
model, 80% of the observations were selected ran-
domly for training, leaving 20% for validation, and the
model was run 2000 times.

To analyze themodel uncertainty of the RFmodel,
we used different forcing datasets to produce an
ensemble of RF predictions. In our RF model, mean
annual temperature and NDVI were selected as pre-
dictor variables of aboveground litterfall production.
Thus, we used four different air temperature datasets
of CRU-NCEP (National Centers for Environmental
Prediction) v8, Climate Research Center (CRU)
TS3.25, the Modern Era Retrospective-Analysis for
Research and Applications, Version 2 (MERRA-2) and
ERA-Interim, together with NDVI of the GIMMS to
force the RF model. The time period of these input
data was from 1982 to 2013. Then we took the median
absolute deviation (MAD) across different ensemble
members as model uncertainty for the RF model
(figure 3(b)).

2.3. Terrestrial ecosystemmodels
In this study, we compared the RF with five terrestrial
ecosystem models about their predictions or estima-
tions of aboveground litterfall production. These
models included: BioGeochemical Cycles (Biome-
BGC; Running and Gower 1991), Integrated Bio-
sphere Simulator (IBIS; Foley et al 2005, Yuan et al
2014), Lund-Postdam-Jena ( Sitch et al 2003), ORga-
nizing Carbon and Hydrology in Dynamic Ecosys-
tEms-aMeliorated Interations between Carbon and
Temperature (ORCHIDEE-MICT; Guimberteau et al
2017) and Vegetation Integrated Simulator for Trace
Gases (VISIT; Ito and Oikawa 2002). While VISIT
was driven by Climate Research Unit (CRU) TS3.25
datasets (http://data.ceda.ac.uk/badc/cru/data/cru_
ts/cru_ts_3.25/), the others were forced with CRU-
NCEP (National Centers for Environmental Predic-
tion) v8 datasets (https://vesg.ipsl.upmc.fr/thredds/
catalog/work/p529viov/cruncep/V8_1901_2016/
catalog.html). Both of two climate datasets are derived
from quasi-point based measurements and have the
same spatial scale (0.5°). CRU-NCEP data are pro-
vided every 6 h and CRU data are provided monthly.
CRU-NCEP data averaged on a monthly time step are
equivalent with CRUdata, in that CRU-NCEP data are
based on CRU monthly data and NCEP data are used
to simulate the 6-hourly variability of different para-
meters. Consequently, it is reasonable to consider that
all models including VISIT were based on the same
climate forcing.

Figure 1.Distribution of sampling points for aboveground litterfall production, with land cover types indicated by color. TheGlobal
LandCover 2000 (GLC-2000; Giri et al 2005)was used to identify the vegetation types.
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This study examined the performance of the RF
model and the five ecosystem models, and the results
were presentedwith a Taylor diagram (figure 4). Speci-
fically, we used Pearson’s correlation to evaluate the
relationship between the observed and simulated
aboveground litterfall production. Furthermore, we
used the centered pattern rootmean square (RMS) dif-
ference in order to isolate the differences in models
from differences in the means of the observed and
simulated patterns.

In this study, we also analyzed the correlation
between aboveground litterfall production of the five
ecosystem models and their leaf area index (LAI) and
heterotrophic respiration (RH). The LAI and RH esti-
mations were derived from the ecosystem model that
used in this study respectively. RH estimations include
the CO2 emission from the decomposition of litterfall
and soil organic carbon.

3. Results

3.1. Litterfall predictions byRFmethod
Based on the aboveground litterfall production observa-
tions, we evaluated model performance on all possible
combinations of the explanatory variables (see
section 2.2). Annual mean air temperature and annual
meanNDVIwere found to be the best combinations for
predicting litterfall flux.We then validated the model in
the spatial domain using cross-validation. To analyze
the performance of the RF, the average predicted litter-
fall production of the same site from 20% validation
datasets of each model run were calculated (figure 2).
The RMSE of the aboveground litterfall production for
the RF was 0.0994 kg C m−2 yr−1. Based on the RF
model, we generated global aboveground litterfall
production from 1982 to 2013. On average, there was
23.15 Pg C yr−1 aboveground litterfall production

Figure 2.Observed and predicted aboveground litterfall production. The dashed line indicates 1:1 correspondence and the solid line is
the fitted linear regression to the data.

Figure 3. (a)Global pattern of predicted aboveground litterfall production by the RFmodel, (b) uncertainties of the RFmodel.
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during this period. Aboveground litterfall production
was the highest in the tropical moist forest regions and
lowest in cold tundra and dry desert regions
(figure 3(a)). Overall, the model uncertainties of above-
ground litterfall production for the RF were small and
there were larger uncertainties in low latitude area
(figure 3(b)). As figures S2 and S3 showed, both annual
mean air temperature and annual mean NDVI (driving
data for the RF) were positively correlated with cLitter
predicted by the RF, implying that the two identified
drivers theoretically affected the prediction of above-
ground litterfall production for theRF.

3.2.Model-data comparison
Based on the observations of aboveground litterfall
production, we examined the performance of the RF
model and the five ecosystem models (figure 4). Here
we used Pearson’s correlation to evaluate the relation-
ship between the observed and simulated above-
ground litterfall production. Furthermore, we used
the centered RMS difference in order to isolate the
differences in models from differences in the means of
the observed and simulated patterns. The centered
RMS difference approaches zero as two patterns
become more similar. The standard deviations of
Biome-BGC was the most similar to the reference
point, the distance from which to the origin indicates
the standard deviation of the observed value. For the
correlation coefficient and the centered RMS differ-
ence, the RF’s correlation coefficient was the largest
while its RMSE was the lowest, which indicates that
the RF’s performance was the best when modeling

aboveground litterfall production. Overall, ORCHI-
DEE-MICT performed the best among the five
ecosystemmodels.

3.3. Benchmarking evaluation
There were large differences in the simulated above-
ground litterfall production among the five investigated
ecosystem models , the simulations derived by the LPJ
model (91.41 Pg C yr−1) was 9 times the estimate of
9.85 Pg C yr−1, derived from the Biome-BGC model
(figure 5(g)). Specifically, LPJ simulated high above-
ground litterfall production at high latitudes. In terms
of the global aboveground litterfall production trend,
five of the six models (i.e. RF, Biome-BGC, LPJ,
ORCHIDEE-MICT and VISIT) showed a significant
cLitter increase from 1982 to 2013, with the trend
ranging from 0.13 to 0.92 g Cm−2 yr−1 (figure 6). The
greatest increase of aboveground litterfall production
was found in the VISIT model (figure 6(f)). The IBIS
model presented relatively constant long-term changes
(0.004 g Cm−2 yr−1, p=0.92). In general, the trend of
cLitter for Biome-BGC was the nearest to the RF’s,
implying that the simulations of cLitter’s time variation
for Biome-BGCwere the best among the five ecosystem
models.

The LPJ model simulated the extremely high leaf
litterfall at high latitudes, and which probably results
from two potential causes. First, LAI for LPJ is high in
the latitude around 60 degrees (figure 8(g)). Second,
the leaf longevity of boreal needleleaf evergreen
trees for LPJ is 2 years (table S1 is available online at
stacks.iop.org/ERL/14/084020/mmedia), which is

Figure 4.Taylor diagramdisplaying a statistical comparisonwith observations of sixmodel estimates of the global pattern of
aboveground litterfall production.
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smaller than the other models. For instance, the leaf
longevity of evergreen needleleaf forest-cool climate
for Biome-BGC is 4 years and the leaf longevity of bor-
eal needleleaf evergreen trees for ORCHIDEE-MICT
is 2.49 years (table S1). In contrast, the leaf longevity in
tropical for LPJ is the longest, which makes the cLitter
for high latitudes for LPJ much higher than the other
models and the cLitter in tropical area extremely low.

3.4. Relationships between LAI and litterfall
production
In order to explain the substantial differences of
aboveground litterfall production between the five
ecosystem models, we analyzed the relationship
between LAI and aboveground litterfall production
for these models. The LAI was derived from each
ecosystem models used in this study respectively. The

Figure 5.Distributionmap of global aboveground litterfall production simulated by: (a)Biome-BGC, (b) IBIS, (c) LPJ,
(d)ORCHIDEE-MICT and (e)VISIT. (f) Standard deviations of aboveground litterfall production (cLitter) simulated by thefive
ecosystemmodels. (g)Global area-weighted sumcLitter and (h)Zonal area-weighted averaged cLitter predicted by the RFmodel and
simulated by thefive ecosystemmodels.
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simulations of LAI have strong connection with the
simulations of cLitter in terrestrial carbon cycle
models. We analyzed the relationship between the
cLitter and LAI of the outputs for all models, their
correlation coefficients are shown in figure 7. Addi-
tionally, the ratios of the different correlations (sig-
nificant negative correlation, negative correlation,
positive correlation and significant positive correla-
tion) are shown in figure 7. In this study, the RFmodel
was only used to predict aboveground litterfall pro-
duction. We did not use the RF model to predict LAI,
so we analyzed the relationship between cLitter and its

forcing data, the GIMMS NDVI. For Biome-BGC,
IBIS, ORCHIDEE-MICT and VISIT, cLitter was
significantly and positively correlated with LAI inmost
areas. However, for RF and LPJ, the correlations were
muchweaker, especially for LPJ (figure 7(d)).

There were obvious differences in the LAI simula-
tions of the five ecosystem models (figure 8(f)). The
same as with cLitter, the simulated values of LAI for
LPJ were the largest, while those for Biome-BGC were
the smallest. We also analyzed the LAI trend of the five
ecosystem models. Figure 8 illustrates that there were
slight increasing trends in the LAI simulations of

Figure 6.Trends of global area-weighted averaged cLitter predicted by (a)RF, simulated by: (b)Biome-BGC, (c) IBIS, (d)LPJ,
(e)ORCHIDEE-MICT and (f)VISIT from1982 to 2013.
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Biome-BGC, LPJ, ORCHIDEE-MICT and VISIT,
with little change in the LAI simulations of IBIS, which
corresponded to the cLitter trend.

4.Discussion

Our results demonstrated that in combination with
other satellite-derived and climatic variables, the RF
performed well for predicting litterfall production, as
was confirmed by cross-validation and Taylor diagram
(figures 2 and 4). Often, the performance of the data-
drivenmethods are highly restricted by the quantity of
training datasets (Chen et al 2014). Our current
predictions greatly benefited from the abundant
observations, which covered the major geographical
and climate regions.

The predicted aboveground litterfall production
by the RF model showed a strong correlation with the
satellite-based GIMMS NDVI (figure 7(a)). Previous
studies have shown that leaf litter substantially

contributes to total litterfall, and the contribution per-
centages from 64%–73% (Zhang et al 2014). All five
investigated ecosystem models consistently exhibited
strong relationships of simulated LAI on aboveground
litterfall production (figure 7), which implies that the
leaf area simulation is important for reproducing the
aboveground litterfall production. However, there
remain large uncertainties in predicting leaf area in the
ecosystem models due to certain ecological processes
involved, such as vegetation production and carbon
allocation (Gower et al 1999, Kucharik et al 2000, Xia
et al 2015).

Moreover, leaf longevities and turnover rates are
important plant traits that substantially determine lit-
terfall production (Schleip et al 2013). Existing vegeta-
tionmodels usually assumed inaccurate leaf longevities
and turnover rates for each plant function type (PFTs)
(Kucharik et al 2000, Sitch et al 2003).White et al (2000)
reported that the specified leaf longevities in Biome-
BGC showed large discrepancies with the observed

Figure 7. (a)Distributionmap of correlation coefficients between cLitter predicted byRF and theGlobal InventoryModeling and
Mapping Studies (GIMMS)normalized difference vegetation index (NDVI). Distributionmaps of correlation coefficients between
cLitter and leaf area index (LAI) simulated by: (b)Biome-BGC, (c) IBIS, (d) LPJ, (e)ORCHIDEE-MICT and (f)VISIT, where colors
indicate significant negative correlations (SNCs, p<0.05), negative correlations (NCs), positive correlations (PCs), and significant
positive correlations (SPCs, p<0.05).
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Figure 8.Trends of global area-weighted averaged LAI simulated by: (a)Biome-BGC, (b) IBIS, (c) LPJ, (d)ORCHIDEE-MICT and (e)
VISIT from1982 to 2013. (f)Global area-weighted averaged and (g)Zonal area-weighted averaged LAI simulated by thefive ecosystem
models.
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values in theUnited States. Similarly, Zhang et al (2016)
also indicated that there were significant differences
between the observed and default leaf longevities of
ecosystem models for four major evergreen PFTs. For
example, the observed leaf longevity of boreal needle-
leaf forest was greater than three times the default value
(Zhang et al 2016). The significant errors and uncer-
tainties in leaf longevities and turnover rates resulted in
more than 10%of predicted errors for aboveground lit-
terfall production (Zhang et al 2016). There are large
differences in leaf longevities between different ecosys-
tem models and observations. For example, the leaf
longevity of needleleaf evergreen forest in Biome-BGC
was 4 year, which was almost three times the leaf long-
evity in VISIT and nearly one third of the observed
values (table S1; Zhang et al 2016). Therefore, more
accurate leaf longevities are critical for simulating
aboveground litterfall production.

Our results also indicated the substantial regula-
tions of litterfall production on heterotrophic respira-
tion. In all five investigated ecosystem models, there
were strong correlations between aboveground
litterfall production and heterotrophic respiration
(figure S1). Specifically, for ORCHIIDEE-MICT and
VISIT, nearly 90% and 80% of the vegetated areas
showed significant positive correlations between these
variables (figures S1(d) and (e)). Numerous field
experiments have highlighted that the aboveground
litterfall production supply is a significant source of
heterotrophic respiration (van Groenigen et al 2014).
Ameta-analysis of 100 published experimental studies
found that a 100% aboveground litter addition (i.e.
double litter) increased heterotrophic respiration by
26.1% (Chen and Chen 2018). Additionally, increased
inputs of fresh organic matter resulting from litterfall
could result in ‘priming effects’. Priming is the extra
decomposition of soil organicmatter that occurs when
microbes are stimulated by the addition of easily
decomposable organic matter (Bingeman et al 1953),
causing a disproportionate increase in soil CO2 efflux.
For example, a large-scale litter manipulation experi-
ment combined with carbon isotope measurements
found that the efflux of CO2 derived from soil organic
carbon was significantly increased by the addition of
litter (Sayer et al 2011).

Our study provides a new global prediction of
aboveground litterfall production and offers an
opportunity to bridge the gap between sparse data and
correct parameterization of future ecosystem models.
Undoubtedly, ecosystem models must attempt to bet-
ter characterize the spatial and temporal heterogeneity
of ecosystem processes and pursue further validation
against observations (Baldocchi et al 1996, Friend et al
2007, Yuan et al 2010). To reliably simulate the
dynamics of litterfall production, the models should
accurately reproduce the relevant key ecosystem
processes, namely vegetation primary production,
carbon allocation, and turnover rate (Bonan et al 2013,
Hararuk et al 2014). Based on the RF model, our

predictions will be useful as a benchmark for evaluat-
ing ecosystemmodels.

5. Conclusions

The magnitude of litterfall production is a crucial
estimate for projecting the terrestrial carbon budget.
Based on a substantial number of field surveys, this
study used a machine learning method (i.e. random
forest, RF) to develop a data-drivenmodel for predict-
ing global aboveground litterfall production. The
results show that the RF enables the adequate retrieval
of the global pattern of aboveground litterfall produc-
tion. The predicted global aboveground litterfall
production was 23.15 Pg C yr−1. Moreover, our study
revealed substantial model differences regarding the
aboveground litterfall production among five ecosys-
tem models. Compared to the reference data at the
global scale, most of models could reproduce the
spatial patterns of aboveground litterfall production,
but the magnitude of simulations differed substan-
tially from the reference data. Overall, ORCHIDEE-
MICT performed the best among the five ecosystem
models. Our study thus provides an extensive and
normalized model benchmark for aboveground litter-
fall production, which should be useful for advancing
ecosystem models and their parameterization and
validation.
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