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HITTING TIMES OF INTERACTING DRIFTED BROWNIAN MOTIONS
AND THE VERTEX REINFORCED JUMP PROCESS

CHRISTOPHE SABOT AND XIAOLIN ZENG

ABSTRACT. Consider a negatively drifted one dimensional Brownian motion starting at
positive initial position, its first hitting time to 0 has the inverse Gaussian law. Moreover,
conditionally on this hitting time, the Brownian motion up to that time has the law of a 3-
dimensional Bessel bridge. In this paper, we give a generalization of this result to a family of
Brownian motions with interacting drifts, indexed by the vertices of a conductance network.
The hitting times are equal in law to the inverse of a random potential that appears in the
analysis of a self-interacting process called the Vertex Reinforced Jump Process ([I7, [18]).
These Brownian motions with interacting drifts have remarkable properties with respect to
restriction and conditioning, showing hidden Markov properties. This family of processes
are closely related to the martingale that plays a crucial role in the analysis of the vertex
reinforced jump process and edge reinforced random walk ([I8]) on infinite graphs.

1. INTRODUCTION

We first recall some classic facts about hitting times of standard Brownian motion. Let
(Bi)i=0 be a standard Brownian motion and

X(t) =0+ B(t),

be a Brownian motion starting from initial position # > 0. It is well-known that the first
hitting time of 0

(1.1) T =inf{t > 0, X(¢t) =0}

has the law of the inverse of a Gamma random variable with parameter (3, 3) Moreover,
condltlonally on T, (X;)o<i<r has the law of a 3-dimensional Bessel bridge from 6 to 0 on
time interval | ﬁ More generally, if

(1.2) X(t) =0+ B(t) —nt,

is a drifted Brownian motion with negative drift —n < 0 starting at # > 0, then 7" has the
inverse Gaussian distribution with parameters (%, 6?), i.e. T has density

0 1 [/6*
f(t) = Nores exp (—5 (7 + 't — 2n9>) 1= odt.

This work was supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within
the program "Investissements d’Avenir" (ANR-11-IDEX-0007) operated by the French National Research
Agency (ANR), and by the ANR/FNS project MALIN (ANR-16-CE93-0003). The second author is sup-
ported by ERC Starting Grant 678520.

IThe 3-dimensional Bessel bridge from € to 0 on time interval [0, 7] can be represented by the following

S.D.E.
X(t) =9+B(t)+JO (th) - f(sl) ds, 0<t<T



http://arxiv.org/abs/1704.05394v2

2 C. SABOT AND X. ZENG

Moreover, conditionally on T', (X;)o<i<r has the law of a 3-dimensional Bessel bridge from ¢
to 0 on time interval [0,7"]. (See [22], Theorem 3.1, or [I5], p. 317 Corollary 4.6, and [13] 2T]
for complements)

This paper aims at giving a generalization of these statements on a conductance network,
namely for a family of Brownian motions with interacting drifts indexed by the vertices
of the network. The distribution of hitting times of these processes will be given by a
multivariate exponential family of distributions introduced by Sabot, Tarrés and Zeng [17],
and generalized in [8 9], which appeared in the context of self-interacting processes and
random Schrédinger operators. This family of distributions is also intimately related to
the supersymmetric hyperbolic sigma model introduced by Zirnbauer [23] and investigated
by Disertori, Spencer, Zirnbauer [0, [5], and plays a crucial role in the analysis of the edge
reinforced random walk (ERRW) and the vertex reinforced jump process (VRJP) [16, (4] 18].

The generalization of the one dimensional statement presented in this introduction was
hinted by the martingales that appear in [I8]. This martingale has played an important role
in the analysis of the ERRW and the VRJP on infinite graphs. In Section 2.3l we explain
the relations between the stochastic differential equations (S.D.E.s) defined in this paper and
the VRJP and in Section [0 we relate the martingales that appear in the study of VRJP to
the S.D.E.s.

Note that the computations done in this paper seem to have many similarities with com-
putations done for exponential functional of the Brownian motion in dimension one (see
in particular Matsumoto, Yor [I1, 12} [10]). More precisely, it would be possible to write
an analogue of the Lamperti transformation that changes the S.D.E. E”"(Y) presented
below in its exponential functional counterpart with p = % (see the Matsumoto Yor opposite
drift theorem [I0]): the counterpart of the representation of Theorem [Il would correspond
to a representation of the S.D.E. with a Brownian motions with opposite drifts as in [10].
In fact, in dimension one (i.e. one vertex), the Inverse Gaussian distribution corresponds
to p = %, and the Generalized Inverse Gaussian (GIG) distribution corresponds to general
e R, see [I] and [2I]. On a conductance network (i.e. multidimensional), the case u = %
can be carried out by explicit computation, for general u, one will have to use Bessel K
functions as normalizing constant. We plan to develop these aspects in a further work.

It might not be a coincidence that the GIG distribution was initially called generalized
hyperbolic distribution, and the distribution we considered here stems from a supersymmetric
hyperbolic sigma model, where one considered spin systems with spins taking values on a
super hyperbolic space. Interested readers can check [I] and [20] for more details.

Another related direction goes back to Vallois, where GIG is conceived as the exit law of
some one dimensional diffusion. In [2], Chhaibi explicitly computed the exit law of certain
hypoelliptic Brownian motion on a solvable Lie group, where e.g. he recovered the Mat-
sumoto Yor opposite drift theorem, by taking the group to be sly. It is very likely that there
is a connection with our work. Note also that the integral of a geometric Brownian motion is
closely related to the study of Asian option. At last, some related open questions are listed
in Section 4.5 of [9].

2. STATEMENT OF THE MAIN RESULTS

2.1. The multivariate generalization of inverse Gaussian law : the random poten-
tial associated with the VRJP. Let N be a positive integer and V' = {1,..., N}. Given
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a symmetric matrix
W= (Ww) i,j=1,...N
with non negative coefficients W;; = W;, = 0. We denote by G = (V, E) the associated
graph with:
V ={1,...,N}and E = {{i,j}, i # j, W;; > 0}
We always assume that the matrix W is irreducible, i.e. the graph G is connected. If (5;);cy
is a vector indexed by the vertices, we set

(2.1) Hy =28 —

where 23 represents the operator of multiplication by the vector (23;) (or equivalently the
diagonal matrix with diagonal coefficients (25;)cy/). We always write Hg > 0 to mean that
Hy is positive definite. Remark that when Hg > 0, all the entries of (Hg)™' are positive
(since G is connected and Hp is an M-matrix, see e.g. [14], Proposition 3).

The following distribution was introduced in [I7], and generalized in [8, [9].

Lemma A. Let (6;)icy € (R*)Y be a positive vector indexed by V. Let (n;)icy € (Ry)Y be a
non negative vector indexed by V. The measure

W,6,n 2\ 1 [ Licv 0
2.2) v, NdB) =1 — ex ——HHH ,H +(n,0) | —=d
is a probability distribution on RV, where L#,50 15 the indicator function that the operator
Hg (defined in [21))) is positive definite, (-, -y is the usual inner product on RV, and dB =
[ Liey dBi. When n =0, we simply write I/V for W00,

Moreover, the Laplace transform of (2.3) is explzcztly given by

1 0;
@3) [ na) s
for all (\;)iey such that \; + 02 >0, Vie V.

Remark 1. The probability distribution V‘I;V’G’" was initially defined in 17| in the case n = 0.

In [8,09], Letac gave a shorter proof of the fact that V‘V/V’e is a probability and remarked that the

Ww.,0,n

family can be generalized to the family vy, above. It appears see forthcoming Lemma [,

W,0,n

that the general family vy, ™" can be obtained from the family l/V by taking marginal laws.

Remark 2. The definition of I/V’ is not strictly the same as VV’ in [I7]. Firstly, compared
with the definition of [1T], the parameter 0; above corresponds to +/0; in [IT]. It is in fact
simpler to write the formula as in ([2.3) since the quadratic form (0, Hgh) appears naturally
in the density and since 6; will play the role of the initial value in the forthcoming S.D.FE.
Secondly, we do not assume here that the diagonal coefficients of W are zero. It is obvious
that the two definitions are equivalent up to a translation of B; by W,,. It will be more
convenient here to allow this generality.

Notations 1. To simplify notations, in the sequel, for any function ( : V — R and any
subset U < V', we write (i for the restriction of ¢ to the subset U. We write dfy = | [,y b
to denote integration on wvariables in By. Similarly, if A is a V x V matrix and U < 'V,
U' <V, we write Ay for its restriction to the block U x U’. Note also that when (& )iev
is in RV, we sometimes simply write & for the operator of multiplication by &, (i.e. the
diagonal matriz with diagonal coefficients (&;)iev ), as it is done in formula 211). It will be
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clear from the context and considerations of dimension if it denotes a vector or the operator
of multiplication. Finally, we write v} for VE/U’U’QU’UU when U < V is a subset of V' and
W (resp. 0, n)is a V x V matriz (resp. vectors in R ).

We state the counterpart of Proposition 1 of [I7] in the context of the measure V‘I//V b

Corollary B. Under the probability distribution v (dj3),
(i) the random variable %z—ilwu follows an inverse Gaussian distribution with parameters
(—ti— 6?), for allieV,

Nit 25 Wig057 70

(ii) the random vector (5;) is 1-dependent, i.e. for any subsets Vi <V, and Vo < V such
that the distance in the graph G between Vi and Vs is strictly larger than 1, then the
random variables By, and By, are independent.

The following lemma was proved independently in the 3rd arxiv version of [I7] and in [9].
(The result is stated in the case of # = 1 in [I7], Lemma 4, but it can be easily extended to
the case of general 6, see Section [)).

Lemma C. Let U c V. Under the probability distribution V&V’G’”(dﬁ),

(i) Bu is distributed according to v)*" (i.e. VEVU’U’QU’?], c.f. Notations[l) where

(ii) conditionally on By, Bye is distributed according to ngc,eﬁ where

W = Wire e + Woew (Hg)vw) ™ Woge, 1= nue + Woer (Hg)ow) ™ (o).

2.2. Brownian motions with interacting drifts: main results. Let t° = (t9),c €
(R,)Y be a nonnegative vector. We set
Ky = 1d—t"W,

where t° denotes the operator of multiplication by t° (or equivalently the diagonal matrix
with diagonal coefficients (¢?)). Note that when ) > 0, Vi € V, we have Ky = tO(H%),
2t

with notation (2I) and 55 = (%) .
i/ 4eV
For T = (T})iey € (Ry U {+0})V and t € R, we write t A T for the vector (t A T})icv,
where for reals x,y, A y = min(z,y).
The following lemma introduces the processes which are the main objects of study of this
paper as solution to a S.D.E.

Lemma 1. Let 0 = (0;);cv € (R.)Y andn = (0;)iey € (R})Y be non-negative vectors. Denote
V| = N, let (B;(t))iev be a standard N-dimensional Brownian motion.
(i) The following stochastic differential equation is well-defined for all t = 0 and has a
unique pathwise solution :

t t

]ls<TidBi(S) - J‘ ]15<Tl-(W¢(s))id$, RS V,

(EFO1(Y)) Yi(t) = 0, + f 0

0
where T' = (T});ey is the random vector of stopping times defined by

T, =inf{t > 0; Y;(t) —tn; =0}, VielV.
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Also, Vt, Ky 7 is positive definite, and
(2.5) U(t) = K;p Y(t)
Moreover, T; < +00 a.s. for alli €V, and Ky > 0 is positive definite.
(i1) Denote X(t) =Y (t) — (t A T)n. The previous S.D.E is equivalent to the following

t t

1, or,dBi(s) - f Loer, (W) (s) + n)ids, ViV,

EVOX)) Xi() =6+ f 0

0
with

(2.6) D(t) = K (X(0) + (£ A T))
and T; is identified to the first hitting time of 0 by X;(t).

(11i) The process (t) is a continuous vectorial martingale, it can be written as (recall that
L1 is the operator of multiplication by ls-r,) :

(EWO(p)) bty =0+ f Ky (LerdB(s).

Moreover, the quadratic variation of ¥ (t) is given by, for all t = 0 (with convention
that — = 0,3 = o),

0,00 = ()

2(tAT)

It may not seem obvious at this point why we call these processes “Brownian motions with
interacting drifts”. The explanation will come at the end of this section as a consequence of
the Abelian property Theorem 2} under the condition that the diagonal terms of W are null,
we will show that the marginals (X;(¢));>0 are Brownian motions with constant negative
drift stopped at their first hitting time of 0, see Corollary [II

Our first main result concerns the distribution of its hitting time:

Theorem 1. Let (ei)iev € (Ri)v, (nz‘)ieV € (R+)V and (Y;(t))lev, (Xz(t))zeV; (Ti)ieV be as
i Lemma[1l

1 W,0,n

o ) .y has law vy, ",

(11) Conditionally on (T})ev, (ZEXi(t))ogthi)ieV are independent 3-dimensional Bessel bridges
from 6; to 0 on time interval [0, T;].

Remark that when V' = {1} is a single point and Wy, = 0, then X;(¢t) = Yi(t) — tn; is
a drifted Brownian motion with initial value #; > 0 and negative drift —n; stopped at its
first hitting time of 0. Hence, it corresponds to the problem presented in (L2)); in particular
n = 0 corresponds to (LTI

When V = {1} and Wy, > 0, (Y1(t))=0 is the solution of the S.D.E.

W11
— ——Y(t)dt
1—tW1,1 () )

with initial condition Y;(0) = 6,. It implies that Y;(¢) —tn; has the law of a drifted Brownian
bridge from #; to 0 on time interval [0, 1/WV; ;] with constant negative drift —n,, and stopped
at its first hitting of 0. By drifted Brownian bridge from 6, to 0 on time interval [0, 1/W; ;]
with constant negative drift —1; we mean the process Z; — tn; where (Zt)te[o,l /Wy, is the

Brownian bridge. (It may also be viewed as a Brownian bridge from 6 to —M7/7111 on time

interval [0,1/W;,].) Consequently, Y;(¢) has the same law as (1 — th,l)Bl(%) up to

(i) The random vector (

2.7) Y1 (1) = 1per, (d&(t)
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time 77, see e.g. pl154, and T} has the same law as 1+T%,V1 - where 7 is the first hitting time

of 0 by a Brownian motion with drift —n;. Therefore, —
Ty

A follows an Inverse Gaussian
Wi

law with parameters (%, 6?), and it is coherent with the expression of marginal law of 3; in
Corollary

The next result shows some "abelianity" of the process, in the sense that times on each
coordinates can be run somehow independently. The first two statements are counterparts
of the two statements of Lemma

Theorem 2 (Abelian properties). Let (X (t)) be the solution of (Ey""(X))). Denote 3 = o

(1) (Restriction) Let U < V. Then, (Xy(t)) has the same law as the solution ofEEVU’U’eU’ﬁ(X),
where
’;]\ = Nu + WU,UC (9UC).
(i1) (Conditionning on a subset) Let U < V. Then, conditionally on (Xy(t))i=o0, (Xue(t))i=o0
has the law of the solutions of the S.D.E. |EN.71(X)|, where

W = Woepe + Woew (Hs)uw) ™ Wope, 1= e + Woew (Hg)uw) ™ (o).
(iii) (Markov property) Consider t° = (t?),ey € (Ry)Y. Denote by
FHt) = o{(Xn(8) s, k€ VY,

the filtration generated by the past of the trajectories before time (t)xev. Then, consider
fort =0,

X(t) =Xt +1) (= (Xi(t) +1))iev) ,
the process shifted by times (1?)ey. (Note that the shift in time is not necessarily the
same for each coordinate). Conditionally on F~(t°), the process (X (t))i=o has the same

~+0 ~(+U
law as the solution of the equation E‘I;V(t LX) )(X) with
5 (40 _ ~(+0 = (+0
W = W(Kp,p)™' 7 =0+ WO A T)n),
where in the second expression, t° AT denotes the operator of multiplication by (19 A'T;).

In particular, if V(t°) = {i € V, T, > %}, conditionally on F(t°), (T-it()) " has the
v/ aeV(t

W, x (0,7
law V‘V/V(to) XE)A
(iv) (Strong Markov property) Let T® = (T))icy € (R, U {0}V be a “multi-stopping time”,

that is, for all t° € (R})Y, the event {T° <t} := micy {T? < 1%} is FX(t°)-measurable.
Denote by

FXT%) = {Ae F¥(w), Vi®e (RL)Y, An{T° <t%) e FX(t°)}
the filtration of events anterior to T°. Define for t = 0,
X(t) = X(T° + 1)
the process shifted at times (T.O)iiv. On the event {T? < oo, Vi € V}, conditionally

2

on T and FX(T°), the process X (t) has the same law as the solution of the S.D.E.
W) x(10)5T")
Ey (X)

where

W) = W(Kpo,r)™t, 77 = n+ WI(T° A T)p),

where in the second expression, T AT denotes the operator of multiplication by (T AT}).
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Remark 3. Assertions ({l) and (@) of the Theorem are direct consequence of Theorem/[d and
LemmalQ The assertion () is more involved. The extension to the strong Markov property
@) follows rather standard arguments. See the proofs in Section[8.

Remark 4. In all these statements, the restricted (or conditioned) process that appears is
not in general solution of the S.D.E. with the original shifted Brownian motion, but with a
different one, which is a priori not a Brownian motion in the original filtration. Nevertheless,
when all the t}) are equal to the same real s, then it is the case : (X (t + 5))s=0 is solution of
the S.D.E. with the shifted Brownian motion (B(s + t))iso0, c.f. forthcoming Proposition [
The result in the latter case is much simpler and is a consequence of a plain computation,
whereas the general case uses the representation of Theorem .

Note that this allows to identify the law of marginals and conditional marginals.

Corollary 1. Consider (X (t))so solution of (Ey """ (X)). Fiziye V.
i) If Wigio = 0 (resp. Wi, .o > 0), the marginal (X, (t))i=0 has the law of a drifted Brownian
motion starting at 0;, (resp. drifted Brownian bridge from 6;, to 0 on time interval
[0, 77—, with the meaning given in the discussion of equation ([270)) with constant
20,0
drift
~ig = —(ig + D Wiy 6;)
J#10
and stopped at its first hitting time of 0.
it) Conditionally on ((Xk(t))i=0)kzi,, the process (X, (t))i=o has the law of a drifted Brow-
nian bridge from 6;, to 0 on time interval [0, W;] with constant drift —n;, and stopped
20,0
at its first hitting time of 0, where, with U = V\{iy},
Winio = Winsio + Wio.v (Hs)uw) ™ Wuiigs  Tiig = 1o + Wigw (Hg)vw) ™ ().
Proof. Apply Theorem [ ({l) to the case U = {ip} for () and Theorem [2)) [) to U = {io}°
for (), and the considerations following Theorem [ O

In particular, it means that the marginal (X;,()):>o is a diffusion process, as well as the
(conditional) marginal (X, ())=0 conditioned on ((Xx(t))e=0)k:kio}- This Markov property
is not obvious in the initial equation Indeed, the process (X;,(u))u<s before time
s affects the drifts of (Xk.xri0) (1))u<s, and so the values Xy.p.i01(s), which themselves affect
the drift of X, (s).

More generally, there are hidden Markov properties in the restricted process (Xy(t))=o-
Indeed, the law of the future path (X (t))=s only depends on the past of (X (u)),<s through
the values of Xy (s) and (s A T)y. This is not obvious from the initial equation .
The same is true for the process (Xye(t));=0 conditioned on (X (t))s=o-

2.3. Relation with the Vertex Reinforced Jump Process. Let us describe the VRJP
in its "exchangeable" time scale introduced in [I6]. We consider the VRJP with a general
initial local time, as in [I7], Section 3.1. The VRJP, with initial local time (6;);cy, is the
self-interacting process (Z;);>0 that, conditionally on its past at time ¢, jumps from a vertex
1 to j with rate

0; + (7 (t)

Wiy —res,
VN0
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where KZ So 14.-ids denotes the local time of Z at site ¢. In [16], it was proved that this
process 1s a mixture of Markov Jump Processes and that the mlxmg law can be represented

by a marginal of a supersymmetric o-field investigated by Disertori, Spencer, Zirnbauer in
[23, 6, B]. In [I7], it was related to the random potential 8 of Lemma [Al

Theorem D ([I6] Theorem 2 [I7] Theorem 3). Let 6 € V where V' is finite, and U = V\{d}.
Let (HZ)ZGV e (R*)Y be a positive vector. Consider 3 = (B;)jev sampled with distribution

l/V . Define (¢;)jev as the unique solution of

{w(& =1,
Hg()w = 0.

Then, the VRJP starting at vertex 6 and initial local times (0;)ev is a mizture of Markov
Jump processes with jumping rates

1 .
(2.8 Wit

More precisely, it means that
By = [ B! (as),

where IP);/RJP’G is the law of the VRJP starting at vertex § and initial local times (0;);cy and

ng is the law of the Markov jump process with jumping rates (2.8)) starting at vertez d.

Remark that the random variables (f;);ey appear as asymptotic holding times of the
VRJP. Indeed, let N;(t) be the number of visits of vertex i by Z before time ¢t. Then, by
Theorem [D] the empirical holding times converge IP’(‘;/RJP’Q a.s., i.e. the following limit exists
a.s.,

. Ni(t ] .
lim 0~ 3 ) Wil = ., Viel.

and, by Lemma [Cl [), Sy has law VU’ " where 1 = Wy s65. Moreover, conditionally on fy,
the VRJP is a Markov Jump Process with jump rates given by (2.8).

Consider now the S.D.E. Ez: o U’”(Y)| with same parameters. From Theorem [I] the law
(F)iev coincides with that of S. Moreover, if we set

wy(o0) = lim 05(t), VjeU,

then 1)(o0) = <(H ! )UU) n. Hence, it means that v (o0) coincides with the ¢ of Theorem D]
if we identify By and =. Hence, (By,4) of Theorem [D has the same law as (5%, ) arising

2T
in the S.D.E.

There are remarkable similarities between Theorem [l and Theorem [Dl Firstly, (5;);cv are
homogeneous to the inverse of time, and have same distribution in both cases. Secondly, in
both cases, a type of exchangeability appears in the sense that, conditionally on the limiting
holding times or hitting times, the processes are simpler : in the case of the VRJP, it becomes
Markov; in the case of the S.D.E., the marginals are independent and diffusion processes (in
fact Bessel bridges).
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In Section @ we push forward this relation, by explaining the martingale property that
appears in [I6], and the exponential martingale property that extends it in [3], by Theorem [II
and the Abelian properties of Theorem

Nevertheless, we do not yet clearly understand the relation between the VRJP and the
S.D.E. n beyond these remarks.

2.4. Organization of the paper. In Section B, we prove the properties related to the
distribution I/‘V/V ’6’", Lemma [A] Lemma [( and Corollary [Bl In Section H, we present some
simple key computations that are used several times in the proofs. In Section [ we prove
the results concerning existence and uniqueness of pathwise solution of the S.D.E., Lemmal/[I],
and state and prove Proposition [[lmentioned in Remark [Blabove. Section [[is devoted to the
proof of the main Theorem [Il In Section 8 we prove the Abelian properties of Theorem 2
Finally, in Section @ we explain the relation between the Abelian properties of Theorem

and the martingale that appears in [18].

W,0,n

3. PROOF OF THE RESULTS CONCERNING THE DISTRIBUTION vy, : LEMMA IKI,

LEMMA [C] AND COROLLARY [Bl

Lemma [A] and Lemma [ are proved in [I8] (third arXiv version) in the case §; = 1 for
all i € V, see Lemma 3 and Lemma 4 therein (see also [9]). The case of general 6 can

be deduced from the special case § = 1 by a change of variables. More precisely, setting
Bl=028, W, ;= 0:;0;W,; ;, and n; = 0;n;, then we have

<97 ng - <17HB’1>7 <777Hﬁ_177> = <77/7 (HB’ > 77 1>

where Hp, = 2" — W', so that § ~ vy if and only if 5/ ~ I/‘V/V A
Corollary [Blis a direct consequence of the expression of the Laplace transform. Indeed,
under V‘I//V %1 the Laplace of the marginal 3; — Wi ; is given for ( € R, by

[esn (et g0 ) ok 009) - —f—ex (— (verc-o) (m + ZWi,ﬁj)) -

i j#i
It coincides with the Laplace transform of the inverse of the Inverse Gaussian density. More
precisely, by changing the parameter of Inverse Gaussian distribution, we have

L"Oexp<_%) (ﬁ)%exp <_)‘(§T_2x”)2>da:=\/%e><p (—@(ﬁ—ﬁ))

It means that the law of 23; — W, ; coincides with the law of the inverse of an inverse Gaussian

random variable with parameters (), 1) such that A = 6? and =i+ D Wi 05

4. SIMPLE KEY FORMULAS
Let us start by a remark. If (#;) € (R,)" and K; > 0, then the operator H ; is well-defined
even when some of the ¢;’s vanish: indeed, using the identity
H ; = K; 't,

the right-hand side is perfectly well-defined when K is invertible. In all the sequel, we will

implicitly consider that H ' is defined by this formula when some of the ¢;’s vanish.
2t
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We prove below some simple formulas that will be key tools in forthcoming computations.

Lemma 2. Let (1?)icv and (t})ey be vectors in RY such that Ko n > 0.
(i) We have,
(4.1) Kpin = KnKp,
with R N N
Kp =1d —t1W where, W = WKy'
Hence, we also have, with H . = + — W, (where |H| := det H )

2t1

)Hmi—u I ti ‘
(42) Ntit = 0 L 1 K 1
) i, St t 20
(ii) Let
i =n+W(t%)
then
(4.3) =) " H
and,
r7 —1~\ _ -1 N -1
(4.4) (i ()07 = (n (H_p_)7'n) = (n. (H) ™)

Remark 5. One should not confound the W in Lemma[@ (which is deterministic) with the
W) in Theorem [2, which should be consider as a process.

Proof. (i) We can write
Koy = Ko —t'W = (Id WK ) Kp = KpKp.
(ii) Formula (£3) follows from
7= () (W K 0 = (1) G = (1) H by
2t

Turning to Formula (£4), using ([@.1I), we have
Kt =Ky K

t0+¢t T
and
_ KwK3 (t0+t1)(l— Lo
TR 1010 4 ¢t
(4.5) —°H., H! ! ! )t

0 o 0 10 4+ L
=t'm.g', (H. —H 1 )t

2¢0 72“0“1) 2t0 2(t0+¢1)

=t"H.H', H.t*—t"H. ¢

2¢0 72“0“1) 2t0 2t0
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Now, ([@3]) implies
Ffﬁ?]ztOHLﬂfll T]—tOT].

260 50140

Since H .1 is symmetric, we get ({.4) by (£.3). O
2t

5. PROOF OF BASIC PROPERTIES OF THE S.D.E. [E?" . PROOF OF LEMMA [T

Remark that ({l) and (i) of Lemma [ are equivalent since dX (t) = dY (t) — ndt. In order
to prove the existence and uniqueness of the pathwise solution of |E ”"(Y) (or equivalently

EW”"(X )), we first consider a non stopped version of the S.D.E. , for which the
existence and uniqueness is simpler.

Lemma 3. Let (0;)icv € RY. Let h > 0 be the smallest positive real such that det(K},) = 0.
Then, the following S.D.E. is well-defined on time interval [0, h) and has a unique pathwise

solution
t

(5.1) Yi(t) = 6; + B;i(t) —f (WK (s))ids Vie V.

Moreover, there exists a time T < h such that )N/Z(T) = 71, for some vertexie V.

Proof. As WK, ! is bounded on time interval [0, h —¢) for all € > 0, it is a linear S.D.E with
bounded coefficients there is a unique pathwise solution, with continuous simple paths, by
standard existence and uniqueness theorems on S.D.E.

To see the existence of 7, we can define (Z;);>¢ by

t

(h = 1) Zi(
and write (B.)) as

(h— t)Zi(%) 0+ Bilt) — f lWK;l(h - 9)2(~ S)Lds.

- 0

t

7, the S.D.E. is written in the following equivalent form

1 0; 1 hu u 1
Zi(u) = - + —Bi(——) — K ——dv.
u+1 W=%*2 (u—l—l) L lW e (U)L(wrl)? !

By time change u =

That is

(5.2) dZ;(u) = %déi(u) - Jlr - qu —WKU—,H Z(u)) du.

where (B;(t));ey is a N-dimensional Brownian motion. As ¢ — h, we have u — oo, and there

exists 7 < h such that Y;(7) = 7n; if and only if there exists 7/ € R such that Z;(7") = 7'n;.
Assume by contradiction that none of these Z; reach the lines y = n;z, in particular, they are
all positive. We use that K ! has positive coefficients and that lim,_,j, mini7j(K;1),~7j = 400,

which implies that for u large enough (Id =W K, ) has negative coefficients, hence the drift
v+1

term in (5.2]) is negative. This implies that Z;(u) given by (5.2) is stochastically bounded from
above by a Brownian motion, at least for u large enough. Hence, the processes (Z;(u))u=0
reach 0 in finite time, which leads to a contradiction. 0

2
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Proof of Lemmadl (). We prove it by recurrence on the size of V. We will gradually define
Y (), solution to the equation (Ey ""(Y)) and X (t) = Y (t) — tn. Consider

7 =1inf{t > 0, 3i € V such that X;(t) = 0}

and denote by iy the vertex in V such that X;,(7) = 0. Up to time 7, the equation (E; """ (Y))

is equivalent to the equation (B.II), hence the equation (B (Y (Y))) is well-defined and has
unique pathwise solution up to time 7 and 7 < o a.s.. Moreover, T;, = 7. Now we set

io
U = {ip}° and
(ﬁ')ieV = (Tz - T)z‘eV
W = WK, K,=1d —sW, 7i=n+W(m).
and use that, by @) applied to ¢ = 7 for all 4, and t' = s A T,
K 1

(T+s)AT

_ q—1p—1
- KT KS/\T.
We set
X(s) = X(r+s), B(s)=B(r+s).

Hence, we have that

(T+s)AT=7+snT, WK(_Tis)AT = WI?S_AlT
and after time 7, (X;;)0 is solution of [E}, (X )| if and only if X (s) is solution of
(5.3) dX(s) = ]ls<fd§(s) +1,_x (WIN(S_AIT ()N((s) + 710+ (s A T)n) + 77) ds.

Using that,

i ()? (5) + f’é@(m) Hen DT + (o0 T )

we see that (53) is equivalent to the fact that X is solution of E“;V’X(T)’ﬁ(X). Since, X;, (1) =0
is it equivalent to the fact that X is solution of E,VJV ’X(T)’ﬁ(X )l Hence, we conclude by the

recurrence hypothesis applied to U, which implies that E;/]V ’X(T)’ﬁ(X )| has a unique pathwise
solution. U

Proof of Lemma (1 (). Remark first that

0
ot

Differentiating 1 (t) = K, (Y (t)), we get,

dii(t) = (K (dY ()i + (K Lecr WK (Y (1)), dt
= (KI;T(]IKTCZB( )))z

Kt/\lT Kt/\T]lt<TWKt/\1T
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Moreover, the quadratic variation of v;(¢) and ;(t) is given by

t
(i, ¥5), = ZJ (Ko ip)iiser, (K ) juds
leV

1 2
= (H™' ), Toeq (H™ :
IEZVJV 2(5/\T) Z’l <S A Tl> S<Tl( 2(51AT)>l’]d8
)i
J&s 2(.5/\T) 7] 5
)i.j

2(t/\T)

where in the second equality, we used Hpg is a symmetric matrix and H L= Kt_AlT(t AT),
2(tAT)

and so that H ', = (tAT)(K,; )" In the last equality we used that H ', is well defined
2(tAT) 2(tAT)

and null for ¢ = 0. O

6. STATIONARITY PROPERTY

Proposition 1 (Stationarity). If (X (t)):so is the solution of (lEV’E’"(X)h and s = 0, then

(X(t + s))i=0 1s solution of the S.D.E. E“;V(S)’X(s)’ﬁ(S)(X) directed by the shifted brownian
motion (B(t + s))i=0, and with

W = WKL, 7 =n+WO((s A T)p),

Remark 6. Proposition [ corresponds to Theorem [2 (il in the case where all the coordi-
nates of (t9) are equal to s, except that in this case the equation is directed by the shifted
Brownian motion, which is not the case when coordinates are not all equal. The proof in
this case is based on elementary computations and do not rely on the representation given
in Theorem[d. The result can then be interpreted as a dynamic evolution of the parameters
along the trajectory: conditioned on the past, the futur of the trajectory is in the same family
of S.D.E with deformed parameters.

Proof of Proposition . Set (X (t))i=o := (X (t+5))i=0, (B(t))i=0 := (B(t+5))i=0, and T¢) =
T — s A T. Remark that by Lemma

~ ~

(s+t) AT =sA"T+tn T(S), WK (siiyar = W(S)Kt(i)f

with W defined in Proposition [ and f(t(i)f“ =Id—(t A f(s))V[N/(s). The S.D.E. [E}""(X)
after time s is thus equivalent to

AXi(t) = 1, _podBi(t)~1, s (VNV@(I’%(SL)* ()’Z(t) F (s AT+ (t A f<8>)n) + ”)i dt, VieV,

tAT

By Lemma 2 we have that
WEERS)™ (W) + (s A Thn+ (£ 4 Ty

(RO ) (X*(t) + RO (s A T)) + (¢ A TOYWO((s A Thm) + (¢ A T<S>)n)

—WORD) T (X(0) + (AT ) + WO (s A Thy
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Hence, X (t) is solution of

AX(t) = 1,_sdBi(t) — 1, s (W@(k“k)—l ()”((t) +(t A T(S))ﬁ“)) + 77@) dt, VieV,

tAT

)

Since, X (0) = X(s), we have the result. O

7. PROOF OF THEOREM [IJ

We provide below a convincing but incomplete argument for the proof of Theorem [II We
do not know yet how to turn this argument into a rigourous alternative proof, even though
we think that it should be possible. The rigorous proof is given in Section [[.2]

7.1. A convincing but incomplete argument for Theorem [II (). Let A € RY be a non
negative vector on V. As

_ 1 _
exp (— (n, Hy'\) — 5 (X Hj 1)\>) vy P = exp (— (A, 0)) vy T,

we have,

(7.1) fexp <_ (0 Hy'\) — % <)\,HB‘1>\>) AON(G3) = exp (— (A, 0))

On the other hand, consider Y (t), solution of [E; ""(Y)| and the associated processes (X (1)),
(1(t)). By Lemma [ and [I5] proposition 3.4 p 148, we know that

e (= o) - 3 (M )

is a continuous martingale, dominated by 1. Moreover, we have that X (¢) — 0, a.s., when
t — oo, hence, a.s.,

lim ¢ (t) = Kz (Tn) = H3'1.
t—0o0 T

By dominated convergence theorem, it implies that
_ 1 _
B (exp (= (M) = 5 (WHAY) ) = exp (= (O 6(0) = exp (= (1. 0).

Hence, it implies that both  under I/“;V 1 and % obtained from satisfy the same
functional identity (ZI). Note that the dimension of the space of variables (\;);ey and of
the random variables (/3;);cy are the same. Nevertheless, it is not clear wether the functional
identity (7)) characterizes the distribution I/“;V #1 - at least we have no proof of this fact.
If such an argument were available, it would imply Theorem [ ({l) also : indeed, using the
stationarity of the equation, Proposition [I], it would be possible to deduce Theorem [ () by
enlargement of filtration (see [7]). We do not give the detail of the argument here since the

first part of the proof is missing.

7.2. Proof. Even if it is not obvious at first sight since the context is very different, the
strategy of the proof of Theorem [Ilis quite in the spirit of the proof of Theorem 2, ii) of [16]
: we start from the mixture of Bessel processes and we prove that this mixture has the same
law as the solutions of the S.D.E. We use in a crucial way the fact that the law

I/‘V/V 1 is a probability density with explicit normalizing constant.
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7.2.1. The classical statement for N = 1. We denote by W = C'(R,,R) the Wiener space.
For 6 > 0, we denote by Py the law of X; .7 where X; = 0+ B; and B, is a standard brownian
motion and 7" = inf{t > 0, X; = 0} is the first hitting time of 0. We denote by Bz:g the law
of the 3-dimensional Bessel Bridge from 6 > 0 to 0 on time interval [0, 7], as defined in [15],
section XI-3. We always consider that the Bessel bridge is extended to time interval R, , with
constant value equal to 0 after time T. As mentioned in the introduction it is known (see
[22] [15], p317), that, under Py, 5 has the law Gamma(3, Z)
(X¢)i=0 has law IB&O. Otherwise stated it means that the following equality of probabilities
holds on the Wiener space W:

and that, conditionally on 7',

(72) Po() = | B ()= et

7.2.2. Proof of Theorem [1 (i) and (ii). We use the formulation of Lemma [I (i), and we

will prove that if (X;(t))iey satisfies (Ey""(X))), then § := 57 is distributed as vy " and
conditionally on 7', the coordinates (X;(t)):=o are mdependent 3-dimensional Bessel bridges

from 6; to 0 on time interval [0, T;].
Recall that V = {1,..., N}, and denote by Wy, = C(R,,R"Y) the N-dimensional Wiener
space and (X (t));=o the canonical process. For 8 = (0;);cv € RY, we set

Py = QicvPo,,

the probability on Wy such that (X;(t));ev are N independent Brownian motions starting
at positions (#;) and stopped at their first hitting times of 0. The assertions of Theorem [ ({)
and (@) are equivalent to the fact that the law of the solution of the S.D.E. (E; ""(X)) is a

3,55 . . .
mixture of independent Bessel bridges B, 20‘3 " where [ is a random Vector with distribution

V %1 Otherwise stated, it means that the probability distribution IP’ " defined by

is the law of the solution of the S.D.E. E”"(X). The strategy is now to write the Radon-

Nikodym derivative of EV/V’Q’” with respect to Pyy as an exponential martingale, and then to
apply Girsanov’s theorem.
In the sequel, we adopt the following notations:
1

1
T := ﬁ’ so that Hg = TKT.

From ([7.2)), it is clear that @‘V/V’g’n is absolutely continuous with respect to Py, and changing
from variables 3 to T' in V‘I//V 1(dB3), we get that

_ervn _ 71/2
Py o A/ ]
(7.3) a7

1 1
=11H21T>o-exp< (0, W) — <n, 7Ty + (n,0 )

2 VIEr|
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Let t > 0, define

V(t):={ieV, T, > t},

WO = WK =W+ WK, [ (t AT)W

7O =0+ WOt AT
where the third equality comes from the fact that Kl = 1d+(t A TYWK; . Note that
W® is symmetric since K, .(t AT) = H ', . We also set,

2(tAT)

T® -—T—tAT,

B(t —
2T<t>’

K“ Id—TOW®
=230 WO = K(t

T(t)
Note that (f[g))*l is well defined for all ¢ using (Hg))*1 = (f(g))*lf(t), see beginning of
section @ By Equation ([@3) applied with t =t A T and t* = T®, we get that
(7.4) 7Y =t AT) " Hydn.
We first prove the following lemma.

Lemma 4. Let
M, = exp (2 <X(t) W(t)X(t)> L1 <7~,(t) (ﬁ[gt))flﬁ(t)> — 0, x 1) ) |IRY).
2 ’ 2 AR ’ T

Under Py, we have
@5 = o (= [ et v x5 [ 0vee o trWoes) « ) ds)
with

90) = Kb (X(0) + (7 ).

Proof of Lemmal[{]. We will compute the Itd derivative of In M;, the following formulae will
be used several times

(7.6) %KMT = —1yr W, %KmlT = K L, o WKL, %W@ — WOL, WO,
0 ~1 Ly ~1
(7.7) i ot = Hyblior (W) H
By (6] and It6 formula, we have
d <X(t), W@X(t)>
(78) = 2 <dX(t), W(t)X(t)> + <W<t>X(t), ]lt<TW(t)X(t)> dt + Trace(W®1,_7)dt

where in the second term we used that the operator W® is symmetric.
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By (@) of Lemma 2 applied to t° = ¢ A T and t* = T we get
<77(t)> (ﬁg))_ o > = (n,(Hg)""n) — (n, (Hzw) ')
Using (Z1) and (Z4), it implies,
(7.9) a (i, (HY) 50 ) = = (0, 1rif®) dt.
We have also

Oy = =~ = .
21 = WO + WOL WOt A Thn = WOl

Hence,

(7.10) a(i®, X(1) = (i, dx (8) + (i, 1 WOX, ) dt.
Finally, using (4) of Lemma BT applied to t° = t A T and t* = T® we get
(7.11) Kyt = K (K

which implies by (Z.4),

(7.12) (%mu’%gw = —(% | Kyr| = = Trace(L<r WK, }y) = — Trace(LirW®).

Combining (ZR), (Z9), (ZI0), and [Z1Z), we get using that We(t) +n = WOX(t) + 70,
1
2

-5 <77( i P >dt — < Ay WO t> dt

= — (W) +1n,dX,) — 5 (Wap(t) + 0, Licp (W(t) + 1)) dt

din M, = —<dX(t) WOX(E) +7) - < (WOX(), L WOX (1)) dt

Consider now a positive measurable test function ¢((X;)s<;). Denote by E&V’e’n, (resp. Eyy),
the expectation with respect to @‘V,V’em, (resp. Pyp). We have, by (7.3)),

—W,0
Ey " (0((Xy)s<r)))
1 1 —1 1

— X)s<t)1 AL Wo)—2 (n,(Kr)~'Tn)+(n,0)

V0 (Cb(( ) <t) H%>O |KT|

My L (X0, WX (0) (50,0130 )+ (50, x @) 1

=K Xs)s<t) g, =0-€? ’

V,G M0¢(( ) St) Hﬁ>0 € |~ t)

(
T
Let us denote by (-, )y, the usual scalar product on RY® (we keep denoting by (-,-) the
usual scalar product on RY). As X () vanishes on V\V (¢), we have

(X0, WOX(0)) = (X0, WOx(0)) - G X0) = (07 X0y
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By (&), since (H g))_l = ( N;f))_lf’(t) and since T® vanishes on the subset V\V(t) and H g)

is symmetric, we get

SO (F® 71~<t>> :<~(t> o 71~<t>>
<n,(ﬁ)n P HG) )

Moreover,
KW = 11 -TOWO| = [(1d ~TOW D)y v
and
]IH%>O = ]lHB(t)>0]lfIg)>0
thus
—W® X(t),50®
HXOWOX@®) -5 (HO @) 1O )+ (70, x@0) 1 o
Tr, e ’ TR S
. | Q)| 8 dPy ), x ()
T
Therefore,

—W,0, M, —W® X (1), 50
V7 61(X.)ec)) = By (L2 ol (L) By ™7 (1)

—E,, <1H W =08((X,) <t)6sg<ww<s>+n,dxs>—%Sé<Ww<s>+n,ns<T(Ww<s>+n>>ds>
) B t EVEES

where we used Lemma M in the second equality. It implies that

_ ¢ INE
IP)‘V/V’G’n = ]]'Hﬂ(t)>0 exp <J0 (Wa(s) +n,dXs) — §L (Wb(s) +n, Lser(Wep(s) + 1)) ds) Pve.

Finally, by Girsanov’s theorem, we know that under the law

(713)  exp ( [ (Wb(s) + o dX) — [ W) + s Leor (W(s) + ) ds) Pro

the process

(Bw),_, = (Xt + [ oo + n)ds)

0 t=0

is a Brownian motion stopped at time 7', the first hitting time of 0 by (X (¢)). (Indeed, recall
that Py g is the law of independent Brownian motions starting at ¢ and stopped at their first
hitting time of 0). Hence,

dX (1) = LierdB(t) + Toar (W (t) + n)dt,

and under the law (ZI3)), X is solution of the S.D.E|E;*"(X)|with driving Brownian motion
B. By Lemma [I, we know that a.s. under the law (Z.13)), we have Hzw > 0, thus @‘V/V’g’n
and (I3)) are equal. Hence, under F&V’e’", (X(t)) has the law of the solutions of the S.D.E

By (X))

U
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8. PROOF OF THE ABELIAN PROPERTIES : THEOREM

Proof of Theorem[2 (), {id). Consider first the restriction property ({l). By Theorem [l con-
ditionally on T', (X;(t )),ev are mdependent Bessel bridges from #; to 0 in time 7;. By

Theorem [ and Lemma [C], 2T is v, Woufo distributed. By Theorem [ applied to the set U

and parameters Wy, Oy, 7, it implies that Xy has the law of the solutions of B 77(X )

For (), the same argument applies, using that Sy, conditionally on [y, is 1/32 Dol Qig-

tributed. O

Proof of Theorem[3 (iid). Recall that we denote by X(¢) (resp. (X;(t))iev) the canonical
process on Wiener space W = C(R,R) (resp. Wy = C(R_,RY)). Recall that Bg:g
and EZ’:OT denotes the law (resp. the expectation) on W of a Bessel bridge from 6 to 0 on
time interval [0, 7] (and extended by 0 for ¢ > T). Recall also that E{""(-) denotes the
expectation with respect to the law on Wy of the solution of the S.D.E. [E}*"(X)|

Following [I5] p.463, under Bj 0> the law of X (¢) for some 0 < ¢ < T'is given by p3 YT (y)dy
on R, , with

1 3/2 y2 02 _9)2 +92
3,t,T Yy 1 vyt 0% _ =0 _ (wte)
(8.1) Poo (y) = 510 (T t> e 2T aT (e o o—e = > . Vy=0.

Moreover, the Markov property of the Bessel bridge implies that under ]B%Z’:OT and conditionally
on X(t) =z, 0 <t <T, the law of ((X())ocu<t, (X (t + u))ocucr—1¢) is given by

(8.2) 1333;@]3” "

Let us denote by 7y "(dT’) the law of T = L 5 when 3 follows the law v "(df), so that

9 V1/2 1 97L9 1 o,We)—1 H -1 0 . 92 1
_Wen(dT)_]lHl >0 (W) e (040) 300 <n( & n>+<n Ly H 24T

A H 1| ey 2T
2T

Let (t)iey € RY be as in the statement of the theorem. Set

(8.3) V() ={ieV, T; > t°}.
Fix U < V, and denote by A(t°,T) the event
(8.4) A T) = (V) =U} ={T >1,ie Uy n{T <t2,ie U}

Let h, g be bounded measurable test functions. By Theorem [I we have
Ey " [ Ly o)—oh((XG[0, #1])iev) g (Xi([£], T)))iev)]
= fﬂA(tO,T) @2@% [A((X:[0, t9])iev ) g (Xa([t), T3]))ier) ] oy *"(T)
ie
By the Markov property (8.2), we have on the event A(t°, T'), that

®E3f3 [h((Xi[Oa t9])iev ) g (X ([¢7, TZ]))ZEU)]

eV

K(zy, tf, Tye) @EST@ : [9((Xi([0,T; — £]))icv) ] (

RU €U

3,t9.T;
pejé Z (xl)dxl>

€U



20 C. SABOT AND X. ZENG

where

(8.5) K (zy,t%, Tye) = (@Ee L QR E; Tz) [R((X[0, t])iev) ]

€U eve

is a function that only depends on (z;, t9)icr, (T})icpe. We thus get,

Ey " [Ty o)=oh((X:[0, 8)])iev ) g (X[t T]))ievr) ]

= J]IA(tO,T)K(fo,thUC ) RE G : [9((X:([0,T; = £]))ievr) (Hpe v (i dafz) vy (T)

ey €U

In the sequel, on the event A(t°, T), we set

(T)ier = (T; — t%)serr.

The strategy is now to show that we can combine the terms [ [, pz to TZ( ;) and the measure

dzy""(T) in such a way that on the event A(#°,T), changing from variables (TZ)ZGU to
variables (T});crr, we end up with a function of (zy, t), Tyre) and the measure I/[‘;V( e )(dT)

see forthcoming formula (8.0).
Let us denote by (,-),, the usual scalar product on RY (recall that we keep denoting by

(-,-) the usual scalar product on RY). Note that 7" and W) defined in Theorem (i)
correspond to 7j and W of Lemma 2 for t° A T and T'. Hence, by (&4 of Lemma 2 we get,
~ ;0 ~
with A = L — W) that
& T

Note that we have

(2;-0,)> (2410, 3/2
0T, 11 Lig L e — i 1 x (T
pZ’_tZO’TZ(;L'i) =e 2<m’i"m>U+2<9’T€>U H e 2t) — e 26) O—Z (TZ)

v . A/ 2mt9 0 \ T,

€U ey

Changing from variables (7});cy to (i-)ieU, we get

_ (0 )z 5t
(8 6) ]lA(tOT (Hpe 0 lﬁ) Wen(dT) = ]1T<t0 zeUCH(xU>tU>TUC> v 77 dT H dT

€U e

for some explicit function =(xy, t;, Tyre) that only depends on (x4, t9)icrr, (T3)icve-
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Continuing our computation, we have

B [Ly oy uh((X:0, £])iev ) g (X ([£2, T1]))ietr)]
(8.7)

— ) 550
= f Ly c0, seve K (20, 0, Toe) E (o, 1, Toe) By 0™ [g((X([0, T))iev)1 | [ das | | dT:

€U 1eUe
Let us apply the last equality to the case where h and g are replaced by
> W xp,(19),75%)
(XG0, ]iev) == h((X[0, 6] By 7 (g(X([0, Ti]))iew)
g:=1
The identity (81) gives in this case

77 (t9) ~(t9)
B | - (008D BT O (G010, T )

(8.8) = fﬂTi<t?, eve K (20,1, Tye) = (2, 1y, Tye) defi H dT;
el e
where, using (8] applied to h instead,
~ TG 10
K(xy, 1y, Tye) = K(wu, g, Tye) By """ [g((X([0, TDier))] -

Remark that the right-hand sides of (81) et (88) are thus the same. Hence, we conclude
that

E‘vy,e,n [ Ly oy R ((X:[0, 8 1)iev ) g (X ([t7, T3]) )ievr) ]

TGS 0y 5%
= E " | Ty o) h(Xi[0, £9])iev ) Eyy AT (G(X([0,T3)))ier) | -

Summing on all possible choices of U, we exactly get that the law of (X;([t?,T}])), condi-

0 0
tionally on F*(¢%), is the law of the solutions of the S.D.E. E‘V,V( LX) )(X).

O

Proof of Theorem[3 ([id). Fix as before U < V. With the notations ([83]) and (84, we have
V(T%) ={ieV. T, > TP}, A(T°,T)={V(T°) = U}.

We simply write {T, < o} for the event {T? < o0,Vi € V}. In order to prove the strong
Markov property (), it is enough to prove that, for any bounded test function h, g, depend-
ing continuously on finitely many marginals of X, we have

Ey " [0 oo Lagro 7y P((X[0, T])iev ) g (X[ TP, Ti)ier)|

(8.9) W (To) 0y #(T°)
= B0 | Lo con Loy h(X[0, T iev ) By AT (G((X]0, Tierr)

We define the sequence of stopping times, for all i € V| by

k k—1 k
[T], = Tl when 5 < T? < TR

ke N,
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and [T?], = o0 when T = co. We can check that [T°] := ([T?],)icy is a multi-stopping time
in the sense of Theorem (IEI) since for (k;)icy € NV,

ﬂ{ 2n <T° 2—n}ea<xi(s),s<2—n,zev>.

eV

Moreover, [T?], decreases a.s. to TP and for n large enough V([T°],) = V(T°) a.s.. This
implies that a.s.

Lpocoo Lo 19 (X[ T3, Tiierr) = Hm Lproy, <o Lagroy, )9 (Xl[T7']n, Ti)icv).
Therefore, by dominated convergence theorem,
Ey " [Lro <o Lagro myh((Xa[0, TP])iev ) g (X[ TP, Ti))iewr)]
= lim By [1 7o), <oo T aqroy, mh((X[0, T)iev ) g (X[ [T} ], Ti))iewr)]

=lim ), By [(Hh = ) L (X0, T D)9 (X, [QH,TD@)]
k)=(k‘i)i€\/€NV eV

where in the last equality we sum on the possible values of each [T],,i € V. Note that

(H ﬂ) Lagge (G0, T Diev)
eV

~) measurable, so we can apply the Markov property (i), and we get

k.
2n
k.
E‘V;/’g M [ i ( 1 k 1 ‘
eV

) h((X;[0,T; ])iev)g((Xi[?n,Tz’])iewz’;))]
= B [ﬂf«%m (Hﬂ) A0, T Bl T (o, Tz])zerﬂ)] .

ki
] 2 o
eV
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Summing on possible values of (k;), we get:
By Lo <o L aeo my (X0, T iev )9 (X[ TP, Til)ier) ]
(8.10)
W AT 1) 01,,),7(Z%1n)
= Jim By [ﬂTo@omm, P(G[0, T ey By X0 <g<<Xi[o,m>ieU>>].

’
n—o0

We conclude the proof thanks to the Feller property (see e.g. Section 18.6 of [19]) proved in
the Lemma below. U

Lemma 5. The function (W,0,7) — B (g((Xi[0,T}])iev)) is continuous on (R*)F
(R*)Y x RY for any bounded measurable function g depending only on a finite number of
marginals.

Proof of Lemmald. It is enough to consider the case n = 0, since the case n # 0 is a marginal
of the case n = 0 by Lemma [Cl Without loss of generality we assume W;,; = 0, Vi. The
proof follows from the representation Theorem [Il and the two ingredients below.

Under the 3-dimensional Bessel bridge law, the expectation Eg:g(g((Xi [0, T;])icv)) is con-
tinuous in (6,7"). Indeed, the 3-dimensional Bessel bridge is the norm of a 3-dimensional
Brownian bridge from x to 0 if |z| = #, and the 3-dimensional Brownian bridge from = to
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0 can be represented as z + B — %Bg’ ) — +1 where (B is a 3-dimensional standard
Brownian motion.

On the other hand, the measure v{¥ (d3) can be dominated locally on the parameters W, 0
after some change of coordinates, following [17]. (Note that the density I/“;V ? in the present
paper correspond to v in [I7].) For convenience, write V' = {1,..., N}. By the change
of variables (5;)icy — (2i)iev from {3, Hg > 0} to (R*)" described in the proof of Theorem
1 of [17] (see page 3977), we have

17,0 exp ( (0, Hy6) — ZW i0; ]> _L 3
’ y/det Hg
L, N (62 n, 1 1
— — 1,y ex 02 H? —du.
2N RN P ( Z ( 21,1 (k_ZlJrl k l,k) )) 1 XN

following the notation there, in particular the definition of {z;, H;; : 1 < i,j < N}. By
definition, for any [ > 1, H;j = W .
Now fix W, 6°, let Q be a neighborhood of (W, #), denote

wl,k‘ == llfl)f VI/[Jw Ql - 11(12fel'

(8.11)

For any W, 0 € ), we have H;j, = W, > W, . and 0, =6, forall 1 <,k < N, so the density
in (811 is locally uniformly bounded (in the variables zs) by

el xl 2 ) ) ) 1
]leO exp 9 )
( ; ( 2!13'1 (k%l L1 IN

which is an integrable function, as x4, ..., xy_1 are distributed as inverse of IG distribution,

and xy is a Gamma distributed random variable.
O

9. RELATION WITH THE MARTINGALES ASSOCIATED WITH THE VRJP

Consider in this section that V' is infinite and that W is such that the associated graph ¢
has finite degree at each vertex and is connected. Following [16], we extend the definition of
the distribution V‘V/V ? to the case of this infinite graph. We assume to be coherent with [16]
that W is zero on the diagonal. Note that we slightly generalize the definition of [I6] since
we consider a general vector (6;);cy € (R;)Y, which is equal to 1 in [I6]. (But as noted at
the beginning of section [3 it is in fact not more general since we can always take 6 to 1 by a
change of variables on 5 and W.)

Let us recall the construction of the distribution I/‘V/V ¥ obtained by Kolmogorov’s extension
Theorem. The approach is slightly different from that of [I6] and make use of Lemma [C]
@d). Let V, be an increasing sequence of subsets such that u,>,V,, = V. Consider the vector
n™ e (R1)"" defined by

(9.1) = Wy, ve(Ove).

W,n(m)

By Lemma [C (), the sequence of distribution vy,"”"" is compatible, hence by Kolmogorov

theorem it can be extended to a measure V‘I//V % on (R,)Y. We define the Schrédinger operator

HBZZ 26—
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on RY associated with the potential 3 ~ 1. Note that Hz = 0 as the limit of (Hg)y, v,
(n)
which is positive definite since [y, has law y“;V O

In [I8] we considered the sequence of functions (w]( ))je\/ € (R,)Y defined by
(H W) =0

— By,
and the operators (GA’(”) (4,7))ijevs by
GUy = (Ha)vov) ™
G™(i,j) =0, if i or j in not in V,

Let F, = o(f;, i € V,,), the sigma field generated by Sy, . In [I8], Proposition 9, it was
proved that 1) is a vectorial F,-martingale, with quadratic variation given by G™ (i, ),
i.e. that for all 7, j in V and all n

E (00 D@0 (G) = GO, I = o (0 () - GO, ),

It was extended in [3] to an exponential martingale property, namely it was proved that for
any compactly supported function \ € (R, )",

(9.3) o~ () =5 (LG

is a F,-martingale.
We can interpret the functions ™ that appear above in terms of the S.D.E.s. Consider

X ™) the solution of the S.D.E. E“Z’e’"(n) where 7™ is defined in (@.I)). Denote by T the
associated stopping times and 5 =

)

2T(”) and

-1
Ko = W, ~(E A TOWae, 600) = (KT, ) X000

the associated operator and martingale that appear in Lemma [II We always consider that
1™ is extended to the full set V' by w‘(/"c)(t) = Oy.. Considering ([Q.2), we have that

; (n) — o,(n)
lim ) (£) = 4.

Hence the function ¢ appears as the limit of the continuous martingale 1™ (¢).

It is possible to interpret the exponential martingale property (@3)) in terms of the Abelian
properties, see Theorem 2l More precisely, conditionally on o(5y, ), it is possible to construct
a continuous martingale that interpolates between ™ and ¢! and with total quadratic
variation given by G+ — @("), which explains the exponential martingale property as a
consequence the standard exponential martingale property for continuous martingales. We
do not give details of this computation which requires heavy notations (but the authors will
provide details under request).
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