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HITTING TIMES OF INTERACTING DRIFTED BROWNIAN MOTIONS

AND THE VERTEX REINFORCED JUMP PROCESS

CHRISTOPHE SABOT AND XIAOLIN ZENG

Abstract. Consider a negatively drifted one dimensional Brownian motion starting at
positive initial position, its first hitting time to 0 has the inverse Gaussian law. Moreover,
conditionally on this hitting time, the Brownian motion up to that time has the law of a 3-
dimensional Bessel bridge. In this paper, we give a generalization of this result to a family of
Brownian motions with interacting drifts, indexed by the vertices of a conductance network.
The hitting times are equal in law to the inverse of a random potential that appears in the
analysis of a self-interacting process called the Vertex Reinforced Jump Process ([17, 18]).
These Brownian motions with interacting drifts have remarkable properties with respect to
restriction and conditioning, showing hidden Markov properties. This family of processes
are closely related to the martingale that plays a crucial role in the analysis of the vertex
reinforced jump process and edge reinforced random walk ([18]) on infinite graphs.

1. Introduction

We first recall some classic facts about hitting times of standard Brownian motion. Let
pBtqtě0 be a standard Brownian motion and

Xptq “ θ ` Bptq,
be a Brownian motion starting from initial position θ ą 0. It is well-known that the first
hitting time of 0

(1.1) T “ inftt ě 0, Xptq “ 0u
has the law of the inverse of a Gamma random variable with parameter p1

2
, θ

2

2
q. Moreover,

conditionally on T , pXtq0ďtďT has the law of a 3-dimensional Bessel bridge from θ to 0 on
time interval r0, T s1. More generally, if

(1.2) Xptq “ θ ` Bptq ´ ηt,

is a drifted Brownian motion with negative drift ´η ă 0 starting at θ ą 0, then T has the
inverse Gaussian distribution with parameters p θ

η
, θ2q, i.e. T has density

fptq “ θ?
2πt3

exp

ˆ
´1

2

ˆ
θ2

t
` η2t´ 2ηθ

˙˙
1tą0dt.

This work was supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within
the program "Investissements d’Avenir" (ANR-11-IDEX-0007) operated by the French National Research
Agency (ANR), and by the ANR/FNS project MALIN (ANR-16-CE93-0003). The second author is sup-
ported by ERC Starting Grant 678520.

1The 3-dimensional Bessel bridge from θ to 0 on time interval r0, T s can be represented by the following
S.D.E.

Xptq “ θ ` Bptq `

ż
t

0

ˆ
1

Xpsq
´

Xpsq

T ´ s

˙
ds, 0 ď t ď T

1
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2 C. SABOT AND X. ZENG

Moreover, conditionally on T , pXtq0ďtďT has the law of a 3-dimensional Bessel bridge from θ

to 0 on time interval r0, T s. (See [22], Theorem 3.1, or [15], p. 317 Corollary 4.6, and [13, 21]
for complements)

This paper aims at giving a generalization of these statements on a conductance network,
namely for a family of Brownian motions with interacting drifts indexed by the vertices
of the network. The distribution of hitting times of these processes will be given by a
multivariate exponential family of distributions introduced by Sabot, Tarrès and Zeng [17],
and generalized in [8, 9], which appeared in the context of self-interacting processes and
random Schrödinger operators. This family of distributions is also intimately related to
the supersymmetric hyperbolic sigma model introduced by Zirnbauer [23] and investigated
by Disertori, Spencer, Zirnbauer [6, 5], and plays a crucial role in the analysis of the edge
reinforced random walk (ERRW) and the vertex reinforced jump process (VRJP) [16, 4, 18].

The generalization of the one dimensional statement presented in this introduction was
hinted by the martingales that appear in [18]. This martingale has played an important role
in the analysis of the ERRW and the VRJP on infinite graphs. In Section 2.3, we explain
the relations between the stochastic differential equations (S.D.E.s) defined in this paper and
the VRJP and in Section 9 we relate the martingales that appear in the study of VRJP to
the S.D.E.s.

Note that the computations done in this paper seem to have many similarities with com-
putations done for exponential functional of the Brownian motion in dimension one (see
in particular Matsumoto, Yor [11, 12, 10]). More precisely, it would be possible to write

an analogue of the Lamperti transformation that changes the S.D.E. (EW,θ,η
V pY q) presented

below in its exponential functional counterpart with µ “ 1

2
(see the Matsumoto Yor opposite

drift theorem [10]): the counterpart of the representation of Theorem 1 would correspond
to a representation of the S.D.E. with a Brownian motions with opposite drifts as in [10].
In fact, in dimension one (i.e. one vertex), the Inverse Gaussian distribution corresponds
to µ “ 1

2
, and the Generalized Inverse Gaussian (GIG) distribution corresponds to general

µ P R, see [1] and [21]. On a conductance network (i.e. multidimensional), the case µ “ 1

2

can be carried out by explicit computation, for general µ, one will have to use Bessel K
functions as normalizing constant. We plan to develop these aspects in a further work.

It might not be a coincidence that the GIG distribution was initially called generalized
hyperbolic distribution, and the distribution we considered here stems from a supersymmetric
hyperbolic sigma model, where one considered spin systems with spins taking values on a
super hyperbolic space. Interested readers can check [1] and [20] for more details.

Another related direction goes back to Vallois, where GIG is conceived as the exit law of
some one dimensional diffusion. In [2], Chhaibi explicitly computed the exit law of certain
hypoelliptic Brownian motion on a solvable Lie group, where e.g. he recovered the Mat-
sumoto Yor opposite drift theorem, by taking the group to be sl2. It is very likely that there
is a connection with our work. Note also that the integral of a geometric Brownian motion is
closely related to the study of Asian option. At last, some related open questions are listed
in Section 4.5 of [9].

2. Statement of the main results

2.1. The multivariate generalization of inverse Gaussian law : the random poten-

tial associated with the VRJP. Let N be a positive integer and V “ t1, . . . , Nu. Given
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a symmetric matrix
W “ pWi,jqi,j“1,...,N

with non negative coefficients Wi,j “ Wj,i ě 0. We denote by G “ pV,Eq the associated
graph with:

V “ t1, . . . , Nu and E “ tti, ju, i ‰ j, Wi,j ą 0u.
We always assume that the matrix W is irreducible, i.e. the graph G is connected. If pβiqiPV
is a vector indexed by the vertices, we set

(2.1) Hβ “ 2β ´ W,

where 2β represents the operator of multiplication by the vector p2βiq (or equivalently the
diagonal matrix with diagonal coefficients p2βiqiPV ). We always write Hβ ą 0 to mean that
Hβ is positive definite. Remark that when Hβ ą 0, all the entries of pHβq´1 are positive
(since G is connected and Hβ is an M-matrix, see e.g. [14], Proposition 3).

The following distribution was introduced in [17], and generalized in [8, 9].

Lemma A. Let pθiqiPV P pR˚
`qV be a positive vector indexed by V . Let pηiqiPV P pR`qV be a

non negative vector indexed by V . The measure

(2.2) ν
W,θ,η
V pdβq :“ 1Hβą0

ˆ
2

π

˙|V |{2
exp

ˆ
´1

2
〈θ,Hβθ〉 ´ 1

2

〈

η,H´1

β η
〉

` 〈η, θ〉

˙ ś
iPV θia
detHβ

dβ

is a probability distribution on R
V , where 1Hβą0 is the indicator function that the operator

Hβ (defined in (2.1)) is positive definite, 〈¨, ¨〉 is the usual inner product on R
V , and dβ “ś

iPV dβi. When η “ 0, we simply write νW,θV for νW,θ,0V .
Moreover, the Laplace transform of (2.2) is explicitly given by

(2.3)

ż
e´〈λ,β〉ν

W,θ,η
V pdβq “ e´ 1

2
〈

?
θ2`λ,W

?
θ2`λ〉` 1

2
〈θ,Wθ〉`〈η,θ´

?
θ2`λ〉

ź

iPV

θia
θ2i ` λi

for all pλiqiPV such that λi ` θ2i ą 0, @i P V .

Remark 1. The probability distribution νW,θ,ηV was initially defined in [17] in the case η “ 0.

In [8, 9], Letac gave a shorter proof of the fact that νW,θV is a probability and remarked that the

family can be generalized to the family νW,θ,ηV above. It appears, see forthcoming Lemma C,

that the general family νW,θ,ηV can be obtained from the family νW,θV by taking marginal laws.

Remark 2. The definition of νW,θV is not strictly the same as νW,θV in [17]. Firstly, compared
with the definition of [17], the parameter θi above corresponds to

?
θi in [17]. It is in fact

simpler to write the formula as in (2.3) since the quadratic form 〈θ,Hβθ〉 appears naturally
in the density and since θi will play the role of the initial value in the forthcoming S.D.E.
Secondly, we do not assume here that the diagonal coefficients of W are zero. It is obvious
that the two definitions are equivalent up to a translation of βi by Wi,i. It will be more
convenient here to allow this generality.

Notations 1. To simplify notations, in the sequel, for any function ζ : V ÞÑ R and any
subset U Ă V , we write ζU for the restriction of ζ to the subset U . We write dβU “ ś

iPU dβi
to denote integration on variables in βU . Similarly, if A is a V ˆ V matrix and U Ă V ,
U 1 Ă V , we write AU,U 1 for its restriction to the block U ˆ U 1. Note also that when pξiqiPV
is in R

V , we sometimes simply write ξ for the operator of multiplication by ξ, (i.e. the
diagonal matrix with diagonal coefficients pξiqiPV ), as it is done in formula (2.1). It will be
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clear from the context and considerations of dimension if it denotes a vector or the operator

of multiplication. Finally, we write νW,θ,ηU for ν
WU,U ,θU ,ηU
U when U Ă V is a subset of V and

W (resp. θ, η) is a V ˆ V matrix (resp. vectors in R
V ).

We state the counterpart of Proposition 1 of [17] in the context of the measure νW,θ,ηV .

Corollary B. Under the probability distribution νWV pdβq,
(i) the random variable 1

2βi´Wi,i
follows an inverse Gaussian distribution with parameters

p θi
ηi`

ř
j‰iWi,jθj

, θ2i q, for all i P V ,

(ii) the random vector pβiq is 1-dependent, i.e. for any subsets V1 Ă V , and V2 Ă V such
that the distance in the graph G between V1 and V2 is strictly larger than 1, then the
random variables βV1 and βV2 are independent.

The following lemma was proved independently in the 3rd arxiv version of [17] and in [9].
(The result is stated in the case of θ “ 1 in [17], Lemma 4, but it can be easily extended to
the case of general θ, see Section 3).

Lemma C. Let U Ă V . Under the probability distribution ν
W,θ,η
V pdβq,

(i) βU is distributed according to νW,θ,ηU (i.e. ν
WU,U ,θU ,pη
U , c.f. Notations 1) where

pη “ ηU ` WU,UcpθUcq.(2.4)

(ii) conditionally on βU , βUc is distributed according to ν
|W,θ,qη
Uc where

|W “ WUc,Uc ` WUc,U ppHβqU,Uq´1
WU,Uc , qη “ ηUc ` WUc,U ppHβqU,Uq´1 pηUq.

2.2. Brownian motions with interacting drifts: main results. Let t0 “ pt0i qiPV P
pR`qV be a nonnegative vector. We set

Kt0 “ Id´t0W,
where t0 denotes the operator of multiplication by t0 (or equivalently the diagonal matrix
with diagonal coefficients pt0i q). Note that when t0i ą 0, @i P V , we have Kt0 “ t0pH 1

2t0
q,

with notation (2.1) and 1

2t0
“

´
1

2t0i

¯
iPV

.

For T “ pTiqiPV P pR` Y t`8uqV and t P R` we write t ^ T for the vector pt ^ TiqiPV ,
where for reals x, y, x^ y “ minpx, yq.

The following lemma introduces the processes which are the main objects of study of this
paper as solution to a S.D.E.

Lemma 1. Let θ “ pθiqiPV P pR`qV and η “ pηiqiPV P pR`qV be non-negative vectors. Denote
|V | “ N , let pBiptqqiPV be a standard N-dimensional Brownian motion.

(i) The following stochastic differential equation is well-defined for all t ě 0 and has a
unique pathwise solution :

Yiptq “ θi `
ż t

0

1săTidBipsq ´
ż t

0

1săTipWψpsqqids, @i P V,(EW,θ,η
V pY q)

where T “ pTiqiPV is the random vector of stopping times defined by

Ti “ inftt ě 0; Yiptq ´ tηi “ 0u, @i P V.
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Also, @t, Kt^T is positive definite, and

ψptq “ K´1

t^T Y ptq(2.5)

Moreover, Ti ă `8 a.s. for all i P V , and KT ą 0 is positive definite.
(ii) Denote Xptq “ Y ptq ´ pt ^ T qη. The previous S.D.E is equivalent to the following

Xiptq “ θi `
ż t

0

1săTidBipsq ´
ż t

0

1săTippWψqpsq ` ηqids, @i P V,(EW,θ,η
V pXq)

with

ψptq “ K´1

t^T pXptq ` pt^ T qηq(2.6)

and Ti is identified to the first hitting time of 0 by Xiptq.
(iii) The process ψptq is a continuous vectorial martingale, it can be written as (recall that

1săT is the operator of multiplication by 1săTi) :

ψptq “ θ `
ż t

0

K´1

s^T p1săTdBpsqq .(EW,θ,η
V pψq)

Moreover, the quadratic variation of ψptq is given by, for all t ě 0 (with convention
that 1

8 “ 0, 1
0

“ 8),

〈ψ, ψ〉t “
´
H 1

2pt^T q

¯´1

.

It may not seem obvious at this point why we call these processes “Brownian motions with
interacting drifts”. The explanation will come at the end of this section as a consequence of
the Abelian property Theorem 2: under the condition that the diagonal terms of W are null,
we will show that the marginals pXiptqqtě0 are Brownian motions with constant negative
drift stopped at their first hitting time of 0, see Corollary 1.

Our first main result concerns the distribution of its hitting time:

Theorem 1. Let pθiqiPV P pR˚
`qV , pηiqiPV P pR`qV and pYiptqqiPV , pXiptqqiPV , pTiqiPV be as

in Lemma 1.

(i) The random vector
´

1

2Ti

¯
iPV

has law ν
W,θ,η
V ,

(ii) Conditionally on pTiqiPV , ppXiptqq0ďtďTiqiPV are independent 3-dimensional Bessel bridges
from θi to 0 on time interval r0, Tis.

Remark that when V “ t1u is a single point and W1,1 “ 0, then X1ptq “ Y1ptq ´ tη1 is
a drifted Brownian motion with initial value θ1 ą 0 and negative drift ´η1 stopped at its
first hitting time of 0. Hence, it corresponds to the problem presented in (1.2); in particular
η1 “ 0 corresponds to (1.1).

When V “ t1u and W1,1 ą 0, pY1ptqqtě0 is the solution of the S.D.E.

(2.7) dY1ptq “ 1tăT1

ˆ
dB1ptq ´ W1,1

1 ´ tW1,1

Y ptqdt
˙

with initial condition Y1p0q “ θ1. It implies that Y1ptq´tη1 has the law of a drifted Brownian
bridge from θ1 to 0 on time interval r0, 1{W1,1s with constant negative drift ´η1, and stopped
at its first hitting of 0. By drifted Brownian bridge from θ1 to 0 on time interval r0, 1{W1,1s
with constant negative drift ´η1 we mean the process Zt ´ tη1 where pZtqtPr0,1{W1,1s is the
Brownian bridge. (It may also be viewed as a Brownian bridge from θ1 to ´ η1

W1,1
on time

interval r0, 1{W1,1s.) Consequently, Y1ptq has the same law as p1 ´ tW1,1qB1p t
1´tW1,1

q up to
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time T1, see e.g. [15] p154, and T1 has the same law as 1

1`τW1,1
where τ is the first hitting time

of 0 by a Brownian motion with drift ´η1. Therefore, 1
1

T1
´W1,1

follows an Inverse Gaussian

law with parameters p θ1
η1
, θ2

1
q, and it is coherent with the expression of marginal law of βi in

Corollary B.
The next result shows some "abelianity" of the process, in the sense that times on each

coordinates can be run somehow independently. The first two statements are counterparts
of the two statements of Lemma C.

Theorem 2 (Abelian properties). Let pXptqq be the solution of (EW,θ,η
V pXq). Denote β “ 1

2T
.

(i) (Restriction) Let U Ă V . Then, pXUptqq has the same law as the solution of E
WU,U ,θU ,pη
U pXq,

where
pη “ ηU ` WU,UcpθUcq.

(ii) (Conditionning on a subset) Let U Ă V . Then, conditionally on pXUptqqtě0, pXUcptqqtě0

has the law of the solutions of the S.D.E. E
|W,θUc ,qη
Uc pXq, where

|W “ WUc,Uc ` WUc,U ppHβqU,Uq´1
WU,Uc , qη “ ηUc ` WUc,U ppHβqU,Uq´1 pηUq.

(iii) (Markov property) Consider t0 “ pt0i qiPV P pR`qV . Denote by

FXpt0q “ σtpXkpsqqsďt0
k
, k P V u,

the filtration generated by the past of the trajectories before time pt0kqkPV . Then, consider
for t ě 0,

rXptq “ Xpt0 ` tq
`
“ pXipt0i ` tqqiPV

˘
,

the process shifted by times pt0i qiPV . (Note that the shift in time is not necessarily the

same for each coordinate). Conditionally on FXpt0q, the process p rXptqqtě0 has the same

law as the solution of the equation E
ĂW pt0q,Xpt0q,rηpt0q

V pXq, with

ĂW pt0q “ W pKt0^T q´1, rηpt0q “ η ` ĂW pt0qppt0 ^ T qηq,
where in the second expression, t0^T denotes the operator of multiplication by pt0i ^Tiq.
In particular, if V pt0q “ ti P V, Ti ą t0i u, conditionally on Fpt0q,

´
1

Ti´t0i

¯
iPV pt0q

has the

law ν
ĂW pt0q,Xpt0q,rηpt0q

V pt0q
(iv) (Strong Markov property) Let T 0 “ pT 0

i qiPV P pR` Y t8uqV be a “multi-stopping time”,
that is, for all t0 P pR`qV , the event tT 0 ď t0u :“ XiPV tT 0

i ď t0i u is FXpt0q-measurable.
Denote by

FXpT 0q “ tA P FXp8q, @t0 P pR`qV , AX tT 0 ď t0u P FXpt0qu
the filtration of events anterior to T 0. Define for t ě 0,

rXptq “ XpT 0 ` tq
the process shifted at times pT 0

i qiPV . On the event tT 0

i ă 8, @i P V u, conditionally

on T 0 and FXpT 0q, the process rXptq has the same law as the solution of the S.D.E.

E
ĂW pT0q,XpT 0q,rηpT0q

V pXq, where

ĂW pT 0q “ W pKT 0^T q´1, rηpT 0q “ η ` ĂW pT 0qppT 0 ^ T qηq,
where in the second expression, T 0^T denotes the operator of multiplication by pT 0

i ^Tiq.
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Remark 3. Assertions (i) and (ii) of the Theorem are direct consequence of Theorem 1 and
Lemma C. The assertion (iii) is more involved. The extension to the strong Markov property
(iv) follows rather standard arguments. See the proofs in Section 8.

Remark 4. In all these statements, the restricted (or conditioned) process that appears is
not in general solution of the S.D.E. with the original shifted Brownian motion, but with a
different one, which is a priori not a Brownian motion in the original filtration. Nevertheless,
when all the ti0 are equal to the same real s, then it is the case : pXpt` sqqtě0 is solution of
the S.D.E. with the shifted Brownian motion pBps ` tqqtě0, c.f. forthcoming Proposition 1.
The result in the latter case is much simpler and is a consequence of a plain computation,
whereas the general case uses the representation of Theorem 1.

Note that this allows to identify the law of marginals and conditional marginals.

Corollary 1. Consider pXptqqtě0 solution of (EW,θ,η
V pXq). Fix i0 P V .

i) If Wi0,i0 “ 0 (resp. Wi0,i0 ą 0), the marginal pXi0ptqqtě0 has the law of a drifted Brownian
motion starting at θi0 (resp. drifted Brownian bridge from θi0 to 0 on time interval
r0, 1

Wi0,i0

s, with the meaning given in the discussion of equation (2.7)) with constant

drift

´pηi0 “ ´pηi0 `
ÿ

j‰i0
Wi0,jθjq

and stopped at its first hitting time of 0.
ii) Conditionally on ppXkptqqtě0qk‰i0, the process pXi0ptqqtě0 has the law of a drifted Brow-

nian bridge from θi0 to 0 on time interval r0, 1

|Wi0,i0

s with constant drift ´qηi0 and stopped

at its first hitting time of 0, where, with U “ V zti0u,
|Wi0,i0 “ Wi0,i0 ` Wi0,UppHβqU,Uq´1WU,i0 , qηi0 “ ηi0 ` Wi0,UppHβqU,Uq´1pηUq.

Proof. Apply Theorem 2 (i) to the case U “ ti0u for (i) and Theorem (2) (ii) to U “ ti0uc
for (ii), and the considerations following Theorem 1. �

In particular, it means that the marginal pXi0ptqqtě0 is a diffusion process, as well as the
(conditional) marginal pXi0ptqqtě0 conditioned on ppXkptqqtě0qtk:k‰i0u. This Markov property

is not obvious in the initial equation EW,θ,η
V pXq. Indeed, the process pXi0puqquďs before time

s affects the drifts of pXtk:k‰i0upuqquďs, and so the values Xtk:k‰i0upsq, which themselves affect
the drift of Xi0psq.

More generally, there are hidden Markov properties in the restricted process pXUptqqtě0.
Indeed, the law of the future path pXUptqqtěs only depends on the past of pXUpuqquďs through

the values of XUpsq and ps ^ T qU . This is not obvious from the initial equation E
W,θ,η
V pXq.

The same is true for the process pXUcptqqtě0 conditioned on pXUptqqtě0.

2.3. Relation with the Vertex Reinforced Jump Process. Let us describe the VRJP
in its "exchangeable" time scale introduced in [16]. We consider the VRJP with a general
initial local time, as in [17], Section 3.1. The VRJP, with initial local time pθiqiPV , is the
self-interacting process pZtqtě0 that, conditionally on its past at time t, jumps from a vertex
i to j with rate

Wi,j

b
θj ` ℓZj ptq

a
θi ` ℓZi ptq

,
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where ℓZj ptq “
şt
0
1Zs“ids denotes the local time of Z at site i. In [16], it was proved that this

process is a mixture of Markov Jump Processes and that the mixing law can be represented
by a marginal of a supersymmetric σ-field investigated by Disertori, Spencer, Zirnbauer in
[23, 6, 5]. In [17], it was related to the random potential β of Lemma A.

Theorem D ([16] Theorem 2 [17] Theorem 3). Let δ P V where V is finite, and U “ V ztδu.
Let pθiqiPV P pR˚

`qV be a positive vector. Consider β “ pβjqjPV sampled with distribution

ν
W,θ
V . Define pψjqjPV as the unique solution of

#
ψpδq “ 1,

Hβpψq|U “ 0.

Then, the VRJP starting at vertex δ and initial local times pθiqiPV is a mixture of Markov
jump processes with jumping rates

1

2
Wi,j

ψj

ψi
.(2.8)

More precisely, it means that

P
VRJP,θ
δ p¨q “

ż
P
ψ
δ p¨qνW,θV pdβq,

where P
VRJP,θ
δ is the law of the VRJP starting at vertex δ and initial local times pθiqiPV and

P
ψ
δ is the law of the Markov jump process with jumping rates (2.8) starting at vertex δ.

Remark that the random variables pβjqjPU appear as asymptotic holding times of the
VRJP. Indeed, let Niptq be the number of visits of vertex i by Z before time t. Then, by

Theorem D, the empirical holding times converge P
V RJP,θ
δ a.s., i.e. the following limit exists

a.s.,

lim
tÑ8

Niptq
ℓZi ptq “ 1

2

ÿ

j„i
Wi,j

ψj

ψi
“ βi, @i P U,

and, by Lemma C (i), βU has law ν
W,θ,η
U where η “ WU,δθδ. Moreover, conditionally on βU ,

the VRJP is a Markov Jump Process with jump rates given by (2.8).

Consider now the S.D.E. E
WU,U ,θU ,η

U pY q with same parameters. From Theorem 1, the law
p 1

Ti
qiPU coincides with that of βU . Moreover, if we set

ψjp8q :“ lim
tÑ8

ψjptq, @j P U,

then ψp8q “
´

pH 1

2T
qU,U

¯´1

η. Hence, it means that ψp8q coincides with the ψ of Theorem D

if we identify βU and 1

2T
. Hence, pβU , ψq of Theorem D has the same law as p 1

2T
, ψq arising

in the S.D.E. EW,θ,η
U pY q.

There are remarkable similarities between Theorem 1 and Theorem D. Firstly, pβiqiPU are
homogeneous to the inverse of time, and have same distribution in both cases. Secondly, in
both cases, a type of exchangeability appears in the sense that, conditionally on the limiting
holding times or hitting times, the processes are simpler : in the case of the VRJP, it becomes
Markov; in the case of the S.D.E., the marginals are independent and diffusion processes (in
fact Bessel bridges).
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In Section 9, we push forward this relation, by explaining the martingale property that
appears in [16], and the exponential martingale property that extends it in [3], by Theorem 1
and the Abelian properties of Theorem 2.

Nevertheless, we do not yet clearly understand the relation between the VRJP and the
S.D.E. EW,θ,η

V beyond these remarks.

2.4. Organization of the paper. In Section 3, we prove the properties related to the
distribution ν

W,θ,η
V , Lemma A, Lemma C and Corollary B. In Section 4, we present some

simple key computations that are used several times in the proofs. In Section 5, we prove
the results concerning existence and uniqueness of pathwise solution of the S.D.E., Lemma 1,
and state and prove Proposition 1 mentioned in Remark 3 above. Section 7 is devoted to the
proof of the main Theorem 1. In Section 8, we prove the Abelian properties of Theorem 2.
Finally, in Section 9, we explain the relation between the Abelian properties of Theorem 2
and the martingale that appears in [18].

3. Proof of the results concerning the distribution ν
W,θ,η
V : Lemma A,

Lemma C and Corollary B

Lemma A and Lemma C are proved in [18] (third arXiv version) in the case θi “ 1 for
all i P V , see Lemma 3 and Lemma 4 therein (see also [9]). The case of general θ can
be deduced from the special case θ “ 1 by a change of variables. More precisely, setting
β 1
i “ θ2i βi, W

1
i,j “ θiθjWi,j, and η1

i “ θiηi, then we have

〈θ,Hβθ〉 “
〈

1, H 1
β11

〉

,
〈

η,H´1

β η
〉

“
〈

η1, pH 1
β1q´1η1〉 , 〈η, θ〉 “ 〈η1, 1〉

where H 1
β1 “ 2β 1 ´ W 1, so that β „ ν

W,θ,η
V if and only if β 1 „ ν

W 1,1,η1

V .
Corollary B is a direct consequence of the expression of the Laplace transform. Indeed,

under νW,θ,ηV , the Laplace of the marginal βi ´ Wi,i is given for ζ P R` by
ż
exp

ˆ
ζpβi ´ 1

2
Wi,iq

˙
ν
W,θ,η
V pdβq “ θia

θ2i ` ζ
exp

˜
´

ˆb
θ2i ` ζ ´ θi

˙ ˜
ηi `

ÿ

j‰i
Wi,jθj

¸¸
.

It coincides with the Laplace transform of the inverse of the Inverse Gaussian density. More
precisely, by changing the parameter of Inverse Gaussian distribution, we have

ż 8

0

exp

ˆ
´ ζ

2x

˙ ˆ
λ

2πx3

˙ 1

2

exp

˜
´λ px ´ µq2

2µ2x

¸
dx “

?
λ?

ζ ` λ
exp

˜
´

d
λ

µ2

´a
ζ ` λ ´

?
λ

¯¸

It means that the law of 2βi´Wi,i coincides with the law of the inverse of an inverse Gaussian

random variable with parameters pλ, µq such that λ “ θ2i and
b

λ
µ2

“ ηi ` ř
j‰iWi,jθj .

4. Simple key formulas

Let us start by a remark. If ptiq P pR`qV and Kt ą 0, then the operator H´1
1

2t

is well-defined

even when some of the ti’s vanish: indeed, using the identity

H´1
1

2t

“ K´1

t t,

the right-hand side is perfectly well-defined when Kt is invertible. In all the sequel, we will
implicitly consider that H´1

1

2t

is defined by this formula when some of the ti’s vanish.
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We prove below some simple formulas that will be key tools in forthcoming computations.

Lemma 2. Let pt0i qiPV and pt1i qiPV be vectors in R
V
` such that Kt0`t1 ą 0.

(i) We have,

Kt0`t1 “ rKt1Kt0 ,(4.1)

with
rKt1 “ Id´t1ĂW, where, ĂW “ WK´1

t0

Hence, we also have, with rH 1

2t1
“ 1

t1
´ ĂW , (where |H | :“ detH)

ˇ̌
ˇH 1

2pt0`t1q

ˇ̌
ˇ

ˇ̌
ˇ rH 1

2t1

ˇ̌
ˇ

“
˜ź

iPV

t1i
t0i ` t1i

¸ ˇ̌
ˇK 1

2t0

ˇ̌
ˇ(4.2)

(ii) Let

rη “ η ` ĂW pt0ηq,
then,

rη “ pt0q´1H´1
1

2t0

η.(4.3)

and,
〈

rη, p rH 1

2t1
q´1rη

〉

“
〈

η, pH 1

2pt0`t1q
q´1η

〉

´
〈

η, pH 1

2t0
q´1η

〉

(4.4)

Remark 5. One should not confound the ĂW in Lemma 2 (which is deterministic) with the
ĂW pt0q in Theorem 2, which should be consider as a process.

Proof. (i) We can write

Kt0`t1 “ Kt0 ´ t1W “ pId´t1WK´1

t0
qKt0 “ rKt1Kt0 .

(ii) Formula (4.3) follows from

rη “ pt0q´1pId`t0WK´1

t0
qt0η “ pt0q´1K´1

t0
t0η “ pt0q´1H´1

1

2t0

η

Turning to Formula (4.4), using (4.1), we have

K´1

t0`t1 “ K´1

t0
rK´1

t1

and

(4.5)

rH´1
1

2t1

“ Kt0K
´1

t0`t1t
1

“ Kt0K
´1

t0`t1pt0 ` t1qp 1
t0

´ 1

t0 ` t1
qt0

“ t0H 1

2t0
H´1

1

2pt0`t1q

p 1
t0

´ 1

t0 ` t1
qt0

“ t0H 1

2t0
H´1

1

2pt0`t1q

pH 1

2t0
´H 1

2pt0`t1q
qt0

“ t0H 1

2t0
H´1

1

2pt0`t1q

H 1

2t0
t0 ´ t0H 1

2t0
t0
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Now, (4.3) implies
rH 1

2t1
rη “ t0H 1

2t0
H´1

1

2pt0`t1q

η ´ t0η.

Since H 1

2t0
is symmetric, we get (4.4) by (4.3). �

5. Proof of basic properties of the S.D.E. E
W,θ,η
V : proof of Lemma 1.

Remark that (i) and (ii) of Lemma 1 are equivalent since dXptq “ dY ptq ´ ηdt. In order

to prove the existence and uniqueness of the pathwise solution of EW,θ,η
V pY q (or equivalently

E
W,θ,η
V pXq), we first consider a non stopped version of the S.D.E. (EW,θ,η

V pY q), for which the
existence and uniqueness is simpler.

Lemma 3. Let pθiqiPV P R
V
`. Let h ą 0 be the smallest positive real such that detpKhq “ 0.

Then, the following S.D.E. is well-defined on time interval r0, hq and has a unique pathwise
solution

rYiptq “ θi ` Biptq ´
ż t

0

pWK´1

s
rY psqqids @i P V.(5.1)

Moreover, there exists a time τ ă h such that rYipτq “ τηi for some vertex i P V .

Proof. As WK´1

t is bounded on time interval r0, h´ ǫq for all ǫ ą 0, it is a linear S.D.E with
bounded coefficients there is a unique pathwise solution, with continuous simple paths, by
standard existence and uniqueness theorems on S.D.E.

To see the existence of τ , we can define pZtqtě0 by

ph ´ tqZip
t

h´ t
q “ rYiptq, @i P V

and write (5.1) as

ph´ tqZip
t

h´ t
q “ θi ` Biptq ´

ż t

0

„
WK´1

s ph ´ sqZp s

h´ s
q


i

ds.

By time change u “ t
h´t , the S.D.E. is written in the following equivalent form

1

u` 1
Zipuq “ θi

h
` 1

h
Bip

hu

u` 1
q ´

ż u

0

„
WK´1

hv
v`1

Zpvq


i

1

pv ` 1q2dv.

That is

dZipuq “ 1?
h
d rBipuq ` 1

u ` 1

ˆ„
Id´WK´1

hv
v`1


Zpuq

˙

i

du.(5.2)

where p rBiptqqiPV is a N -dimensional Brownian motion. As t Ñ h, we have u Ñ 8, and there

exists τ ă h such that rYipτq “ τηi if and only if there exists τ 1 P R` such that Zipτ 1q “ τ 1ηi.
Assume by contradiction that none of these Zi reach the lines y “ ηix, in particular, they are
all positive. We use that K´1

s has positive coefficients and that limsÑhmini,jpK´1

s qi,j “ `8,
which implies that for u large enough pId´WK´1

hv
v`1

q has negative coefficients, hence the drift

term in (5.2) is negative. This implies that Zipuq given by (5.2) is stochastically bounded from
above by a Brownian motion, at least for u large enough. Hence, the processes pZipuqquě0

reach 0 in finite time, which leads to a contradiction. �
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Proof of Lemma 1 (i). We prove it by recurrence on the size of V . We will gradually define

Y ptq, solution to the equation (EW,θ,η
V pY q) and Xptq “ Y ptq ´ tη. Consider

τ “ inftt ě 0, Di P V such that Xiptq “ 0u

and denote by i0 the vertex in V such thatXi0pτq “ 0. Up to time τ , the equation (EW,θ,η
V pY q)

is equivalent to the equation (5.1), hence the equation (EW,θ,η
V pY q) is well-defined and has

unique pathwise solution up to time τ and τ ă 8 a.s.. Moreover, Ti0 “ τ . Now we set
U “ ti0uc and

p rTiqiPV “ pTi ´ τqiPV
ĂW “ WK´1

τ , rKs “ Id´sĂW, rη “ η ` ĂW pτηq.
and use that, by (4.1) applied to t0i “ τ for all i, and t1 “ s ^ rT ,

K´1

pτ`sq^T “ K´1

τ
rK´1

s^ rT .

We set
rXpsq “ Xpτ ` sq, rBpsq “ Bpτ ` sq.

Hence, we have that

pτ ` sq ^ T “ τ ` s ^ rT , WK´1

pτ`sq^T “ ĂW rK´1

s^T

and after time τ , pXτ`tqtě0 is solution of EW,θ,η
V pXq if and only if rXpsq is solution of

d rXpsq “ 1
să rTd

rBpsq ` 1
să rT

´
ĂW rK´1

s^ rT

´
rXpsq ` τη ` ps ^ rT qη

¯
` η

¯
ds.(5.3)

Using that,

ĂW rK´1

s^ rT

´
rXpsq ` τη ` ps ^ rT qη

¯

“ĂW rK´1

s^ rT

´
rXpsq ` rKs^ rT pτηq ` ps ^ rT qĂW pτηq ` ps ^ rT qη

¯

“ĂW rK´1

s^ rT

´
rXpsq ` ps ^ rT qrη

¯
` ĂW pτηq

we see that (5.3) is equivalent to the fact that rX is solution ofE
ĂW,Xpτq,rη
V pXq. Since, Xi0pτq “ 0

is it equivalent to the fact that rXU is solution of E
ĂW,Xpτq,rη
U pXq. Hence, we conclude by the

recurrence hypothesis applied to U , which implies that E
ĂW,Xpτq,rη
U pXq has a unique pathwise

solution. �

Proof of Lemma 1 (iii). Remark first that

B
BtK

´1

t^T “ K´1

t^T1tăTWK´1

t^T .

Differentiating ψptq “ K´1

t^T pY ptqq, we get,

dψiptq “ pK´1

t^T pdY ptqqqi `
`
K´1

t^T1tăTWK´1

t^T pY ptqq
˘
i
dt

“ pK´1

t^T p1tăTdBptqqqi
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Moreover, the quadratic variation of ψiptq and ψjptq is given by

〈ψi, ψj〉t “
ÿ

lPV

ż t

0

pK´1

s^T qi,l1săTlpK´1

s^T qj,lds

“
ÿ

lPV

ż t

0

pH´1
1

2ps^T q

qi,l
ˆ

1

s ^ Tl

˙2

1săTlpH´1
1

2ps^T q

ql,jds

“
ż t

0

B
BspH´1

1

2ps^T q

qi,jds

“ pH´1
1

2pt^T q

qi,j

where in the second equality, we used Hβ is a symmetric matrix and H´1
1

2pt^T q

“ K´1

t^T pt^ T q,
and so that H´1

1

2pt^T q

“ pt^T qpK´1

t^T qt. In the last equality we used that H´1
1

2pt^T q

is well defined

and null for t “ 0. �

6. Stationarity property

Proposition 1 (Stationarity). If pXptqqtě0 is the solution of (EW,θ,η
V pXq) and s ě 0, then

pXpt ` sqqtě0 is solution of the S.D.E. E
ĂW psq,Xpsq,rηpsq

V pXq directed by the shifted brownian
motion pBpt ` sqqtě0, and with

ĂW psq “ WK´1

s^T , rηpsq “ η ` ĂW psqpps ^ T qηq,
Remark 6. Proposition 1 corresponds to Theorem 2 (iii) in the case where all the coordi-
nates of pt0i q are equal to s, except that in this case the equation is directed by the shifted
Brownian motion, which is not the case when coordinates are not all equal. The proof in
this case is based on elementary computations and do not rely on the representation given
in Theorem 1. The result can then be interpreted as a dynamic evolution of the parameters
along the trajectory: conditioned on the past, the futur of the trajectory is in the same family
of S.D.E with deformed parameters.

Proof of Proposition 1. Set p rXptqqtě0 :“ pXpt`sqqtě0, p rBptqqtě0 :“ pBpt`sqqtě0, and rT psq “
T ´ s ^ T . Remark that by Lemma 2

ps ` tq ^ T “ s ^ T ` t ^ rT psq, WKps`tq^T “ ĂW psq rKpsq
t^ rT

with ĂW psq defined in Proposition 1 and rKpsq
t^ rT “ Id´pt ^ rT psqqĂW psq. The S.D.E. EW,θ,η

V pXq
after time s is thus equivalent to

d rXiptq “ 1
tă rT psq

i

d rBiptq´1
tă rT psq

i

´
ĂW psqp rKpsq

t^ rT q´1

´
rXptq ` ps ^ T qη ` pt^ rT psqqη

¯
` η

¯
i
dt, @i P V,

By Lemma 2, we have that

ĂW psqp rKpsq
t^ rT q´1

´
rXptq ` ps ^ T qη ` pt^ rT psqqη

¯

“ĂW psqp rKpsq
t^ rT q´1

´
rXptq ` rKpsq

t^ rT pps ^ T qηq ` pt ^ rT psqqĂW psqpps ^ T qηq ` pt^ rT psqqη
¯

“ĂW psqp rKpsq
t^ rT q´1

´
rXptq ` pt^ rT psqqrηpsq

¯
` ĂW psqps ^ T qη
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Hence, rXptq is solution of

d rXptq “ 1
tă rT psq

i

d rBiptq ´ 1
tă rT psq

i

´
ĂW psqp rKpsq

t^ rT q´1

´
rXptq ` pt ^ rT psqqrηpsq

¯
` rηpsq

¯
i
dt, @i P V,

Since, rXp0q “ Xpsq, we have the result. �

7. Proof of Theorem 1

We provide below a convincing but incomplete argument for the proof of Theorem 1. We
do not know yet how to turn this argument into a rigourous alternative proof, even though
we think that it should be possible. The rigorous proof is given in Section 7.2.

7.1. A convincing but incomplete argument for Theorem 1 (i). Let λ P R
V
` be a non

negative vector on V . As

exp

ˆ
´
〈

η,H´1

β λ
〉

´ 1

2

〈

λ,H´1

β λ
〉

˙
ν
W,θ,η
V “ exp p´ 〈λ, θ〉q νW,θ,η`λ

V ,

we have,
ż
exp

ˆ
´
〈

η,H´1

β λ
〉

´ 1

2

〈

λ,H´1

β λ
〉

˙
ν
W,θ,η
V pdβq “ exp p´ 〈λ, θ〉q .(7.1)

On the other hand, consider Y ptq, solution of EW,θ,η
V pY q, and the associated processes pXptqq,

pψptqq. By Lemma 1 and [15] proposition 3.4 p 148, we know that

exp

ˆ
´ 〈λ, ψptq〉 ´ 1

2

〈

λ,H´1
1

2pt^T q

λ

〉˙
,

is a continuous martingale, dominated by 1. Moreover, we have that Xptq Ñ 0, a.s., when
t Ñ 8, hence, a.s.,

lim
tÑ8

ψptq “ K´1

T pTηq “ H´1
1

2T

η.

By dominated convergence theorem, it implies that

E

ˆ
exp

ˆ
´
〈

λ,H´1
1

2T

η
〉

´ 1

2

〈

λ,H´1
1

2T

λ
〉

˙˙
“ exp p´ 〈λ, ψp0q〉q “ exp p´ 〈λ, θ〉q .

Hence, it implies that both β under νW,θ,ηV and 1

2T
obtained from E

W,θ,η
V satisfy the same

functional identity (7.1). Note that the dimension of the space of variables pλiqiPV and of
the random variables pβiqiPV are the same. Nevertheless, it is not clear wether the functional

identity (7.1) characterizes the distribution ν
W,θ,η
V , at least we have no proof of this fact.

If such an argument were available, it would imply Theorem 1 (i) also : indeed, using the
stationarity of the equation, Proposition 1, it would be possible to deduce Theorem 1 (ii) by
enlargement of filtration (see [7]). We do not give the detail of the argument here since the
first part of the proof is missing.

7.2. Proof. Even if it is not obvious at first sight since the context is very different, the
strategy of the proof of Theorem 1 is quite in the spirit of the proof of Theorem 2, ii) of [16]
: we start from the mixture of Bessel processes and we prove that this mixture has the same
law as the solutions of the S.D.E. EW,θ,η

V pXq. We use in a crucial way the fact that the law

ν
W,θ,η
V is a probability density with explicit normalizing constant.
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7.2.1. The classical statement for N “ 1. We denote by W “ CpR`,Rq the Wiener space.
For θ ą 0, we denote by Pθ the law of Xt^T where Xt “ θ`Bt and Bt is a standard brownian
motion and T “ inftt ě 0, Xt “ 0u is the first hitting time of 0. We denote by B

3,T
θ,0 the law

of the 3-dimensional Bessel Bridge from θ ą 0 to 0 on time interval r0, T s, as defined in [15],
section XI-3. We always consider that the Bessel bridge is extended to time interval R`, with
constant value equal to 0 after time T . As mentioned in the introduction it is known (see

[22] [15], p317), that, under Pθ,
1

2T
has the law Gammap1

2
, θ

2

4
q and that, conditionally on T ,

pXtqtě0 has law B
3,T
θ,0 . Otherwise stated it means that the following equality of probabilities

holds on the Wiener space W:

Pθp¨q “
ż 8

0

B
3,T
θ,0 p¨q 1?

2π

θ

T 3{2 e
´ θ2

2T dT(7.2)

7.2.2. Proof of Theorem 1 (i) and (ii). We use the formulation of Lemma 1 (ii), and we

will prove that if pXiptqqiPV satisfies (EW,θ,η
V pXq), then β :“ 1

2T
is distributed as νW,θ,ηV and

conditionally on T , the coordinates pXiptqqtě0 are independent 3-dimensional Bessel bridges
from θi to 0 on time interval r0, Tis.

Recall that V “ t1, . . . , Nu, and denote by WV “ CpR`,R
V q the N -dimensional Wiener

space and pXptqqtě0 the canonical process. For θ “ pθiqiPV P R
V
`, we set

PV,θ “ biPV Pθi,

the probability on WV such that pXiptqqiPV are N independent Brownian motions starting
at positions pθiq and stopped at their first hitting times of 0. The assertions of Theorem 1 (i)

and (ii) are equivalent to the fact that the law of the solution of the S.D.E. (EW,θ,η
V pXq) is a

mixture of independent Bessel bridges B
3, 1

2βi

θi,0
where β is a random vector with distribution

ν
W,θ,η
V . Otherwise stated, it means that the probability distribution P

W,θ,η

V defined by

P
W,θ,η

V p¨q :“
ż ˆ

biPV B
3, 1

2βi

θi,0

˙
p¨qνW,θ,ηV pdβq,

is the law of the solution of the S.D.E. (EW,θ,η
V pXq). The strategy is now to write the Radon-

Nikodym derivative of P
W,θ,η

V with respect to PV,θ as an exponential martingale, and then to
apply Girsanov’s theorem.

In the sequel, we adopt the following notations:

T :“ 1

2β
, so that Hβ “ 1

T
KT .

From (7.2), it is clear that P
W,θ,η

V is absolutely continuous with respect to PV,θ, and changing

from variables β to T in νW,θ,ηV pdβq, we get that

(7.3)

d
P
W,θ,η

V

PV,θ
“ 1H 1

2T
ą0 ¨ e´ 1

2

〈

θ,H 1

2T
θ

〉

` 1

2
〈θ, 1T θ〉´ 1

2

〈

η,pH 1

2T
q´1η

〉

`〈η,θ〉
ś

iPV T
´1{2
ib

|H 1

2T
|
.

“ 1H 1

2T
ą0 ¨ exp

ˆ
1

2
〈θ,Wθ〉 ´ 1

2

〈

η,K´1

T Tη
〉

` 〈η, θ〉

˙
1a
|KT |

.
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Let t ą 0, define $
’’’&
’’’%

V ptq :“ ti P V, Ti ą tu,
βptq :“ 1

2pt^T q
ĂW ptq :“ WK´1

t^T “ W ` WK´1

t^T pt ^ T qW
rηptq :“ η ` ĂW ptqpt ^ T qη

where the third equality comes from the fact that K´1

t^T “ Id`pt ^ T qWK´1

t^T . Note that
ĂW ptq is symmetric since K´1

t^T pt^ T q “ H´1
1

2pt^T q

. We also set,

$
’’’’&
’’’’%

rT ptq :“ T ´ t ^ T,
rβptq :“ 1

2 rT ptq
,

rKptq
rT :“ Id´ rT ptqĂW ptq,

rHptq
rβ :“ 2rβptq ´ ĂW ptq “ 1

rT ptq
rKptq

rT ,

Note that p rHptq
rβ q´1 is well defined for all t using p rHptq

rβ q´1 “ p rKptq
rT q´1 rT ptq, see beginning of

section 4. By Equation (4.3) applied with t0 “ t ^ T and t1 “ rT ptq, we get that

(7.4) rηptq “ pt^ T q´1H´1

βptqη.

We first prove the following lemma.

Lemma 4. Let

Mt “ exp

ˆ
´1

2

〈

Xptq,ĂW ptqXptq
〉

` 1

2

〈

rηptq, p rHptq
rβ q´1rηptq

〉

´
〈

rηptq, Xptq
〉

˙ b
| rKptq

rT |.

Under PV,θ, we have

Mt

M0

“ exp

ˆ
´

ż t

0

〈Wψpsq ` η, dXs〉 ´ 1

2

ż t

0

〈Wψpsq ` η,1săT pWψpsq ` ηq〉 ds
˙

(7.5)

with

ψptq “ K´1

t^T pXptq ` pt ^ T qηq.
Proof of Lemma 4. We will compute the Itô derivative of lnMt, the following formulae will
be used several times

B
BtKt^T “ ´1tăTW,

B
BtK

´1

t^T “ K´1

t^T1tăTWK´1

t^T ,
B
Bt

ĂW ptq “ ĂW ptq
1tăTĂW ptq.(7.6)

B
BtH

´1

βptq “ H´1

βptq1tăT

ˆ
1

t^ T

˙2

H´1

βptq(7.7)

By (7.6) and Itô formula, we have

d
〈

Xptq,ĂW ptqXptq
〉

“ 2
〈

dXptq,ĂW ptqXptq
〉

`
〈

ĂW ptqXptq,1tăTĂW ptqXptq
〉

dt` TracepĂW ptq
1tăT qdt(7.8)

where in the second term we used that the operator ĂW ptq is symmetric.
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By (4.4) of Lemma 2 applied to t0 “ t^ T and t1 “ rT ptq, we get
〈

rηptq, p rHptq
rβ q´1rηptq

〉

“
〈

η, pHβq´1η
〉

´
〈

η, pHβptqq´1η
〉

Using (7.7) and (7.4), it implies,

d
〈

rηptq, p rHptq
rβ q´1rηptq

〉

“ ´
〈

rηptq,1tăT rηptq〉 dt.(7.9)

We have also

B
Btrηptq “ ĂW ptq

1tăTη ` ĂW ptq
1tăTĂW ptqpt ^ T qη “ ĂW ptq

1tăT rηptq.

Hence,

d
〈

rηptq, Xptq
〉

“
〈

rηptq, dXptq
〉

`
〈

rηptq,1tăTĂW ptqXt

〉

dt.(7.10)

Finally, using (4.4) of Lemma 4.1 applied to t0 “ t^ T and t1 “ rT ptq, we get

K´1

T “ K´1

t^T p rKptq
rT q´1(7.11)

which implies by (7.6),

(7.12)
B
Bt ln | rKptq

rT | “ ´ B
Bt ln |Kt^T | “ ´Tracep1tăTWK´1

t^T q “ ´Tracep1tăTĂW ptqq.

Combining (7.8), (7.9), (7.10), and (7.12), we get using that Wψptq ` η “ ĂW ptqXptq ` rηptq,

d lnMt “ ´
〈

dXptq,ĂW ptqXptq ` rηptq
〉

´ 1

2

〈

ĂW ptqXptq,1tăTĂW ptqXptq
〉

dt

´1

2

〈

rηptq,1tăT rηptq〉 dt´
〈

rηptq,1tăTĂW ptqXt

〉

dt

“ ´ 〈Wψptq ` η, dXt〉 ´ 1

2
〈Wψptq ` η,1tăT pWψptq ` ηq〉 dt

Consider now a positive measurable test function φppXsqsďtq. Denote by E
W,θ,η

V , (resp. EV,θ),

the expectation with respect to P
W,θ,η

V , (resp. PV,θ). We have, by (7.3),

E
W,θ,η

V pφppXsqsďtqqq

“ EV,θ

˜
φppXsqsďtq1H 1

2T
ą0 ¨ e 1

2
〈θ,Wθ〉´ 1

2
〈η,pKT q´1Tη〉`〈η,θ〉 1a

|KT |

¸

“ EV,θ

¨
˝Mt

M0

φppXsqsďtq1H 1

2T
ą0 ¨ e

1

2
〈Xptq,ĂW ptqXptq〉´ 1

2

〈

rηptq,p rHptq
rβ q´1rηptq

〉

`〈rηptq,Xptq〉 1b
| rKptq

rT |

˛
‚

Let us denote by 〈¨, ¨〉V ptq the usual scalar product on R
V ptq (we keep denoting by 〈¨, ¨〉 the

usual scalar product on R
V ). As Xptq vanishes on V zV ptq, we have

〈

Xptq,ĂW ptqXptq
〉

“
〈

Xptq,ĂW ptqXptq
〉

V ptq
,

〈

rηptq, Xptq
〉

“
〈

rηptq, Xptq
〉

V ptq ,
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By (4.5), since p rHptq
rβ q´1 “ p rKptq

rT q´1 rT ptq and since rT ptq vanishes on the subset V zV ptq and rHptq
rβ

is symmetric, we get
〈

rηptq, p rHptq
rβ q´1rηptq

〉

“
〈

rηptq, p rHptq
rβ q´1rηptq

〉

V ptq
,

Moreover,

| rKptq
rT | “ | Id´ rT ptqĂW ptq| “ |pId´ rT ptqĂW ptqqV ptq,V ptq|

and

1H 1

2T
ą0 “ 1H

βptqą01 rHptq
rβ ą0

thus

1H 1

2T
ą0e

1

2〈Xptq,ĂW ptqXptq〉´ 1

2

〈

rηptq,p rHptq
rβ

q´1rηptq
〉

`〈rηptq,Xptq〉 1b
| rKptq

rT |
“ 1H

βptqą0

dP
ĂW ptq,Xptq,rηptq

V ptq
dPV ptq,Xptq

.

Therefore,

E
W,θ,η

V pφppXsqsďtqqq “ EV,θ

ˆ
1H

βptqą0

Mt

M0

φppXsqsďtqE
ĂW ptq,Xptq,rηptq

V ptq p1q
˙

“ EV,θ

´
1H

βptqą0φppXsqsďtqe
şt
0
〈Wψpsq`η,dXs〉´ 1

2

şt
0
〈Wψpsq`η,1săT pWψpsq`ηq〉ds

¯

where we used Lemma 4 in the second equality. It implies that

P
W,θ,η

V “ 1H
βptqą0 exp

ˆż t

0

〈Wψpsq ` η, dXs〉 ´ 1

2

ż t

0

〈Wψpsq ` η,1săT pWψpsq ` ηq〉 ds
˙
PV,θ.

Finally, by Girsanov’s theorem, we know that under the law

exp

ˆż t

0

〈Wψpsq ` η, dXs〉 ´ 1

2

ż t

0

〈Wψpsq ` η,1săT pWψpsq ` ηq〉 ds
˙
PV,θ(7.13)

the process
´

rBptq
¯
tě0

:“
ˆ
Xt `

ż t

0

1săT pWψpsq ` ηqds
˙

tě0

is a Brownian motion stopped at time T , the first hitting time of 0 by pXptqq. (Indeed, recall
that PV,θ is the law of independent Brownian motions starting at θ and stopped at their first
hitting time of 0). Hence,

dXptq “ 1tăTd rBptq ` 1tăT pWψptq ` ηqdt,

and under the law (7.13), X is solution of the S.D.E E
W,θ,η
V pXq with driving Brownian motion

rB. By Lemma 1, we know that a.s. under the law (7.13), we have Hβptq ą 0, thus P
W,θ,η

V

and (7.13) are equal. Hence, under P
W,θ,η

V , pXptqq has the law of the solutions of the S.D.E

E
W,θ,η
V pXq.

�
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8. Proof of the Abelian properties : Theorem 2

Proof of Theorem 2 (i), (ii). Consider first the restriction property (i). By Theorem 1, con-
ditionally on T , pXiptqqiPV are independent Bessel bridges from θi to 0 in time Ti. By

Theorem 1 and Lemma C, 1

2TU
is ν

WU,U ,θU ,qη
U distributed. By Theorem 1 applied to the set U

and parameters WU,U , θU , qη, it implies that XU has the law of the solutions of EW,θ,qη
U pXq.

For (ii), the same argument applies, using that βUc , conditionally on βU , is ν
|W,θUc ,qη
Uc dis-

tributed. �

Proof of Theorem 2 (iii). Recall that we denote by Xptq (resp. pXiptqqiPV ) the canonical

process on Wiener space W “ CpR`,Rq (resp. WV “ CpR`,R
V q). Recall that B

3,T
θ,0

and E
3,T
θ,0 denotes the law (resp. the expectation) on W of a Bessel bridge from θ to 0 on

time interval r0, T s (and extended by 0 for t ě T ). Recall also that E
W,θ,η
V p¨q denotes the

expectation with respect to the law on WV of the solution of the S.D.E. EW,θ,η
V pXq.

Following [15] p.463, under B3,T
θ,0 , the law of Xptq for some 0 ă t ă T is given by p3,t,Tθ,0 pyqdy

on R`, with

p
3,t,T
θ,0 pyq “ 1?

2πt

y

θ

ˆ
T

T ´ t

˙3{2
e

´ y2

2pT´tq
` θ2

2T

ˆ
e´ py´θq2

2t ´ e´ py`θq2

2t

˙
, @y ě 0.(8.1)

Moreover, the Markov property of the Bessel bridge implies that under B3,T
θ,0 and conditionally

on Xptq “ x, 0 ă t ă T , the law of ppXpuqq0ďuďt, pXpt` uqq0ďuďT´tq is given by

B
3,t
θ,x b B

3,T´t
x,0 .(8.2)

Let us denote by νW,θ,ηV pdT q the law of T “ 1

2β
when β follows the law ν

W,θ,η
V pdβq, so that

ν
W,θ,η
V pdT q “ 1H 1

2T
ą0

ˆ
2

π

˙|V |{2
e

´ 1

2
〈θ, 1T θ〉` 1

2
〈θ,Wθ〉´ 1

2

〈

η,pH 1

2T
q´1η

〉

`〈η,θ〉
ś

iPV θib
|H 1

2T
|

ź

iPV

1

2T 2
i

dTi

Let pt0i qiPV P R
V
` be as in the statement of the theorem. Set

V pt0q “ ti P V, Ti ą t0i u.(8.3)

Fix U Ă V , and denote by Apt0, T q the event

Apt0, T q “ tV pt0q “ Uu “ tT ą t0i , i P Uu X tT ď t0i , i P U cu(8.4)

Let h, g be bounded measurable test functions. By Theorem 1, we have

E
W,θ,η
V

“
1V pt0q“UhppXir0, t0i sqiPV qgppXiprt0i , TisqqiPUq

‰

“
ż
1Apt0,T q

â
iPV

E
3,Ti
θi,0

“
hppXir0, t0i sqiPV qgppXiprt0i , TisqqiPUq

‰
dν

W,θ,η
V pT q

By the Markov property (8.2), we have on the event Apt0, T q, that
â
iPV

E
3,Ti
θi,0

“
hppXir0, t0i sqiPV qgppXiprt0i , TisqqiPUq

‰

“
ż

RU
`

KpxU , t0U , TUcq
â
iPU

E
3,Ti´t0i
xi,0

“
gppXipr0, Ti ´ t0i sqqiPUq

‰
˜ź

iPU
p
3,t0i ,Ti
θi,0

pxiqdxi
¸
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where

KpxU , t0U , TUcq “
˜

â
iPU

E
3,t0i
θi,xi

â
iPUc

E
3,Ti
θi,0

¸
“
hppXir0, t0i sqiPV q

‰
(8.5)

is a function that only depends on pxi, t0i qiPU , pTiqiPUc . We thus get,

E
W,θ,η
V

“
1V pt0q“UhppXir0, t0i sqiPV qgppXiprt0i , TisqqiPUq

‰

“
ż
1Apt0,T qKpxU , t0U , TUcq

â
iPU

E
3,Ti´t0i
xi,0

“
gppXipr0, Ti ´ t0i sqqiPUq

‰
˜ź

iPU
p
3,t0i ,Ti
θi,0

pxiqdxi
¸
dν

W,θ,η
V pT q

In the sequel, on the event Apt0, T q, we set

p rTiqiPU “ pTi ´ t0i qiPU .

The strategy is now to show that we can combine the terms
ś

iPU p
3,t0i ,Ti
θi,0

pxiq and the measure

dν
W,θ,η
V pT q in such a way that on the event Apt0, T q, changing from variables pTiqiPU to

variables p rTiqiPU , we end up with a function of pxU , t0U , TUcq and the measure ν
ĂW pt0q,x,rηpt0q

U pdrT q,
see forthcoming formula (8.6).

Let us denote by 〈¨, ¨〉U the usual scalar product on R
U (recall that we keep denoting by

〈¨, ¨〉 the usual scalar product on R
V ). Note that rηpt0q and ĂW pt0q defined in Theorem 2 (iii)

correspond to rη and ĂW of Lemma 2 for t0 ^ T and rT . Hence, by (4.4) of Lemma 2, we get,

with rHpt0q
1

2 rT
“ 1

2 rT ´ ĂW pt0q, that

〈

rηpt0q, p rHpt0q
1

2 rT
q´1rηpt0q

〉

U

´
〈

η, pH 1

2T
q´1η

〉

“ ´
〈

η, pH 1

2t0^T

q´1η
〉

and by (4.2) of Lemma 2
ˇ̌
ˇ̌
ˇ

ˆ
rHpt0q

1

2 rT

˙

U,U

ˇ̌
ˇ̌
ˇ

|H 1

2T
| “ |Kt0^T |

ź

iPU

ˆ
Ti
rTi

˙
.

Note that we have

ź

iPU
p
3,t0i ,Ti
θi,0

pxiq “ e
´ 1

2
〈x, 1rT x〉U` 1

2
〈θ, 1T θ〉U

ź

iPU

˜
e

´ pxi´θiq2

2t0
i ´ e

´ pxi`θiq2

2t0
i

¸
1a
2πt0i

xi

θi

ˆ
Ti
rTi

˙3{2

Changing from variables pTiqiPU to p rTiqiPU , we get

1Apt0,T q

˜ź

iPU
p
3,Ti
θi,0

pxiq
¸
ν
W,θ,η
V pdT q “ 1Tiăt0i , iPUcΞpxU , t0U , TUcqνĂW pt0q,x,rηpt0q

U pdrT q
ź

iPUc

dTi(8.6)

for some explicit function ΞpxU , t0U , TUcq that only depends on pxi, t0i qiPU , pTiqiPUc .
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Continuing our computation, we have

E
W,θ,η
V

“
1V pt0q“UhppXir0, t0i sqiPV qgppXiprt0i , TisqqiPUq

‰

“
ż
1Tiăt0i , iPUcKpxU , t0U , TUcqΞpxU , t0U , TUcqEĂW pt0q,x,rηpt0q

U rgppXipr0, TisqqiPUqs
ź

iPU
dxi

ź

iPUc

dTi

(8.7)

Let us apply the last equality to the case where h and g are replaced by

rhppXir0, t0i sqiPV q :“ hppXir0, t0i sqiPV qEĂW pt0q,XU pt0q,rηpt0q

U pgppXipr0, TisqqiPUqq ,
rg :“ 1

The identity (8.7) gives in this case

E
W,θ,η
V

„
1V pt0q“UhppXir0, t0i sqiPV qEĂW pt0q,XU pt0q,rηpt0q

U pgppXipr0, TisqqiPUqq


“
ż
1Tiăt0i , iPUc

rKpxU , t0U , TUcqΞpxU , t0U , TUcq
ź

iPU
dxi

ź

iPUc

dTi(8.8)

where, using (8.5) applied to rh instead,

rKpxU , t0U , TUcq “ KpxU , t0U , TUcqEĂW pt0q,x,rηpt0q

U rgppXpr0, T sqiPUqqs .
Remark that the right-hand sides of (8.7) et (8.8) are thus the same. Hence, we conclude
that

E
W,θ,η
V

“
1V pt0q“UhppXir0, t0i sqiPV qgppXiprt0i , TisqqiPUq

‰

“ E
W,θ,η
V

„
1V pt0q“UhppXir0, t0i sqiPV qEĂW pt0q,XU pt0q,rηpt0q

U pgppXipr0, TisqqiPUqq

.

Summing on all possible choices of U , we exactly get that the law of pXiprt0i , Tisqq, condi-

tionally on FXpt0q, is the law of the solutions of the S.D.E. E
ĂW pt0q,Xpt0q,rηpt0q

V pXq.
�

Proof of Theorem 2 (iv). Fix as before U Ă V . With the notations (8.3) and (8.4), we have

V pT 0q “ ti P V, Ti ą T 0

i u, ApT 0, T q “ tV pT 0q “ Uu.
We simply write tT0 ă 8u for the event tT 0

i ă 8, @i P V u. In order to prove the strong
Markov property (iv), it is enough to prove that, for any bounded test function h, g, depend-
ing continuously on finitely many marginals of X, we have

(8.9)

E
W,θ,η
V

“
1T 0ă81ApT 0,T qhppXir0, T 0

i sqiPV qgppXirT 0

i , TisqiPUq
‰

“ E
W,θ,η
V

„
1T 0ă81ApT 0,T qhppXir0, T 0

i sqiPV qEĂW pT0q,XU pT 0q,rηpT0q

U pgppXir0, TisqiPUqq


We define the sequence of stopping times, for all i P V , by

rT 0

i sn “ k

2n
when

k ´ 1

2n
ď T 0

i ă k

2n
, k P N,
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and rT 0

i sn “ 8 when T 0

i “ 8. We can check that rT 0s :“ prT 0

i snqiPV is a multi-stopping time
in the sense of Theorem 2 (iv), since for pkiqiPV P N

V ,

č

iPV
tki ´ 1

2n
ď T 0

i ă ki

2n
u P σ

ˆ
Xipsq, s ď ki

2n
, i P V

˙
.

Moreover, rT 0

i sn decreases a.s. to T 0

i and for n large enough V prT 0snq “ V pT 0q a.s.. This
implies that a.s.

1T 0ă81ApT 0,T qgppXirT 0

i , TisqiPUq “ lim
nÑ8

1rT 0snă81AprT 0sn,T qgppXirrT 0

i sn, TisqiPUq.

Therefore, by dominated convergence theorem,

E
W,θ,η
V

“
1T 0ă81ApT 0,T qhppXir0, T 0

i sqiPV qgppXirT 0

i , TisqiPUq
‰

“ lim
nÑ8

E
W,θ,η
V

“
1rT 0snă81AprT 0sn,T qhppXir0, T 0

i sqiPV qgppXirrT 0

i sn, TisqiPUq
‰

“ lim
nÑ8

ÿ

k“pkiqiPV PNV

E
W,θ,η
V

«˜ź

iPV
1 ki´1

2n
ďT 0

i ă ki
2n

¸
1Ap k

2n
,T qhppXir0, T 0

i sqiPV qgppXir
ki

2n
, TisqiPUq

ff

where in the last equality we sum on the possible values of each rT 0

i sn, i P V . Note that
˜ź

iPV
1 ki´1

2n
ďT 0

i ă ki
2n

¸
1Ap k

2n
,T qhppXir0, T 0

i sqiPV q

is FXp k
2n

q measurable, so we can apply the Markov property (iii), and we get

E
W,θ,η
V

«
1Ap k

2n
,T q

˜ź

iPV
1 ki´1

2n
ďT 0

i ă ki
2n

¸
hppXir0, T 0

i sqiPV qgppXir
ki

2n
, TisqiPV p k

2n
qq

ff

“ E
W,θ,η
V

«
1Ap k

2n
,T q

˜ź

iPV
1 ki´1

2n
ďT 0

i ă ki
2n

¸
hppXir0, T 0

i sqiPV qE
ĂW p k

2n
q
,XU p k

2n
q,rηp k

2n
q

U pgppXir0, TisqiPUqq
ff
.

Summing on possible values of pkiq, we get:

E
W,θ,η
V

“
1T 0ă81ApT 0,T qhppXir0, T 0

i sqiPV qgppXirT 0

i , TisqiPUq
‰

“ lim
nÑ8

E
W,θ,η
V

„
1T 0ă81AprT 0sn,T qhppXir0, T 0

i sqiPV qEĂW prT0snq,XU prT 0snq,rηprT0 snq

U pgppXir0, TisqiPUqq

.

(8.10)

We conclude the proof thanks to the Feller property (see e.g. Section 18.6 of [19]) proved in
the Lemma below. �

Lemma 5. The function pW, θ, ηq Ñ E
W,θ,η
V pgppXir0, TisqiPV qq is continuous on pR˚

`qE ˆ
pR˚

`qV ˆ R
V
` for any bounded measurable function g depending only on a finite number of

marginals.

Proof of Lemma 5. It is enough to consider the case η “ 0, since the case η ‰ 0 is a marginal
of the case η “ 0 by Lemma C. Without loss of generality we assume Wi,i “ 0, @i. The
proof follows from the representation Theorem 1 and the two ingredients below.

Under the 3-dimensional Bessel bridge law, the expectation E
3,T
θ,0 pgppXir0, TisqiPV qq is con-

tinuous in pθ, T q. Indeed, the 3-dimensional Bessel bridge is the norm of a 3-dimensional
Brownian bridge from x to 0 if }x} “ θ, and the 3-dimensional Brownian bridge from x to



HITTING TIMES OF INTERACTING DRIFTED BM AND THE VRJP 23

0 can be represented as x ` B
p3q
t ´ t

T
B

p3q
T ´ t

T
x where pBp3q

t q is a 3-dimensional standard
Brownian motion.

On the other hand, the measure νWV pdβq can be dominated locally on the parameters W, θ

after some change of coordinates, following [17]. (Note that the density νW,θV in the present

paper correspond to νW,θ
2

in [17].) For convenience, write V “ t1, . . . , Nu. By the change
of variables pβiqiPV Ñ pxiqiPV from tβ, Hβ ą 0u to pR˚

`qV described in the proof of Theorem
1 of [17] (see page 3977), we have

(8.11)

1Hβą0 exp

˜
´1

2
〈θ,Hβθ〉 ´ 1

2

ÿ

i,j

Wi,jθiθj

¸
1a

detHβ

dβ

“ 1

2N
1xPRN

`
exp

˜
´

Nÿ

l“1

˜
θ2l xl

2
` 1

2xl

˜
Nÿ

k“l`1

θ2kH
2

l,k

¸¸¸
1?

x1 ¨ ¨ ¨xN
dx.

following the notation there, in particular the definition of txi, Hi,j : 1 ď i, j ď Nu. By
definition, for any l ě 1, Hl,k ě Wl,k.

Now fix W 0, θ0, let Ω be a neighborhood of pW, θq, denote

W l,k “ inf
Ω

Wl,k, θl “ inf
Ω

θl.

For any W, θ P Ω, we have Hl,k ě Wl,k ě W l,k and θl ě θl for all 1 ď l, k ď N , so the density
in (8.11) is locally uniformly bounded (in the variables xs) by

1xě0 exp

˜
´

Nÿ

l“1

˜
θ2l xl

2
` 1

2xl

˜
Nÿ

k“l`1

θ2kW
2

l,k

¸¸¸
1?

x1 ¨ ¨ ¨xN
,

which is an integrable function, as x1, . . . , xN´1 are distributed as inverse of IG distribution,
and xN is a Gamma distributed random variable.

�

9. Relation with the martingales associated with the VRJP

Consider in this section that V is infinite and that W is such that the associated graph G
has finite degree at each vertex and is connected. Following [16], we extend the definition of

the distribution ν
W,θ
V to the case of this infinite graph. We assume to be coherent with [16]

that W is zero on the diagonal. Note that we slightly generalize the definition of [16] since
we consider a general vector pθiqiPV P pR`qV , which is equal to 1 in [16]. (But as noted at
the beginning of section 3 it is in fact not more general since we can always take θ to 1 by a
change of variables on β and W .)

Let us recall the construction of the distribution νW,θV obtained by Kolmogorov’s extension
Theorem. The approach is slightly different from that of [16] and make use of Lemma C,
(i). Let Vn be an increasing sequence of subsets such that Yně1Vn “ V . Consider the vector
ηpnq P pR`qVn defined by

ηpnq “ WVn,V c
n

pθV c
n

q.(9.1)

By Lemma C, (i), the sequence of distribution ν
W,ηpnq

Vn
is compatible, hence by Kolmogorov

theorem it can be extended to a measure νW,θV on pR`qV . We define the Schrödinger operator

Hβ :“ 2β ´ W,
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on R
V associated with the potential β „ ν

W,θ
V . Note that Hβ ě 0 as the limit of pHβqVn,Vn

which is positive definite since βVn has law ν
W,θ,ηpnq

Vn
.

In [18] we considered the sequence of functions pψpnq
j qjPV P pR`qV defined by

#
pHβψ

pnqqVn “ 0

ψ
pnq
V c
n

“ θV c
n

(9.2)

and the operators p pGpnqpi, jqqi,jPVn by
#

pGpnq
Vn,Vn

“ ppHβqVn,Vnq´1,
pGpnqpi, jq “ 0, if i or j in not in Vn

Let Fn “ σpβi, i P Vnq, the sigma field generated by βVn . In [18], Proposition 9, it was

proved that ψpnq is a vectorial Fn-martingale, with quadratic variation given by pGpnqpi, jq,
i.e. that for all i, j in V and all n

E

´
ψpn`1qpiqψpn`1qpjq ´ pGpn`1qpi, jq|Fn

¯
“ ψpnqpiqψpnqpjq ´ pGpnqpi, jq.

It was extended in [3] to an exponential martingale property, namely it was proved that for
any compactly supported function λ P pR`qV ,

e´〈λ,ψpnq〉´ 1

2
〈λ, pGpnqλ〉,(9.3)

is a Fn-martingale.
We can interpret the functions ψpnq that appear above in terms of the S.D.E.s. Consider

Xpnq the solution of the S.D.E. EW,θ,ηpnq

Vn
, where ηpnq is defined in (9.1). Denote by T pnq the

associated stopping times and βpnq “ 1

2T pnq and

K
pnq
t^T pnq “ IdVn,Vn ´pt ^ T pnqqWVn,Vn, ψpnqptq “

´
K

pnq
t^T pnq

¯´1

Xpnqptq,

the associated operator and martingale that appear in Lemma 1. We always consider that

ψpnq is extended to the full set V by ψ
pnq
V c
n

ptq “ θV c
n
. Considering (9.2), we have that

lim
tÑ8

ψpnqptq “ ψpnq.

Hence the function ψpnq appears as the limit of the continuous martingale ψpnqptq.
It is possible to interpret the exponential martingale property (9.3) in terms of the Abelian

properties, see Theorem 2. More precisely, conditionally on σpβVnq, it is possible to construct
a continuous martingale that interpolates between ψpnq and ψpn`1q and with total quadratic

variation given by pGpn`1q ´ pGpnq, which explains the exponential martingale property as a
consequence the standard exponential martingale property for continuous martingales. We
do not give details of this computation which requires heavy notations (but the authors will
provide details under request).
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