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ABSTRACT

Context. The length of the asteroseismic timeseries obtained from the Kepler satellite analysed here span 19 months. Kepler provides
the longest continuous timeseries currently available, which calls for a study of the influence of the increased timespan on the accuracy
and precision of the obtained results.
Aims. We aim to investigate how the increased timespan influences the detectability of the oscillation modes, and the absolute val-
ues and uncertainties of the global oscillation parameters, i.e., frequency of maximum oscillation power, νmax, and large frequency
separation between modes of the same degree and consecutive orders, 〈Δν〉.
Methods. We use published methods to derive νmax and 〈Δν〉 for timeseries ranging from 50 to 600 days and compare these results as
a function of method, timespan and 〈Δν〉.
Results. We find that in general a minimum of the order of 400 day long timeseries are necessary to obtain reliable results for the
global oscillation parameters in more than 95% of the stars, but this does depend on 〈Δν〉. In a statistical sense the quoted uncertainties
seem to provide a reasonable indication of the precision of the obtained results in short (50-day) runs, they do however seem to be
overestimated for results of longer runs. Furthermore, the different definitions of the global parameters used in the different meth-
ods have non-negligible effects on the obtained values. Additionally, we show that there is a correlation between νmax and the flux
variance.
Conclusions. We conclude that longer timeseries improve the likelihood to detect oscillations with automated codes (from ∼60%
in 50 day runs to >95% in 400 day runs with a slight method dependence) and the precision of the obtained global oscillation pa-
rameters. The trends suggest that the improvement will continue for even longer timeseries than the 600 days considered here, with a
reduction in the median absolute deviation of more than a factor of 10 for an increase in timespan from 50 to 2000 days (the currently
foreseen length of the mission). This work shows that global parameters determined with high precision – thus from long datasets –
using different definitions can be used to identify the evolutionary state of the stars.

Key words. stars: oscillations – stars: late-type – stars: interiors – techniques: photometric

1. Introduction

Many breakthrough results for red-giant (G-K) stars have been
presented using data obtained by the CoRoT (Baglin et al. 2006)
and NASA Kepler (Borucki et al. 2010) missions. These results
include statistical ensemble studies of global oscillation param-
eters, i.e., frequency of maximum oscillation power, νmax, mean
frequency separation between modes of the same degree and
consecutive orders, 〈Δν〉, small frequency separations between
modes of different degree, �, amplitudes and visibilities of the
oscillations, and tests of scaling relations (e.g., De Ridder et al.
2009; Hekker et al. 2009; Bedding et al. 2010; Huber et al. 2010;
Hekker et al. 2011d; Huber et al. 2011; Mosser et al. 2012).

� Values of the global oscillation parameters can be obtained from
the authors upon request.

Additionally, it has been possible to determine stellar parame-
ters such as masses and radii (Kallinger et al. 2010a,b). In addi-
tion to these results, asteroseismic investigations into the gran-
ulation (Mathur et al. 2011), red giants in clusters (Basu et al.
2011; Hekker et al. 2011b; Stello et al. 2011a,b) and red giants
in eclipsing binaries (Hekker et al. 2010b) have been performed,
as well as detailed investigations into the internal structure of
single stars (e.g., Di Mauro et al. 2011; Jiang et al. 2011; Baudin
et al. 2012). The Kepler results referred to are based on time-
series with a near regular cadence of either 29.4 min or 58.85 s
and a timespan ranging from ∼30 days up to more than 1.5 yr.
These are the first datasets from space-based telescopes with
such long timespan and high fill (�90%) and frequency resolu-
tion (≈0.019 μHz). Underpinning much of this work is the ability
to determine global oscillation parameters and the uncertainties
in these values. It is reasonable to ask if there are now enough
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data available and whether there are any gains to be obtained
from observing individual stars for longer periods. In this pa-
per we address the precision and reliability of the determination
of some of the global seismic parameters. There are other areas
where there is a clear need for data of longer duration because
the features detected in the power spectra are narrow and hence
barely resolved even by the current datasets. In particular, we
highlight the detection of g-p mixed modes (Beck et al. 2011).
The observed mean period spacings appear to have different val-
ues for stars that burn only H (in a shell) and those that also
burn He in the core (Bedding et al. 2011; Mosser et al. 2011a),
hence the period spacing can be used to distinguish between dif-
ferent evolutionary states in which red giants are observed using
the characteristics of their frequency spectra. Another method to
distinguish between different evolutionary phases is based on the
difference in frequency dependence of radial modes (Kallinger
et al. 2012). Furthermore, recently, the timeseries obtained with
Kepler have become long enough to study rotational splitting of
the oscillation modes, which led to the detection of differential
rotation in red giants (Beck et al. 2012).

In this work, we use the 19 months of data available from Q0
to Q7 to investigate how the increased timespan influences the
detectability of the oscillation modes, and the absolute val-
ues and uncertainties of the global oscillation parameters, νmax
and 〈Δν〉. These are important in several ways. Knowing the
dependence of the precision on data duration is a guide for ob-
serving strategies, and for the determination of those secondary
parameters that are derived from the primary global oscillation
parameters, such as stellar mass and radius. Furthermore, it is
crucial to be able to estimate the proportion of false negatives
and false positives for population studies. Also, for detailed
modelling of individual oscillation frequencies νmax turned out
to be of great diagnostic potential (Gruberbauer et al. 2012).
We will include in our considerations the impact of other rel-
evant parameters such as the observed height-to-background ra-
tio of the oscillation excess. This work is a follow-up of Hekker
et al. (2011c, hereafter Paper I) on the red giants and Verner
et al. (2011) on solar-type stars, in which results obtained with
different methods have been compared and validated.

Paper I described the comparison of global oscillation pa-
rameters extracted from about four month of Kepler data using
different methods. From this comparison, it was concluded that
1) the results from the different methods agree for most stars
within a few percent; 2) at least five methods (out of the seven
tested) obtained results for 92% of stars for νmax within the range
of 50 μHz to 170 μHz, and this percentage decreased to 69%
when all stars with νmax covering the complete frequency range,
i.e., 0−283.4 μHz (the Nyquist frequency) were included; 3) the
scatter due to realization noise, originating from the stochastic
nature of the oscillations, is non-negligible and can be at least
as important as the internal uncertainty of the results due to the
method used, but this depends on the frequency of maximum
oscillation power, νmax, and on the methods. In case a model is
used to describe the variation ofΔνwith frequency the results are
less sensitive to realization noise than others; 4) the influence of
the obtained value of 〈Δν〉 is less dependent on the frequency
range over which it is computed than is the case for solar-type
stars. A theoretical follow-up study to explain the latter has been
performed by Hekker et al. (2011a).

2. Data

For the current study, we use data obtained with the Kepler satel-
lite during its first ∼19 months of operation (Q0-7). These data

Fig. 1. Distribution of the mean large frequency separations of the stars
in our sample.

have a ∼29.4 min near regular cadence and have been corrected
for possible artifacts in the way described by García et al. (2011).
See e.g. Jenkins et al. (2010) for some characteristics of these
data. The stars in the sample investigated here have been selected
for asteroseismic investigations by the Kepler Asteroseismic
Science Consortium (KASC) or for astrometric purposes. We
exclude cluster stars from this sample. Additionally, we include
only stars for which a power excess characteristic for stochas-
tic oscillations is detected. In some cases the stars episodically
fall on the one CCD that has gone inactive, resulting in loss
of data. We exclude these stars from our current investigation.
Other causes of data loss are safe mode and momentum dumping
from the spacecraft, as well as data downlinks every ∼30 days.
These result in rather smaller losses of data. We require that the
stars have been observed in all available quarters and we accept
a fill level down to 94% accounting for some additional loss of
data. This then leaves us with 1028 stars.

The 〈Δν〉 distribution of stars in the dataset we consider here
is shown in Fig. 1. This distribution is similar to the ones seen
in other published work on the Kepler red giants (e.g., Hekker
et al. 2011d).

3. Parameter extraction

For the data analysis, all the methods used here are based on
a subset of those described in Paper I, i.e. COR (Mosser &
Appourchaux 2009; Mosser et al. 2011b), OCT (Hekker et al.
2010a) and CAN (Kallinger et al. 2010a). For νmax values
we have used the autocorrelation function from COR:EACF
(Mosser & Appourchaux 2009), and the centre of the Gaussian
fit to the oscillation power excess from OCT (method II in
Hekker et al. 2010a) and CAN (Kallinger et al. 2010a). For 〈Δν〉
we use the autocorrelation method (COR:EACF, Mosser &
Appourchaux 2009) and the universal pattern (COR:UP, Mosser
et al. 2011b) as well as the determination of the peak in
the power spectrum of the power spectrum using statistics of
grouped data OCT:PS⊗PS and with the addition of Bayesian
statistics OCT:PS⊗PS (Bayesian) (Hekker et al. 2010a), and fi-
nally, fitting of the central three radial orders (CAN, Kallinger
et al. 2010a).

A homogeneous comparison between the values of the
shorter timeseries as presented in Paper I, and of longer time-
series cannot be performed directly, as continuous improvements
to the methods have been made. These improvements have been
made as a result of our increasing knowledge of the data from
earlier runs and to deal with the longer timeseries. The changes
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are of numerical nature and do not alter the underlying princi-
ples of the methods. Hence, the references cited above are still
valid. To perform a uniform study of the impact of the length of
the timeseries, the (Q0-Q7) dataset (∼600 days) has been used
both as a whole and divided into subsets. These datasets are all
analysed with the latest versions of the analysis methods.

4. Likelihood of detecting oscillation power
in frequency spectra

Recently, Hekker et al. (2011d) analysed one-month data sets of
publicly available data for over 16 000 red giants selected on the
basis of effective temperature and surface gravity. They found
that in ∼70% of the stars, oscillations could be detected. This
raises questions as to whether this fraction is telling us some-
thing about the ability of red giants to sustain stochastically-
driven oscillations, or if it is just a reflection of the difficulties in
the automated detections of oscillations for relatively short data
sets? Perhaps also, some of the stars were so faint that their noise
levels prevented the oscillations being detected. Alternatively,
can some other feature in the star suppress the oscillations in the
same manner as activity is known to suppress the oscillations in
solar-like stars (Mosser et al. 2009; Chaplin et al. 2011a; Huber
et al. 2011)? Here we will first give consideration to the impor-
tance of the amplitude of the oscillations and apparent bright-
ness of the stars and we will subsequently consider the problems
associated with the automated methods.

We consider how we might estimate the likelihood of detect-
ing oscillation power when it is present in the data. We use the
same method as given in (Chaplin et al. 2011b), adapted for the
red giants, to show that there is a high expectation that we will
be able to detect the modes of oscillations in all the red giants in
the Kepler data set. It is important to note that, although the cor-
rect identification of the frequency range in which the modes are
located is of fundamental importance, most current methods do
not use this as their primary consideration when determining if
there is oscillation power in the spectrum. For most of the meth-
ods, the determination of Δν is done first. If this fails then “no
detection” is reported. This may not be the best strategy, but be-
fore we construct that discussion we should first explore the ex-
isting predictions for the amplitudes of the modes of oscillations
in red giants.

4.1. Prediction for mode power

Kjeldsen & Bedding (1995) devised scaling relations predict-
ing that the amplitude of solar-like oscillations scale with their
luminosity to mass ratio, which implies that the amplitude of
the oscillations increases with increasing stellar radius. Hence,
solar-like oscillations in red giants are expected to have higher
amplitudes than oscillations in solar-type stars of equal masses.
These scaling relations have recently been revised (Kjeldsen &
Bedding 2011), and also tested, both theoretically (e.g. Samadi
et al. 2007) and observationally (e.g. Baudin et al. 2011; Huber
et al. 2011; Stello et al. 2011a).

To determine if it is possible to detect the modes, we are in-
terested in the signal-to-noise ratio in the vicinity of the modes.
In Mosser et al. (2012) it was shown that, with a small de-
pendence on evolutionary status, the ratio of the height of the
smoothed power spectrum to the granulation noise background
evaluated at νmax is between 3.7 and 4.0 for clump and red-giant
branch stars, respectively. Accordingly, we will use the lower
limit of this to work out the signal-to-noise in the integrated

spectral power excess. For all the red giants that we consider
here, the intrinsic photon shot noise is negligible and we neglect
it. This removes a consideration of the stellar luminosity from
the calculations.

A commonly accepted model of the envelope of the oscil-
lation power is a Gaussian function whose width, Wenv, scales
with the frequency of maximum power νmax as Wenv = 0.59ν0.9max
(Mosser et al. 2010). We can determine the average power in the
oscillations by smoothing the power spectrum over a range of at
least one large spacing so that no trace of the individual modes
remains. It is recognized that doing this in practice requires con-
siderable care as is spelt out in Mosser et al. (2012). We will take
twice the full-width half-maximum of the underlying Gaussian
as the range over which we will integrate to determine the av-
erage power. This range contains all but a few per cent of the
oscillation power. The granulation background in the vicinity of
the modes can be modeled with a power law with index of −2.1
(Mosser et al. 2012). Integration of these two functions, over
the same range, leads to an integrated height-to-background ra-
tio (H/Bint) of 1.55 (0.42 the height-to-background ratio at νmax).

The averaging of the data during the sampling interval in the
time domain causes an attenuation of the amplitudes in the fre-
quency spectrum according to a sinc function and we can use the
ratio of νmax to νNyq, the Nyquist frequency which is 283.4 μHz
for the Kepler long cadence data, to quantify the size of this re-
duction. The majority of stars in our sample have νmax � νNyq
and for these stars this sinc term is negligible and we do not
consider it further.

4.2. Model of detection probability

Here we present a model, based on predicted integrated height-
to-background in the vicinity of the oscillations, for how de-
tectable the oscillations are. To do this we adapt the formula-
tion devised by Chaplin et al. (2011b) for solar-type stars to red
giants. The principle of the method is to compare the power
present in the modes with that present in the background and
then to use probability distributions to ascertain the likelihood
of the mode power being reliably detected.

The question that we now wish to answer is “given the H/Bint
what is the chance of a false detection?”. We set a probability,
pfalse, at which we are prepared to risk a false positive detection.
In general, this level should be low. Typically for this work we
have used pfalse = 0.01 (i.e. 1%). As detailed in Chaplin et al.
(2011b), we compute a threshold value, θ, in a χ2 distribution
with 2n degrees of freedom (d.o.f.) such that the probability that
some random variable is greater than the threshold value sup-
plied is equal to pfalse. In this, we take n, the number of degrees
of freedom, as the number of independent frequency bins used
to compute H/Bint. We must also take account of the chance that,
because of random noise in the data, we will miss a true detec-
tion for a star with sufficient signal-to-noise for detection which
leads to a new threshold value θ2

θ2 =
θ + 1

H/Bint + 1
· (1)

This value θ2 is then used to derive probability p, where p is the
probability that in a χ2 distribution with 2n d.o.f. a random vari-
able is less than or equal to the cut off level specified. Finally we
have the probability we sought which is pfinal = 1− p the proba-
bility that a given H/Bint will exceed the computed threshold θ.

The recipe as described predicts that for all stars considered
here (even for datasets as short as 50 days) we are likely to de-
tect the oscillations. In general, the lower probabilities are at
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about 93% likelihood for stars which have νmax below 10 μHz.
For one particular star the detection probability dropped to 75%.
Note that these predictions are not sensitive to the shape of the
oscillation power excess nor to any structure, such as the large
frequency separation in it, and that we have taken the worst
case scenario for the H/B of helium-core-burning evolutionary
status. These results are based on the integrated power of the os-
cillations. So from this test it appears that a detection rate higher
than 70% as quoted by Hekker et al. (2011d) would be expected
when using the H/B indications. But how does this compare with
observational results from longer timeseries? We now consider
this issue in the next section.

5. Observational results

For observed stars we do not know the true values of the seis-
mic parameters. All that we can do is to estimate them using
the observations. In order to obtain such estimates of the seismic
parameters νmax and Δν, the COR and OCT methods are used
to analyse the full timespan of just under 600 days of the com-
plete set of stellar data. The analysis was “blind” in that no man-
ual checks were made on the outcomes. We therefore expect to
have some errors in the results. We did not use the CAN method
because, for computational reasons (the multinest procedure is
very time consuming), not all available stars were analysed with
it. For 974 stars there is close agreement between the results
from OCT and COR for νmax and 〈Δν〉. In this context, close
agreement is taken to be that the two completely independent
methods identify the oscillations in the same region of the spec-
trum to within half the expected width of the envelope of the
oscillation power, with the width of the oscillation envelope as
defined by Mosser et al. (2010). Taking this relatively relaxed
constraint is justified by the fact that we want to select a sta-
tistically significant sample of stars with oscillations detected
by different methods in the same frequency range. For the re-
maining 54 stars, there are disagreements between the values
obtained with the different methods. We inspected these stars
by eye and for 39 stars the oscillations are at low frequencies
(ν < 5 μHz), for four stars the oscillations straddle the Nyquist
frequency and for 11 stars we do not have the standard red-giant
oscillation spectrum due to the presence of artefacts or these
could possibly be mis-classified as red giants.

For the 974 stars for which there is agreement, we create
reference values which are the mean values of νmax and 〈Δν〉,
respectively. These reference values are essentially an arbitrary
zeropoint used to select reliable results and to discard outliers.

5.1. Outlier removal in short datasets

When short datasets are considered there will be occasions when
the returned values are unreliable. We wish to remove some of
these so that we can look at the spread in the reliable results. A
very simple outlier rejection algorithm is used whose purpose is
to reject patently wrong answers. This is the same as described in
Paper I and depends on comparing the reference value with the
individual values. The results presented in Verner et al. (2011)
suggest that for solar-type stars it is appropriate to use rejection
criteria that scale with the νmax of the star. However, it was shown
in Paper I that this is not appropriate for red-giant stars. The
process adopted here first rejects points that are more than 50%
different from the reference value, irrespective of νmax or 〈Δν〉,
and then applies an absolute cut. For these absolute cuts a value
of 10 μHz has been used for all but the low values of νmax and
a cut of 2 μHz has been used for 〈Δν〉. The cross-over position

where the absolute cut off is more stringent than the relative one
occurs at about νmax = 20 μHz.

5.2. Is a data duration of 50 days enough to reliably detect
the presence of modes?

The statistical tests considered in Sect. 4.2 suggested that
50 days of data were sufficient to reliably detect the presence
of the oscillation power based on the height-to-background ra-
tio. We can now see if that is true with the algorithms used. As
we used only stars for which we had firm detections of oscil-
lations in the 600-day dataset, we expected to have results for
each of the 50-day runs, i.e. 12 results per star. For runs of du-
ration 200 days we expect to have 3 returns etc. This is not the
case as can be seen from Fig. 2 where for each of the differ-
ent methods we plot the fraction of returns for the different data
durations as a function of Δν on a logarithmic scale. The data
have been binned for this graph. In general the bin width used
is just under 1 μHz but bins are combined at high frequencies
to improve the statistics where there are few stars in the original
sample as can be seen in Fig. 1. As expected, as the run dura-
tion increases the general efficacy of each method improves. The
exception to this is for the CAN method where the data from
the long runs are used to constrain the fitted parameter ranges
in the short runs and the method is not “blind”. The results are
summarised in Table 1. Although all methods have difficulties at
low frequency, the different methods are clearly somewhat dif-
ferent in the spectral regions where their response is reliable.
Additionally, COR is less effective for mid-range frequencies.
The detection capabilities of the EACF method underlie the two
methods COR:UP and COR:EACF employed for the determina-
tion of 〈Δν〉. For this method the value of the parameter Amax
as given in Mosser & Appourchaux (2009) is important. The
threshold value set for a detection is 8 for rejecting the H0 hy-
pothesis at the 1% level. They have shown that the value of Amax
improves linearly with the duration of the dataset and so we ex-
pect a marked improvement as longer datasets are used. This is
indeed the case as shown in Table 1. The peak detection meth-
ods underlying CAN does depend on a predefined list of stars,
and hence this shows the distribution of the type of stars on the
list used for the analysis presented here. The OCT method has
issues at the very high frequencies.

It is important to note that all these algorithms rely not on
detecting the presence of the oscillation power but instead they
look for patterns in the spectrum that are the consequence of the
regular spacing in the spectrum of the modes. In looking at the
fractions of the stars for which we detect regular mode structure
we are really considering a different measure from the H/B ratio-
based derivations in Sect. 4.2, hence we are comparing two dif-
ferent strategies. In a dataset of 50 days the modes are barely
resolved (Baudin et al. 2011) and so the amplitude of the mode
in the spectrum is very variable. In fact the power varies as χ2

with 2 d.o.f., which means that the probability distribution of
power is negative exponential and it is not unusual for a par-
ticular mode to be essentially absent. As the duration of the
dataset increases and the modes become resolved this is less of
a problem. From Table 1 we see that for timeseries of 100 days
length we have just about 85% return and for 200 days long time-
series about 95%, increasing to over 95% for 400 day datasets.
The OCT:PS⊗PS(Bayesian) is most sensitive to the timespan of
the data and is only as reliable in detecting the oscillations as the
other methods for timeseries of 400 days or longer. These tests
suggest that in short datasets the height-to-background would
be a more reliable method to detect oscillations as opposed to
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Fig. 2. Fraction of runs with returned values for
each star per Δν interval. Each panel shows
the results of a certain method (A: COR –
Universal Pattern, B: COR – EACF, C: OCT –
PS⊗PS, D: OCT – PS⊗PS (Bayesian), E: CAN)
with run length 50, 200, 400, 600 days in red,
blue, cyan and black, respectively. Note that
the 50 and 600 day curves in panel E overlap
due to the fact that the 600 day results were
used to constrain the input for the 50 day runs.
No results for 200 and 400 day long runs were
obtained by CAN.

Table 1. Fraction of runs per star, for which results have been re-
turned for 〈Δν〉 as a function of timespan of the data, where 12, 6, 3,
1 and 1 runs are available for data of 50, 100, 200, 400 and 600 days
length, respectively.

Method 50 100 200 400 600
days days days days days

COR:UP 0.62 0.86 0.97 0.99 1
COR:EACF 0.62 0.86 0.97 0.99 1
OCT:PS⊗PS 0.85 0.94 0.96 1
OCT:PS⊗PS (Bayesian) 0.55 0.89 0.96 0.99

the currently developed methods based on the regularity of the
frequency pattern.

So the simple answer to the question posed at the begin-
ning of this section is “no, 50 days is not enough to be certain
to pick up more than 90% of the oscillations with the cur-
rently employed methods, but with methods based on height-
to-background it is predicted that it would be possible to obtain
reliable results in such short data-sets”.

5.3. Dependence of νmax , 〈Δν〉 and their quoted
uncertainties on the length of the timeseries

We have looked at the likelihood of the modes being detected in
datasets of differing lengths but there is another important con-
sideration. Here we consider the precision of these results by
comparing them with reference values. Because all methods use
slightly different definitions for νmax and 〈Δν〉 and we first aim
to investigate the influence of the timespan only, we use the re-
sults of the 600 day run of a particular method as the reference
to compare results of the shorter runs of that same method with.
We evaluate both the deviation of the returned values from the
reference values and the quoted uncertainty on the value.

We first explore how the deviations from the reference value
and the uncertainties compare for the different data durations.
The left panels of Figs. 3 and 4 show the distribution of the de-
viation of the individual results from their respective reference
values for each of the global parameters considered here for data
with a timespan of 50, 200 and 400 days for the range of meth-
ods employed. The different timespans are shown in different
rows and the different methods are plotted in different colours
with different line styles. The left hand panels of Figs. 3 and 4
show that except for the measure of 〈Δν〉 by COR:UP the spread
in the difference decreases with increasing timespan of the data.
The reason for the difference in behaviour of COR:UP originates
from the fact that this method applies the additional constraint
of a regular pattern on the spectrum. The decrease of the spread
with increasing timespan raises the question whether we can ex-
pect further improvements from even longer datasets. Therefore,
we show the spread as a function of timespan in Fig. 5. The
spread for COR:UP is 0.000 at 400 days (not shown) and this
method is very reliable at determining the 〈Δν〉 even for short
datasets. The decreasing trend of the spread in the global os-
cillation parameters for longer timeseries of the other methods
suggests that longer datasets would still improve the precision
of the obtained parameters. To investigate this further we show
linear fits in log-scale through the MAD values of each method.
When extrapolating these fits to 2000 days (∼5.5 yrs, which is
the current predicted length of the mission), this would imply a
reduction in the MAD of at least a factor of 10 (for 〈Δν〉 factors
of 23, 11 and 20 for COR:UP, COR:EACF and OCT respectively
and for νmax factors of 10 and 14 for COR:EACF and OCT). In
addition to the spread in the results we also checked for potential
biases. It is noticeable that the offsets are not zero even though
the method is its own reference. These biases are more clearly
visible in the right hand panels where we show the distribution
of the offsets divided by the quoted uncertainty (σ) expressed in
dimensionless units.
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Fig. 3. Normalised distribution of the offset of the individual results from the reference value, i.e., the result of the 600 day run of the same method
for the same star (left), and normalised distributions of the uncertainties (centre) for 〈Δν〉 for 50 (top), 200 (middle) and 400 day (bottom) datasets.
COR:UP, COR:EACF, CAN and OCT results are indicated in black solid lines, green dashed-dotted lines, blue dashed-triple dotted lines and red
dashed lines respectively. The right column shows the normalised distribution of the offset of the individual results divided by its stated uncertainty
for data of 50 (top), 200 (middle) and 400 days (bottom) length. Colours and linestyles are the same as in the left panels.

We now turn to the uncertainties reported by the different
methods. The normalised distributions of these uncertainties are
shown in the central columns of Figs. 3 and 4. Again we can see
that for some run durations, the different methods produce sim-
ilar uncertainties and for others they differ. An important con-
sideration is the validity of the uncertainties as a guide to the
reliability of the returned results. To this end, in the right hand
column we show the distribution of the offsets divided by their
individual quoted uncertainties expressed in dimensionless units.
In case of statistically reliable quoted uncertainties we would ex-
pect the distributions to have a width of±1σ at half maximum. In
case of a wider distribution the uncertainties are underestimated
and a more narrow distribution indicates overestimated uncer-
tainties. For 〈Δν〉 we see that OCT and CAN provide realistic
uncertainties for runs of 50 day lengths, although the tails of the
distribution of OCT are well-populated. Both methods of COR
seem to overestimate the uncertainties. The banded nature of
the COR:UP results is a byproduct of the method used to find
the peak in the autocorrelation function. For longer datasets all
methods seem to overestimated the uncertainties to a certain ex-
tend. Similar conclusions can be drawn for the results of νmax in
the right hand panels of Fig. 4.

The measures described above do however average over the
frequency range at which the oscillations occur and the uncer-
tainty might be expected to be a function of frequency. Figure 6
shows the frequency dependence of the mean uncertainty and
the median absolute deviation (MAD) for several methods. For
a Gaussian distribution (white noise), the typical ratio of root
median square deviation to MAD is roughly 0.8. So we mul-
tiply the MAD by 0.8 in order to compare it with the typical
uncertainty. The left hand column is for 〈Δν〉 and the right hand
column is for νmax. Each graph in the figure corresponds to a
different method and allows us to illustrate how the deviations
(MAD) and uncertainties correspond for a given method at the
longest and the shortest data duration, i.e., 400 and 50 day long
datasets.

It is clear that although there is some consistency in the
curves for any one method, the frequency dependencies of the
uncertainty and of the deviation are not identical. We now dis-
cuss each method in turn starting with 〈Δν〉. For COR:UP, we
see again that the results for 50 or 400 day long timeseries are
remarkably similar. Significant improvement can only be seen
at low frequencies. The uncertainties seem to be overestimated.
For COR:EACF, at 50 days the uncertainties are over-estimated.
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Fig. 4. Same as Fig. 3, but now for νmax.

Fig. 5. Median absolute deviations (MAD) observed for 〈Δν〉 (top)
and νmax (bottom) for the different methods as a function of the times-
pan of the dataset. Colour coding the same as in Fig. 3 with red
for OCT, green for COR:EACF, black for COR:UP and blue for CAN.
The 400 day results of COR:UP agree with the 600 day results and
hence the MAD is 0.000 and not shown. The dashed lines indicate lin-
ear fits through the data (with same colour-coding) in log-scale. See text
for further details.

However, at 400 days the uncertainties and MAD have reduced
and are more closely in agreement except for the highest fre-
quencies where there are not many stars. For OCT:PS⊗PS,
at 50 days the uncertainties are underestimated at low and
medium frequencies with the agreement steadily improving as
the frequency increases. At 400 days, the uncertainties are pro-
gressively over estimated. The determination of values as illus-
trated by the value of MAD improves in the longer datasets.
Finally, we consider CAN. Although, the trends for 50 day re-
sults are very similar the uncertainties are slightly overestimated.

Just three methods are used for νmax. For OCT and CAN
there is general agreement between MAD and uncertainty with
a slight tendency for the uncertainties to be over estimated. The
uncertainties for COR:EACF are overestimated by roughly a
factor of two to three.

Additionally, for all methods the variation of MAD with fre-
quency is not strong and supports our earlier assumption for
the outlier rejection to use a fixed threshold independent of
frequency.

5.4. Offsets between different methods

In the previous subsection we saw that within any one given
method, short datasets can give, on average, slightly biased
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Fig. 6. Left: uncertainties (open diamonds: 50 days, dashed line: 400 days) and mean absolute deviations multiplied by 0.8 (see text, filled di-
amonds: 50 days, solid line: 400 days) in 〈Δν〉 as a function of 〈Δν〉 for results from the different methods: COR:UP (panel A), COR:EACF
(panel B), OCT:PS⊗PS (panel C) and CAN (panel D). Right: uncertainties (open diamonds: 50 days, dashed line: 400 days) and mean absolute
deviations (filled diamonds: 50 days, solid line: 400 days) in νmax as a function of νmax for results from three different methods: COR (panel E),
OCT (panel F) and CAN (panel G).

results when compared with longer sets. Here we concentrate
on the differences between different methods using the results
obtained with 600 days of data. We know that the different meth-
ods involve different assumptions and no method is without as-
sumptions as is shown by Kallinger et al. (2012). Two meth-
ods can be considered to lie at extreme ends of the choices for
how to measure 〈Δν〉. At one extreme is CAN which uses indi-
vidual peak bagging to measure two values of Δν close to the
peak of the oscillation power and returns their average as 〈Δν〉.
At the other end of the choice is COR:UP, which imposes a
regular pattern on the whole spectral range and returns a 〈Δν〉
based on that. It is known that variation of the large separa-
tion with frequency is dependent on the evolutionary state of
the star (Kallinger et al. 2012) and this is seen very clearly if
the values of 〈Δν〉 from CAN and COR:UP are compared (see
Fig. 7). Indeed the COR:UP show a bimodal distribution with
respect to the CAN results, in which the left peak are predomi-
nantly RC stars and the rightmost peak are RGB stars. Following
the reasoning of (Kallinger et al. 2012), this clear difference be-
tween 〈Δν〉 could even be used to classify whether a star is al-
ready in its He-core burning phase. For the other methods the
differences follow the same pattern, but are not as clear because,

firstly they are in between CAN and COR:UP in terms of their
global/local approach and secondly CAN and COR:UP are not
particular sensitive to realization noise. For COR:UP this is be-
cause of the regularity constraint and for CAN it is due to the
fact that the frequency determination of a given peak is relatively
insensitive to the realization noise given the long datasets.

For νmax, effects are less pronounced. OCT agrees well
with CAN but still with a (small) difference between RGB
and RC. This could be due to difference in the acoustic cutoff
frequency and/or differences in the smoothing applied to fit the
power excess. Mosser et al. (2012) investigated this in detail and
showed that smoothing can have a non-negligible effect (also al-
ready pointed out by Kallinger et al. 2010a). Furthermore, they
show that clump stars have oscillations with lower amplitudes,
but larger νmax, than stars ascending the red-giant branch with
similar values for 〈Δν〉.

This comparison of results of long datasets obtained with
different methods shows that the definition of the obtained pa-
rameter is of importance and that the differences in the defini-
tion are significantly larger than the observational uncertainties.
Hence it is important when quoting a parameter value to pro-
vide the detailed definition of that particular parameter. Note that
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Fig. 7. Normalised distribution of the offset of the individual 600 day
results from the reference value, i.e., the CAN 600 day results, for 〈Δν〉
(top) and νmax (bottom). COR:UP, COR:EACF and OCT results are in-
dicated in black solid lines, green dashed-dotted lines and red dashed
lines respectively.

all methods also differ in their sensitivity to realization noise as
already seen in Paper I.

5.5. Comparison between the predicted and observed
mode H/B

For each star analyzed, a value for the envelope height and the
noise background at νmax are returned. We have certain expec-
tations for the values. We expect, on average, the ratio of these
two parameters to have a value of about 3.7 or 4.0 depending
on the evolutionary status of the star (Mosser et al. 2012). From
the same work we know that within factors of order unity the
values returned by different methods will not be entirely consis-
tent. In this section we explore how closely the expectations are
met. We also look at how the ratio varies from run to run par-
ticularly for the short runs in order to evaluate whether this is a
significant factor in the non-detection of the oscillations. For the
longest available dataset of 600 days, the median value of the
observed H/B is 4.1 with inter-quartile distance of 1.4 which is
roughly consistent with the expectations.

Next we turn to a consideration of the 50-day data. Here
we find that on average the returned envelope height and noise
background are consistent with the figures for the longer runs.
However, this masks a large amount of variability. The apparent
height of the envelope is very variable. We do not know if this
is genuine variability or a defect in the algorithms. However, it
is clear that even with height-to-background ratios significantly
below unity, detection of the modes is possible thanks to the reg-
ular pattern of the oscillations. We do not have the values where

the algorithms failed to find evidence for oscillations and so can-
not comment on the height-to-background ratio in these cases.

6. Prediction of νmax from rms flux

An automated analysis of the red giant data is made more diffi-
cult by the fact that for some of the largest giants the peak in the
mode power is at very low frequency (below ∼5 μHz). Unless
the datasets are very long, the spectra do not have enough reso-
lution to clearly distinguish the oscillations. The automated al-
gorithms may then fasten on features at other frequencies and
thus provide a false positive detection. We therefore have sought
an independent parameter to guide the software to the appro-
priate region. We have found that the mean flux variance in the
timeseries data is one such guide. We first provide an analysis
which shows why this should be so and then provide the data to
illustrate the dependence that we find.

Parseval’s theorem states that the variance of the timeseries is
equal to the integrated power in the spectrum. We therefore look
at the sources of power in the spectrum. At very low frequencies,
instrumentation effects will become important. To some extent
this has been removed from the data considered here by the data
preparation algorithms. At all frequencies there is photon shot
noise, but the red giants are usually sufficiently bright that it can
be neglected. As a consequence, for red giants the major sources
of the signal in the data are the granulation and the oscillations.
The mode power is modelled as a Gaussian of height H and full
width half power δenv hence the total power in the modes is

Pmode_total =
1
2

√
π

ln 2
Hδenv. (2)

Using Mosser et al. (2012), we can express both the height at
maximum and the width of the distribution as a function of the
frequency of maximum power:

Hδenv = 1.4 × 107ν−1.5
max . (3)

The frequency distribution of the power in the granulation is
modelled according to the Harvey prescription:

Pgran(ν) =
4σ2

intτgran

1 +
(
2πτgranν

)2 , (4)

where variance in the timeseries of the granulation is σ2
int

and τgran is the timescale of the granulation. We can use this to
estimate the power, B, in the granulation signal at νmax. At νmax
the factor of unity in the denominator can be neglected:

B =
σ2

int

π2νmax × τgranνmax
· (5)

From Mathur et al. (2011) we have that τgran ≈ 0.7ν−0.9
max , hence

B =
σ2

int

0.7π2ν1.1max
· (6)

Knowing that H = 2.03 × 107ν−2.38
max we can use the observation

that the ratio of height to background is a constant of value 3.7
to 4 depending on the evolutionary state of the star:

H
B
=

14 × 107ν−1.28
max

σ2
int

· (7)
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Fig. 8. Variance of the flux as a function of νmax, with RGB, RC, second
clump and AGB stars indicated by black asterisks, red diamonds, green
triangles and blue crosses, respectively. Fits to the values of the four
evolutionary states are shown by the yellow solid line, the green dashed
line, the red dashed-dotted line and light-blue dashed-triple dotted line.
The prediction from Eq. (10) is indicated with the gray line.

Table 2. Coefficients of the fit: V = aνbmax, with V the variance of the
flux in ppm2 and νmax the frequency of maximum oscillation power
in μHz, for different evolutionary phases.

a b

RGB 2.4 × 107 ± 1 × 106 −1.18 ± 0.01
RC 7 × 108 ± 2 × 108 −2.13 ± 0.07
second clump 1.1 × 107 ± 5 × 106 −1.1 ± 0.1
AGB 4.1 × 107 ± 7 × 106 −1.53 ± 0.08

Knowing H/B we can now estimate a value for σ2
int. Thus the

total variance (V) in the timeseries is

V = σ2
int + Pmode_total, (8)

V =
14 × 107ν−1.28

max

H/B
+ 1.4 × 107ν−1.5

max ppm2. (9)

A typical value for H/B is about 4, hence

V =
(
3.5ν−1.28

max + 1.4ν−1.5
max

)
× 107 ppm2. (10)

It is clear that although the power law indices of νmax in the
two components of the noise are not the same, they are relatively
close to each other. The granulation provides just over twice the
amount of power as do the modes.

Observationally we get 2.4 × 107ν−1.18
max ppm2 for RGB stars

(see fit in Fig. 8). We see that for other evolutionary states the fits
have different coefficients (Table 2). This indicates that there are
differences in either the granulation description and/or the height
and width ratio of the oscillation power as a function of evo-
lution phase. This is consistent with what is shown by Mosser
et al. (2012), and needs further investigations which is beyond
the scope of this paper.

7. Summary

In this work we investigated the impact of the length of the time-
series on the precision and accuracy of the determined global os-
cillation parameters νmax and 〈Δν〉 of red giants. We used Kepler
light curves spanning about 600 days and divided them in short
runs of 50, 100, 200 and 400 days. All these runs have been anal-
ysed using automated methods. The oscillation detection rate has

been compared with predictions and the resulting values for the
global oscillation parameters have been compared as a function
of method, run length, 〈Δν〉 of the oscillations. From this study
we find that:

– For 95% of the stars consistent global oscillation parameters
are obtained from 600 day timeseries with different methods.
For the remaining 5%, there were good reasons for the lack
of consistency.

– Using the observational methods we find more than 95%
(of the consistent results of 600 day data) or more reliable
detections of oscillations in timeseries of 400 days or longer.

– Current predictions of the detectability of oscillations are
based on the amplitudes and predict that in the majority of
the cases the likelihood to detect oscillations are above 90%
for both the long and short runs. However, most obser-
vational algorithms use the regularity in the power spec-
trum to detect the oscillations and the regularity has reduced
sensitivity for shorter runs.

– The precision of the determined global oscillation parame-
ters increases with increasing timeseries and the trends sug-
gest that this continues for even longer timeseries than in-
vestigated here. From the extrapolation of fits to the median
absolute deviations a reduction of more than a factor of 10
for an increase in timespan from 50 to 2000 days (the cur-
rently foreseen length of the mission) is foreseen. Thus, there
are real advantages to be gained from working with even
longer timeseries than considered here. We note that the
universal pattern is already effective for short datasets.

– The distributions of the offsets – difference between results
of short runs with respect to the result obtained with the
same method on the 600-day long timeseries – divided by
the quoted uncertainties show that the quoted uncertainties
have a tendency to be overestimated, which is in general
more severe for longer datasets. However, this does depend
on the method.

– We find that 50 day timeseries are not long enough to be
certain to pick up more than 90% of the oscillations with the
currently employed methods.

– When comparing different methods it is clear that the dif-
ferences due to different definitions are non-negligible. This
difference is a function of the evolutionary state of the stars
and this could be used to determine the evolutionary state.

– The different strengths, definitions and sensitivity to re-
alization noise of the different methods indicate that the
simultaneous use of more methods is likely to be profitable.

Additionally, we propose and justify a new method to estimate
the frequency of maximum oscillation power from variance in
the timeseries. We show that the dependence of the flux variance
on νmax is also a function of evolutionary phase. The effective-
ness of this method does not depend on the data duration nor on
the location of the peak of the spectrum – always assuming that
the necessary data detrending is not attenuating the oscillations
signal. We recommend that this method be used in conjunction
with the methods described here as an additional independent
constraint to detect the oscillations.
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