

Towards an easy decision tool to assess soil suitability for earth building

Fabrice Rojat, Erwan Hamard, Antonin Fabbri, Bernard Carnus, Fionn

Mcgregor

► To cite this version:

Fabrice Rojat, Erwan Hamard, Antonin Fabbri, Bernard Carnus, Fionn Mcgregor. Towards an easy decision tool to assess soil suitability for earth building. Construction and Building Materials, 2020, 257, 28 p. 10.1016/j.conbuildmat.2020.119544 . hal-02899562

HAL Id: hal-02899562 https://hal.science/hal-02899562

Submitted on 15 Jul2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Towards an easy decision tool to assess soil suitability for earth building

Author 1 (corresponding author)

- Fabrice ROJAT, PhD, Engineer
- Centre d'Etudes et d'Expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement, Département Laboratoire de Lyon, Unité Géomatériaux-Géotechnique 25 ave François Mitterrand – 69 674 BRON CEDEX – France Tel. (+33) (0)472143215 – fabrice.rojat@cerema.fr
- Orcid: 0000-0002-9229-4223

Author 2

- Erwan HAMARD, PhD, Engineer
- MAST-GPEM, Univ Gustave Eiffel, IFSTTAR, F-44344 Bouguenais, France
- Orcid:0000-0003-2160-3022

Author 3

- Antonin FABBRI, PhD, Tenure researcher
- LTDS, UMR 5513 CNRS, ENTPE, 2 rue Maurice Audin, 69100 Vaulx-en-Velin, France
- Orcid: 0000-0002-2234-2461

Author 4

- Bernard CARNUS, Technical assistant
- Centre d'Etudes et d'Expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement, Département Laboratoire de Lyon, Unité Géomatériaux-Géotechnique

Author 5

- Fionn McGREGOR, PhD, Engineer
- LTDS, UMR 5513 CNRS, ENTPE, 2 rue Maurice Audin, 69100 Vaulx-en-Velin, France

Abstract

In the European Union, most of the wastes from the building sector are composed of earths. Earth construction may be an interesting outlet for the re-use of these wastes, while meeting the challenge of circular economy: in particular, it involves low-embodied energy processes and earth material can be re-used for building by end-of-life. Nonetheless, the identification of suitable earths for construction remains an issue. To overcome this problem, an option may be to analyse earth building heritage, which is at least one-century old in Europe: indeed, earth employed in these buildings can be regarded as "time-tested", and thus suitable for construction. In this paper, more than 20 different earths collected in rammed earth heritage building in France are presented. The results are confronted both to literature and to several classifications employed in soil sciences. A classification system based on granularity and clay activity will be relevant to address the convenience of earth for building purposes.

Keywords

- 1. Buildings, structures & design
 2. Geomaterial characterization
- 3. Soil classification 4. Soil suitability 5. Rammed earth 6. Cob

1 Introduction

2 The construction sector uses a large volume of natural resources and is responsible for about 3 half of the waste production in the European Union [1]. These wastes have a negative 4 environmental impact [1]–[3], and it gets increasingly difficult to find suitable landfill sites [2], [4]. 5 Among these construction wastes, about 75 % consist of soils and stones [5], [6]. As already 6 highlighted for cob in Brittany, the earth building sector has a strong reuse potential for 7 earthwork wastes [7]. Planning authorities and earthwork contractors need a decision tool to be 8 able to identify the potentially reusable material among their excavated soils. 9 In Western countries, earth building gradually fell into disuse in the first half of the 20th century. 10 Most of the traditional know-how - that was mainly transmitted orally - got lost in this period, 11 including the ability to select appropriate earths for construction. It is thus necessary to 12 rediscover or reinvent the expertise regarding earth suitability. 13 Earth suitability for construction purposes is usually determined using a geotechnical approach, 14 which aims at enhancing the mechanical strength of earthen specimens carried out in the laboratory or in the field [8]-[10], and at ensuring the durability of the final construction. The 15 16 most cited criterion to assess earth suitability is texture, i.e. balance between clay, silt, sand and 17 gravel contents [11]. Consequently, grading envelopes adjusted to each earth construction 18 technique were proposed in the literature [8], [12]-[14]. However, texture of materials collected 19 in vernacular earth heritage buildings do not systematically fit inside those grading envelopes 20 [15]-[18]. Thus, grading envelopes available in the literature failed to give full account of the 21 diversity of earth employed for construction [7], [19]. 22 Therefore, another approach to identify material suitability for construction is to analyse 23 materials traditionally used in heritage buildings. This can be done thanks to the analysis of 24 samples collected inside walls of building heritage, or thanks to the cross-referencing of heritage 25 geographical distribution and geological maps [15], [20] or pedological maps [7], [20], [21]. The 26 direct analysis of samples collected in walls provides a reliable material identification but, since 27 it is highly time-consuming, only few buildings can be studied. Cross-referencing of spatial data 28 can concern a large number of heritage buildings, but material identification relies on

29 probabilities.

30 In this study, earth samples were collected in more than 20 different rammed earth heritage 31 buildings of the Auvergne-Rhone-Alpes region (France) and were analysed. The results 32 provided a renewed vision of the diversity of earth materials used in vernacular rammed-earth 33 buildings. They were also compared to the cob earth resource identification carried out by 34 Hamard et al. [7] in order to address the differences between rammed earth and cob earth. 35 Rammed earth consists in compacting earth at an optimum water content, layer by layer, inside 36 a formwork, in order to build a monolithic and load-bearing or freestanding wall (cf. Figure 1A). 37 This technique appeared near Carthage around the 9th century BC, and then travelled to Europe 38 during the 7th century, before becoming really popular during the "modern era" thanks to, for 39 example, the early work of the French architect François Cointeraux (1740-1830) [22]. It also 40 exported towards the United States and Australia during this period. Rammed earth historic and 41 vernacular constructions in some European countries are referenced in various papers such as 42 Parracha et al. [23], Ford et al. [24], or online inventories (see [25] for example). Nowadays, 43 several tens of thousands of such constructions remain in the architectural heritage of these 44 countries, and the technique is still punctually reused for new buildings. It is the main vernacular 45 earth building technique employed in the Auvergne-Rhone-Alpes region (South-East of France). 46 However, few masons still know how to implement it properly and how to choose or elaborate 47 appropriate earth compositions.

- 48 Figure 1: A: A rammed earth wall in a building from the 1980's in the Auvergne-Rhone-
- 49 Alpes region (South-East of France), with clear marks of the layered structure. B:
- 50 **Construction of a cob wall**

The cob technique, that will be used for comparison purposes in the classification presented in section 4.2, employs earth elements in a plastic state, implemented wet and stacked to build a monolithic and load-bearing or freestanding wall [19]. Cob is a very old technique and usually uses more fine-grained and argillaceous soils than rammed earth. As shown in the Figure 1B, it is often combined with fibers to reduce the effects of soil shrinkage during the drying process and to increase the resistance and the ductility. This technique is widespread in the North-West part of France and is also encountered in Europe, Africa and Asia.

59 In both techniques (rammed earth and cob) the soil material used in the building process was usually extracted at a very short distance from the construction site, typically by digging a pond 60 61 in the garden adjoining the house or by selecting an appropriate soil in a nearby field. As a 62 consequence, historically, the development of a given technique in a given area has been 63 closely linked to the local geographical, geological and pedological contexts, but also to the 64 local transfers of knowledge. Indeed, most soils can potentially be implemented through 65 different techniques. Conversely, a given technique may be applied to a certain variety of soils. Eventually, some preparation (like sieving or stabilization) may be needed. This historical 66 67 approach helps understanding why earth suitability may be analysed through direct analysis of 68 samples as well as cross-referencing of spatial data.

69

70 2. Materials and methods

71 2.1 Surveying method and study area

72 The experimental research program presented in this paper is mainly focused on the direct 73 analysis of rammed earth buildings. It was conducted through a sampling campaign on various 74 constructions of the Rhône-Alpes region, France. The location of the different sampling sites is 75 shown on Figure 2. They were selected under various criteria. First, the buildings had to be 76 constituted essentially of natural rammed earth, without any additional binders such as lime or 77 cement (which is usually the case for heritage buildings in France). Moreover, the samples had 78 to be collected during a renovation or a demolition program, because the minimum sample size 79 for geotechnical identification (defined in standards for soil testing such as NF P 94-056 [26]), 80 considering the particle sizes of the material, was frequently around 50 kg. Therefore, the

- sampling process could lead to significant openings in the walls, which was not acceptable for a
 building in service. Finally, the sampling sites had to be well distributed across the Auvergne-
- 83 Rhone-Alpes region, in order to cover a large diversity of geological and pedological contexts
- 84 and building types.

85

86 Figure 2: An overview of the surveying area and the sampling sites in the Auvergne-

87 Rhone-Alpes region, France

88

A collaboration was established with TERA, a local earth building professional organisation and with various administrative services in charge of built heritage, in order to identify and select appropriate constructions. About 20 of them were selected, and one or several samples were collected in each building. Some examples of typical sampling sites are reported in Figure 3. The sampling method was highly dependent of the context: it mainly involved shovel excavation
when the building was being demolished, or mechanical sawing in the case of renovation
operations (Figure 4). Some "intact" samples could sometimes be extracted, allowing density
measurements. A description sheet was established for each building, including spatial
localization, wall geometry, orientation, rammed earth aspect, type of coating, age of the
construction, etc. It made it possible to constitute a kind of "rammed earth" library that will be
associated with the test results presented hereafter.

- 101 Figure 3: An example of four typical sampling sites in the study area: (a) BLA, (b) QUE,
- 102

100

(c) HAU, (d) CHA

Figure 4: (a) earth sampling directly in a wall with a mechanical saw, and (b) example of a collected 30 cm-high rammed earth sample

107

104

108 2.2 Earth identification

109 Earth identification was mainly conducted through classical geotechnical testing procedures.

110 This approach was chosen instead of more complex chemical or mineralogical analyses

111 because it could be associated with a range of well-known, simple and representative laboratory

112 tests. These tests also remain reasonably close to the masons' practice, in the field, when they

need to assess soil suitability with limited means. Moreover, geotechnical and pedological

114 engineering has developed an interesting panel of classifications that may be used to

115 characterize rammed earth.

116 The testing procedures included: water content, particle size distribution (from sieving and

117 hydrometer test), methylene blue test, Atterberg limits (when possible) and dry density. These

118 tests are shortly described below, since various methods are usually encountered depending on

the countries. However, the reader is invited to refer to the corresponding standards for a

120 detailed explanation of each procedure.

121 The particle size distribution was assessed after French Standard NF P 94-056 [26]. In this

122 procedure, with a succession of washing and drying steps, the material is passed through

- 123 various sieve sizes ranging from 63 or 80 µm to the maximum particle size of the soil. For each
- sieve size used, the percentage by mass of the soil sample that is finer than the sieve size is

125 computed. The finest grains (< 63 or 80 μ m) are then gualified through hydrometer testing, after 126 standard NF P 94-057 [27]. This test uses the Stokes law that specifies that the decantation 127 speed of spherical grains of equal density depends on their diameter. The decantation speed is 128 measured in a large test tube, on a solution of fine-grained soil and sodium 129 hexametaphosphate, by dipping a densimeter at predefined time steps. It is an approximate 130 indirect measurement but it usually yields reasonably reliable results compared to other 131 procedures such as laser diffraction analysers (see Loizeau et al. [28] for instance). 132 The argillaceous content and clay activity were qualified through two different techniques: 133 methylene blue test and Atterberg limits (when possible). The methylene blue test follows 134 standard NF P 94-068 [29] and consists in measuring the quantity of methylene blue that can be 135 adsorbed by a clayey soil. It is a very simple but reliable method to obtain information about the 136 properties of clay minerals: it relies on the replacement of the natural cations of clays by 137 methylene blue in a soil-water solution that is continuously stirred. The titration is performed by 138 adding successively small amounts of a methylene blue dye and by controlling adsorption after 139 each step. Adsorption is checked with the "spot technique": each time methylene blue is added 140 to the solution, a small drop is removed with a glass rod and dropped on a sheet of filter paper. 141 When a blue halo appears around the spot (instead of a distinct edge), it indicates that the clays 142 in the solution are saturated with methylene blue. The Methylene Blue Value (MBV) is 143 determined as the ratio (in percents) between the mass of methylene blue added in the solution 144 and the initial dry mass of the soil tested. The procedure is usually performed only on the 0/5 145 mm portion of the soil: if larger particle sizes exist, the MBV is lowered by multiplying it by the 146 0/5 mm vs. 0/50 mm ratio (after particle size analysis).

The Atterberg limits are a widespread testing procedure for clayey materials. They were measured after standard NF P 94-051 [30]; only plastic and liquid limits were considered. The test is performed on the 0/400 μ m portion of the soil. The water content corresponding to the plastic limit is determined by the ability to roll a 10 cm-long and 3 mm-wide thread of the studied soil on a flat impermeable surface. The liquid limit is obtained with the classical Casagrande cup method. The plasticity index (PI) is then determined as the difference between the water contents that characterize the liquid limit w_L and the plastic limit w_P. The PI indicates if the soil

- exhibits a plastic behaviour over a wide range of water contents: this property depends on theproportion of the clay fraction but also on the nature of the clay minerals.
- 156 Each sample collected in the vernacular buildings was subjected to most of these laboratory
- 157 tests. It allowed drawing a representative survey of the regional diversity of earth material for
- 158 construction, as shown in the following section.
- 159
- 160 2.3 On-site initial state of the samples
- 161 Before subjecting the specimens to the "earth identification" tests described above, a basic
- 162 analysis of their on-site initial state was conducted, by measuring their water content and their
- 163 dry density. The water content was determined by normalized oven drying, according to French
- standard NF P 94 050 [31]. The dry densities were calculated through the "hydrostatic weighing"
- 165 procedure, in which the volume of an intact sample is obtained after water-proofing it with
- 166 paraffin, and weighing it in immersed conditions, according to French standard NF P 94 053
- 167 [32]. The results are shown in Table 1. Dry density and water content measurements were not
- 168 possible for all the samples since they required the availability, on the sampling site, of a
- 169 sufficient number of undisturbed blocks.
- 170 Table 1: Dry density and water content measurements obtained on various "intact"
- 171 samples from vernacular earth buildings. Mean and standard deviation are calculated
- 172 only for buildings in use.

Sample	Dry density ρ_d (Mg/m ³)	Water content w (%)			
Ruins, abandoned or damaged buildings					
СНО	1.56	2.9			
RMN1	1.64	9.9			
RMN2	1.70	6.1			
STA	1.76	9.8			
STR	1.77	5.4			
TYR	1.73	2.5			
Buildings in use					
BLA	1.75	0.4			
СНА	1.84	0.3			
CON1	1.82	0.5			
DAG	1.57	0.7			
DAR	2.14	0.3			
DID	1.81	0.5			
HAU	1.78	0.4			
MAR	1.88	0.7			
OLM	1.78	0.6			
QUE	1.88	0.6			
SOR	1.87	0.3			
Mean (in use) :	1.78	0.48			
Std deviation (in use) :	0.13	0.15			

174 Most dry density values are in the range 1.70-1.90 Mg/m³ (mean 1.78 Mg/m³, standard 175 deviation 0.13), indicating a good level of compaction. One value appears really higher (DAR, 176 $\rho_d \approx 2.14 \text{ Mg/m}^3$), but it corresponds to a very well graded earth that is likely to show a high 177 compaction ability (see 3.1). On the opposite, some low values are also recorded (DAG or CHO, 178 with $\rho_d \approx 1.56 \text{ Mg/m}^3$) on essentially fine-grained, and not very well graded earths. 179 The samples from buildings in use show very low water contents, in good agreement with 180 common statements on healthy earth buildings (w < 1.0 %). On the opposite, abandoned 181 buildings reveal a higher humidity (w up to 9.8 %): they correspond to constructions with no 182 more or deteriorated roofs, in which the walls were subjected to abnormal wetting. Finally, this 183 "initial state" characterisation shows that the samples were mostly in good agreement with the 184 expected properties for traditional buildings (see for instance similar ranges in Maniatidis et al. 185 [8]).

186

187 3. Results

188 3.1 Granularity

The particle size distribution curves from the various samples are shown in Figure 5 that includes both sieving and hydrometer testing. In dotted lines, recommended rammed earth envelopes from Houben et al. [33] are shown in overlay. There are more curves than sampling sites because sometimes several samples were taken on a building that showed different rammed earth types (CON-1 & -2, LSR-1 & -2 and RMN-1 & -2). The graph yields a good picture of the diversity of rammed earth but it cannot be used for statistical purposes because the number of samples is not sufficient.

196 The curves show well graded soils, with an assembly of different particle sizes. The samples are 197 mainly composed of fine to coarse sands and always contain a proportion of clay (ranging from 198 5 to 25 %). Gravels or stones are encountered in various samples, but many samples have no 199 or little gravel contents, which is in contradiction with most grading envelopes available in the 200 literature [8] as stated also in previous studies for rammed earth from other regions [16]. 201 Therefore, being included in these grading envelopes does not appear as a necessary condition 202 to determine if an earth can be used in rammed earth constructions. Moreover, a recent study 203 from Cuccurullo [34] tends to prove that it may not be sufficient either. Indeed, in this study, the

204 compressive strengths of compacted earth samples were found to drop when the raw material,

205 whose grading was initially outside the theoretical envelope, was mixed with sand in order to

- 206 reach the grading envelope criterion.
- 207

208

Figure 5: A comparison between the theoretical grading envelope from Houben et al. [33],
 and grading curves of 23 samples from French vernacular rammed earth buildings
 measured in the present research program

212

213 3.2 Clay-water interactions: Atterberg limits and Methylene Blue Value (MBV)

214 The results from MBV measurements are gathered in Table 2. As an indication, data from the

grading analyses (including $P_{2\mu m}$ = percent passing 2 μm) is also included in the table. Some

Atterberg limits were performed on the samples too, but, as most samples had a small clay

217 content, very low PI values were obtained (PI between 2 and 9), and the appropriate conditions

- to shape the 3 mm roll for plastic limit were rarely present. These cases correspond to poorly
- 219 plastic materials that are cited for instance in section 5.5.11 of standard EN ISO 17892-12 (July

220 2018 [35]), for which the test should be considered as poorly representative. Therefore, these PI

values were not retained for further analyses and are not presented in the table. This

222 experiment tends to indicate that Atterberg limits are not the best tool to characterize most 223 rammed earths because their clay content should not be too high to restrain shrinkage. 224 The MBVs range from 0.01 to 1.69 g of MB per 100 g of soil, and are distributed quite evenly 225 between these two extremes. The activity values ($A_{CB} = MBV/P_{2\mu m}$) are very scattered, with a 226 minimum of 1 and a maximum of 23 (Table 2). The probable range of A_{CB} for each sample, 227 which was derived from round-robin laboratory tests, is indicated also in the table. It shows that 228 the inaccuracy on this parameter increases significantly when low P_{2µm} values are measured. 229 However, some general trends can still be drawn when sufficiently representative differences 230 between values are observed. In this table, low values appear to be predominant, indicating 231 poorly active clays and mostly silty minerals. However, some more active clays are also 232 recorded, but they are associated with a low clay content (P_{2um}). It leads to MBV values in the 233 typical range of silty soils (MBV < 1.5) or of poorly active clays such as kaolinite (MBV \approx 1), and 234 shows that the rammed earth compositions that were selected historically were expected to 235 have a moderate specific surface as a whole. Therefore, the MBV test, that typically addresses 236 the specific surface of the complete earth sample, should be an appropriate tool to analyse 237 earth suitability for building purposes. Moreover, MBV values are more cost-effective than 238 Atterberg limits.

239

Table 2: Proportions of gravel, sand, silt and clay (indicative value after P_{2µm}), MBV

241 measurements, activity values (A_{CB} = MBV/P_{2µm}), obtained on various samples from

242 vernacular earth buildings

Sample	Gravel / stones	Sand	Silt	Clay	MBV (g of	Асв	Probable
	> 2 mm	50 µm – 2 mm	2 - 50 µm	< 2 µm	MB / 100 g		Асв
	(%)	(%)	(%)	(%)	of soil)		range
ALX	8.6	61.4	22.1	7.8	0.31	4	2.5 - 6.4
BLA	12	34	35.3	18.8	0.58	3	2.2 - 4.1
CHA	30	47	12.5	10.5	0.50	5	3.2 - 7.1
CHO	7.3	43.6	41.6	7.5	1.69	23	14.2 - 36.9
CON1	0	38	48.9	13.2	0.86	7	4.5 - 9.2
CON2	0	34	43.3	22.7	0.32	1	1.0 - 1.9
CRA	1.2	56.2	31.3	11.2	1.53	14	9.3 - 20
DAG	0	16.5	59.5	24	1.02	4	3.1 - 5.6
DAR	19	60	13.5	7.5	1.44	19	12.1 - 31.4
DID	1	65	20.9	13.1	0.99	8	5.2 - 10.7
HAU	7	64	23.5	5.5	0.80	15	8.5 - 27.4
LSR1	24.5	44.9	25.4	5.1	0.54	11	6.1 - 20.9
LSR2	3.1	77.4	13.1	6.3	0.04	1	0.4 - 1.1
MAR	1	40	39.4	19.6	1.37	7	5.1 - 9.3

NOL	24.5	51.8	18.5	5.2	0.04	1	0.4 - 1.5
OLM	10	58	20.2	11.8	0.85	7	4.9 - 10.4
QUE	11	38	36.8	14.3	0.94	7	4.6 - 9.2
RMN1	0.5	63.9	20.2	15.3	0.34	2	1.6 - 3.1
RMN2	1.5	60.9	28.2	9.4	0.59	6	4.1 - 9.6
SOR	21	41	19.9	18.1	0.66	4	2.6 - 4.9
STA	44.4	26.6	12.6	16.4	0.44	3	1.9 - 3.7
STR	0.4	45.3	47.9	6.5	0.65	10	6.1 - 17.3
TYR	50.3	24.1	22.6	3	0.37	12	5.9 - 44.4

243

244

245 4. Discussion

246

247 The data gathered on the samples presented previously can be analysed through various

248 classification systems. These systems allow a synthetic view of the results that may help cross-

analysing different parameters and identifying what the appropriate soil classes for construction

- 250 could be. In particular, the following criteria are explored below:
- classification systems only based on granularity: grading curves or triangular
 classification for pedology;
- classification systems that include both granularity and clay behaviour: the classification
 from the French earthwork guide "GTR" [36] or from standard NF P 11-300 [37].

255 The primary aim of the classification system is to identify directly usable earths, without any

correction such as sieving, additions, etc.

257

258 4.1 Classification systems based on granularity

259 Granularity has been used for a long time to assess soil suitability for various practical

260 applications. It only focuses on particle sizes, which does not allow taking fully into account

261 other important parameters for soil behaviour such as interactions between clay particles and

water. However, many authors proposed typical grading envelopes for construction. In Figure 5

- for instance, the typical envelope from Houben et al. [33] was presented. This figure clearly
- shows that the grading envelopes from the literature fail to represent the global diversity of
- 265 rammed earths used in vernacular construction. Therefore, contrary to what is regularly
- assumed by many control or design offices, these envelopes should not be used as an isolate

267 criterion for earth suitability. This statement, which is a common criticism from masons in the 268 field about grading envelopes, is clearly confirmed here through guantified measurements. 269 Another way to analyse granularity is to compare the proportions of predefined particle sizes in 270 the soil. It can be made through a soil texture triangle for instance. In this classification, 271 commonly used in soil sciences, the proportions of sand, silt and clay are used to define soil 272 classes. In the graphic representation, the texture is symbolized by a point, contrary to the 273 conventional granular curve, which eases the comparison of a large number of soils. However, 274 depending on the authors and on the countries, many different triangles are referenced, without 275 any international standardization (see for instance Richer de Forges et al. [38] who listed about 276 30 different texture triangles in use around the world). In the present paper, a texture triangle 277 commonly used for French soils, defined by the French soil science organisation "GEPPA" [39] 278 is used. In this approach, only the fine fraction of the soil is taken into account, i.e. whatever the gravel content, clay, silt and sand contents are calculated in order to represent 100 % of the fine 279 280 soil. The clay content is calculated from the percent passing 2 µm, the silt content is 281 conventionally the $2 - 50 \,\mu\text{m}$ fraction and the sand content covers particle sizes from 50 μm to 2 282 mm.

283 In Figure 6, the textures of fine soils collected in rammed earth buildings in Auvergne-Rhone-284 Alpes region are confronted to recommendations available in the literature [12], [40]-[44] and 285 represented in a texture triangle. The majority of the earths collected fall outside the different 286 recommended textures. Even considering all these recommendations together, almost half of 287 the earths collected fall outside any predefined area available in the literature. Thus, current 288 texture recommendations fail to give full account of the diversity of the time-tested earths 289 employed by past masons for rammed earth in the southeast of France. At the opposite, 290 considering this entire diversity would lead to define a very large area of textures: this area 291 would represent the majority of available natural soils, which seems not realistic and would 292 contain soils that are not suitable for construction.

293

Figure 6: Comparison of texture of collected rammed earth materials with literature

296 recommendations [12], [40]–[44]

297 Finally, the triangle presentation appears interesting due to its « compact » shape but it suffers

the same defects as the grading curve, i.e. it does not take into account the soil-water or clay-

299 water interactions that are an essential parameter for rammed earth strength.

300

301 *4.2 About the quantification of clay-water interactions*

302 Clay-water interaction is mostly linked to the Specific Surface Area (SSA) developed by colloids

303 in the soil, i.e. clay, organic matter and colloidal silica.

304 In rammed earth practice, the higher the SSA the higher the cohesion but the higher the drying

- 305 shrinkage. There is thus a minimum SSA to ensure a minimum cohesion for construction but
- also a maximum SSA to limit the shrinkage cracking [7], [19], [45]–[47]. Considering the 2µm
- 307 passing is a way to estimate clay content, but it does not provide any information on clay type.
- 308 Since, for example, the SSA of a smectite is about 10 times higher than that of a kaolinite [48],
- 309 clay type plays a major role in the soil-water interaction, and granularity is not sufficient to
- 310 describe it properly.

311 SSA can be estimated via the Atterberg limits (Plastic and Liquid Limit, and Plastic Index), 312 measured by chemical titration (Methylene Blue Value or Cation Exchange Capacity) or 313 calculated after mineralogical identification and quantification (X-Ray diffraction combined with 314 chemical analysis). Among these tests, the Atterberg limits are the most employed ones [8], 315 [11], [49] even if their accuracy has been criticised for rammed earth [10]. The results of our 316 study (Table 2) highlight that suitable soils for rammed earth often have a low plasticity: it is 317 therefore most of the time impossible to determine their plastic limit and, as a consequence, 318 their plastic index. The liquid limit could be kept as an indicative value however, or correlated 319 with PI thanks to the Casagrande chart: but the scattering would be quite significant, and only 320 the fine part of the soil would be considered, contrary to MBV for instance that gives an 321 indication on the entire 0-50 mm fraction. Mineralogical identification and quantification is a very 322 long and expensive process and it cannot be used routinely. Methylene Blue Value (MBV) [18]. 323 [21], [45], [50] and Cation Exchange Capacity (CEC) [7], [21], [47] can be regarded as good 324 estimators of the SSA of colloids of earth materials. Between these two tests MBV is easier and 325 cheaper to perform and it is already employed in numerous civil engineering laboratories. 326 Anyway, some correlations between MBV and CEC results [51] allow estimating the one from 327 the other. As a consequence, after identifying that Atterberg Limits were not truly appropriate, 328 the authors chose to use MBV tests preferentially in the classifications described below. 329 A last point that should be taken into account when dealing with clay-water interactions is the 330 question of organic matter. Indeed, the SSA of organic matter is about an order of magnitude 331 higher than the range of Methylene Blue Value usually measured for rammed earth (Table 2). 332 The presence of organic matter would dramatically increase the SSA, so that the SSA can be 333 regarded also as a good indicator of an excess of organic matter [47]. In the present study, only 334 mineral and sufficiently dry and un-weathered earths were sampled. Such conditions did not 335 allow clay-humic complexs to develop, and this assumption was confirmed by the low MBV 336 measured, as well as by olfactive and visual checking.

337

338 4.3 A classification system taking into account both granularity and clay-water interactions

339 The French management system for road earthwork materials, called "Guide des

340 *Terrassements routiers*" (GTR) [36] is used here, for the first time, as a classification system for

341 earth building materials. It has the specificity to consider both granularity and clay activity 342 (through PI or MBV values). This classification was developed in France in the 1990's [36]; it 343 takes into account the same basic characteristics as the common USCS soil classification (see 344 [52] for instance) but it includes a more precise focus on the behaviour of argillaceous particles 345 in order to define soil classes. This classification is also presented in the French Standard NF P 346 11-300 [37]. It is expected to be well adapted to rammed earth characterisation because it 347 originally aimed at obtaining long-lasting earthwork layers through compaction. 348 In this classification, soils with a maximum particle size of 50 mm are described after their fine 349 content (percent passing 80 µm), their MBV and/or their PI. When PI < 12, MBV should be used 350 as a preferential criterion, and reciprocally. It confirms that MBV should be the appropriate 351 testing procedure for the rammed earth samples presented in this paper. Fine silty or 352 argillaceous soils are called "A", and a number is added depending on clay-water interactions. 353 For instance, A1 stands for soils with over 35% passing 80 μ m and MBV < 2.5 or PI < 12 (if 354 measurable). Soils B1 to B6 are mainly sandy and gravelly soils with fines, and D1 / D2 355 describe sandy or gravelly clean soils, mostly insensitive to the effects of water. This 356 classification can be pictured under a condensed form with the chart shown in Figure 7, on 357 which the various samples from rammed earth buildings have been represented. The figure also 358 presents typical points for cob after Hamard et al. [7], that will be explained further in the paper.

Figure 7: The "GTR classification" chart for earthworks [36] and (in red) experimental
 points from rammed earth buildings and (in green) typical points for cob after Hamard et
 al. 2018. The right part of the original chart (PI > 25) is not shown.

364

Concerning the rammed earth samples taken from the field, only A1 and B5 soils appear in the graph. Moreover, an interesting observation is that many A2 or B6 natural soils usually exhibit grading curves similar to A1 or B5 soils, but distinguish by the activity of their clay fraction. Such soils would have been considered as "suitable" after Figure 5 or Figure 6, but they would have been quite far from the area covered by the field samples in Figure 7.

370 Moreover, even if the number of experimental points remains moderate, a rammed earth area 371 may be guessed from Figure 7, independently of the already existing GTR subdivisions, and 372 approximately delimited by: more than 25 % 80 μ m passing, MBV < 1.7. The sampling points 373 are well scattered in this area, which indicates that the complete range of granularity and MBV 374 values may be appropriate for construction. However, as the number of collected earths is still 375 not enough to be statistically representative and the soils of this study are only suitable under 376 the climate and geological conditions of France, this proposition cannot be considered yet as an 377 exclusive criterion for rammed earth. More data should be collected in other contexts. These

378 results may however be used as a "pre-decision tool", yielding a first assessment of soil

suitability that should be validated afterwards with a scale-one experimental wall or laboratoryperformance tests for instance.

381

382 4.4 A comparison with earth suitability for cob in Brittany

- 383 The characteristics of the soil horizons identified as suitable for cob in Brittany by Hamard et al.
- 384 [7] are used to calculate the 80 µm passing and the MBV, estimated from the CEC according to
- the correlation proposed by Laribi et al. [51]. Soil horizons suitable for cob are presented

together with rammed earth material collected in built heritage in Figure 7.

- 387 The confrontation of data in the GTR classification system reveals that cob materials are finer
- 388 and have a higher specific surface area than rammed earth materials. Very few or no silty/sandy
- soils (B5-type) are encountered. This is in agreement with the literature stating that cob
- 390 materials have a higher fine and clay content [12], [13] than rammed earth materials. Regarding
- 391 specific surface area (MBV/PI), no comparison can be found in the literature. Nonetheless, a
- 392 parallel can be made between wet techniques (cob and adobe) and dry techniques (rammed
- 393 earth and Compressed Earth Block (CEB)). The Plastic Index of CEBs is deemed to be lower
- than the one of adobe [33], hence the PI of rammed earth should be lower than that of cob,
- 395 which is in line with the results of Figure 7.
- 396 Some cob points overlap with the "rammed earth area", which is also in good agreement with
- 397 the common statement that some soils are appropriate for several techniques.
- 398
- 399 4.5 An insight in the future: indications to build a decision tool
- 400 Through confrontation with cob and rammed earth typical characteristics, the GTR classification
- 401 system based on two simple geotechnical tests (percent passing 80 µm and methylene blue
- 402 value) appears as a good candidate for earth suitability purposes. It can become a simple,
- 403 discriminant, and low-cost decision tool for contractors and planning authorities to assess the
- 404 reuse potential of their excavated materials in earth building.
- 405 The authors believe that the present study constitutes the first step towards the definition of this
- 406 decision tool. The next step would be to gather more data on various building techniques

407 (rammed earth, cob, adobes, CEB, wattle and daub, earth plasters) in order to define 408 statistically representative suitability areas in the classification chart (Figure 7). 409 Afterwards, the chart completed with typical areas for cob, rammed earth, adobes, etc. could be 410 used as a pre-decision tool in various situations. A first interesting application is the 411 identification of suitable earths for a predefined technique in a given territory. In this case, 412 planning authorities or investors can program extensive sampling campaigns, and analyse each 413 earth taken from the field with only two low-cost tests: MBV and percent passing 80 µm (the 414 complete grading curve is not even necessary). Representing the corresponding points in the 415 chart will immediately indicate what sampling sites have the highest probability to yield 416 convenient earth for a given technique. Another interesting application is the assessment of a 417 given earth, found on the field at the vicinity of a building project or in excess from an earthwork 418 project. With only two tests, the decision tool would indicate what the most suitable building 419 technique or techniques would be for this soil. In both cases, field or laboratory performance 420 tests will have to be conducted in the end to validate completely the chosen "earth / building 421 technique" pair.

422 A limitation of this classification system may appear in case of significant organic matter 423 contents that would disturb the material behaviour, and the MBV measurements. After the earthwork practice gathered in the GTR guide [36] however, the classification principle should 424 425 remain fully valid as long as the organic matter proportion does not exceed 3 % in mass. As the 426 usual recommendations (see synthesis in [16] e.g.) for earth construction technologies are to 427 use mineral non-organic earths, and not topsoil, organic matter should not question the 428 applicability of the classification system when it is used to assess earth suitability before 429 building. It could however make it more difficult to conduct back analyses from existing buildings 430 when they incorporate significant amounts of large or microscopic vegetal fibers. For instance, 431 organic matter rates over 3% were reported in some existing buildings in South Portugal by 432 Gomes et al. [16].

Finally, it may be noticed also that the classification system of Figure 7 remains relevant if the
granulometric criterion for the fine content of the soil (i.e. 80 µm) is changed. Other limits
commonly used in European countries, i.e. 63 and 50 µm, can be used as well. A comparison is

436 shown in Figure 8. It shows that the rammed earth points from field sample remain gathered in a

437 comparable area with all three criteria.

438

440 Figure 8: Rammed earth samples presented in the "MBV – soil fine percentage" diagram,

441 with 3 different granulometric criteria (80, 63, 50 μm)

442

443 **5. Conclusions**

Built heritage constitutes a very interesting source of knowledge to identify the properties of

building materials used through history. These materials, that can be considered as "time

- tested", may be approached as a reference in order to specify appropriate earth characteristics
- 447 for fore coming rammed earth or cob buildings.
- 448 Through sampling or through cross-referencing of spatial data, a unique survey of earth
- 449 characteristics for construction was gathered. Such data is poorly present in the literature and
- 450 has, by itself, a strong scientific and historic interest. Moreover, it can be used to try to define
- 451 appropriate classification systems for earth suitability. Such criteria would help future
- 452 constructors choosing their material on the field.

The analyses conducted in the paper clearly show that grading envelopes or texture triangles from the literature are inappropriate to select suitable earth characteristics. They do not reflect the diversity of earth compositions encountered in the field, and if they were extended to a much wider granularity range, they would include too many soil types. Moreover, they do not take into account an important parameter for earth implementation, resistance and durability, that is the activity of the clayey minerals.

459 The paper shows that classification systems based on both granularity and clay-water 460 interactions, such as the French "GTR" classification for earthworks, allow a more complete 461 description of earth properties and may allow differentiating the suitability for various building 462 techniques. The granularity criterion can be approached through only one value of soil fines 463 percentage, with a limit at either 50, 63 or 80 µm. The activity of clay minerals can be measured 464 through simple PI, CEC or MBV laboratory tests in order to achieve a simple and low-cost earth 465 analysis tool. In the paper, MBV appeared as the most relevant tool for techniques such as 466 rammed earth, because of its low cost and easy implementation, and because the 467 corresponding soils often exhibit low clay contents and/or specific surface areas, leading to 468 poorly representative PI tests. The same should be valid for CEB technologies. 469 Such a classification system is expected to be a very good candidate for the assessment of earth convenience for building purposes: it would be discriminant, low-cost (only one sieving 470 471 and one MBV per tested soil) and user-friendly. It may be completed by an organic matter 472 content measurement when rates over 3% are suspected (which should be also an exclusion 473 criterion after most existing recommendations). It would be possible to use it as a pre-decision 474 tool before conducting scale-one or laboratory performance tests for validation. It is strongly 475 expected that, by continuing the sampling and testing approach of this paper on various 476 widespread earth construction techniques (such as adobes, wattle-and-daub, etc.), a complete 477 vision of earth suitability could be obtained. 478 As a consequence, the authors encourage other labs from other countries to gather and publish 479 similar data on various building techniques, in order to establish a complete international 480 reference set of earth characteristics, based on granularity and clay activity, that will allow a

481 reliable and statistically representative decision tool for professionals.

482

483 Acknowledgements

484 The authors wish to acknowledge the "Terra Nova" research program and the French Ministry

485 for Sustainable Development for supporting this work, the non-profit organisation Tera and the

486 DDT01 for their help to identify sampling sites, and the mason N.Meunier for his very valuable

- 487 help in most sampling processes.
- 488

489 References

- 490 [1] S. O. Ajayi and L. O. Oyedele, "Policy imperatives for diverting construction waste from
 491 landfill: Experts' recommendations for UK policy expansion," *J. Clean. Prod.*, vol. 147,
 492 pp. 57–65, 2017.
- 493 [2] C. Llatas, "A model for quantifying construction waste in projects according to the
 494 European waste list," *Waste Manag.*, vol. 31, no. 6, pp. 1261–1276, 2011.
- 495 [3] H. Dahlbo *et al.*, "Construction and demolition waste management A holistic evaluation
 496 of environmental performance," *J. Clean. Prod.*, vol. 107, pp. 333–341, 2015.
- 497 [4] C. S. Vieira and P. M. Pereira, "Use of recycled construction and demolition materials in
 498 geotechnical applications: A review," *Resour. Conserv. Recycl.*, vol. 103, pp. 192–204,
 499 2015.
- 500 [5] L. Rouvreau *et al.*, "Rapport Final Projet ANR ASURET, Revue de l'existant," 2010.
- 501 [6] J. J. Cabello Eras, A. S. Gutiérrez, D. H. Capote, L. Hens, and C. Vandecasteele,
 502 "Improving the environmental performance of an earthwork project using cleaner
 503 production strategies," *J. Clean. Prod.*, vol. 47, pp. 368–376, 2013.
- E. Hamard, B. Lemercier, B. Cazacliu, A. Razakamanantsoa, and J.-C. Morel, "A new methodology to identify and quantify material resource at a large scale for earth construction Application to cob in Brittany," *Constr. Build. Mater.*, vol. 170, pp. 485–497, May 2018.
- 508 [8] V. Maniatidis and P. Walker, "A Review of Rammed Earth Construction. Report for DTI
 509 Partners in Innovation Project Developing Rammed Earth for UK housing. National
 510 Building Technology Group, University of Bath," no. May. DTi Partners in Innovation
 511 Project, Bath (UK), p. 109, 2003.
- 512[9]M. Hall and Y. Djerbib, "Rammed earth sample production: context, recommendations513and consistency," *Constr. Build. Mater.*, vol. 18, no. 4, pp. 281–286, May 2004.
- 514 [10] D. Ciancio, P. Jaquin, and P. Walker, "Advances on the assessment of soil suitability for 515 rammed earth," *Constr. Build. Mater.*, vol. 42, pp. 40–47, May 2013.
- 516 [11] M. C. Jiménez Delgado and I. C. Guerrero, "The selection of soils for unstabilised earth
 517 building: A normative review," *Constr. Build. Mater.*, vol. 21, no. 2, pp. 237–251, Feb.
 518 2007.
- 519 [12] L. Keefe, Earth Building Methods and materials, repair and conservation. Abingdon

520		(UK): Taylor & Francis Group, 2005.
521	[13]	R. Harries, D. Clark, and L. Watson, "A rational return to earth as a contemporary
522		building material," in Terra 2000: 8th International Conference on the study an
523		conservation of earthen architecture, 2000, pp. 319–321.
524	[14]	P. Jaquin and C. Augarde, Earth Building, History, Science and Conservation, IHS BRE
525		Pr. Watford (UK), 2012.
526	[15]	S. L. Pagliolico, S. Ronchetti, E. a. Turcato, G. Bottino, L. M. Gallo, and R. DePaoli,
527		"Physicochemical and mineralogical characterization of earth for building in North West
528		Italy," <i>Appl. Clay Sci.</i> , vol. 50, no. 4, pp. 439–454, Dec. 2010.
529	[16]	M. I. Gomes, T. D. Gonçalves, and P. Faria, "Unstabilized Rammed Earth:
530		Characterization of Material Collected from Old Constructions in South Portugal and
531		Comparison to Normative Requirements," Int. J. Archit. Herit., vol. 8, no. 2, pp. 185–212,
532		Mar. 2014.
533	[17]	JE. Aubert, A. Marcom, P. Oliva, and P. Segui, "Chequered earth construction in south-
534		western France," <i>J. Cult. Heritage</i> 2, vol. 16, no. 3, pp. 293–298, 2015.
535	[18]	F. Champiré, A. Fabbri, JC. Morel, H. Wong, and F. McGregor, "Impact of relative
536		humidity on the mechanical behavior of compacted earth as a building material," Constr.
537		<i>Build. Mater.</i> , vol. 110, pp. 70–78, 2016.
538	[19]	E. Hamard, B. Cazacliu, A. Razakamanantsoa, and JC. Morel, "Cob, a vernacular earth
539		construction process in the context of modern sustainable building," Build. Environ., vol.
540		106, pp. 103–119, Sep. 2016.
541	[20]	R. Harries, B. Saxton, and K. Coventry, "The geological and geotechnical properties of
542		earth material from central Devon in relation to its suitability for building in 'Cob," Geosci.
543		South-West Engl., vol. 8, no. 4, pp. 441–444, 1995.
544	[21]	K. A. Coventry, "Specification development for the use of Devon cob in earthen
545		construction, PhD," University of Plymouth - Faculty of Science, 2004.
546	[22]	F. Cointereaux, L'Ecole d'Architecture Rurale ou Leçons par lesquelles on apprendra
547		soi-même à bâtir solidement les maisons de plusieurs étages avec la terre seule -
548		Cahiers 1 et 2. Paris, 1791.
549	[23]	J. L. Parracha, J. Lima, M. T. Freire, M. Ferreira, and P. Faria, "Vernacular Earthen
550		Buildings from Leiria, Portugal – Material Characterization," Int. J. Archit. Herit., pp. 1–
551		16, Sep. 2019.
552	[24]	M. Ford, R. Griffiths, and L. Watson, "The Sandford Inventory of Earth Buildings as a
553		Conservation Aid," J. Archit. Conserv., vol. 11, no. 2, pp. 68–81, Jan. 2005.
554	[25]	E. Mille, "Inventaire participatif du patrimoine en pisé lyonnais." [Online]. Available:
555		http://patrimoine-terre-lyonnais.patrimoineaurhalpin.org/.
556	[26]	AFNOR, "Analyse granulométrique - Méthode par tamisage à sec après lavage," NF P
557		<i>94-056</i> , p. 15, 1996.
558	[27]	AFNOR, "Analyse granulométrique des sols - Méthode par sédimentation," NF P 94-057,
559		p. 17, 1992.

560 J. -L Loizeau, D. Arbouille, S. Santiago, and J. -P Vernet, "Evaluation of a wide range [28] 561 laser diffraction grain size analyser for use with sediments," Sedimentology, vol. 41, pp. 562 353-361, 1994. 563 [29] AFNOR, "Mesure de la capacité d'adsorption de bleu de méthylène d'un sol ou d'un 564 matériau rocheux - Détermination de la valeur de bleu de méthylène d'un sol ou d'un 565 matériau rocheux par l'essai à la tâche," NF P 94-068, p. 8, 1998. 566 [30] AFNOR, "Détermination des limites d'Atterberg - Limite de liquidité à la coupelle - Limite 567 de plasticité au rouleau," NF P 94-051, p. 15, 1993. 568 AFNOR, "Détermination de la teneur en eau pondérale des matériaux - Méthode par [31] 569 étuvage," NF P 94-050, p. 7, 1995. 570 AFNOR, "Détermination de la masse volumique des sols fins en laboratoire - Méthodes [32] 571 de la trousse coupante, du moule et de l'immersion dans l'eau," NF P 94-053, p. 6, 1991. 572 H. Houben, H. Guillaud, and M. Dayre, Traité de construction en terre, CRATerre. [33] 573 Marseille: Parenthèses, 2006. 574 [34] A. Cuccurullo, "Earth stabilisation by plant-derived urease enzyme for building 575 applications," Duram University, Université de Pau et des Pays de l'Adour, 2019. 576 AFNOR, "Geotechnical investigation and testing - Laboratory testing of soil - Part 12: [35] Determination of liquid and plastic limits," NF EN ISO 17892-12, p. 27, 2018. 577 578 LCPC-SETRA, Réalisation des remblais et des couches de forme. Fascicule 1 : [36] 579 Principes généraux - Fascicule 2 : Annexes techniques. Bagneux, France: Laboratoire 580 Central des Ponts et Chaussées - Service d'Etudes Techniques des Routes et 581 Autoroutes, 1992. 582 [37] AFNOR, "Exécution des terrassements - Classification des matériaux utilisables dans la 583 construction des remblais et des couches de forme d'infrastructures routières," NF P 11-584 300, p. 21, 1992. A. Richer de Forges, C. Feller, M. Jamagne, and D. Arrouays, "Perdus dans le triangle 585 [38] 586 des texture," Etude Gest. des Sols, vol. 15, no. 2, pp. 97-111, 2008. D. Baize, Guide des analyses en pédologie, Seconde éd. 2000. 587 [39] P. Doat, A. Hays, H. Houben, S. Matuk, and F. Vitoux, Construire en terre, Analternat. 588 [40] 589 Paris, 1979. [41] 590 J. Norton, Building with Earth: a handbook, Intermedia. Rugby (UK), 1986. 591 [42] MOPT, Bases para el diseño y construcción con tapial, Monografía. Ministerio de 592 Fomento, Spain, 1992. 593 P. Walker, R. Keable, J. Martin, and V. Maniatidis, "Rammed Earth: Design and [43] 594 construction guidelines." BRE Bookshop, Watford (UK), p. 127, 2005. 595 [44] ARSO, "SADC Harmonized Standard for Rammed Earth Structures - Code of Practice 596 THC 03 - SAZS 724." p. 39, 2014. 597 [45] E. Hamard, J.-C. Morel, F. Salgado, A. Marcom, and N. Meunier, "A procedure to assess the suitability of plaster to protect vernacular earthen architecture," J. Cult. Herit., vol. 14, 598 599 no. 2, pp. 109–115, 2013.

600	[46]	M. Emiroğlu, A. Yalama, and Y. Erdoğdu, "Performance of ready-mixed clay plasters
601		produced with different clay/sand ratios," Appl. Clay Sci., vol. 115, pp. 221–229, 2015.
602	[47]	N. Meimaroglou and C. Mouzakis, "Cation Exchange Capacity (CEC), texture,
603		consistency and organic matter in soil assessment for earth construction: The case of
604		earth mortars," Constr. Build. Mater., vol. 221, pp. 27–39, Oct. 2019.
605	[48]	R. R. Weil and N. C. Bradley, The Nature and Properties of Soils, 15th Edition. Pearson,
606		2017.
607	[49]	H. Houben and H. Guillaud, Earth construction: a comprehensive guide. London : IT
608		Publications, 1994.
609	[50]	Y. Millogo, JC. Morel, JE. Aubert, and K. Ghavami, "Experimental analysis of Pressed
610		Adobe Blocks reinforced with Hibiscus cannabinus fibers," Constr. Build. Mater., vol. 52,
611		pp. 71–78, Feb. 2014.
612	[51]	S. Laribi, M. Audiguier, and R. Cojean, "Assessing shrink/swell properties of two
613		argillaceous soils from the Paris Basin: A comparison of cation exchange determination
614		methods," Bull. Eng. Geol. Environ., vol. 67, no. 3, pp. 415–424, 2008.
615	[52]	ASTM, "Standard Practice for Classification of Soils for Engineering Purposes (Unified
616		Soil Classification System)," D2487-11, 2011.
617		
618		

619 Figure captions (images as individual files separate to your MS Word text file).

620	-	
621		Editor's note: do not copy and paste your
622		images into MS Word, this reduces their
623		quality. Instead upload them to the journal
624		website asseparate files in the format
625		used to originally create them.
626	L	
627		
628	Figure 1.	
629	Figure 2.	
630	Figure 3.	
631	Figure 4.	