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Abstract. Constraint Programming models have been recently proposed to solve
cryptanalysis problems for symmetric block ciphers such as AES. These models
are more efficient than dedicated approaches but their design is difficult: straight-
forward models do not scale well and it is necessary to add advanced constraints
derived from cryptographic properties. We introduce a global constraint which
simplifies the modelling step and improves efficiency. We study its complex-
ity, introduce propagators and experimentally evaluate them on two cryptanalysis
problems (single-key and related-key) for two block ciphers (AES and Midori).

1 Motivations

Symmetric bloc ciphers use a secret key K to cipher an input text X0 into a cipher
text Xr in such a way that Xr can be deciphered back into X0 with the same key K.
Differential cryptanalysis aims at evaluating if we can guess K by studying difference
propagation during ciphering [6]. These differences are obtained by applying a XOR
(bitwise exclusive or, denoted ⊕) between two input texts. In the related-key attack [5],
differences are also introduced in keys. For mounting these attacks, we must compute
Maximum Differential Characteristics (MDCs), i.e., most probable differences.

A widely used symmetric block cipher is AES [10]. However, AES is rather time
consuming, and lighter ciphers must be designed for devices with limited computational
resources. Each time a new cipher is designed, we must compute MDCs to evaluate its
robustness with respect to differential attacks. In this section, we illustrate MDCs on
Midori128 [2], which is a lighweight cipher simpler to explain than AES. However, all
models can be extended to AES and to other existing symmetric block ciphers, and we
experimentally evaluate our approach on both Midori and AES.

Midori128. The ciphering iterates r rounds and each round is composed of four opera-
tions: SubBytes replaces every byte with another byte according to a given lookup table;
ShuffleCells moves bytes; and MixColumns and AddKey perform XORs. For each round
i ∈ [0, r − 1], Xi denotes the text state at the beginning of round i, and Si, Yi, and
Zi denote intermediate text states after each operation: Si is the result of applying Sub-
Bytes on Xi; Yi is the result of applying ShuffleCells on Si; Zi is the result of applying
MixColumns on Yi; and Xi+1 is the result of applying AddKey on Zi and K.

The goal of the MDC problem is to compute differences. We denote δK the differ-
ences in the key (i.e., δK is the result of applying a XOR between two keys), and δXi



Maximise
∑
i∈[0,r−1],b∈[0,15] Pi[b] so that ∀i∈ [0, r−1],∀b∈ [0, 15]:

(C1) (δXi[b], δSi[b], Pi[b]) ∈ subBytesTableb
(C2) δYi[f(b)] = δSi[b] where f is a given permutation from [0, 15] to [0, 15]
(C3) δZi[b]⊕ δYi[(b+ 4)%16]⊕ δYi[(b+ 8)%16]⊕ δYi[(b+ 12)%16] = 0
(C4) δZi[b]⊕ δK[b]⊕ δXi+1[b] = 0

Fig. 1: MDC problem for Midori128.

(A0) n =
∑
i∈[0,r−1],b∈[0,15]∆Xi[b]

∀i ∈ [0, r − 1], ∀b ∈ [0, 15]:
(A1)∆Xi[b] = ∆Si[b]
(A2)∆Yi[b] = ∆Si[f(b)] where f is a given permutation from [0, 15] to [0, 15]
(A3)∆Zi[b] ◦∆Yi[(b+ 4)%16] ◦∆Yi[(b+ 8)%16] ◦∆Yi[(b+ 12)%16] = 0
(A4)∆Zi[b] ◦∆K[b] ◦∆Xi+1[b] = 0

Fig. 2: Step1 problem for Midori128

(resp. δSi, δYi, and δZi) the differences in the text at the beginning of round i (resp. after
applying SubBytes, ShuffleCells, and MixColumns). For each A ∈ {K,Xi, Si, Yi, Zi,
Xr : i ∈ [0, r − 1]}, δA is a sequence of 16 bytes (where each byte is a sequence of 8
bits) and, given a byte position b ∈ [0, 15], δA[b] denotes the byte at position b in δA.
δA[b] is called a differential variable, and δ denotes the set of all differential variables.
The domain of each differential variable δA[b] ∈ δ is D(δA[b]) = [0, 255].

The goal is to find the most probable assignment of differential variables. For all
operations but SubBytes, differences are deterministically computed, i.e., we can com-
pute δXi+1 given δSi and δK. In this case, the probability of observing δXi+1 given δSi
and δK is equal to 1. However, this is not the case for SubBytes: when δXi[b] ∈ [1, 255],
there are several possible values for δSi[b]. The only case where we can deterministi-
cally compute δSi[b] given δXi[b] is when δXi[b] = 0: in this case, δSi[b] = 0. The table
subBytesTableb contains all triples (δin, δout, p) such that p is the log2 probability that
δSi[b] = δout when δXi[b] = δin. This table depends on the position b of the byte in
δSi. We introduce a variable Pi[b] which corresponds to this log2 probability and whose
domain is D(Pi[b]) = {−6,−5,−4,−3,−2, 0}.

Fig. 1 describes the MDC problem for Midori128. The goal is to maximise the sum
of all log2 probabilities Pi[b]. Constraints (C1) to (C4) correspond to the 4 operations
applied at each round: (C1) is the table constraint corresponding to SubBytes; (C2)
corresponds to ShuffleCells, which moves bytes from position b in δSi to position f(b)
in δYi; (C3) and (C4) correspond to MixColumns and AddKey, respectively, and only
involve XOR operations.

Two step solving process. Most differential variables are equal to 0 in MDCs. Indeed,
when δSi[b] = δXi[b] = 0, the log2 probability Pi[b] is equal to 0 whereas in all other
cases it is smaller than or equal to −2 for Midori, and −6 for AES. Hence, the MDC
problem is usually solved in two steps [16]: in Step1, we search for difference positions,
whereas in Step2 we search for the exact values of the differential variables.

More precisely, at Step1, the set of variables is ∆= {∆j : δj ∈ δ}. Each variable
∆j ∈ ∆ has a binary domain D(∆j) = {0, 1} and indicates if there is a difference or
not in δj , i.e., ∆j = 0 ⇔ δj = 0 and ∆j = 1 ⇔ δj ∈ [1, 255]. The Step1 problem



is defined in Fig. 2 for Midori128. It is very similar to the problem of Fig. 1. The
main difference is that log2 probability variables (Pi[b]) are removed, and the objective
function and constraint (C1) are replaced with constraint (A0) which ensures that the
number of ∆Xi[b] variables assigned to 1 is equal to a given value n. Constraint (A1)
comes from the fact that δXi[b] = 0 iff δSi[b] = 0. Finally, XOR constraints (C3)
and (C4) are replaced with abstract XOR constraints (A3) and (A4): an abstract XOR
constraint ∆1 ◦ . . . ◦ ∆l = 0 is satisfied iff, for each ∆j assigned to 1 there exists
an integer value in [1, 255] such that the XOR of all these values is equal to 0. This
constraint may be encoded by

∑l
j=1∆j 6= 1. Indeed, when all ∆j are assigned to 0,

the abstract XOR is trivially satisfied; when exactly one∆j is assigned to 1, it is trivially
violated; otherwise, it is satisfied because it is always possible to find k ≥ 2 values in
[1, 255] such that the result of XORing them is equal to 0. We refer to this encoding of
an abstract XOR constraint as the sum6=1 encoding.

Given a Step1 solution s, we define the Step2 model obtained from the model of
Fig. 1 by adding the following constraint for each variable∆j ∈ ∆: if∆j is assigned to
0 in s then δj = 0, else δj 6= 0. This model is much easier to solve than the original one
as many ∆j variables are assigned to 0 in s. However, some Step1 solutions may lead
to inconsistent Step2 problems. These Step1 solutions are said to be Step2-inconsistent.
These inconsistencies mainly come from the fact that XORs are poorly abstracted at
Step1: every abstract XOR constraint ensures that there exist integer values whose XOR
is equal to 0, but this is ensured for each constraint separately so that several abstract
XORs can be satisfied at Step1 while they are Step2-inconsistent when considering them
all together. For example, the two abstract XOR constraints ∆1 ◦∆2 = 0 and ∆1 ◦∆2 ◦
∆3 = 0 are satisfied when ∆1, ∆2, and ∆3 are assigned to 1, but this assignment is
Step2-inconsistent because (δ1 ⊕ δ2 = 0)⇒ (δ1 = δ2)⇒ (δ3 = 0).

Finally, to compute MDCs, we iteratively search for all Step1 solutions with increas-
ing values of n, and for each Step1 solution we solve the associated Step2 problem, until
some conditions are reached (see [12] for details).

Existing approaches to compute MDCs. Two main dedicated approaches have been
proposed to solve the Step1 problem for AES: a graph traversal approach [11], and a
Branch & Bound approach [7]. Both approaches do not scale well and they are not able
to solve all AES instances within a reasonable amount of time.

An appealing alternative to dedicated approaches is to use generic solvers such as
Integer Linear Programming (ILP), Boolean satisfiability (SAT) or Constraint Program-
ming (CP). ILP has been used to compute MDCs for block ciphers such as SIMON,
PRESENT or LBlock [26]. However, it is difficult to model the SubBytes operation
(modelled by constraint (C1) in Fig. 1) by means of linear inequalities, and ILP does
not scale well to solve Step2.

SAT has also been used to compute MDCs for ciphers such as ARX [21] or Si-
mon [17]. CryptoMiniSat [23] introduces XOR-clauses and uses Gaussian elimination
to efficiently propagate them. These XOR-clauses can be used to model XOR constraints
(C3) and (C4) in Step2. However, they cannot be used to model abstract XOR con-
straints (A3) and (A4) in Step1. Indeed, if 1⊕ 1 = 0 at a bitwise level (during Step2),
this is no longer true during Step1 because the XOR of two bytes different from 0 may
be equal to 0. Similarly to ILP, non linear operations such as SubBytes are not straight-



forward to model by means of clauses. In [18], Lafitte shows how to encode a relation
associated with a non linear operation into a set of clauses and, in [24], Sun et al. show
how to reduce the number of clauses by using the same approach as in [1]. However, the
resulting SAT model does not scale well and cannot solve Step2 for AES, for example.

CP has been used to compute MDCs for AES [14,15], Midori [13], and SKINNY
[25]. These CP models are very efficient. However, if efficient Step2 models are eas-
ily derived from problem definitions (such as Fig. 1 for Midori128), efficient Step1
models are much harder to design. Indeed, a basic model is derived from Fig. 2 by re-
placing every abstract XOR with its sum 6=1 encoding. However, this model has a lot of
Step2-inconsistent solutions. To reduce the number of Step2-inconsistent solutions, it
is necessary to add constraints derived from advanced cryptographic properties.

Contributions and overview of the paper. Our goal is to ease the design of CP models
for computing MDCs, while ensuring an efficient solving process. To this aim, we in-
troduce a global constraint which propagates XORs in a global way in order to reduce
the number of Step2-inconsistent solutions.

In Section 2, we introduce notations and preliminary definitions. In Section 3, we in-
troduce the abstractXOR constraint which ensures that a set of abstract XOR constraints
is Step2-consistent. We show that deciding of abstractXOR feasibility isNP-complete
when differential variables are constrained to belong to [0, 255] whereas it is polyno-
mial when the domain of differential variables is not upper bounded. Hence, we relax
abstractXOR by removing this upper bound. In Section 4, we introduce two propaga-
tors for abstractXOR: the first one simply ensures feasibility, and the second one ensures
Generalised Arc Consistency (GAC). In Section 5, we experimentally evaluate them on
two MDC problems (related-key and single-key) for Midori and AES.

2 Notations and preliminary definitions

Given two integer values a and b, [a, b] denotes the set of all integer values ranging from
a to b. N+ denotes the set of all natural numbers (excluding 0).

∆ denotes a set of variables such that the domain of each variable ∆j ∈ ∆ is
D(∆j) ⊆ {0, 1}. ∆j is assigned iff #D(∆j)=1, and an assignment is complete if all
variables of ∆ are assigned. ∆0 denotes the set of variables assigned to 0 and ∆ \∆0

denotes the set of variables that are either assigned to 1 or not yet assigned.
C denotes a set of abstract XOR constraints defined on ∆. C↓∆0 denotes the set of

XOR constraints obtained from C by (i) replacing each ∆j ∈ ∆0 with 0, (ii) replacing
each ∆j ∈ ∆ \ ∆0 with an integer variable δj whose domain is D(δj) = N+, and
(iii) replacing each abstract XOR ◦ with the bitwise XOR ⊕. Examples are displayed in
Fig. 3 (equations of C↓∆0 are simplified by replacing δj ⊕ 0 with δj).

C↓∆0 is represented by a matrix M which contains one row for each equation and
one column for each variable in ∆ \∆0: M [i, j] = 1 if δj occurs in the ith equation of
C↓∆0 ; otherwise, M [i, j] = 0. We denote n and m the numbers of rows and columns
of M . For each row i ∈ [1, n], we define nonZeroi = {j ∈ [1,m] : M [i, j] = 1},
pivot i = minnonZeroi, and nonPivot i = nonZeroi \ {pivot i}. M is in reduced
row-echelon (RRE) form iff, for every row i ∈ [1, n], there is exactly one non-zero cell
in column pivot i, i.e.,

∑n
i′=1M [i′, pivot i] = 1 (see examples in Fig. 3).



∆ = {∆1,∆2,∆3,∆4,∆5,∆6,∆7}
C = {∆1 ◦∆4 ◦∆6 ◦∆7 = 0, ∆2 ◦∆4 ◦∆5 ◦∆7 = 0, ∆3 ◦∆5 ◦∆6 = 0}

Example 1: ∆0 = {∆7}
C↓∆0 : M : δ1 δ2 δ3 δ4 δ5 δ6
δ1 ⊕ δ4 ⊕ δ6 = 0 1 0 0 1 0 1
δ2 ⊕ δ4 ⊕ δ5 = 0 0 1 0 1 1 0
δ3 ⊕ δ5 ⊕ δ6 = 0 0 0 1 0 1 1

Example 2: ∆0 = {∆2,∆3,∆7}
C↓∆0 : M : δ1 δ4 δ5 δ6
δ1 ⊕ δ4 ⊕ δ6 = 0 1 1 0 1

δ4 ⊕ δ5 = 0 0 1 1 0
δ5 ⊕ δ6 = 0 0 0 1 1

Fig. 3: Top: A set ∆ of variables and a set C of abstract XOR constraints. Bottom: C↓∆0 and
M when ∆7 is assigned to 0 (Ex. 1, on the left) and when ∆2, ∆3, and ∆7 are assigned to 0
(Ex. 2, on the right). In Ex. 1, M is in RRE form and nonZero1 = {1, 4, 6}, pivot1 = 1, and
nonPivot1 = {4, 6}. In Ex. 2, M is not in RRE form because the pivot columns of rows 2 and
3 have two non-zero cells.

3 Definition and complexity of abstractXOR

When computing MDCs in a two-step process, we aim at minimising as much as pos-
sible the number of Step1 solutions which are Step2-inconsistent. As many Step2-
inconsistencies come from the fact that XOR constraints are poorly abstracted at Step1,
we introduce a global constraint to obtain a tighter Step1 model.

Definition 1. Given an integer value u > 0, the constraint abstractXORu,C(∆) is sat-
isfied by a complete assignment iff C↓∆0 ∪ {δj ≤ u : ∆j ∈ ∆ \∆0} is consistent.

Let us consider Ex. 1 of Fig. 3. If u = 3, then abstractXORu,C(∆) is satisfied because
there exists a solution of C↓∆0 such that every δj belongs to [1, 3] (e.g., δ1 = δ5 = 1,
δ2 = δ6 = 2, and δ3 = δ4 = 3). However, if u = 2, then abstractXORu,C(∆) is not
satisfied because C↓∆0 has no solution when every δj must belong to [1, 2].

In Ex. 2, abstractXORu,C(∆) is not satisfied because (δ4 ⊕ δ5 = 0 ∧ δ5 ⊕ δ6 =
0) ⇒ (δ4 = δ5 = δ6) ⇒ (δ4 ⊕ δ6 = 0). Therefore, δ1 must be equal to 0, which is
impossible as δ1 must belong to [1, u].

abstractXOR allows us to easily model Step1 problems. For example, for Midori128,
we replace constraints (A3) and (A4) with abstractXOR255,C(∆) where C = {(A3),
(A4)}, and ∆ contains all variables involved in (A3) or (A4). The resulting model has
less Step2-inconsistent solutions than the basic model obtained by replacing (A3) and
(A4) with sum6=1 constraints: abstractXOR ensures the consistency of (C3) ∧ (C4) at
Step2, whereas the basic model only ensures the feasibility of each XOR separately.

However, checking the feasibility of abstractXOR is intractable.

Theorem 1. Deciding if a complete assignment satisfies abstractXORu,C(∆) is an
NP-complete problem.

Proof. To decide whether abstractXORu,C(∆) is satisfied by a complete assignment,
we must decide whether C↓∆0 is consistent when all δj variables occurring in C↓∆0

are constrained to belong to [1, u]. This problem trivially belongs to NP as we can
decide in polynomial time whether a given assignment of all δj variables satisfiesC↓∆0 .
To show that it is NP-complete, we give the intuition of a reduction from the graph



Algorithm 1: RRE form of an n×m matrix M
1 i← 1
2 while i ≤ n do

/* every row i′ ∈ [1, i− 1] is in RRE form, i.e.,
∑n
i′′=1M [i′′, pivot i′ ] = 1 */

3 if nonZeroi = ∅ then remove row i and decrement n;
4 else
5 for each row i′ ∈ [1, n] such that i′ 6= i and M [i′, pivoti] = 1 do
6 for each column j′ ∈ [1,m] do M [i′, j′]←M [i′, j′]⊕M [i, j′] ;

7 i← i+ 1

colouring problem, which aims at deciding if we can assign a colour ci ∈ [1, u] to each
vertex i of a graph so that ci 6= cj for each edge (i, j). Given a graph G, we associate
a variable δi (resp. δij) with every vertex i (resp. edge (i, j)) of G, and we define the
XOR constraints: C = {δi ⊕ δj ⊕ δij = 0 : (i, j) is an edge of G}. If each variable
must belong to [1, u], then each XOR constraint associated with an edge (i, j) ensures
that δi 6= δj (because δi = δj ⇔ δij = 0). Hence, we can show that every solution of
C corresponds to a valid colouring of G, and vice-versa.

Now, let us show that we can decide if abstractXOR is satisfied in polynomial time
when δj variables are not upper bounded. In this case, we have to decide if C↓∆0 is
consistent. We first show how to put the matrix M associated with C↓∆0 in RRE form.
This is done by Algo. 1, which uses a principle similar to Gaussian elimination of linear
equations. Algo. 1 does not change the set of solutions because it only removes empty
rows (line 3), or replaces a row i′ with the result of XORing it with another row i (line
6). To show that Algo. 1 puts M in RRE form, we show that the comment after line 2 is
an invariant property of the loop lines 2-7. This property is trivially satisfied at the first
iteration when i = 1 and, if it is satisfied at some iteration, then it is satisfied at the next
iteration: if row i is empty (line 3) then it is removed and i is not incremented so that the
property is still satisfied; otherwise (lines 4-7), every row i′ 6= i which contains a non-
zero cell on column pivot i is XORed with row i so that column pivot i only contains one
non-zero cell on row i just after lines 5-6. The complexity of this algorithm isO(mn2).

We use Property atLeast2 (defined below) to decide if C↓∆0 is consistent.

Definition 2. A matrix M in RRE form satisfies Prop. atLeast2 if each row has at least
two non-zero cells, i.e., ∀i ∈ [1, n],#nonZeroi ≥ 2.

Theorem 2. C↓∆0 is consistent iff its associated matrix M in RRE form satisfies Prop.
atLeast2.

Proof. If M does not satisfy Prop. atLeast2, then it contains a row with exactly one
non-zero cell, i.e., there exists an equation of the form δj = 0. In this case C↓∆0 is
inconsistent as D(δj) = N+.

If M satisfies Prop. atLeast2, then we can always build a solution for C↓∆0 . The
idea is to first assign values to variables associated with non-pivot columns, and then



Algorithm 2: Check Prop. atLeast2 of an n×m matrix M in RRE form
1 for each row i ∈ [1, n] such that nonPivot i = ∅ do
2 if D(∆pivoti) = {1} then return failure;
3 else
4 remove 1 from D(∆pivoti)
5 remove row i and decrement n
6 remove column pivot i and decrement m

7 return success

compute values of variables associated with pivot columns by XORing the correspond-
ing non-pivot variables. To ensure that values computed for pivot variables are always
different from 0, we have to choose carefully the values of non-pivot variables. More
precisely, non-pivot variables are assigned one after the other. When choosing a value
for a non-pivot variable δj , for each row i such that j ∈ nonPivot i, if all variables of
nonPivot i but δj are already assigned, then we must choose a value different from the
result of the XOR of these assigned variables. As the domains of δj variables are not
upper bounded, we can always build a solution.

A consequence of Theorem 2 is that we can decide in polynomial time if a complete
assignment satisfies abstractXOR∞,C(∆). Indeed, this amounts to deciding whether
C↓∆0 is consistent. This can be done by using Algo. 1 to put the matrix M associated
with C↓∆0 in RRE form, and then checking that Prop. atLeast2 is satisfied.

4 Propagation of abstractXOR

As deciding of the satisfaction of abstractXORu,C(∆) is polynomial when u = ∞,
we consider that u = ∞ from now on. In this section, we introduce an algorithm that
checks feasibility (Section 4.1), an algorithm that ensures Generalised Arc Consistency
(Section 4.2), and we discuss implementation and complexity issues (Section 4.3).

4.1 Checking feasibility of abstractXOR

Before starting the search, we build the matrixM associated withC↓∆0 and use Algo. 1
to put it in RRE form. During the search, we maintain M in RRE form: each time a
variable ∆j ∈ ∆ is assigned to 0, we remove column j from M and, if j is the pivot
column of a row i, we execute lines 3-6 of Algo. 1.

Once M is in RRE form, we check feasibility by exploiting Theo. 2, as shown in
Algo. 2: for each row iwith only one non-zero cell, if∆pivoti is assigned to 1 we trigger
failure, otherwise we assign 0 to ∆pivoti and remove row i and column pivot i from M .

Theorem 3. Algo. 2 returns success iff abstractXOR∞,C(∆) can be satisfied.

Proof. Algo. 2 returns failure (line 2) when there is a row i with a single non-zero
cell and the corresponding variable ∆pivoti is assigned to 1. This row corresponds to



the equation δpivoti = 0 which cannot be satisfied when ∆pivoti = 1. When Algo. 2
returns success (line 7), M satisfies Prop. atLeast2 and, for each column j ∈ [1,m], the
variable ∆j can still be assigned to 1. In this case, Theo. 2 ensures that the constraint
can be satisfied by assigning 1 to each non-assigned variable.

Algo. 2 does not only check feasibility, but also filters domains: it removes 1 from
the domain of every variable ∆pivoti associated with a row i such that nonPivot i =
∅ (line 4). This does not remove solutions as this row corresponds to the equation
δpivoti = 0 which is satisfied iff ∆pivoti = 0.

4.2 Ensuring the Generalized Arc Consistency of abstractXOR

To ensure GAC, we must ensure that for each variable ∆j ∈ ∆ and each value v ∈
D(∆j), the couple (∆j , v) has a support, i.e., there exists a consistent assignment which
assigns v to ∆j and a value v′ ∈ D(∆j′) to every other variable ∆j′ ∈ ∆ \ {∆j}.

By maintainingM in RRE form and ensuring Prop. atLeast2, we ensure that (∆j , 1)
has a support for each variable ∆j ∈ ∆ such that 1 ∈ D(∆j). Also (∆j , 0) has a
support for every variable ∆j ∈ ∆ assigned to 0. However, when ∆j is not assigned,
(∆j , 0) may not have a support. This occurs when there exist ∆j , ∆j′ ∈ ∆ \∆0 such
that D(∆j) = {0, 1} ∧D(∆j′) = {1} ∧ C↓∆0 ⇒ (δj = δj′). In this case, the couple
(∆j , 0) has no support because C↓∆0 ∧ (δj = 0) ∧ (δj′ = 1) is inconsistent.

Hence, to ensure GAC we need to identify cases where the equality of two variables
is a logical consequence of C↓∆0 . This is done by the following theorem.

Theorem 4. For each pair of variables {∆j , ∆j′} ⊆ ∆ \∆0, C↓∆0 ⇒ (δj = δj′) iff
one of the following cases holds in the matrix M in RRE form associated with C↓∆0 :
Case 1: ∃i ∈ [1, n],nonZeroi = {j, j′}
Case 2: ∃i, i′ ∈ [1, n], (pivot i = j) ∧ (pivot i′ = j′) ∧ (nonPivot i = nonPivot i′)

Proof. Case 1 occurs whenM contains a row iwith exactly two non-zero cells, and this
row corresponds to the equation δj = δj′ . Case 2 occurs when M contains 2 rows i and
i′ such that nonPivot i = nonPivot i′ . These rows imply that δpivoti = δpivoti′ because
both δpivoti and δpivoti′ are equal to the result of XORing a same set of variables.

There is no other case where C↓∆0 ⇒ (δj = δj′) because, when M is in RRE
form, every row i has a different pivot column pivot i. Therefore, every equation in
C↓∆0 contains a different pivot variable δpivoti . Hence, δj and δj′ are constrained to
be equal either because they occur in a same equation without any other variable, or
because they are the pivot variables of two different equations which share the same
non-pivot variables.

Let us illustrate these two cases on the example displayed in Fig. 3:
– If ∆0 = {∆5, ∆7} then C↓∆0 contains the equation δ2 ⊕ δ4 = 0, and if D(∆4) =
{1} and D(∆2) = {0, 1}, then (∆2, 0) has no support.

– If ∆0 = {∆3, ∆5, ∆6}, then δ1 δ2 δ4 δ7
C↓∆0 is equal to: δ1 ⊕ δ4 ⊕ δ7 = 0 and M is equal to: 1 0 1 1

δ2 ⊕ δ4 ⊕ δ7 = 0 0 1 1 1
This implies that the pivot variables δ1 and δ2 are both equal to δ4 ⊕ δ7, and if
D(∆1) = {1} and D(∆2) = {0, 1}, then (∆2, 0) has no support.



Algorithm 3: Propagation of the assignment of 1 to a variable ∆j

1 let Q be an empty queue; enqueue ∆j in Q
2 while Q is not empty do
3 dequeue a variable ∆j from Q and remove 0 from D(∆j)
4 if j is the pivot column of a row i then
5 if nonPivot i = {j′} and D(∆j′) = {0, 1} then enqueue ∆j′ in Q ;
6 else
7 for each i′ ∈ [1, n] such that nonPivot i = nonPivot i′ do
8 if D(∆pivoti′ ) = {0, 1} then enqueue ∆pivoti′ in Q;

9 else
10 for each i ∈ [1, n] such that nonPivot i = {j} do
11 if D(∆pivoti′ ) = {0, 1} then enqueue ∆pivoti′ in Q;

To maintain GAC during the search, we call Algo. 3 each time a variable must be
assigned to 1. This algorithm uses a queue Q of variables that must be assigned to 1. At
each iteration of the loop lines 2-11, a variable∆j is dequeued fromQ, and it is assigned
to 1. This assignment is propagated on every variable∆j′ such thatC↓∆0 ⇒ (δj = δj′).
We exploit Theorem 4 to identify these variables:

– Case 1 has two sub-cases: if j is the pivot column of a row i, we simply check if
nonPivot i is reduced to a singleton (line 5); otherwise, we have to search for every
row i such that nonPivot i only contains j (lines 10-11).

– Case 2 only holds when j is the pivot column of a row i, and we have to search for
every row i′ such that nonPivot i = nonPivot i′ (lines 7-8).

Also, each time a variable is assigned to 0, we proceed as explained in Section 4.1 to
check feasibility. Then, for each line which has been modified when executing lines
3-6 of Algo. 1, we check if cases 1 or 2 of Theo. 4 hold and imply that δj = δj′ with
D(∆j) = {0, 1} and D(∆j′) = {1}: in this case, we call Algo. 3 to propagate the
assignment of 1 to ∆j .

4.3 Implementation and complexities

Sparse Sets. Our propagators mainly involve traversing non-zero cells of rows and
columns of M . As M is very sparse, we represent its rows and columns with sparse
sets [19]: each sparse set contains the non-zero cells of a row or a column. This allows
us to visit every non-zero cell of a column (resp. row) in linear time with respect to
the number of non-zero cells instead of O(m) (resp. O(n)), and to decide in constant
time if an element belongs to a set. Sparse sets also allow to restore sets in constant
time when backtracking, provided that we only remove elements at each choice point.
Unfortunately, this is not the case here as new non-zero cells may appear when XORing
lines. Hence, when backtracking, we undo all operations done before the recursive call.

Time complexity of the propagators. Let n1 (resp. m1) be the maximum number of
non-zero cells in a row (resp. a column) of M . When using sparse sets, the complexity
of putting M in RRE form, as described by Algo. 1, becomes O(nn1m1).



The complexity of the propagation of the assignment of a variable to 0 isO(n1m1).
Indeed, when a variable∆j is assigned to 0, we have to (i) remove column j, (ii) execute
lines 3-7 of Algo. 1 if j is a pivot column, and (iii) run Algo. 2. The complexity of this
depends on whether j is a pivot column or not:

– if j is a pivot column, then (i) is achieved in O(1) as column j only contains one
non-zero cell; (ii) is achieved in O(n1m1); and (iii) is achieved in O(n1) provided
that we keep track of the rows that have been modified at step (ii);

– if j is not a pivot column, then (i) is achieved in O(n1) and (iii) is achieved in
O(n1) provided that we keep track of the rows that have been modified at step (i).

The complexity of the propagation of the assignment of a variable to 1 by Algo. 3 is
O(mn1m1). Indeed, in the worst case, this implies to assign 1 to every other variable.
Hence, the loop lines 2-11 is performed O(m) times. The loop lines 7-8 is iterated
O(n1) times (we traverse non-zero cells of the column of a variable in nonPivot i to
identify the rows i′ for which we have to check if nonPivot i = nonPivot i′), and we
decide if nonPivot i = nonPivot i′ in O(m1). The loop lines 10-11 is iterated O(n1)
times as we only have to consider the non-zero cells of column j.

Implementation. Our global constraint has been implemented in Java and integrated in
Choco 4 [22]. As its propagators are rather expensive, we give a low priority to abstrac-
tXOR so that, at each node of the search tree, Choco propagates all other constraints
before propagating abstractXOR.

5 Experimental evaluation

In this section, we experimentally evaluate the interest of abstractXOR. We first con-
sider the related-key MDC problem, where differences can be injected both in the key
and the input text, and we report results for Midori in Section 5.1 and for AES in Sec-
tion 5.2. In Section 5.3, we consider the single-key MDC problem, where differences
are injected only in the input text. All experiments have been done on a single core of
an Intel Xeon E3-1270v3 (3.50 GHz) with 32 GB RAM.

5.1 Related-key MDC for Midori

Description of the problem. The related-key MDC for Midori is described in Section 1
for the case where the input text X0 is a sequence of 128 bits (denoted Midori128).
Midori is also defined for 64 bit texts (denoted Midori64). In this case, SubBytes and
subBytesTable are defined for 4 bit sequences instead of 8 bit sequences. Also, a key
schedule is used to compute a new subkey at each round (see [2] for details).

We consider different values for r, ranging from 3 to the number of rounds defined
in [2], i.e., 16 (resp. 20) for Midori64 (resp. Midori128). For each value of r, the con-
stant n used in constraint (A0) of Fig. 2 is set to the smallest value for which there
exists a solution, as this is the most difficult instance: instances with smaller values of
n are often trivially inconsistent, whereas instances with larger values are useless.

We report results on two problems: Enum1 aims at enumerating all solutions of the
Step1 problem described in Fig. 2 for Midori128; Opt1+2 aims at finding the MDC
whose probability is maximal as described in Fig. 1 for Midori128.



Models for Enum1. We consider two models. The first one, denoted Enum1 Global,
is derived from Fig. 2 in a straightforward way, by replacing (A3) and (A4) with
abstractXOR∞,C(∆) where C = {(A3), (A4)} and ∆ contains all variables occur-
ring in (A3) or (A4). It is implemented in Java with Choco 4 [22], and we consider
two propagators: GlobalFeas only checks feasibility, as described in Section 4.1, and
GlobalGAC ensures GAC, as described in Section 4.2. In both cases, we use the min-
Dom/wdeg variable ordering heuristic [8].

The second model, denoted Enum1 Advanced, is introduced in [12] (and is more
efficient than the model of [13]). It is obtained from Fig. 2 by replacing (A3) and (A4)
with their sum6=1 encodings, and by adding a constraint derived from a property of Mix-
Columns called the Maximum Distance Separable (MDS) property. It further adds new
variables and constraints to remove Step2-inconsistent solutions by reasoning on equal-
ity relations between ∆j variables. This model is much more difficult to design than
Global. For this model, we report results obtained by Picat-SAT [28], which encodes
the problem into a SAT formula and then uses the SAT solver Lingeling [4]. We made
experiments with other CP solvers (such as Choco, Gecode or Chuffed, for example),
and we only report results obtained with Picat-SAT because it scales much better.

Models for Opt1+2. The problem described in Fig. 1 cannot be solved within a rea-
sonable amount of time (even for the smallest value of r) without decomposing it into
two steps, as described in Section 1. We consider two models for this two step pro-
cess. Opt1+2 Global simply merges Enum1 Global with the model of Fig. 1, and adds
a constraint which relates δj and ∆j variables, i.e., δj = 0 ⇔ ∆j = 0. Also, we add
a variable ordering heuristic to assign ∆j variables before δj variables. This model is
implemented in Choco 4.

Opt1+2 Advanced uses Enum1 Advanced to search for Step1 solutions. However, we
do not merge this model with the Step2 model of Fig. 1 and use a single solver to solve
the two steps because CP solvers like Choco cannot efficiently solve Enum1 Advanced
whereas SAT solvers like Lingeling cannot efficiently solve Step2 [14]. Hence, Opt1+2

Advanced uses Picat-SAT to solve Enum1 Advanced, and each time a Step1 solution s
is found, it uses Choco with the model of Fig. 1 to search for the best Step2 solution
associated with s. This process is stopped either when there is no more Step1 solution,
or when an optimal Step2 solution is found (i.e., a solution such that all Pi[b] variables
are assigned to −2 as this is the largest possible value).

Results. On the top row of Fig. 4, we display the number of choice points needed to
enumerate all Step1 solutions. GlobalGAC explores less choice points than GlobalFeas,
though the difference is very small for Midori64 when r ≥ 12.

In the middle row of Fig. 4, we display the CPU time spent to enumerate all Step1
solutions. For Midori64, the two Global variants have very similar times whereas, for
Midori128, GlobalGAC is faster than GlobalFeas. Advanced is much slower than Global.

In the bottom row of Fig. 4, we display the CPU time needed to solve the full MDC
problem. For Midori64, GlobalFeas and GlobalGAC have very similar results, and are
much faster than Advanced. For Midori128, GlobalGAC is faster than GlobalFeas, which
is faster than Advanced, especially when r increases.
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Fig. 4: Comparison of GlobalFeas ( ), GlobalGAC ( ), and Advanced ( ) for Midori.
The x-axis gives the number of rounds r, and the y-axis the number of choice points for Enum1

(up), and the run time for Enum1 (Middle) and for Opt1+2 (bottom). Times are in seconds.

5.2 Related-key MDC for AES

Description of the problem. Like Midori, AES iterates r rounds, and each round is
composed of four operations. However, AES computes a new sub-key at each round
according to a key schedule which combines XOR and SubBytes operations. Also, the
MixColumns operation is different and it combines XORs with a finite field multipli-
cation by constant coefficients. This multiplication is easily modelled at Step2 using
table constraints. However, it cannot be modelled at Step1 and constraint (A3) is re-
placed with the following constraints which are derived from the MDS property of
MixColumns (see [14] for more details):

∀i ∈ [0, r − 2],∀k ∈ [0, 3],

3∑
j=0

(∆Zi[k + 4j] +∆Yi[k + 4j]) ∈ {0, 5, 6, 7, 8}

∀i1, i2 ∈ [0, r − 2],∀k1, k2 ∈ [0, 3],

3∑
j=0

(xi1i2k1k2j + yi1i2k1k2j) ∈ {0, 5, 6, 7, 8}

where xi1i2k1k2j and yi1i2k1k2j are binary variables which are constrained as follows:

xi1i2k1k2j = 1⇔ δZi1 [k1 + 4j]⊕ δZi2 [k2 + 4j] 6= 0

yi1i2k1k2j = 1⇔ δYi1 [k1 + 4j]⊕ δYi2 [k2 + 4j] 6= 0

There exist three variants of AES, denoted AESl, where l ∈ {128, 192, 256} cor-
responds to the number of bits in the key. The key schedule depends on l whereas all
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Fig. 5: Comparison of GlobalFeas ( ), GlobalGAC ( ), and Advanced ( ) for AES. The
x-axis gives the number of rounds r, and the y-axis the number of choice points for Enum1 (up),
and the run time for Enum1 (Middle) and Opt1+2 (bottom). Times are in seconds.

other operations do not depend on l. For each key size l, we consider different values
for the number of rounds r, ranging from 3 to an upper bound which depends on MDC
probabilities: when increasing r, the probability decreases and it is useless to compute
MDCs whenever the log2 probability becomes smaller than −128.

Like in Section 5.1, we consider two problems: Enum1 aims at enumerating all
Step1 solutions, and Opt1+2 aims at finding the optimal MDC.

Models for Enum1. We consider two CP models. Global is derived in a straightforward
way from the definition of AES and the MDS property by replacing all XOR equations
with an abstractXOR global constraint. It is implemented with Choco 4, and we con-
sider two propagators (ensuring feasibility and GAC, respectively).

Advanced is the model introduced in [14] (which is more efficient than the ones
of [15] and [20]). It uses a preprocessing step to infer new XOR equations from the
key schedule, and it adds new variables and constraints to remove Step2-inconsistent
solutions by reasoning on equality relations between ∆j variables. This model is much
more difficult to design than Global. It is implemented with Picat-SAT.

Models for Opt1+2. Like in Section 5.1, Global solves the two steps with a single
model implemented with Choco 4 whereas Advanced enumerates Step1 solutions with
Picat-SAT and searches for optimal MDCs with Choco 4.

Results. On the top row of Fig. 5, we display the number of choice points needed to
enumerate all Step1 solutions. In most cases, GlobalFeas explores slightly more choice
points than GlobalGAC. However, for 5 instances of AES256, GlobalFeas explores slightly
less choice points than GlobalGAC. This is a bit surprising (as ensuring GAC is stronger



than ensuring feasibility) but not impossible as filtering has an impact on the variable
ordering heuristic.

In the middle row of Fig. 5, we display the time spent to enumerate all Step1 so-
lutions. In many cases, GlobalGAC is faster than GlobalFeas, but the difference is often
rather small. Advanced is slower than Global when r ≤ 3 (resp. 6 and 8) for AES128
(resp. 192 and 256), but it has better scale-up properties and it becomes faster for larger
values of r. In particular, Advanced is able to solve AES192 when r = 9 (resp. r = 10)
in 1,326s (resp. 31,611s) whereas Global is not able to complete the run within a time
limit of 200,000s.

In the bottom row of Fig. 5, we display the time needed to solve the full MDC
problem. The performance of the three approaches are rather similar to the one in the
middle row. However, for many instances the fact that the two steps are solved within a
single model improves the solution process. This is the case, for example, for AES128
when r = 5. In this case, there are 103 Step1 solutions. If Advanced is more efficient
than GlobalGAC to enumerate these solutions (1,694s for Advanced instead of 2,656s
for GlobalGAC), Advanced needs much more time to find the optimal MDC (76,103s
instead of 6,096s).

5.3 Experimental results for the single-key problem

In the single-key differential attack, differences are introduced only in the initial text
X0, and no difference is introduced in the key, i.e., δK = 0. Like for related-key, we
consider two problems: Enum1 (to enumerate all Step1 solutions), and Opt1+2 (to find
the optimal MDC). We also consider two block ciphers, i.e., Midori and AES. In all
cases, we consider Global and Advanced models, and these models are obtained from
related-key models by assigning 0 to all variables associated with the key.

CPU times are reported in Table 1. For AES, the problem is the same whatever the
length of the key (128, 192, or 256), as there is no difference in the key. For Midori,
Enum1 is the same whatever the length of the initial text (64 or 128) as bit sequences
are abstracted by Boolean values. However, Opt1+2 is different for Midori64 and Mi-
dori128. Surprisingly, single-key problems are much harder to solve than related-key
ones, though the size of the search space is smaller (as all variables associated with the
key are assigned to 0). This comes from the fact that the number of differences (defined
by the constant n in Fig. 2) is strongly increased: n is increased from 3 (resp. 4 and 5)
to 7 (resp. 16 and 23) when r = 3 (resp. 4 and 5) for Midori, and from 5 (resp. 12) to 9
(resp. 25) when r = 3 (resp. 4) for AES.

Results for Midori. Advanced finds much more Step1 solutions than Global: it finds 64
(resp. 4,908) solutions when r = 3 (resp. 4), whereas Global finds 16 (resp. 68) solu-
tions. Every solution found by Advanced and not by Global is Step2 inconsistent and
Advanced spends a lot of time to enumerate these useless solutions. Hence, Advanced is
not able to solve Midori within one hour when r > 3. When r = 4, Advanced is able to
solve Enum1 in 59,036s, but it is not able to solve Opt1+2 within a reasonable amount
of time because most Step1 solutions are Step2 inconsistent.

Global is able to solve up to r = 5 (resp. r = 4) for Midori64 (resp. Midori128).
Step2 is much harder for Midori128 than for Midori64 because differential variables



Enum1 Opt1+2

Midori 64 and 128 Midori64 Midori128
r GFeas GGAC Adv GFeas GGAC Adv GFeas GGAC Adv
3 0.6 0.6 8.7 0.7 0.6 11.1 1.3 8.1 12.5
4 22.4 8.0 - 17.6 11.1 - 434.9 290.5 -
5 2897.8 686.8 - 2608.1 689.7 - - - -

AES 128, 192, and 256
Enum1 Opt1+2

GFeas GGAC Adv GFeas GGAC Adv
3 1.3 0.7 7.5 1.1 1.0 55.0
4 - - - 1.2 1.4 -

Table 1: Single-Key results: Time (in seconds) needed by GlobalFeas (GFeas), GlobalGAC (GGAC),
and Advanced (Adv) for Midori (left) and AES (right). We report ‘-’ when time exceeds 3600s.

associated with the text take their values in [0, 255] for Midori128 and in [0, 16] for
Midori64. Ensuring GAC often pays off and GlobalGAC is faster than GlobalFeas, except
for Opt1+2/Midori128/r = 3.

Results for AES. When r = 3, both Enum1 and Opt1+2 are quickly solved, and Global
is an order faster than Advanced. When r = 4, there is a huge number of Step1 solutions
(we have enumerated 1,715,652 solutions within a 24 hour time limit with GlobalGAC,
and all these solutions are Step2 consistent). Hence, Global fails at enumerating all
Step1 solutions within a reasonable amount of time. However, when merging Step1 and
Step2 models to solve Opt1+2, we find an optimal solution in less than 2s (the optimality
proof is trivial because all Pi[b] variables are assigned to the largest possible value).

When r = 4, the probability of the optimal MDC is equal to 2−150, which is smaller
than 2−128. Hence, this MDC is useless to mount attacks. However, the fact that Global
is able to enumerate a huge number of Step1 solutions in a reasonable amount of time
opens new perspectives: we can search for a set of MDCs that share the same values in
the initial text δX0 and in the cipher text δXr, and combine these MDCs to find better
differentials.

6 Conclusion

We have introduced a new global constraint which eases the design of models for com-
puting MDCs: these models are straightforwardly derived from problem definitions.
This global constraint allows us to compute MDCs much faster than advanced models
(which are much more difficult to design and which combine SAT and CP solvers) for
single-key and related-key Midori, and for single-key AES. However, for related-key
AES, it fails at solving the two largest instances of AES192 within a reasonable amount
of time, and SAT has better scale-up properties for enumerating Step1 solutions. As
pointed out in [14], clause learning is a key ingredient for solving this problem, and
further work will aim at improving scale-up properties of Choco on this problem by
adding clause learning to Choco.

We believe our new global constraint opens promising perspectives for cryptographs,
and we aim at using it to solve new differential cryptanalysis problems such as those
studied in [9] or [27], and new symmetric block ciphers such as Skinny [3].
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