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The open question of whether a black hole can become tidally deformed by an external gravitational field
has profound implications for fundamental physics, astrophysics, and gravitational-wave astronomy. Love
tensors characterize the tidal deformability of compact objects such as astrophysical (Kerr) black holes
under an external static tidal field. We prove that all Love tensors vanish identically for a Kerr black hole in
the nonspinning limit or for an axisymmetric tidal perturbation. In contrast to this result, we show that Love
tensors are generically nonzero for a spinning black hole. Specifically, to linear order in the Kerr black hole
spin and the weak perturbing tidal field, we compute in closed form the Love tensors that couple the mass-
type and current-type quadrupole moments to the electric-type and magnetic-type quadrupolar tidal fields.
For a dimensionless spin ∼0.1, the nonvanishing quadrupolar Love tensors are ∼2 × 10−3, thus showing
that black holes are particularly “rigid” compact objects.
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Introduction.—The deformability of a self-gravitating
body under the effect of an external tidal field is a question
of central interest in gravitational physics. Such tidal deform-
ability can be characterized by a discrete set of tidal Love
numbers (TLNs) [1], the gravitational analog of the electric
susceptibility in electrodynamics. Importantly, the TLNs of a
self-gravitating body encode information about its internal
structure, such as its composition or equation of state [2–4].
Those numbers were first introduced by Love [5,6], in the
context of Newtonian gravitation, to describe the Earth’s
ocean tides due to its gravitational interactionwith theMoon.
They now play an important role in understanding the
internal structure of the planets of the Solar System [7,8],
and even of exoplanets such as WASP-103b [9] and the
TRAPPIST-1 system [10,11].
In the context of relativistic gravitation, current and future

gravitational-wave measurements of TLNs in binary inspi-
rals provide a novel way of testing the inspiraling compact
objects (neutron stars or black holes) and general relativity in
the regime of strong gravitational fields [12]. In events that
lead to the coalescence of two neutron stars, such as
GW170817 [13] and GW190425 [14], the tidal effects
become important for gravitational-wave frequencies of
around 600Hz, by accelerating the coalescence and affecting
the gravitational-wave phase. Those two events have been
used to set upper bounds on the tidal deformability of neutron
stars, thereby constraining their radii and equation of state at
supranuclear densities [14–18]. Some universal (i.e., equa-
tion-of-state independent) I-Love-Q [19] and I-Love-C [20]
relations between the neutron star moment of inertia, quad-
rupolar TLN, quadrupole moment, and compactness can be
used to lift degeneracies among parameters in gravitational-

wave signals, enhancing themeasurability of the tidal effects.
Over the coming decades, the observation by the planned
Laser Interferometer Space Antenna (LISA) mission [21] of
the gravitational-wave signals generated by the inspiral of
stellar-mass compact objects into massive black holes might
place constraints on the TLNs of the central body that are
roughly 8 orders of magnitude more stringent than current
ones on neutron stars [22].
It is widely accepted that all astrophysical black holes are

rotating and are thus described by the Kerr family [23,24] of
solutions of the Einstein field equation. Previous works on
the tidal deformability of black holes in general relativity
have shown that, differently from the Newtonian case, the
tidal field can be decomposed into two sectors, according to
their parity, often called electric and magnetic, and, impor-
tantly, that the TLNs of nonrotating black holes all vanish
under a static tidal field [25–29]. This conclusion was
extended to slowly rotating black holes, perturbatively in
the spin, for a weak and static quadrupolar tidal field: to
quadratic order for an axisymmetric quadrupole of electric-
type [30], and to linear order for a generic quadrupole [31].
Given those remarkable results, there appears to be a wide-
spread expectation that the vanishing of black hole static
TLNs extends to a generic rotating Kerr black hole in a
generic multipolar tidal environment, e.g., in [22,32–38]. In
this Letter wewill show that, on the contrary, the static TLNs
[39] of a Kerr black hole do not vanish in general. We show
this by fully calculating, for the first time, the induced
quadrupolemoments on aKerr black hole due to a static tidal
field. The details are given in [41].
Throughout this Letter we use units such that

G ¼ c ¼ 1, an overbar denotes the complex conjugation,
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we use the shorthand
P

lm ≡P∞
l¼2

P
l
m¼−l where l is the

multipolar index and m the azimuthal index, as well as the
notation L≡ i1;…; il for a multi-index made of l spatial
indices.
Newtonian Love.—Consider first an isolated, nonspin-

ning, spherical, Newtonian body of mass M and equilib-
rium radius R. For a weak and slowly varying external tidal
field, the induced mass multipole moments ILðtÞ are
proportional to the applied tidal moments ELðtÞ,

IL ¼ λlEL; ð1Þ
where λl is a constant. For instance, at quadrupolar order
the induced mass quadrupole Iij is proportional to the
quadrupolar tidal field Eij. This adiabatic approximation
holds as long as the typical timescales of the physical
processes responsible for adjusting the matter distribution
are much shorter than the typical timescale of variation of
the tidal environment itself. The tidal deformability param-
eter λl in (1) depends exclusively on the internal structure
of the body and scales as R2lþ1. Introducing the dimen-
sionless TLN kl associated with λl, defined via

kl ≡ −
ð2l − 1Þ!!
2ðl − 2Þ!

λl
R2lþ1

; ð2Þ

the gravitational potential of the tidally perturbed
Newtonian body can be expanded over spherical harmonics
Ylmðθ;ϕÞ according to [1]

U¼M
r
−
X
lm

ðl−2Þ!
l!

Elmrl
�
1þ2kl

�
R
r

�
2lþ1

�
Ylm; ð3Þ

where r is the Euclidean distance to the center of mass, and
the 2lþ 1 coefficients Elm are the spherical-harmonic
modes of the tidal moment EL. The growing term OðrlÞ
corresponds to the external 2l-polar tidal perturbation,
and the decaying term Oðr−l−1Þ to the body’s response,
proportional to the TLN kl.
Einsteinian Love.—In general relativity, the tidal envi-

ronment of a body is fully characterized by two families of
tidal moments: the electric-type and magnetic-type tidal
fields EL and BL. The former are the relativistic analogs of
the Newtonian tidal moments introduced above, while the
latter have no counterpart in Newtonian gravity. Similarly,
the multipolar structure of that body is now characterized
by two families of multipole moments: the mass-type and
current-type multipole moments ML and SL, which are
defined in a coordinate-independent manner for any
asymptotically flat, stationary solutions of the vacuum
Einstein equation [42,43].
From now on we consider a weak, stationary tidal

perturbation of a given compact body. The associated
perturbed metric is g

∘
αβ þ hαβ, where the background g

∘
αβ

is an exact solution of the Einstein equation and the linear
metric perturbation can be decomposed according to

hαβ ¼ htidalαβ þ hrespαβ : ð4Þ

Here, htidalαβ and hrespαβ are uniquely specified as the linearly
independent solutions of the linearized Einstein equation in
vacuum (outside the body) that have the appropriate
asymptotic behavior at large distances. In particular, the
growing solution htidalαβ is unambiguously associated with
the perturbing tidal field, while the decaying solution hrespαβ

is unambiguously associated with the corresponding linear

response of the body [44]. The perturbed metric g
∘
αβ þ hrespαβ

is an asymptotically flat, stationary solution of the linear-
ized Einstein equation in vacuum, and the corresponding
multipole moments are

ML ¼ M
∘
L þ δML; ð5aÞ

SL ¼ S
∘
L þ δSL; ð5bÞ

where a circle over a quantity indicates it is associated with

the background g
∘
αβ and a δ preceding that it is associated

with the linear response hrespαβ .
For a nonspinning compact object, the background metric

is spherically symmetric. By conservation of parity, the
body’s linear response contribution to themass-type (respec-
tively current-type) multipole moments can only couple to
the electric-type (respectivelymagnetic-type) tidalmoments,

δML ¼ λellEL and δSL ¼ λmag
l BL; ð6Þ

where the tidal deformability parameters λell and λmag
l are

constant. If R denotes the areal radius of the central body,
then its dimensionless gravitoelectric and gravitomagnetic
TLNs kell and kmag

l are defined as per the formula (2) above. If
the central object is spinning, however, then the spherical
symmetry of the backgroundmetric is broken. Consequently,
(i) the multipoles ðδML; δSLÞ and the tidal moments
ðEL;BLÞ cannot obey simple proportionality relationships
akin toEq. (6), (ii) the degeneracy of the azimuthal numberm
is lifted, (iii) fields with different parity can now mix, and
(iv) the spherical-harmonic modesMlm and Slm ofML and
SL can couple to modes El0m and Bl0m of EL and BL with
l0 ≠ l [41].
Quadrupole moments.—We consider a Kerr black hole

of mass M and spin angular momentum per unit mass a
embedded in a weak and stationary, but otherwise com-
pletely generic tidal environment. Hence, we work to linear
order in the weak tidal perturbation, so that the TLNs are

constants. Denoting by M
∘
lm ¼ M

∘
lδm0 and S

∘
lm ¼ S

∘
lδm0

the modes of, respectively, the mass-type and current-type
multipole moments of the axisymmetric Kerr background
spacetime, the multipole moments of the perturbed Kerr
geometry read as
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Mlm ¼ M
∘
lm þ λME

lmElm þ λMB
lm Blm; ð7aÞ

Slm ¼ S
∘
lm þ λSElmElm þ λSBlmBlm; ð7bÞ

where λME
lm , λ

MB
lm , λSElm, and λSBlm are the four families of Kerr

TLNs [30,40], which are complex valued. In here, we do
not include couplings between different l modes because,
as we shall show, such couplings are absent in our explicit
results for the quadrupole moments M2m and S2m.
We computed [44] the quadrupolar Kerr TLNs explicitly

up to linear order in the dimensionless spin parameter
χ ≡ a=M. For convenience, we introduce the symbol “≐”
for an equality that holds to that order. For any azimuthal
number jmj ≤ 2, the result simply reads

λME
2m ≐ λSB2m ≐

imχ

180
ð2MÞ5 and λMB

2m ≐ λSE2m ≐ 0: ð8Þ

The mass-type (respectively current-type) quadrupole
moment couples only to the electric-type (respectively
magnetic-type) quadrupolar tidal perturbation. The cou-
pling between ðE2m;B2mÞ and ðM2m; S2mÞ which arises
from (7) and (8) is akin to a Zeeman-like splitting propor-
tional to the azimuthal number m [40]. Remarkably, the
nonvanishing quadrupolar TLNs (8) are purely imaginary.
In the related context of nonstatic tidal perturbations of
nonspinning black holes [28,33,66], the imaginary part of
the linear response function is well known to give rise to
purely dissipative effects, such as tidal heating.
Equations (7)–(8) imply that a spinning black hole

becomes tidally deformed under the effect of a weak,
nonaxisymmetric, static tidal field. In particular, while in a
binary system, a spinning black hole falls in Love with its
companion. In the nonspinning limit (χ ¼ 0) or for an
axisymmetric tidal field (m ¼ 0), however, the TLNs in (8)
vanish, in agreement with the results in [25–30]. In fact, we
have extended those results to an arbitrarily spinning black
hole in a generic multipolar tidal environment, as we show
in [44]. Our results agree with the previous ones but there is
an apparent disagreement with Ref. [31], who found
vanishing black hole TLNs for a generic (nonaxisymmet-
ric) quadrupolar tidal perturbation. This disagreement is a
consequence of the use of different splits of the full
physical solution into tidal and response contributions.
As explained in [44], our tidal-response split relies on the
analytic continuation of l ∈ R, which allows us to identify
uniquely and unambiguously the two large-radius asymp-
totic behaviors to be matched onto the known Newtonian
solution, whereas the tidal-response split of Ref. [31] relies
on imposing smoothness of the (nonphysical) tidal solution
on the black hole horizon.
The event horizon “radius” of a slowly spinning Kerr

black hole is 2M½1þOðχ2Þ�. Therefore, by analogy with
the TLNs (2) introduced above for a spherical Newtonian
body, we define the dimensionless black hole TLNs
according to

kME
lm ≡ −

ð2l − 1Þ!!
2ðl − 2Þ!

λME
lm

ð2MÞ2lþ1
; ð9Þ

and similarly for the MB, SE, and SB couplings. These
TLNs generalize to slowly spinning black holes those for
nonspinning compact objects [25,26]. For a Kerr black hole
with spin χ ∼ 0.1, Eqs. (8) and (9) imply jkME

2;�2j ¼
jkSB2;�2j ∼ 2 × 10−3. This small number could be compared,
for instance, to the values kel2 ∼ 0.05 − 0.15 and jkmag

2 j ≲
6 × 10−4 of the gravitoelectric and gravitomagnetic quad-
rupolar TLNs of a nonspinning neutron star, depending on
the equation of state [25,26]. Hence, while spinning black
holes do deform like any self-gravitating body, they are
particularly “rigid” compact objects.
Tidal Love tensor.—Having related the spherical-har-

monic modes of the quadrupole moments to those of the
quadrupolar tidal moments, we now relate δMij and δSij to
Eij and Bij themselves. Multiplying Eq. (7) for l ¼ 2 by
Y2m, using Eq. (8), and summing over modes, we obtain
r̂ir̂jδMij ∝ r̂iϕ̂jEij and r̂ir̂jδSij ∝ r̂iϕ̂jBij, where the unit
angular vector ϕ̂ is orthogonal to the unit radial vector r̂.
Therefore, δMij and δSij cannot be simply proportional to
Eij and Bij, respectively. Rather, they must obey more
general tensorial relations of the form

δMij ¼
X
k;l

λijklEkl and δSij ¼
X
k;l

λijklBkl; ð10Þ

where the constant tensor λijkl ¼ OðχÞ is the quadrupolar
tidal Love tensor (TLT) of the Kerr black hole. Such a
complication with respect to the nonspinning case [25,26]
stems from the fact that the black hole spin breaks the
spherical symmetry of the background spacetime. Using
Eq. (8), an explicit calculation shows that the quadrupolar
Kerr black hole TLT is given by

ðλijklÞ ≐
χ

180
ð2MÞ5

0
B@

I11 I12 I13
I12 −I11 I23
I13 I23 0

1
CA; ð11Þ

where we introduced the four symmetric and trace-free
matrices

I11 ≡
0
B@

0 1 0

1 0 0

0 0 0

1
CA; I12 ≡

0
B@

−1 0 0

0 1 0

0 0 0

1
CA;

I13 ≡
0
B@

0 0 0

0 0 1
2

0 1
2

0

1
CA; I23 ≡

0
B@

0 0 − 1
2

0 0 0

− 1
2

0 0

1
CA; ð12Þ

and with the understanding that the first pair of indices in
λijkl indicates one of these 3 × 3 matrices and the second
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pair refers to an element within it. After rewriting this
quadrupolar TLT in a more geometrical form, the tidally
induced quadrupole moments (10) of a Kerr black hole
explicitly read

δMij ≐
χ

90
ð2MÞ5

X
k;l

Ek
ðiεjÞklŝ

l; ð13aÞ

δSij ≐
χ

90
ð2MÞ5

X
k;l

Bk
ðiεjÞklŝ

l; ð13bÞ

where parentheses around indices denote symmetrization
with respect to those indices, ŝl is a unit vector parallel to
the black hole spin, and εijk is the totally antisymmetric
Levi-Civita symbol with ε123 ¼ þ1. The tidally induced
quadrupoles (13) are compatible with the known tidal
torquing of a Kerr black hole interacting with a tidal
gravitational environment [41,67].
Let us consider here the specific but important case that

the quadrupolar tidal field Eij is sourced by a static particle
of mass μ ≪ M a distance r ≫ M away from the black
hole, in the direction r̂. Then, in the Newtonian limit, the
formulas (10)–(13) imply

ðδMijÞ ≐
χ

60
ð2MÞ5 μ

r3
½r̂ ⊗ ðŝ × r̂Þ þ ðŝ × r̂Þ ⊗ r̂�; ð14Þ

where × denotes the cross product and ⊗ the tensor
product. If the particle lies along the axisymmetry axis
of the background Kerr geometry (above one of the poles),
then ŝ × r̂ ¼ 0 and δMij vanishes, in agreement with the
vanishing of the TLNs (8) for an axisymmetric tidal
perturbation. If the particle lies on the equatorial plane,
then ðδMijÞ ∝ r̂ ⊗ ϕ̂þ ϕ̂ ⊗ r̂, which is the gravitational
analog of the quadrupole moment tensor obtained by
setting four electric charges with alternating signs at the
corners of a square centered at the origin and whose four
sides are tangent to the directions r̂ and ϕ̂. Interestingly, the
purely imaginary TLNs in (8) and the induced mass
quadrupole moment (14) suggest that the black hole tidal
bulge is rotated by 45∘ with respect to the quadrupolar tidal
perturbation, which may be interpreted as a “tidal lag.”
Speculation.—As suggested by this tidal lag and as

argued in Ref. [66], the purely imaginary TLNs (8) may
give rise to dissipative effects only, such as the Kerr tidal
torquing discussed in Ref. [41]. However, under the
assumption that the induced quadrupole moments (13)
also give rise to conservative effects, there is the exciting
prospect that the planned space-based gravitational-wave
observatory LISA [21] might be able to detect this specific
tidal polarization. One of the main sources for LISA is the
radiation-reaction driven inspiral of a stellar-mass compact
object of mass μ into a massive black hole of massM ≫ μ.
An order-of-magnitude estimate of the contributionΦtidal of
the black hole quadrupolar tidal deformability to the total

accumulated gravitational-wave phase in such an inspiral is
given by applying the formula (11) in Ref. [22], in which we
may tentatively use the typical value k1 ∼ jk22j ≐ χ=60
derived from (8) and (9) for a slowly rotating Kerr black
hole [68]. For instance, for a mass ratio M=μ ¼ 107 and a
Kerr black hole spin χ ¼ 0.1, this yields jΦtidalj≃
2 × 103 rad, much larger than the detectability threshold of
jΦtidalj > 1 rad.
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