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Abstract31

The methods to quantify equilibrium climate sensitivity are still debated. We collect32

millennial-length simulations of coupled climate models and show that the global mean equi-33

librium warming is higher than those obtained using extrapolation methods from shorter34

simulations. Specifically, 27 simulations with 15 climate models forced with a range of CO235

concentrations show a median 17% larger equilibrium warming than estimated from the first36

150 years of the simulations. The spatial patterns of radiative feedbacks change continu-37

ously, in most regions reducing their tendency to stabilizing the climate. In the equatorial38

Pacific, however, feedbacks become more stabilizing with time. The global feedback evo-39

lution is initially dominated by the tropics, with eventual substantial contributions from40

the mid-latitudes. Time-dependent feedbacks underscore the need of a measure of climate41

sensitivity that accounts for the degree of equilibration, so that models, observations, and42

paleo proxies can be adequately compared and aggregated to estimate future warming.43

1 Estimating equilibrium climate sensitivity44

The equilibrium climate sensitivity (ECS) is defined as the global- and time-mean,45

surface air warming once radiative equilibrium is reached in response to doubling the atmo-46

spheric CO2 concentration above pre-industrial levels. It is by far the most commonly and47

continuously applied concept to assess our understanding of the climate system as simulated48

in climate models and it is used to compare models, observations, and paleo-proxies (Knutti49

et al., 2017; Charney et al., 1979; Houghton et al., 1990; Stocker, 2013). Due to the large50

heat capacity of the oceans, the climate system takes millennia to equilibrate to a forcing,51

but performing such a long simulation with a climate model is often computationally not52

feasible. As a result, many modeling studies use extrapolation methods on short, typically53

150-year long, simulations to project equilibrium conditions (Taylor et al., 2011; Andrews54

et al., 2012; Collins et al., 2013; Otto et al., 2013; Lewis & Curry, 2015; Andrews et al.,55

2015; Forster, 2016; Calel & Stainforth, 2017). These so-called effective climate sensitiv-56

ities (Murphy, 1995; Gregory et al., 2004) are often reported as ECS values (Hargreaves57

& Annan, 2016; Tian, 2015; Brient & Schneider, 2016; Forster, 2016). Research provides58

evidence for decadal-to-centennial changes of feedbacks (e.g., Murphy (1995); Senior and59

Mitchell (2000); Gregory et al. (2004); Winton et al. (2010); Armour et al. (2013); Prois-60

tosescu and Huybers (2017); Paynter et al. (2018)) but the behavior on longer timescales has61
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Figure 1. Evolution of global and annual mean top of the atmosphere (TOA) imbalance and

surface temperature anomalies (14 small panels). The first 150 years of step forcing simulations

are depicted in light gray. For experiments which are not step forcing simulations only the period

after stabilizing CO2 concentrations is shown. The black line shows the linear regression of TOA

imbalance and surface warming for the last 15% of warming. The panel on the lower right shows the

ratio ∆Tbest est / ∆Test 1−150, see text for definitions. A dot at the lower end of the bar indicates

with 90% confidence that ∆Tbest est and ∆Test 1−150 obtained by resampling 10,000 times do not

overlap. The gray hashed bar in the background is the median of all simulations (1.17). FAMOUS

abrupt4x ends outside of the depicted range at 1.53. Table 1 specifies the model versions and names,

length of simulations, and numerical values for different climate sensitivity estimates.
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not been compared among models. Here, we utilize LongRunMIP, a large set of millennia-62

long coupled general circulations models (GCMs) to estimate the true equilibrium warming,63

study the centennial-to-millennial behavior of the climate system under elevated radiative64

forcing, and test extrapolation methods. LongRunMIP is a model intercomparison project65

(MIP) of opportunity in that its initial contributions were preexisting simulations, without66

a previously agreed upon protocol. The minimum contribution is a simulation of at least67

1000 years with a constant CO2 forcing level. The collection consists mostly of doubling or68

quadrupling step forcing simulations (“abrupt2x”, “abrupt4x”, ...) as well as annual incre-69

ments of 1% CO2 increases reaching and sustaining doubled or quadrupled concentrations70

(“1pct2x”, “1pct4x”). Table 1 lists the simulations and models used here, while M. Rugen-71

stein et al. (2019) documents the entire modeling effort and each contribution in detail.72

The equilibration of top of the atmosphere (TOA) radiative imbalance and surface73

temperature anomaly of the simulations are depicted in Fig. 1. Throughout the manuscript,74

we show anomalies as the difference to the mean of the unforced control simulation with75

pre-industrial CO2 concentrations. Light gray dots indicate annual means of the first 15076

years of a step forcing simulation, requested by the Coupled Model Intercomparison Project77

Phase 5 and 6 protocols (CMIP5 and CMIP6; Taylor et al. (2011); Eyring et al. (2016))78

and widely used to infer ECS (Andrews et al., 2012; Geoffroy, Saint-Martin, Olivié, et al.,79

2013). We refer to this timescale as “decadal to centennial”. Colors indicate the “centen-80

nial to millennial” timescale we explore here. The diminishing distances to the reference81

line at TOA = 0 indicate that most simulations archive near-equilibrium by the end of the82

simulations. However, even if a simulation has an equilibrated TOA imbalance of near zero,83

the surface temperature, surface heat fluxes, or ocean temperatures can still show a trend84

(discussed in M. Rugenstein et al. (2019)).85

Throughout the manuscript, we use “∆T[specification]” for a true or estimated equilib-86

rium warming, for a range of forcing levels not only CO2 doubling (Table 1). We define the87

best estimate of equilibrium warming, ∆Tbest est, as the temperature-axis intersect of the88

regression of annual means of TOA imbalance and surface temperature anomaly over the89

simulations’ final 15% of global mean warming (black lines in Fig. 1). The lower right panel90

in Fig. 1 illustrates that all simulations eventually warm significantly more (measured by91

∆Tbest est) than predicted by the most commonly used method to estimate the equilibrium92

temperature by extrapolating a least-square regression of the first 150 years of the same step93

forcing simulation (Gregory et al., 2004; Flato et al., 2013), denoted here as “∆Test 1−150”.94
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For simulations that have gradual forcings (e.g., 1pct2x ), we use 150 year long step forcing95

simulations of the same model to calculate ∆Test 1−150. The median increase of ∆Tbest est96

over ∆Test 1−150 is 17% for all simulations and 16% for the subset of CO2 doubling and qua-97

drupling simulations. While ∆Test 1−150 implies a constant feedback parameter (the slope98

of the regression line), other extrapolation methods allow for a time-dependent feedback pa-99

rameter, but still typically underestimate ∆Tbest est: Using years 20-150 in linear regression100

(∆Test 20−150; e.g.,Andrews et al. (2015); Armour (2017)) results ina median equilibrium101

warming estimate which is 7% lower than ∆Tbest est, both for all simulations and the subset102

of CO2 doubling and quadrupling. The two-layer model including ocean heat uptake efficacy103

(∆TEBM−ε; e.g., Winton et al. (2010); Geoffroy, Saint-Martin, Bellon, et al. (2013)) results104

in a multi model median equilibrium warming estimate which is 9% lower then ∆Tbest est,105

again both for all simulations and the subset of CO2 doubling and quadrupling. Both meth-106

ods are described and illustrated in the supplemental material.107

∆Tbest est of any forcing level can be scaled down to doubling CO2 levels to estimate108

equilibrium warming for CO2 doubling. We do so by assuming that the temperature scales109

with the forcing level, which depends logarithmically on the CO2 concentration (Myhre et110

al., 1998), and assuming no feedback temperature dependence (e.g. Mauritsen et al. (2018)111

and Rohrschneider et al. (2019), see discussion below). The estimate of equilibrium warm-112

ing for CO2 doubling range from 2.42 to 5.83 K (excluding FAMOUS abrupt4x at 8.55K;113

see Table 1 and Fig. 1). Note that the simulation abrupt4x of the model FAMOUS warms114

anomalously strongly. As this simulation represents a physically possible result, we do not115

exclude it from the analysis (see more details in SM Section 4). The results are qualitatively116

the same if ∆Tbest est is defined by regressing over the last 20% instead of 15% of warming117

or instead time averaging the surface warming toward the end of every simulation without118

taking the information of the TOA imbalance into account. SM Section 1 discusses different119

options and choices to determine ∆Tbest est.120

2 Global feedback evolution121

Current extrapolation methods underestimate the equilibrium response because climate122

feedbacks change with the degree of equilibration (Murphy, 1995; Senior & Mitchell, 2000;123

Andrews et al., 2015; Knutti & Rugenstein, 2015; M. A. A. Rugenstein, Caldeira, & Knutti,124

2016; Armour, 2017; Proistosescu & Huybers, 2017; Paynter et al., 2018). We define the125

global net TOA feedback as the local tangent in temperature-TOA space (δTOA/δT) com-126

–5–



manuscript submitted to Geophysical Research Letterstim
e

a) Time evolution of feedbacks in four models

time (yr) time (yr)

Fe
ed

ba
ck

 p
ar

am
et

er
 (W

m
-2

K-
1 )

b) Feedback components for different time periods

Fe
ed

ba
ck

 p
ar

am
et

er
 (W

m
-2

K-
1 )

year 1-20

year 21-150

year 151 - 1000

Figure 2. a) Time evolution of global feedbacks in four characteristic models. Net TOA feed-

back (gray) is the sum of its components: the cloud effects in the shortwave (red) and longwave

(blue), and clear sky feedbacks in the shortwave (salmon) and longwave (light blue). Circles at

the right of each panel indicate the feedbacks arising from internal variability; shading and vertical

lines shows the 2.5-97.5% confidence intervals. Panel titles give the model name and length of the

simulation. Time periods of 1-20 years and 150-1000 years are shaded gray. (b) Feedback evolution

in the step forcing simulations of CCSM3, CESM104, CNRMCM6, ECHAM5MPIOM, FAMOUS,

GISSE2R, HadCM3L, HadGEM2, IPSLCM5A, MPIESM11, and MPIESM12, see Table 1 for nam-

ing convention. Lines show all simulations, dots represent median values and bars spans all but

the two highest and two lowest simulations. SM Fig. 4 and 5 show the feedback evolution for all

available simulations.
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puted by a least square regression of all global and annual means of netTOA imbalance and127

surface temperature anomaly within a temperature bin, which is moved in steps of 0.1 K128

throughout the temperature space to obtain the continuous local slope of the point cloud129

(sketched out in SM Fig. 2a). We decompose the net TOA imbalance into its clear sky and130

cloud radiative effects (CRE; e.g., Wetherald and Manabe (1988); Soden and Held (2006);131

Ceppi and Gregory (2017)) in the shortwave and longwave (Fig. 2a). The feedbacks change132

continuously – not on obviously separable timescales – in some models more at the begin-133

ning of the simulations (e.g., CESM104), in some models after 150 years (e.g., GISSE2R) or,134

in some models, intermittently throughout the simulation (e.g., MPIESM11 or HadGEM2).135

The shortwave CRE dominates the magnitude and the timing of the net feedback change,136

and can be counteracted by the longwave CRE. The reduction of the shortwave clear sky137

feedback associated with ice albedo, lapse rate, and water vapor is a function of tempera-138

ture and occurs on centennial to millennial timescales. Longwave clear sky changes, when139

present, contribute to the increase of the sensitivity with equilibration time and temperature.140

The net feedback parameter can be composed of a subtle balance of different components at141

any time and the forced signal is not obviously linked to the feedback arising from internal142

variability, defined by regressing all available annual and global means of TOA imbalance143

and surface temperature anomalies (relative to the mean) of the control simulations (circles144

in Fig. 2a; Roe (2009); Brown et al. (2014); Zhou et al. (2015); Colman and Hanson (2017)).145

Models which are more sensitive than other models – have feedbacks which are more146

positive – at the beginning of the simulation are generally also more sensitive towards the147

end. The model spread in the magnitude of feedbacks does not substantially reduce in time,148

while the feedback parameter change varies from negligible to an order of magnitude. We149

quantify the continuous changes across models by considering different time periods, namely150

years 1-20, 21-150, and 151-1000 (Fig. 2b), in each of which we regress all points. In addition151

to the increase of the feedback parameter between years 1-20 and 21-150, which has been152

documented for CMIP5 models (Geoffroy, Saint-Martin, Bellon, et al., 2013; Andrews et153

al., 2015; Proistosescu & Huybers, 2017; Ceppi & Gregory, 2017), there is a further increase154

from centennial to millennial timescales.155

Previous research has shown that the change in feedbacks over time can come about156

through a dependence of feedback processes on the increasing temperature (Hansen et al.,157

1984; Jonko et al., 2013; Caballero & Huber, 2013; Meraner et al., 2013; Bloch-Johnson et158

al., 2015), due to evolving surface warming patterns and feedback processes (“pattern effect”;159
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Figure 3. Multi-model mean normalized patterns of surface warming (local warming divided by

global warming) between the average of (a) the control simulation and year 15-25, (b) year 15-25

and 140-160, (c) year 140-160 and 800-1000, and their differences (d and e) for the same models and

simulations as in Fig. 2b. For models contributing several simulations, these are averaged. Stippling

in panel d and e indicates that 9 out of 11 models agree in the sign of change.

Senior and Mitchell (2000); Winton et al. (2010); Armour et al. (2013); M. A. A. Rugenstein,160

Gregory, et al. (2016); Gregory and Andrews (2016); Haugstad et al. (2017); Paynter et al.161

(2018)), or both at the same time (Rohrschneider et al., 2019). There is no published method162

which clearly differentiates between time/pattern and temperature/state dependence and163

simulations with several forcing levels are needed to disentangle them. The relationship164

between forcing and CO2 concentrations is a matter of debate (Etminan et al., 2016) and165

further complicates the analysis, as time, temperature, and forcing level dependence might166

compensate to some degree (Gregory et al., 2015). As not all models contributed several167

forcing levels, we focus in the following on robust pattern changes in surface temperatures168

and feedbacks, which occur in most or all simulations irrespective of their overall tempera-169

ture anomaly or forcing level.170

3 Pattern evolution of surface warming and feedbacks171

The evolution of surface warming patterns during the decadal, centennial, and mil-172

lennial periods displays a fast establishment of a land-sea warming contrast, Arctic am-173

plification, and the delayed warming over the Southern Ocean that have been studied on174

annual to centennial timescales (Fig. 3; Senior and Mitchell (2000); Li et al. (2013); Collins175

et al. (2013); Armour et al. (2016)). Arctic amplification does not change substantially,176
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22%
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Figure 4. Time evolution of feedback patterns. Model-mean of local contribution to the change

in global feedbacks (local TOA anomaly divided by global warming during the period indicated

in the panel titles; see text for definitions) (a–c) and their differences (d, e). The global feedback

value is shown in the panel title. Regionally aggregated contributions to the global values are

indicated with percent numbers and gray triangles (22◦S-22◦N, 22◦S/N-66◦S/N, 66◦S/N-90◦S/N,

representing 40%, 27%, and 4% of the global surface area respectively). Model and simulations

selection, weighting, and stippling is the same as in Fig. 3. SM Fig. 6–12 shows all TOA components.

whereas Antarctic amplification strengthens by approximately 50% on centennial to millen-177

nial timescales (Salzmann, 2017; M. Rugenstein et al., 2019). The warming in the northern178

North Atlantic reflects the strengthening of the Atlantic meridional overturning circulation,179

after the initial decline (Stouffer & Manabe, 2003; Li et al., 2013; M. A. A. Rugenstein,180

Sedláček, & Knutti, 2016; Rind et al., 2018; Jansen et al., 2018).181

In the Pacific, at all times, the temperatures in absolute terms are higher in the West182

compared to the East Pacific. The eastern equatorial Pacific warms more than the warm183

pool in most simulations, a phenomenon reminiscent of the positive phase of the El-Niño-184

Southern-Oscillation (ENSO) (“ENSO-like warming” (Song & Zhang, 2014; Andrews et al.,185

2015; Luo et al., 2017; Tierney et al., 2019)). This tendency can last several millennia, but186

significantly reduces or stops in most simulations after a few hundred years. Similar to the187

Equatorial east Pacific, the south east Pacific warms more than the warm pool (Zhou et al.,188

2016; Andrews & Webb, 2018). However, models display a large variance in the timescales189

of warming in these two regions, i.e. the warm pool can initially warm faster or slower than190

the south east Pacific.s Across the Pacific, the change in surface warming pattern is reminis-191

cent of the Interdecadal Pacific Oscillation (IPO; Fig. 3d). In many models, the reduction192
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of the Walker circulation coincides with the decadal to centennial ENSO/IPO-like warming193

pattern, but it does not obviously coincide with surface warming pattern changes on the194

millennial timescale, indicating that subtropical ocean gyre advection and upwelling play a195

more prominent role on longer timescales (Knutson & Manabe, 1995; Song & Zhang, 2014;196

Fedorov et al., 2015; Andrews & Webb, 2018; Luo et al., 2017; Zhou et al., 2017; Kohyama197

et al., 2017). The mechanisms and spread of model responses in the Pacific are still under198

investigation.199

Feedbacks defined as the local tangent in temperature-TOA space as used in Fig. 2a200

contain a signal from both the internal variability and the forced response. In order to201

isolate the forced response, we take the difference of the means at the beginning and end of202

the time periods discussed above. We call this definition of feedbacks the finite difference203

approach, as it represents a change across a time period (SM Fig. 2b). Fig. 4 shows the local204

contribution to the global net TOA changes (defined as the local change in TOA imbalance205

divided by the global temperature change.) for the same time periods and models as used in206

Fig. 3. In the initial years, the atmosphere restores radiative balance through increased ra-207

diation to space almost everywhere, except in the western-central Pacific (Fig. 4a), whereas208

on decadal to centennial timescales, the structure of the feedbacks mirrors the surface tem-209

perature evolution and develops a pattern reminiscent of ENSO/IPO (Fig. 4b). The cloud210

response dominates the pattern change, although for CMIP5 models, changes on decadal211

and centennial timescales have been attributed to changing lapse rate feedbacks as well (SM212

Fig. 6-8 and Andrews et al. (2015); Andrews and Webb (2018); Ceppi and Gregory (2017)).213

For the millennial timescales, our models show that feedbacks become less negative almost214

everywhere, switching from slightly negative to positive in parts of the Southern Ocean and215

North Atlantic region, and become less destabilizing in the Tropical Pacific (Fig. 4c). The216

feedback pattern change from decadal to centennial timescales (Fig. 4d) is reversed in many217

regions on centennial to millennial timescales (Fig. 4e), particularly in the entire Pacific218

basin, the Atlantic, and parts of Asia and North America. This “pattern flip” is dominated219

by longwave CRE (SM Fig. 8) and mirrors, in the Pacific, the reduction in ENSO/IPO-like220

surface warming patterns discussed for the surface temperature evolution.221

Note that the local temperature is not part of the calculation of the local contribution222

in feedback changes. Due to the far-field effects of local feedbacks (e.g., Rose et al. (2014);223

Kang and Xie (2014); M. A. A. Rugenstein, Caldeira, and Knutti (2016); Zhou et al. (2016,224

2017); Ceppi and Gregory (2017); Liu et al. (2018); Dong et al. (2019)), the relation between225
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the local feedback contribution (Fig. 4) and the local temperatures (Fig. 3) is not straight-226

forward. There is strong correspondence between changes of TOA fluxes and temperature227

patterns in the Pacific on decadal to millennial timescales: Stronger (weaker) local warming228

coincides with a more positive (negative) local feedback contribution. However, there is229

no clear correspondence directly after the application of the forcing, or over land and the230

Southern Ocean through time. SM Fig. 13 and 14 show overlays of Fig. 3 and 4 for a better231

comparison. A local correspondence does not necessarily indicate a strong local feedback232

(i.e. local TOA divided by local surface temperature change), as both the local TOA and233

the surface in one region could be forced by another region. A closer investigation of local234

and far-field influence of feedbacks is under investigation (Bloch-Johnson et al., in revision).235

Although the spatial patterns of changing temperature and radiative feedbacks vary236

among models, the large scale features discussed here occur robustly across most models237

and forcing levels, and also occur in the 1pct2x and 1pct4x simulations, which are not238

included in the figures.239

4 Regions accounting for changing global feedbacks240

We quantify the contribution of the tropics, extra-tropics, and polar regions to the241

global feedback change (Fig. 4d,e) by adding up all feedback contributions of the respective242

areas indicated by the gray triangles and expressing them as percentages of the total. We243

note that the total is the global feedback parameter, i.e., the slope of the point clouds in244

Fig. 1 which is indicated on the top right of each panel. These percentages reflect the role245

played by TOA fluxes in each region, which is not the same as the role played by surface246

warming in each region, as noted above. Whereas the tropics account for the bulk of the247

change (58% on decadal to centennial and 47% on centennial to millennial timescales), the248

mid-latitudes become more important with time (Northern and Southern Hemisphere com-249

bined for 41% on decadal to centennial and for 66% on centennial to millennial timescales).250

The high latitudes, dominated by the shortwave clear sky feedback (SM Fig. 12), play only251

a minor role in influencing the global response at all timescales. The regional accounting252

of global feedback changes permits us to test competing explanations regarding the spatial253

feedback pattern by placing them in a common temporal framework. Primary regions con-254

trolling the global feedback evolution have been suggested to be the Southern Hemisphere255

mid to high latitudes (Senior & Mitchell, 2000), the Northern Hemisphere subpolar regions256

(Rose & Rayborn, 2016; Trossman et al., 2016), and the Tropics (Jonko et al., 2013; Mer-257
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aner et al., 2013; Block & Mauritsen, 2013; Andrews et al., 2015; Ceppi & Gregory, 2019),258

especially in the Pacific (Andrews & Webb, 2018; Ceppi & Gregory, 2017).259

The simulations robustly shows a delayed warming in the Southern Hemisphere relative260

to the Northern Hemisphere throughout the millennia-long integrations, which correlates261

with the time evolution of net TOA and shortwave CRE (not shown). This behavior lends262

support to the hypothesis of Senior and Mitchell (2000) who propose that feedbacks change263

through time due to the slow warming rates of the Southern Ocean relative to the upper264

atmospheric levels. This reduced lapse rate increases atmospheric static stability (and thus,265

the shortwave cloud response) in the transient part of the simulation, but decreasingly less266

so towards equilibrium.267

The extra-tropical cloud response in the model-mean is non-negligible in the Southern268

Ocean and North Atlantic on decadal to centennial timescales, as proposed by Rose and269

Rencurrel (2016) and Trossman et al. (2016). However, it comes to dominate the global270

response only on centennial to millennial timescales and when both hemispheres are consid-271

ered.272

We find that the longwave clear sky feedback does moderately increase in many mod-273

els as the temperature or the forcing level increases, mainly in the tropics and Northern274

Hemisphere mid-latitudes (Fig. 2a, SM Fig. 4, SM Fig. 5). This is in accordance with the275

proposed argument that the tropics govern the global feedback evolution because the water276

vapor feedback increases with warming (Jonko et al., 2013; Meraner et al., 2013; Block &277

Mauritsen, 2013; Andrews et al., 2015), possibly following the rising tropical tropopause278

(Meraner et al., 2013; Mauritsen et al., 2018).279

Recent work has focused on the relative influence of the Pacific, specifically the relative280

influence of temperatures of the warm pool versus compared to other regions. Feedbacks in281

regions of atmospheric deep convections have a far-field and global effect, while feedbacks282

in regions of atmospheric subsidence have only a local or regional influence (Barsugli &283

Sardeshmukh, 2002; Zhou et al., 2017; Andrews & Webb, 2018; Ceppi & Gregory, 2019;284

Dong et al., 2019). With the available fields in the LongRunMIP archive, we cannot quan-285

tify the relative importance of water vapor and lapse rate feedbacks. However, the short and286

longwave cloud response (SM Fig. 6–8) in the models qualitatively agree with the proposed287

change of tropospheric stability patterns on decadal to centennial timescales (Andrews &288

Webb, 2018; Ceppi & Gregory, 2017), especially in the Pacific region. In contrast, on centen-289
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nial to millennial timescales, the tropical Pacific response becomes less important compared290

to the mid-latitudes and the net tropical CRE does not change anymore (SM Fig. 6).291

5 Implications292

We demonstrate that the evolution of the global feedback response is dominated by the293

mid-latitudes on centennial to millennial and the tropics on decadal to centennial timescales.294

The global net feedback change is a result of a subtle balance of different regions and different295

TOA components at all times; even more so in single simulations than in the model mean296

shown here. This motivates process-based feedback studies in individual models as well297

as multi-model ensembles to draw robust conclusions and increase physical understanding298

of processes. To relate the timescales and model behavior to the observational record and299

paleo proxies a better understanding of a) the atmospheric versus oceanic drivers of surface300

temperature patters in both, the coupled climate models and the real world and b) the local301

and far field interactions of tropospheric stability, clouds, and surface temperatures need302

to be achieved. Note that climate models have typical and persistent biases in regions we303

identify as important, mainly the Equatorial Pacific, Southern Ocean and ocean upwelling304

regions. The pattern effect of the real world might act on timescales which are different305

than the ones of the climate models.306

Our results show that radiative feedbacks, usually called “fast”, act continuously less307

stabilizing on the climate system as the models approach equilibrium. As a result, the308

equilibrium warming is higher than estimated with common extrapolation methods from309

short simulations for all models and simulations in the LongRunMIP archive. ECS has310

been historically used as a model characterization (Charney et al., 1979), but some studies311

propose that it is not the most adequate measure for estimating changes expected over the312

next decades and until the end of the century (e.g., Otto et al. (2013); Shiogama et al. (2016);313

Knutti et al. (2017)). Alternative climate sensitivity measures are the effective climate314

sensitivity computed on different timescales, the transient climate response to gradually315

increasing CO2 (TCR), or the transient climate response to cumulative carbon emissions316

(e.g., Allen and Frame (2007); Millar et al. (2015); Gregory et al. (2015); Grose et al. (2018)).317

Beyond not being an accurate indicator of the equilibrium response, these alternative climate318

sensitivity measures capture the models in different degrees of equilibration. We show that319

it is an open question how different measures of sensitivity relate to each other. A recent320

study shows that ∆Test 1−150 correlates better than TCR with end-of-21st-century warming321
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across model (Grose et al. (2018), see also Gregory et al. (2015)). Thus, we underscore322

the need of comparing models, observations, and paleo proxies on well-defined measures of323

climate sensitivity, which ensure they are in the same state of equilibration.324
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Transient Climate Response in a Two-Layer Energy-Balance Model. Part II: Rep-431

resentation of the Efficacy of Deep-Ocean Heat Uptake and Validation for CMIP5432

AOGCMs. Journal of Climate, 26 (6), 1859–1876. Retrieved from http://dx.doi433

.org/10.1175/JCLI-D-12-00196.1434
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