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The main goal of this paper is to describe an axiomatic utility theory for Dempster-Shafer belief function lotteries. The axiomatic framework used is analogous to von Neumann-Morgenstern's utility theory for probabilistic lotteries as described by Luce and Raiffa. Unlike the probabilistic case, our axiomatic framework leads to interval-valued utilities, and therefore, to a partial (incomplete) preference order on the set of all belief function lotteries. If the belief function reference lotteries we use are Bayesian belief functions, then our representation theorem coincides with Jaffray's representation theorem for his linear utility theory for belief functions. We illustrate our representation theorem using some examples discussed in the literature, and we propose a simple model for assessing utilities based on an interval-valued pessimism index representing a decision-maker's attitude to ambiguity and indeterminacy. Finally, we compare our decision theory with those proposed by Jaffray, Smets, Dubois et al., Giang and Shenoy, and Shafer. 

Introduction

The main goal of this paper is to propose an axiomatic utility theory for lotteries described by belief functions in the Dempster-Shafer (D-S) theory of evidence [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF][START_REF] Shafer | A Mathematical Theory of Evidence[END_REF]. The axiomatic theory is constructed similar to von Neumann-Morgenstern's (vN-M's) utility theory for probabilistic lotteries [START_REF] Neumann | Theory of Games and Economic Behavior[END_REF][START_REF] Herstein | An axiomatic approach to measurable utility[END_REF][START_REF] Hausner | Multidimensional utilities[END_REF][START_REF] Luce | Games and Decisions: Introduction and Critical Survey[END_REF][START_REF] Jensen | An introduction to Bernoullian utility theory: A discussion[END_REF][START_REF] Fishburn | The Foundations of Expected Utility[END_REF]. Unlike the probabilistic case, our axiomatic theory leads to interval-valued utilities, and therefore to a partial (incomplete) preference order on the set of all belief function lotteries. Also, we compare our decision theory to those proposed by Jaffray [START_REF] Jaffray | Linear utility theory for belief functions[END_REF], Smets [START_REF] Smets | Decision making in a context where uncertainty is represented by belief functions[END_REF], Dubois et al. [START_REF] Dubois | On the possibilistic decision model: from decision under uncertainty to case-based decision[END_REF], Giang and Shenoy [START_REF] Giang | Two axiomatic approaches to decision making using possibility theory[END_REF][START_REF] Giang | A decision theory for partially consonant belief functions[END_REF], and Shafer [START_REF] Shafer | Constructive decision theory[END_REF].

In the foreword to Glenn Shafer's 1976 monograph [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF], Dempster writes: "... I believe that Bayesian inference will always be a basic tool for practical everyday statistics, if only because questions must be answered and decisions must be taken, so that a statistician must always stand ready to upgrade his vaguer forms of belief into precisely additive probabilities." More than 40 years after these lines were written, a lot of approaches to decision-making have been proposed (see the recent review in [START_REF] Denoeux | Decision-making with belief functions: A review[END_REF]). However, most of these methods lack a strong theoretical basis. The most important steps toward a decision theory in the D-S framework have been made by Jaffray [START_REF] Jaffray | Linear utility theory for belief functions[END_REF], Smets [START_REF] Smets | Decision making in a context where uncertainty is represented by belief functions[END_REF] and Shafer [START_REF] Shafer | Constructive decision theory[END_REF]. However, we argue that these proposals are either not sufficiently justified from the point of view of D-S theory, or not sufficiently developed for practical use. Our goal is to propose and justify a utility theory that is in line with vN-M's utility theory, but adapted to be used with lotteries whose uncertainty is described by D-S belief functions.

In essence, the D-S theory consists of representations-basic probability assignments (also called mass functions), belief functions, plausibility functions, etc.-together with Dempster's combination rule, and a rule for marginalizing joint belief functions. The representation part of the D-S theory is also used in various other theories of belief functions. For example, in the imprecise probability community, a belief function is viewed as the lower envelope of a convex set of probability mass functions called a credal set. Credal set semantics are also referred to in the literature as lower probability interpretation [START_REF] Jaffray | Linear utility theory and belief functions: A discussion[END_REF][START_REF] Jaffray | Dynamic decision making with belief functions[END_REF][START_REF] Jaffray | Decision making with belief functions: Compatibility and incompatibility with the sure-thing principle[END_REF], and as generalized probability [START_REF] Fagin | A new approach to updating beliefs[END_REF][START_REF] Halpern | Two views of belief: Belief as generalized probability and belief as evidence[END_REF]. Using these semantics, it makes more sense to use the Fagin-Halpern combination rule [START_REF] Fagin | A new approach to updating beliefs[END_REF] (also proposed by de Campos et al. [START_REF] De Campos | The concept of conditional fuzzy measure[END_REF]), rather than Dempster's combination rule [START_REF] Halpern | Two views of belief: Belief as generalized probability and belief as evidence[END_REF][START_REF] Shafer | Perspectives on the theory and practice of belief functions[END_REF][START_REF] Shafer | Rejoinders to comments on "Perspectives on the theory and practice of belief functions[END_REF]. The utility theory this article proposes is designed specifically for the D-S belief function theory, and not for the other theories of belief functions. This suggests that Dempster's combination rule should be an integral part of our theory, a property that is not satisfied in the proposals by Jaffray and Smets.

There is a large literature on decision making with a (credal) set of probability mass functions [START_REF] Gilboa | Ambiguity and the Bayesian paradigm[END_REF] motivated by Ellsberg's paradox [START_REF] Ellsberg | Risk, ambiguity and the Savage axioms[END_REF]. An influential work in this area is the axiomatic framework by Gilboa-Schmeidler [START_REF] Gilboa | Maxmin expected utility with a non-unique prior[END_REF], where they use Choquet integration [START_REF] Choquet | Theory of capacities[END_REF][START_REF] Gilboa | Additive representations of non-additive measures and the Choquet integral[END_REF] to compute expected utility. A belief function is a special case of a Choquet capacity. Jaffray's [START_REF] Jaffray | Linear utility theory for belief functions[END_REF] work can also be regarded as belonging to the same line of research, although Jaffray works directly with belief functions without specifying a combination rule. A review of this literature can be found in, e.g., [START_REF] Gajdos | Attitude toward imprecise information[END_REF], where the authors propose a modification of the Gilboa-Schmeidler [START_REF] Gilboa | Maxmin expected utility with a non-unique prior[END_REF] axioms. As we said earlier, our focus here is on decision-making with D-S theory of belief functions, and not on decision-making based in belief functions with a credal set interpretation. As we will see, our interval-valued utility functions lead to intervals that are contained in the Choquet lower and upper expected utility intervals.

The remainder of this article is as follows. In Section 2, we sketch vN-M's axiomatic utility theory for probabilistic lotteries as described by Luce and Raiffa [START_REF] Luce | Games and Decisions: Introduction and Critical Survey[END_REF]. In Section 3, we summarize the basic definitions in the D-S belief function theory. In Section 4, we describe our adaptation of vN-M's utility theory for lotteries in which uncertainty is described by D-S belief functions. Our assumptions lead to an interval-valued utility function, and consequently, to a partial (incomplete) preference order on the set of all belief function lotteries. We also describe a model for assessments of utilities. In Section 5, we compare our utility theory with those described by Jaffray [START_REF] Jaffray | Linear utility theory for belief functions[END_REF], Smets [START_REF] Smets | Decision making in a context where uncertainty is represented by belief functions[END_REF], Dubois et al. [START_REF] Dubois | On the possibilistic decision model: from decision under uncertainty to case-based decision[END_REF], Giang and Shenoy [START_REF] Giang | Two axiomatic approaches to decision making using possibility theory[END_REF][START_REF] Giang | A decision theory for partially consonant belief functions[END_REF], and Shafer [START_REF] Shafer | Constructive decision theory[END_REF]. Finally, in Section 6, we summarize and conclude.

von Neumann-Morgenstern's Utility Theory

In this section, we describe vN-M's utility theory for decision under risk. Most of the material in this section is adapted from [START_REF] Luce | Games and Decisions: Introduction and Critical Survey[END_REF]. A decision problem can be seen as a situation in which a decision-maker (DM) has to choose a course of action (or act) in some set F. An act may have different outcomes, depending on the state of nature X. Exactly one state of nature will obtain, but this state is unknown. Denoting by Ω X = {x 1 , . . . , x n } the set of states of nature and by O = {O 1 , . . . , O r } the set of outcomes1 , an act can thus be formalized as a mapping f from Ω to O. In this section, we assume that uncertainty about the state of nature is described by a probability mass function (PMF) p X on Ω X . In vN-M's original exposition [START_REF] Neumann | Theory of Games and Economic Behavior[END_REF], probabilities on Ω X are assumed to be objective and to correspond to longrun frequencies. However, the line of reasoning summarized below is also valid with other interpretations of probabilities, such as additive degrees of belief, provided that probabilities are assumed to have been determined beforehand, independently of the decision problem. For instance, in the constructive approach proposed by Shafer [START_REF] Shafer | Constructive decision theory[END_REF], probabilities are constructed by comparing a given problem with a scale of examples in which the truth is generated according to known chances2 .

If the DM selects act f , they will get outcome O i with probability

p i = {x∈Ω X |f (x)=O i } p X (x). (1) 
To each act f thus corresponds a PMF p = (p 1 , . . . , p r ) on O. We call L = [O, p] a probabilistic lottery. As only one state in Ω X will obtain, a probabilistic lottery will result in exactly one outcome O i (with probability p i ), and we suppose that the lottery will not be repeated. Another natural assumption is that two acts that induce the same lottery are equivalent: the problem of expressing preference between acts then boils down to expressing preference between lotteries. We are thus concerned with a DM who has preferences on L, the set of all probabilistic lotteries on O, and our task is to find a real-valued utility function u : L → R such that the DM strictly prefers L to L if and only if u(L) > u(L ), and the DM is indifferent between L and L if and only if u(L) = u(L ). We write O i O j if the DM strictly prefers O i to O j , write O i ∼ O j if the DM is indifferent between (or equally prefers) O i and O j , and write O i O j if the DM either strictly prefers O i to O j or is indifferent between the two.

Of course, finding such a utility function is not always possible, unless the DM's preferences satisfy some assumptions. We can then construct a utility function that is linear in the sense that the utility of a lottery L = [O, p] is equal to its expected utility r i=1 p i u(O i ), where O i is regarded as a degenerate lottery where the only possible outcome is O i with probability 1. In the remainder of this section, we describe a set of assumptions that lead to the existence of such a linear utility function. Suppose that L = {L (1) , . . . , L (s) } is a set of s lotteries, where each of the s lotteries L j = [O, p (j) ] are over outcomes in O, with PMFs p (j) for j = 1, . . . , s. Suppose q = (q 1 , . . . , q s ) is a PMF on L such that q j > 0 for j = 1, . . . , s, and s j=1 q j = 1. Then [L, q] is called a compound lottery whose outcome is exactly one lottery L (i) (with probability q i ), and lottery L (i) will result in one outcome O j (with probability p (i) j ). Notice that the PMF p (i) is a conditional PMF for O in the second stage given that lottery L (i) is realized (with probability q i > 0) in the first stage (see Figure 1). We can compute the joint PMF for (L, O), and then compute the marginal p of the joint for O. The following assumption states that the resulting lottery [O, p] is indifferent to the compound lottery [L, q]. Assumption 2.2 (Reduction of compound lotteries). Any compound lottery [L, q], where

L (i) = [O, p (i) ], is indifferent to a simple (non-compound) lottery [O, p],
where

p i = q 1 p (1) i + . . . + q s p (s) i (2) for i = 1, . . . , r. PMF (p 1 , . . . , p r ) is the marginal for O of the joint PMF of (L, O).
A simple lottery involving only outcomes O 1 and O r with PMF (u, 1-u), where 0 ≤ u ≤ 1, is called a reference lottery, and is denoted by

[{O 1 , O r }, (u, 1 -u)]. Let O 2 denote the set {O 1 , O r }. Assumption 2.3 (Continuity). Each outcome O i is indifferent to a reference lottery O i = [O 2 , (u i , 1 -u i )] for some u i , where 0 ≤ u i ≤ 1, i.e., O i ∼ O i .
Assumption 2.4 (Weak order). The preference relation for lotteries in L is a weak order, i.e., it is complete and transitive. 3). This is expressed by Theorem 2.1 below.

O i = [O 2 , (u i , 1 -u i )] that is indifferent to O i , then the result is a compound lottery that is indifferent to L (see Figure 2), i.e, [(O 1 , . . . , O i-1 , O i , O i+1 , . . . , O r ), p] ∼ [(O 1 , . . . , O i-1 , O i , O i+1 , . . . , O r ), p]. From Assumptions 2.1-2.5, given any lottery L = [O, p], it is possible to find a reference lottery L = [O 2 , (u, 1 -u)] that is indifferent to L (see Figure
Theorem 2.1 (Reducing a lottery to an indifferent reference lottery). Under Assumptions 2.1-2.5, any lottery

L = [O, p] is indifferent to a reference lottery L = [O 2 , (u, 1 -u)] with u = r i=1 p i u i . (3) 
Proof. ( [START_REF] Luce | Games and Decisions: Introduction and Critical Survey[END_REF]) First, we replace each O i by O i for i = 1, . . . , r. 

, p] ∼ [O 2 , (u, 1 -u)],
where u is given by Eq. (3).

Assumption 2.6 (Monotonicity). A reference lottery

L = [O 2 , (u, 1 -u)] is preferred or indifferent to reference lottery L = [O 2 , (u , 1 -u )] if and only if u ≥ u . As O 1 ∼ O 1 = [O, (u 1 , 1 -u 1 )] and O r ∼ O r = [O, (u r , 1 -u r )], Assumptions 2.4 and 2.6 imply that u 1 = 1 and u r = 0. Also, from O 1 O 2 • • • O r , we can deduce that 1 = u 1 ≥ u 2 ≥ • • • ≥ u r = 0.
Assumptions 2.1-2.6 allow us to define the utility of a lottery as the probability of the best outcome O 1 in an indifferent reference lottery, and this utility function for lotteries on O is linear. This is stated by the following theorem. 

p i u i ≥ r i=1 p i u i . (4) 
Thus, we can define the utility of lottery L = [O, p] as u(L) = r i=1 p i u i , where u i = u(O i ). Also, such a linear utility function is unique up to a strictly increasing affine transformation, i.e., if u i = a u i +b, where a > 0 and b are real constants, then u(L) = r i=1 p i u i also qualifies as a utility function.

Basic Definitions in the D-S Belief Function Theory

In this section, we review the basic definitions in the D-S theory of belief functions. Like various uncertainty theories, D-S belief function theory includes functional representations of uncertain knowledge, and basic operations for making inferences from such knowledge. These will be recalled, respectively, in Section 3.1 and 3.2. Conditional belief functions and the notion of conditional embedding are then introduced in Section 3.3, and the semantics of belief functions in D-S theory is discussed in Section 3.4. Most of the material in this section (except Section 3.4) is taken from [START_REF] Jiroušek | On properties of a new decomposable entropy of Dempster-Shafer belief functions[END_REF]. For further details, the reader is referred to [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF] and to [START_REF] Denoeux | Representations of uncertainty in artificial intelligence: Beyond probability and possibility[END_REF] for a recent review.

Representations of belief functions

Belief functions can be represented in several different ways, including as basic probability assignments, plausibility functions and belief functions3 . These are briefly discussed below.

Definition 1 (Basic Probability Assignment). Suppose X is an unknown quantity (variable) with possible values (states) in a finite set Ω X called the state space of X. We assume that X takes one and only one value in Ω X , but this value is unknown. Let 2 Ω X denote the set of all subsets of Ω X . A basic probability assignment (BPA) m X for X is a function m X : 2 Ω X → [0, 1] such that a⊆Ω X m X (a) = 1, and m X (∅) = 0.

(

) 5 
The subsets a ⊆ Ω X such that m X (a) > 0 are called focal sets of m X . An example of a BPA for X is the vacuous BPA for X, denoted by ι X , such that ι X (Ω X ) = 1. We say that m X is deterministic if m X has a single focal set (with mass 1). Thus, the vacuous BPA for X is deterministic with focal set Ω X . If all focal sets of m X are singleton subsets (of Ω X ), then we say that m X is Bayesian. In this case, m X is equivalent to the PMF P X for X such that P X (x) = m X ({x}) for each x ∈ Ω X .

Definition 2 (Plausibility Function). The information in a BPA m X can be represented by a corresponding plausibility function P l m X defined as follows:

P l m X (a) = {b⊆Ω X |b∩a =∅} m X (b) for all a ⊆ Ω X . (6) 
For an example, suppose Ω X = {x, x}. Then, the plausibility function P l ι X corresponding to BPA ι X is given by P l ι X (∅) = 0, P l ι X ({x}) = 1, P l ι X ({x}) = 1, and P l ι X (Ω X ) = 1.

Definition 3 (Belief Function). The information in a BPA m X can also be represented by a corresponding belief function Bel m X that is defined as follows:

Bel m X (a) = {b⊆Ω X |b⊆a} m X (b) for all a ⊆ Ω X . (7) 
For the example above with Ω X = {x, x}, the belief function Bel ι X corresponding to BPA ι X is given by Bel ι X (∅) = 0, Bel ι X ({x}) = 0, Bel ι X ({x}) = 0, and Bel ι X (Ω X ) = 1. For any proposition a ∈ 2 Ω X , it is easy to see that Bel m X (a) ≤ P l m X (a). Thus, if a DM's belief in proposition a is an interval, say [p, p + q], where p, q ≥ 0 and p + q ≤ 1, then such beliefs can be represented by a BPA m X such that m X (a) = p, m X (Ω X \ a) = 1 -p -q, and m X (Ω X ) = q. For such a BPA, Bel m X (a) = p ≤ p + q = P l m X (a).

All three representations-BPA, belief and plausibility functions-have exactly the same information, as any one of them allows us to recover the other two [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF].

Next, we describe the two main operations for making inferences.

Basic operations in the D-S theory

There are two main operations in the D-S theory-Dempster's combination rule and marginalization.

Dempster's Combination Rule. In the D-S theory, we can combine two BPAs m 1 and m 2 representing distinct pieces of evidence by Dempster's rule [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF] and obtain the BPA m 1 ⊕ m 2 , which represents the combined evidence. Dempster refers to this rule as the productintersection rule, as the product of the BPA values are assigned to the intersection of the focal sets, followed by normalization. Normalization consists of discarding the mass assigned to ∅, and normalizing the remaining values so that they add to 1. In general, Dempster's rule of combination can be used to combine two BPAs for arbitrary sets of variables.

Let X denote a finite set of variables. The state space of X is × X∈X Ω X . Thus, if X = {X, Y } then the state space of {X, Y } is Ω X × Ω Y . Projection of states simply means dropping extra coordinates; for example, if (x, y) is a state of {X, Y }, then the projection of (x, y) to X, denoted by (x, y) ↓X , is simply x, which is a state of X. Projection of subsets of states is achieved by projecting every state in the subset. Suppose b

∈ 2 Ω {X,Y } . Then b ↓X = {x ∈ Ω X : (x, y) ∈ b}. Notice that b ↓X ∈ 2 Ω X .
Vacuous extension of a subset of states of X 1 to a subset of states of X 2 , where

X 2 ⊇ X 1 , is a cylinder set extension, i.e., if a ∈ 2 X 1 , then a ↑X 2 = a × Ω X 2 \X 1 . Thus, if a ∈ 2 Ω X , then a ↑{X,Y } = a × Ω Y .
Definition 4 (Dempster's rule using BPAs). Suppose m 1 and m 2 are BPAs for X 1 and X 2 , respectively. Then m 1 ⊕ m 2 is a BPA for X 1 ∪ X 2 = X , say, given by (m 1 ⊕ m 2 )(∅) = 0 and

(m 1 ⊕ m 2 )(a) = K -1 {b 1 ,b 2 ⊆Ω X |b 1 ∩b 2 =a} m 1 (b ↓X 1 1 ) m 2 (b ↓X 2 2 ), (8) 
for all a ⊆ Ω X , where K is a normalization constant given by

K = 1 - {b 1 ,b 2 ⊆Ω X |b 1 ∩b 2 =∅} m 1 (b ↓X 1 1 ) m 2 (b ↓X 2 2 ). (9) 
The definition of Dempster's rule assumes that the normalization constant K is nonzero. If K = 0, then the two BPAs m 1 and m 2 are said to be in total conflict and cannot be combined. If K = 1, we say m 1 and m 2 are non-conflicting.

Marginalization. Marginalization in D-S theory is addition of values of BPAs.

Definition 5 (Marginalization). Suppose m is a BPA for X . Then, the marginal of m for X 1 , where

X 1 ⊂ X , denoted by m ↓X 1 , is a BPA for X 1 such that for each a ⊆ Ω X 1 , m ↓X 1 (a) = {b⊆Ω X |b ↓X 1 = a} m(b).
(10)

Conditional belief functions

In probability theory, it is common to construct joint PMFs for a set of discrete variables by using conditional probability distributions. For example, we can construct joint PMF for (X, Y ) by first assessing PMF P X of X, and conditional PMFs P Y |x for each x ∈ Ω X such that P X (x) > 0. The pointwise multiplication of P Y |x for all x ∈ Ω X is called a CPT, and denoted by P Y |X . Then, P X,Y = P X ⊗ P Y |X . We can construct joint BPA for {X, Y } in a similar manner.

Suppose that there is a BPA for Y expressing our belief about Y if we know that X = x, and denote it by

m Y |x . Notice that m Y |x : 2 Ω Y → [0, 1] is such that b∈2 Ω Y m Y |x (b) = 1.
We can embed this conditional BPA for Y into a BPA for {X, Y }, which is denoted by m x,Y , such that the following three conditions hold. First, m x,Y tells us nothing about X, i.e.,

m ↓X x,Y (Ω X ) = 1. Second, m x,Y tells us nothing about Y , i.e., m ↓Y x,Y (Ω Y ) = 1.
Third, if we combine m x,Y with the deterministic BPA m X=x for X such m X=x ({x}) = 1 using Dempster's rule, and marginalize the result to Y we obtain m Y |x , i.e., (m x,Y ⊕ m X=x ) ↓Y = m Y |x . The least committed way to obtain such an embedding, called conditional embedding, was derived by Smets [START_REF] Smets | Un modèle mathématico-statistique simulant le processus du diagnostic médical[END_REF][START_REF] Smets | Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem[END_REF] (see also [START_REF] Shafer | Belief functions and parametric models[END_REF]). It consists of taking each focal set b ∈ 2 Ω Y of m Y |x , and converting it to a corresponding focal set of m x,Y (with the same mass) as follows:

({x} × b) ∪ ({x} × Ω Y )
, where {x} denotes the complement of {x} in Ω X . It is easy to confirm that this method of embedding satisfies the three conditions mentioned above, and m x,Y is the least committed (minimally informative) BPA verifying this property.

Example 1 (Conditional embedding). Consider discrete variables X and Y , with

Ω X = {x, x} and Ω Y = {y, ȳ}. Suppose that m X is a BPA for X such that m X (x) > 0. If we have a conditional BPA m Y |x for Y given X = x as follows: m Y |x (y) = 0.8, and m Y |x (Ω Y ) = 0.2, ( 11 
)
then its conditional embedding into BPA m x,Y for {X, Y } is m x,Y ({(x, y), (x, y), (x, ȳ)}) = 0.8, and m x,Y (Ω {X,Y } ) = 0.2. ( 12 
)
There are some differences with conditional probability distributions. First, in probability theory, P Y |X consists of all conditional distributions P Y |x that are well-defined, i.e., for all x ∈ Ω X such that P X (x) > 0. In D-S belief function theory, we do not have similar constraints. We can include only those non-vacuous conditionals m Y |x such that m X ({x}) > 0. Also, if we have more than one conditional BPA for Y , given, say for X = x 1 , and X = x 2 (assuming m X ({x 1 }) > 0, and m X ({x 2 }) > 0), we embed these two conditionals for Y to get BPAs m x 1 ,Y and m x 2 ,Y for {X, Y }, and then combine them using Dempster's rule of combination to obtain one conditional BPA m Y |X = m x 1 ,Y ⊕m x 2 ,Y , which corresponds to P Y |X in probability theory.

Second, given any joint PMF P X,Y for {X, Y }, we can always factor this into P ↓X X,Y = P X for X, and

P Y |X for {X, Y }, such that P X,Y = P X ⊗ P Y |X . This is not true in D-S belief function theory. Given a joint BPA m X,Y for {X, Y }, we cannot always find a BPA m Y |X for {X, Y } such that m X,Y = m ↓X X,Y ⊕ m Y |X .
However, we can always construct joint BPA m X,Y for {X, Y } by first assessing m X for X, and assessing conditionals m Y |x i for Y for those x i that we have knowledge about and such that m X ({x i }) > 0, embed these conditionals into BPAs for {X, Y }, and combine all such BPAs to obtain the BPA m Y |X for {X, Y }. An implicit assumption here is that BBAs m x i ,Y are distinct, and it is acceptable to combine them using Dempster's rule. We can then construct m X,Y = m X ⊕ m Y |X .

Semantics of D-S belief function

In D-S theory, belief functions are representations of an agent's state of knowledge based on some evidence. As explained by Shafer [START_REF] Shafer | Constructive probability[END_REF], such representations can be constructed by comparing the available evidence with a hypothetical situation in which we receive a coded message, the meaning of which is random. More precisely, assume that a source sends us an encrypted message using a code selected at random from a set of codes C = {c 1 , . . . , c n } with known probabilities p 1 , . . . , p n . If we decode the message with code c i , we get a decoded message of the form "X ∈ Γ(c i )", where Γ is a multi-valued mapping from C to 2 Ω X . For any nonempty subset a of Ω X , the probability that the meaning of the original message is "X ∈ a" is

m(a) = n i=1 p i I(Γ(c i ) = a),
where I(•) is the indicator function. The random message metaphor thus provides a way to construct BPAs m. The fundamental assumption of D-S theory is that such metaphors provide a scale of canonical examples to which any piece of evidence (or, at least, most pieces of evidence encountered in practice) can be meaningfully compared.

The random set metaphor accounts for the use of Dempster's rule, which can be easily derived from the assumption that the two BPAs m 1 and m 2 are induced by stochastically independent randomly coded messages. Two bodies of evidence are considered as independent if "(they) are sufficiently unrelated that pooling them is like pooling stochastically independent randomly coded messages" [START_REF] Shafer | Constructive probability[END_REF]Section 5.1].

In D-S theory, any belief function can thus be thought of as being induced by a multivalued mapping from a probability space to the power set of the frame of discernment. Such multi-valued mappings were already explicitly constructed from a statistical model in Dempster's original application of belief functions to statistical inference [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF]. A statistical model is no more "real" than a random code canonical examples: both are idealizations that allow us to formalize our knowledge and make inferences based on reasonable assumptions.

A Utility Theory for D-S Belief Function Theory

In this section, we describe a new utility theory for lotteries where the uncertainty is described by D-S belief functions. These lotteries, called belief function lotteries 4 , will be introduced in Section 4.1. We present and discuss assumptions in Section 4.2 and state a representation theorem in Section 4.3. In Section 4.4, we show that an additional assumption leads to a simpler model and we state the corresponding representation theorem. Finally, in Section 4.5, we describe an even simpler practical model allowing us to assess the utility of a belief function lottery based on a limited number of parameters.

Belief function lotteries

We generalize the decision framework outlined in Section 2 by assuming that uncertainty about the state of nature X is described by a BPA m X for X. The probabilistic framework is recovered as a special case when m X is Bayesian. The BPA m X is assumed to be given, and is assumed to be a meaningful representation of the DM's state of knowledge about X at a given time, with the semantics described in Section 3.4. As before, we define an act as a mapping f from Ω X to the set O of outcomes. Mapping f pushes m X forward from Ω X to O, transferring each mass m X (a) for a ∈ 2 Ω X to the image of subset a by f , denoted as f [a] = {f (x) : x ∈ a}. The resulting BPA m for O is then defined as

m(b) = {a∈2 Ω X |f [a]=b} m X (a), (13) 
for all b ⊆ O [START_REF] Denoeux | Representations of uncertainty in artificial intelligence: Beyond probability and possibility[END_REF]. Eq. ( 13) clearly generalizes Eq. ( 1). The pair [O, m] will be called a belief function (bf) lottery. It is a representation of the DM's subjective beliefs about the outcome that will obtain as a result of selecting act f . As noted in [START_REF] Denoeux | Decision-making with belief functions: A review[END_REF], a bf lottery can also arise from a BPA m X on Ω X and a nondeterministic act f , defined as mapping from Ω X to 2 O . This formalism may be useful to account for under-specified decision problems in which, for instance, the set of acts or the state space Ω X are too coarsely defined to allow for a precise description of the consequences of an act [START_REF] Ghirardato | Coping with ignorance: unforeseen contingencies and non-additive uncertainty[END_REF].

As before, we assume that two acts can be compared from what we believe their outcomes will be, irrespective of the evidence on which we base our beliefs. This assumption is a form of what Wakker [START_REF] Wakker | Dempster belief functions are based on the principle of complete ignorance[END_REF] calls the principle of complete ignorance (PCI). It implies that two acts resulting in the same bf lottery are equivalent. The problem of expressing preferences between acts becomes that of expressing preferences between bf lotteries.

Remark 1. As a consequence of the PCI, preferences between acts do not depend on the cardinality of the state space Ω X in case of complete ignorance. For instance, assume that we define Ω X = {x 1 , x 2 }, and we are completely ignorant of the state of nature, so that our belief state is described by the vacuous BPA m X (Ω X ) = 1. Consider two acts f 1 and f 2 that yield $100 if, respectively, x 1 or x 2 occurs, and $0 otherwise. These two acts induce the same vacuous bf lottery m(O) = 1 with O = {$100, $0}: consequently, they are equivalent according to the PCI. Now, assume that we decide to express the states of nature with finer granularity and we refine state x 1 into two states x 11 and x 12 . Let Ω X = {x 11 , x 12 , x 2 } denote the refined frame. We still have m X (Ω X ) = 1 and m(O) = 1, so that our preferences between acts f 1 and f 2 are unchanged. We note that a Bayesian DM applying Laplace's principle of indifference (PI) would reach a different conclusion: before the refinement, the PI implies p X (x 1 ) = p X (x 2 ) = 1/2, which results in the same probabilistic lottery p = (1/2, 1/2) on O = {$100, $0} for the two acts, but after the refinement the same principle gives us p X (x 11 ) = p X (x 12 ) = p X (x 2 ) = 1/3; this results in two different lotteries p 1 = (2/3, 1/3) for act f 1 and p 2 = (1/3, 2/3) for act f 2 , which makes f 1 strictly preferable to f 2 . Considering that the granularity of the state space is often partly arbitrary (as discussed by Shafer in [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF]), we regard this property of invariance to refinement under complete ignorance as a valuable feature of a decision theory based on D-S belief functions.

We are thus concerned with a DM who has preferences on L bf , the set of all bf lotteries. Our task is to find a utility function u : L bf → [R], where [R] denotes the set of closed real intervals, such that the u(L) = [u, 1 -v] is viewed as an interval-valued utility of L. The interval-valued utility can be interpreted as follows: u and v are, respectively, the degrees of belief of receiving the best and the worst outcome in a bf reference lottery equivalent to L (and 1 -v is, consequently, the degree of plausibility of receiving the best outcome). Given two lotteries L and L , L is preferred to L if and only if u ≥ u and v ≤ v . This leads to incomplete preferences on the set of all bf lotteries. If we assume u = 1 -v for all bf lotteries, then we have a real-valued utility function on L bf , and consequently, complete preferences.

Example 2 (Ellsberg's Urn). Ellsberg [START_REF] Ellsberg | Risk, ambiguity and the Savage axioms[END_REF] describes a decision problem that questions the adequacy of the vN-M axiomatic framework. Suppose we have an urn with 90 balls, of which 30 are red, and the remaining 60 are either black or yellow. We draw a ball at random from the urn. Let X denote the color of the ball drawn, with Ω X = {r, b, y}. Notice that the uncertainty of X can be described by a BPA m X for X such that m X ({r}) = 1/3, and m X ({b, y}) = 2/3.

First, we are offered a choice between Lottery L 1 : $100 on red, and Lottery L 2 : $100 on black, i.e., in L 1 , you get $100 if the ball drawn is red, and $0 if the ball drawn is black or yellow, and in L 2 , you get $100 if the ball drawn is black and $0 if the ball drawn is red or yellow. Choice of L 1 can be denoted by alternative

f 1 : Ω X → {$100, $0} such that f 1 (r) = $100, f 1 (b) = f 1 (y) = $0. Similarly, choice of L 2 can be denoted by alternative f 2 : Ω X → {$100, $0} such that f 2 (b) = $100, f 2 (r) = f 2 (y) = $0. L 1 can be represented by the BPA m 1 for O = {$0, $100} as follows: m 1 ({$100}) = 1/3, m 1 ({$0}) = 2/3. L 2 can be represented by BPA m 2 for O as follows: m 2 ({$0}) = 1/3, m 2 ({$0, $100}) = 2/3.
Notice that L 1 and L 2 are bf lotteries. Ellsberg notes that a frequent pattern of response is

L 1 preferred to L 2 .
Second, we are offered a choice between L 3 : $100 on red or yellow, and L 4 : $100 on black or yellow, i.e., in L 3 you get $100 if the ball drawn is red or yellow, and $0 if the ball drawn is black, and in L 4 , you get $100 if the ball drawn is black or yellow, and $0 if the ball drawn is red. L 3 can be represented by BPA m 3 as follows: m 3 ({$100}) = 1/3, and m 3 ({$0, $100}) = 2/3, and L 4 can be represented by the BPA m 4 as follows: m 4 ({$0}) = 1/3, m 4 ({$100}) = 2/3. L 3 and L 4 are also belief function lotteries. Ellsberg notes that L 4 is often strictly preferred to L 3 . Also, the same subjects who prefer L 1 to L 2 , prefer L 4 to L 3 . Table 1 is a summary of the four bf lotteries.

Thus, if the outcomes of a lottery are based on the states of a random variable X, which is described by a BPA m X for X, then we have a belief function lottery. In this example, we have only two outcomes, $100, and $0. L 1 and L 4 can also be regarded as probabilistic lotteries as the corresponding BPAs are Bayesian. L 2 and L 3 have BPAs with non-singleton focal sets. Thus, these two lotteries can be considered as involving "ambiguity" as the exact distribution of the probability (of 2/3) between outcomes $100 and $0 is unknown. Regardless of how the probability of 2/3 is distributed between b and y, the preferences of subjects violate the tenets of vN-M utility theory.

Assumptions of our framework

As in the probabilistic case, we will assume that a DM's preferences for bf lotteries are reflexive and transitive. However, unlike the probabilistic case (Assumption 2.4), we do not assume that these preferences are complete. In the probabilistic case, incomplete preferences are studied in [START_REF] Aumann | Utility theory without the completeness axiom[END_REF], and in the case of sets of utility functions, in [START_REF] Dubra | Expected utility theory without the completeness axiom[END_REF].

Our first assumption is identical to Assumption 2.1. This allows us to label the outcomes such that

Lottery m i ({$100}) m i ({$0}) m i ({$100, $0}) L 1 ($100 on r) 1/3 2/3 L 2 ($
O 1 O 2 • • • O r , and O 1 O r . ( 14 
)
Let L bf denote the set of all bf lotteries on O = {O 1 , . . . O r }, where the outcomes satisfy Eq. ( 14). As every BPA m on O is a bf lottery, L bf is essentially the set of all BPAs on O. As the set of all BPAs include Bayesian BPAs, the set L bf is a superset of L, i.e., every probabilistic lottery on O can be considered a bf lottery.

Consider a compound lottery [L, m], where L = {L 1 , . . . , L s }, m is a BPA for L, and L j = [O, m j|L j ] is a bf lottery on O, where m j|L j is a conditional BPA for O in the second stage given that lottery L j is realized in the first stage. We thus have s + 1 pieces of evidence represented by BPAs m and m 1|L 1 , . . . , m s|Ls . Assuming these pieces of evidence to be independent, they can be combined by Dempster's rule [START_REF] Denoeux | Representations of uncertainty in artificial intelligence: Beyond probability and possibility[END_REF], after conditionally embedding the conditional BPAs m j|L j (see Section 3. 

m = m ⊕ s j=1 m L j ,j ↓O , (15) 
and m L j ,j is a BPA for (L, O) obtained from m j|L j by conditional embedding, for j = 1, . . . , s. • If B 1 is black or red, then you will be allowed to draw one ball from Urn 2 in the second stage, and you will get $100 if it is red, and $0 otherwise (lottery L 1 of Example 2); • If B 1 is yellow, you will be allowed to draw one ball from Urn 2, and you will get $100 if it is black, and $0 otherwise (lottery L 2 of Example 2).

Here, we have a compound bf lottery with outcome space L = {L 1 , L 2 }. We get L 1 or L 2 depending on the color X 1 of ball B 1 drawn from Urn 1. We have m X 1 ({b}) = 1/3 and m X 1 ({r, y}) = 2/3, and the act f defined by 

f (b) = f (r) = L 1 , f (y) = L 2 .
m 1|L 1 ({$100}) = 1/3, m 1|L 1 ({$0}) = 2/3 and m 2|L 2 ({$0}) = 1/3, m 2|L 2 ({$0, $100}) = 2/3.
Here, m j|L j is a conditional BPA on O, given that L j is obtained in the first stage (see Figure 4). The conditional embeddings of m 1|L 1 and m 2|L 2 are BPAs on L × O equal, respectively, to

m L 1 ,1 ({(L 1 , $100), (L 2 , $100), (L 2 , $0)}) = 1/3, m L 1 ,1 ({(L 1 , $0), (L 2 , $100), (L 2 , $0)}) = 2/3, and 
m L 2 ,2 ({(L 2 , $0), (L 1 , $100), (L 1 , $0)}) = 1/3, m L 2 ,2 (L × O) = 2/3,
Their orthogonal sum is

(m L 1 ,1 ⊕ m L 2 ,2 )({(L 1 , $100), (L 2 , $0)}) = 1/9, (m L 1 ,1 ⊕ m L 2 ,2 )({(L 1 , $0), (L 2 , $0)}) = 2/9, (m L 1 ,1 ⊕ m L 2 ,2 )({(L 1 , $100), (L 2 , $100), (L 2 , $0)}) = 2/9, (m L 1 ,1 ⊕ m L 2 ,2 )({(L 1 , $0), (L 2 , $100), (L 2 , $0)}) = 4/9.
Combining it with m, we get

(m ⊕ m L 1 ,1 ⊕ m L 2 ,2 )({(L 1 , $100)}) = 3/27, (m ⊕ m L 1 ,1 ⊕ m L 2 ,2 )({(L 1 , $0)}) = 6/27, (m ⊕ m L 1 ,1 ⊕ m L 2 ,2 )({(L 1 , $100), (L 2 , $0)}) = 2/27, (m ⊕ m L 1 ,1 ⊕ m L 2 ,2 )({(L 1 , $0), (L 2 , $0)}) = 4/27, (m ⊕ m L 1 ,1 ⊕ m L 2 ,2 )({(L 1 , $100), (L 2 , $100), (L 2 , $0)}) = 4/27, (m ⊕ m L 1 ,1 ⊕ m L 2 ,2 )({(L 1 , $0), (L 2 , $100), (L 2 , $0)}) = 8/27. Marginalizing on O, we get m = (m ⊕ m L 1 ,1 ⊕ m L 2 ,2 ) ↓O equal to m ({$100}) = 3/27 = 1/9, m ({$0}) = 10/27, m ({$100, $0}) = 14/27.
According to Assumption 4.2, a rational DM should be indifferent between receiving the compound bf lottery [L, m], or receiving the bf lottery [O, m ], i.e., a prize about which the only information he has is given by a randomly coded message whose meaning can be "The value of the prize is $100" with probability 1/9, "The value of the prize is $0" with probability 10/27, and "The value of the prize is unknown" with probability 14/27.

The following proposition states that Assumption 4.2 generalizes Assumption 2.2. Proposition 1. Let L = {L 1 , . . . , L s } be a set of bf lotteries, with L j = [O, m j|L j ], in which m j|L j is a Bayesian conditional BPA for O such that m j|L j ({O i }) = p (j) i and r i=1 p (j) i = 1 for j = 1, . . . , s. Let [L, m] be a compound lottery in which m is a Bayesian BPA for L such that m({L j } = q j for j = 1, . . . , s with s j=1 q j = 1. Then BPA m defined by ( 15) is Bayesian and it verifies m ({O i }) = s j=1 q j p (j) i [START_REF] Fagin | A new approach to updating beliefs[END_REF] for i = 1, . . . , r.

Proof. The conditional embedding of m j|L j is given by

m L j ,j {(L j , O i )} ∪ {L j } × O = p (j) i , i = 1, . . . , r. Let m 0 = s j=1 m L j ,j . It is a BPA for L × O defined by m 0 ({(L 1 , O i 1 ), . . . , (L s , O is )}) = p (1) i 1 . . . p (s) is
for all (i 1 , . . . , i s ) ∈ {1, . . . , r} s . Combining m 0 with m, we get a Bayesian BPA m 0 on L × O such that m 0 ({(L j , O i )}) = q j p (j)

i . After marginalizing on O, we finally get Eq. ( 16).

Next, we define a bf reference lottery [O 2 , m] as a bf lottery on O 2 = {O 1 , O r }. A bf reference lottery has three parameters u = m({O 1 }), v = m({O r }), and w = m(O 2 ), which are all non-negative and sum to 1. It can be equivalently denoted as [O 2 , (u, v, w)]. The first and second elements of the triple are, respectively, the degrees of belief of receiving the best and worst outcomes, while the third element can be seen as a degree of ignorance. Obviously, the degrees of plausibility of receiving the best and the worst outcomes are, respectively, 1 -v and 1 -u. The following assumption states that any deterministic bf lottery is equally preferred to some bf reference lottery. Assumption 4.3 (Continuity). Any subset of outcomes a ⊆ O (considered as a deterministic bf lottery) is indifferent to a bf reference lottery a = [O 2 , (u a , v a , w a )] for some u a , v a , w a ≥ 0 such that u a + v a + w a = 1. Furthermore, w a = 0 if a = {O i } is a singleton subset.

For singleton subsets, the equivalent bf reference lottery is Bayesian: this ensures that Assumption 4.3 is a generalization of Assumption 2.3. For non-singleton subsets a of outcomes, we may have w a > 0, i.e., the bf reference lottery may not be Bayesian. In other words, we do not assume that ambiguity can be resolved by selecting an equivalent probabilistic reference lottery.

Example 4. Consider lottery

L 2 = [{$100, $0}, m 2 ] in Example 2
, where m 2 ({$0}) = 1/3, and m 2 ({$100, $0}) = 2/3. Suppose we wish to assess the utility of focal set {$100, $0} using a probabilistic reference lottery [{$100, $0}, (p, 1 -p)]. A DM may have the following preferences. For any p ≤ 0.2 she prefers {$100, $0} to the probabilistic reference lottery, and for any p ≥ 0.3, she prefers the probabilistic reference lottery to {$100, $0}. However, she is unable to give us a precise p such that {$100, $0} ∼ [{$100, $0], (p, 1 -p)]. For such a DM, we can assess a bf reference lottery [{$100, $0}, (0.2, 0.7, 0.1)] such that Bel ma ({$100}) = 0.2 and P l ma ({$100}) = 0.3. Assumption 4.4 (Quasi-order). The preference relation for bf lotteries on L bf is a quasiorder, i.e., it is reflexive and transitive.

In contrast with the probabilistic case (Assumption 2.4), we do not assume that is complete. There are many reasons we may not wish to assume completeness. It is not descriptive of human behavior. Even from a normative point of view, it is questionable that a DM has complete preferences on all possible lotteries. The assumption of incomplete preferences is consistent with the D-S theory of belief functions where we have non-singleton focal sets. Several authors, such as Aumann [START_REF] Aumann | Utility theory without the completeness axiom[END_REF], and Dubra et al. [START_REF] Dubra | Expected utility theory without the completeness axiom[END_REF] argue why the assumption of complete preferences may not be realistic in many circumstances.

The substitutability assumption is similar to the probabilistic case (Assumption 2.5)-we replace an outcome in the probabilistic case by a focal set of m in the bf case. 

m({O 1 }) = k i=1 m(a i ) u a i , (17a) 
m({O r }) = k i=1 m(a i ) v a i , and (17b) 
m(O 2 ) = k i=1 m(a i ) w a i , (17c) 
where u a i , v a i and w a i are the masses assigned, respectively, to {O 1 }, {O r } and O 2 by the bf reference lottery a i equivalent to a i .

Proof. From Assumption 4. 

m = m ⊕ k i=1 m a,i ↓O 2 ,
where m a,i is the BPA for O 2 obtained from m i| a i by conditional embedding. If we have

m i| a i ({O 1 }) = u a i , m i| a i ({O r }) = v a i and m i| a i (O 2 )
= w a i , then after conditional embedding BPA m a i ,i is as follows:

m a i ,i ({( a i , O 1 )} ∪ ({ a i } × O 2 )) = u a i m a i ,i ({( a i , O r )} ∪ ({ a i } × O 2 )) = v a i m a i ,i (L × O 2 ) = w a i .
Let m 0 denote k i=1 m a i ,i . The focal sets of m 0 are of the form 

a (I 1 ,I 2 ,I 3 ) = i∈I 1 a i × {O 1 } ∪ i∈I 2 a i × {O r } ∪ i∈I 3 L i × O 2 ,
m 0 (a (I 1 ,I 2 ,I 3 ) ) = i∈I 1 u a i i∈I 2 v a i i∈I 3 w a i .
Next, we combine Bayesian BPA m for L with m 0 . The focal sets of m ⊕ m 0 are of the form

{ a i } × {O 1 }, { a i } × {O r }, and { a i } × O 2 depending on whether i ∈ I 1 or i ∈ I 2 , or i ∈ I 3 , respectively, with mass m(a i )m 0 (a (I 1 ,I 2 ,I 3 ) ). Finally we marginalize m ⊕ m 0 to O 2 .
The mass assigned to each focal set

{ a i } × {O 1 } is m a i u a i . Thus, m({O 1 }) = k i=i m(a i )u a i . Similarly, m({O r }) = k i=i m(a i )v a i , and m(O 2 ) = k i=i m(a i )w a i .
Next, we formulate a monotonicity assumption to generalize Assumption 2.6. Given two bf reference lotteries, if any of them assigns a higher degree of belief to the best outcome O 1 and a lower degree of belief to the worst outcome O r (or, equivalently, higher degrees of belief and plausibility to O 1 ), then it should arguably be preferred. If this is not the case, i.e., if the best and the worst outcomes both have a higher degree of belief for one lottery (or, equivalently, if the belief-plausibility intervals for O 1 in the two lotteries are strictly nested), then there does not seem to be any solid ground for preference, and the two lotteries can be considered as incomparable. This line of reasoning is formalized in Assumption 4.6 below. We note that a stronger notion of preference would be to prefer L over L if and only if Bel m ({O 1 }) ≥ P l m ({O 1 }), i.e., if and only if u ≥ 1 -v . This alternative preference relation is arguably too strict, which would lead to a more incomplete preference order on lotteries.

To conclude this section, we note that Assumptions 4.1, 4.3 and 4.6 imply the following consistency constraints between the reference bf lotteries equivalent to single outcomes: 

1 = u {O 1 } ≥ u {O 2 } ≥ . . . ≥ u {Or} = 0. ( 18 
∅ =a⊆O m(a) u a ≥ ∅ =a⊆O m (a) u a (19a)
and

∅ =a⊆O m(a) v a ≤ ∅ =a⊆O m (a) v a . ( 19b 
)
Thus, for a bf lottery L = [O, m], we can define

[u](L) = [u, 1 -v] (20) 
as an interval-valued utility of L, with

u = ∅ =a⊆O m(a) u a i and v = ∅ =a⊆O m(a) v a . (21) 
Also, such a utility function is unique up to a strictly increasing affine transformation, i.e., if u = a u + b, and v = a v + b, where a > 0, and b are real constants, then

[u ](L) = [u , 1 -v ]
also qualifies as an interval-valued utility function.

Proof. The proof is immediate from Theorem 4.1 and Assumption 4.6 (monotonicity).

A special case of Theorem 4.2 is if we use Bayesian bf reference lotteries for the continuity assumption, i.e., w a = 0 for all focal sets a of m. In this case, Theorem 4.2 implies Corollary 4.1 below where we have a real-valued utility function and a complete ordering on L bf . 

∅ =a⊆O m(a) u a ≥ ∅ =a⊆O m (a) u a .
Thus, for a bf lottery L = [O, m], we can define

u(L) = ∅ =a⊆O m(a) u a (22) 
as the utility of L. Also, such a utility function is unique up to a strictly increasing affine transformation, i.e., if u a = a u a + b, where a > 0, and b are real constants, then

u (L) = ∅ =a⊆O m(a) u a
also qualifies as a utility function.

Proof. The result in Corollary 4.1 follows trivially from Theorem 4.2.

The utility function in Eq. ( 22) has exactly the same form as Jaffray's linear utility [START_REF] Jaffray | Linear utility theory for belief functions[END_REF]. This is discussed further in Section 5.1.

Next, we illustrate the application of Theorem 4.2 to some examples: Ellsberg's urn problem described in Example 2, the one red ball problem described in [START_REF] Jiroušek | Ambiguity aversion and a decision-theoretic framework using belief functions[END_REF], and the 1,000 balls urns described in [START_REF] Becker | What price ambiguity? or the role of ambiguity in decision-making[END_REF]. For such a DM, we thus have

1 -v {$100, $0} < 1/2.
For the first choice problem between L 1 ($100 on r) and L 2 ($100 on b), using Eq. ( 22), [u](L 1 ) = [1/3, 1/3], and

[u](L 2 ) = 2 3 u {$100, $0} , 1 -v {$100, $0} .
Thus, an ambiguity-averse DM would choose L 1 . This result is valid as long as 1-v {$100, $0} < 1/2 and is consistent with Ellsberg's findings. For the second choice problem between L 3 ($100 on r or y), and L 4 ($100 on b or y),

[u](L 3 ) = 1 3 (1) + 2 3 u {$100, $0} , 1 -v {$100, $0} , and [u](L 4 ) = [2/3, 2/3
]. An ambiguity-averse DM would choose L 4 , as

1 3 + 2 3 (1 -v {$100, $0} ) < 2 3
as long as 1 -v {$100, $0} < 1/2, a result that is also consistent with Ellsberg's empirical findings. Example 6 (One red ball). Consider the following example called "one red ball" in [START_REF] Jiroušek | Ambiguity aversion and a decision-theoretic framework using belief functions[END_REF] (see Figure 7). An urn possibly contains balls of six colors: red (r), blue (b), green (g), orange (o), white (w), and yellow (y). One ball is drawn at random from the urn. We are informed that the urn has a total of n balls, where n is a positive integer, and that there is exactly one red ball in the urn. Suppose random variable X denotes the color of the ball drawn from the urn. Then Ω X = {r, b, g, o, w, y}, and m X is a BPA for X such that m X ({r}) = 1/n, and m X ({b, g, o, w, y}) = (n -1)/n. First, you choose a color, and then you draw a ball 

f 2 ) is [{$100, $0}, m 2 ], where m 2 is a vacuous BPA for {$100, $0}. The utility of L 2 is [u](L 2 ) = u {$100, $0} , 1 -v {$100, $0} .
Consequently, L 2 is preferred to L 1 as long as u {$100, $0} ≥ 0.001, a condition that is easily satisfied. This may explain why many DMs appear to be ambiguityseeking in this context, i.e., prefer L 2 to L 1 .

An additional assumption and the corresponding representation theorem

Whereas Theorem 4.2 guarantees the existence of an interval valued utility function for bf lotteries, there remains the problem of practical elicitation of utilities. The maximum number of utilities to be elicited increases exponentially with the number r of outcomes. As the utilities of the worst and the best outcomes are, by construction, 0 and 1, and w {O i } = 0 for each other single outcome O i , the actual number of utilities to be elicited is, at most, 2(2 r -1 -r) + r -2 = 2 r+1 -r -4. By making one more reasonable assumption, we can drastically limit the number of parameters to be elicited. Assumption 4.7 below has no counterpart in the vN-M theory, but it is rooted in decisionmaking under ignorance [START_REF] Jaffray | Linear utility theory for belief functions[END_REF][START_REF] Wakker | Dempster belief functions are based on the principle of complete ignorance[END_REF]. For any nonempty subset of consequences a ⊆ O, let O a and O a denote, respectively, the worst and the best outcome in a. To simplify the notations, we assimilate a deterministic BPA with its focal set, and we write a b to mean that the Although counterintuitive at first glance, this assumption cannot be avoided if we accept the PCI, i.e., if we accept that any two acts yielding the same bf lottery are equivalent, as shown by the following example.

Example 8. Assume that the set of outcomes is O = {$0, $1, $999, $1, 000}. According to Assumption 4.7, a DM would be indifferent between receiving one of the prizes in a = {$0, $1, $1, 000}, without any further information, and receiving one of the prizes in b = {$0, $999, $1, 000}. It may be argued that most DMs would strictly prefer b to a. Yet, assume that the state space is Ω X = {ω 1 , ω 2 , ω 3 , ω 4 }, we are in a state of complete ignorance, i.e., m X (Ω X ) = 1, and the deterministic lotteries a and b are generated by the acts f 1 and f 2 shown in Table 2. It is clear that f 1 dominates f 2 (it yields at least as desirable consequences for all states of nature, and strictly preferred consequences for some states of nature), so it would be paradoxical to strictly prefer f 2 over f 1 , i.e., to strictly prefer b over a. But a and b might also have been generated by acts f 1 and f 2 in Table 2 and, as f 2 dominates f 1 , it would also be paradoxical to strictly prefer f 1 over f 2 , i.e., to strictly prefer a over b. Consequently, indifference between a and b seems to be the only rational option in this case.

Generalizing Example 8, Jaffray [START_REF] Jaffray | Linear utility theory for belief functions[END_REF] shows that, whenever O a O b and O a O b , we can always construct a state space Ω X and two acts f 1 and f 2 such that f 1 [Ω X ] = a, f 2 [Ω X ] = b and, for any ω ∈ Ω X , f 1 (ω) f 2 (ω). As f 1 yields at least as desirable outcomes as f 2 under any state of nature, it should be preferred whatever our beliefs on Ω X , and in particular when m X (Ω X ) = 1. Hence, we should have a b.

Assumption 4.7 implies that a O a and O a a. From Assumption 4.6, we thus have u a ≥ u O a and 1 -v a ≤ u Oa . Consequently, the utility bounds u a and 1 -v a of subset a can be written as convex combinations of the utilities of its worst and best outcomes:

u a = α(O a , O a ) u O a + 1 -α(O a , O a ) u Oa (23a)
where α(O a , O a ) and β(O a , O a ) are two coefficients depending only on the best and worst outcomes in a, such that 0 ≤ α(O a , O a ) ≤ β(O a , O a ) ≤ 1. In Jaffray's framework [START_REF] Jaffray | Linear utility theory for belief functions[END_REF], w a = 0 (see Section 5.1) and α(O a , O a ) is called a local pessimism index. In our framework, we can see the interval α(O a , O a ), β(O a , O a ) as an interval-valued local pessimism index reflecting both the DM's attitude to ambiguity and indeterminacy. Assumption 4.7 thus brings the maximum number of parameters to be elicited from 2 r+1 -r-4 down to r(r-1)+r-2 = r 2 -2.

The above discussion can be summarized in the form of the following representation theorem (generalizing Theorem 2 in [START_REF] Jaffray | Linear utility theory for belief functions[END_REF]). 

∅ =a⊆O m(a) α(O a , O a )u O a + (1 -α(O a , O a ))u Oa ≥ ∅ =a⊆O m (a) α(O a , O a )u O a + (1 -α(O a , O a ))u Oa and ∅ =a⊆O m(a) β(O a , O a )u O a + (1 -β(O a , O a ))u Oa ≥ ∅ =a⊆O m (a) β(O a , O a )u O a + (1 -β(O a , O a ))u Oa ,
where O a and O a are, respectively, the worst and the best outcomes in a ⊆ O. Thus, for a bf lottery L = [O, m], we can define

[u](L) = [u, 1 -v]
as an interval-valued utility of L, with

u = ∅ =a⊆O m(a) α(O a , O a )u O a + (1 -α(O a , O a ))u Oa and 1 -v = ∅ =a⊆O m(a) β(O a , O a )u O a + (1 -β(O a , O a ))u Oa .
Also, this utility function is unique up to a strictly increasing affine transformation.

A simpler model

Strat [START_REF] Strat | Decision analysis using belief functions[END_REF] proposes independently, but without any axiomatic justification, a criterion similar to that of Theorem 4.3 but with a constant parameter α(O a , O a ) = β(O a , O a ) = α that does not depend on the subset a. In a similar way, we can assume that the lower and upper pessimism indices take on constant values: α(O a , O a ) = α and β(O a , O a ) = β, with 0 ≤ α ≤ β ≤ 1. This simple model depends on only r parameters: the utilities of the single outcomes u {O i } for i = 2, . . . , r -1 and the two coefficients α and β. It allows us to recover some existing decision criteria as special cases:

• When α = β, the utility interval [u](L) is reduced to a point u(L) and we get Strat's criterion, also called the generalized Hurwicz criterion in [START_REF] Denoeux | Decision-making with belief functions: A review[END_REF], which is a special case of the real-valued utility [START_REF] Giang | A decision theory for partially consonant belief functions[END_REF] in Corollary 4.1;

• In particular, when α = β = 0, then

u(L) = a⊆O m(a) min O∈a u O , (24) 
which is the lower expected utility u m with respect to m [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF][START_REF] Shafer | Constructive probability[END_REF][START_REF] Dempster | Comment to "Probabilistic expert systems in medicine: Practical issues in handling uncertainty[END_REF]. As shown by Gilboa and Schmeidler [START_REF] Gilboa | Additive representations of non-additive measures and the Choquet integral[END_REF], u m is also the Choquet expected utility [START_REF] Choquet | Theory of capacities[END_REF] with respect to the belief function Bel m corresponding to m. The preference relation between bf lotteries then corresponds to the maximin criterion, which reflects a pessimistic attitude of the DM.

• Similarly, when α = β = 1, we get

u(L) = a⊆O m(a) max O∈a u O , (25) 
which is the upper expected utility u m , or the Choquet expected utility with respect to the plausibility function P l m corresponding to m [START_REF] Gilboa | Additive representations of non-additive measures and the Choquet integral[END_REF]. The corresponding decision strategy corresponds to the maximax criterion, which models an optimistic attitude of the DM.

• When α = 0 and β = 1, then the interval-valued utility is equal to the lower-upper expected utility interval

[u](L) = [u m , u m ] .
The corresponding preference relation is then the interval bound dominance relation [START_REF] Destercke | A decision rule for imprecise probabilities based on pair-wise comparison of expectation bounds[END_REF][START_REF] Denoeux | Decision-making with belief functions: A review[END_REF], defined by

L L ⇔ (u m ≥ u m and u m ≥ u m ) . (26) 
In the general case, we have

u m ≤ u ≤ 1 -v ≤ u m , (27) 
where u and w are as in Eq. ( 21). Thus, the interval-valued utility [u](L) of lottery [O, m] as defined in Theorem 4.2 is always included in the lower-upper expected utility interval, and the preference relation induced by our interval-valued utilities compares more bf lotteries than the interval dominance relation [START_REF] Gul | Expected uncertain utility theory[END_REF]. The lower and upper expectations defined by Eqs. ( 24)-( 25) can thus be seen as lower and upper bounds of the interval utility of a lottery L = [O, m] and could be used as conservative estimates if parameters α and β cannot be elicited.

Example 9. Assume that the set of outcome is O = {$0, $10, $50, $100}. The full model (without Assumption 4.7) requires the assessment of 24 parameters: u {$10} , u {$50} , and the u and v values for the 11 subsets of O with cardinality strictly greater than 1. With Assumption 4.7, the number of parameters to be elicited is down to 14: u {$10} , u {$50} , and the α and β values for the following pairs of worst and best outcomes: ($0, $10), ($0, $50), ($0, $100), ($10, $50), ($10, $100) and ($50, $100). Assuming α and β to be constant brings the number of parameters to only 4.

A practical elicitation procedure. Whatever the simplifying assumptions made, the trickiest part for eliciting the interval-valued utility of a bf lottery resides in the determination of the equivalent bf reference lottery for any non-singleton focal set a (if α and β are assumed to be constant, this determination needs to be done for only one non-singleton focal set). Let a = [O 2 , (u a , v a , w a )] be the bf reference lottery equivalent to a (assumed to exist from Assumption 4.3). For any a probabilistic reference lottery L = [O 2 , (u, 1 -u)], there are three cases:

1. If u ≥ 1 -v a , then L a; 2. If u ≤ u a , then a L; 3. If u a < u ≤ 1 -v a or u a ≤ u < 1 -v a ,
then a and L are incomparable.

To determine u a and v a , we can thus start with u = 0 and gradually increase u until a and L become incomparable, which gives us u a , and then gradually decrease u from u = 1 until a and L become incomparable, which gives us v a . Parameters α and β are then obtained by solving Eqs. [START_REF] Gilboa | Ambiguity and the Bayesian paradigm[END_REF]. This procedure was used implicitly in Example 4.

Comparison with Some Existing Decision Theories

In this section, we compare our utility theory to Jaffray's linear utility theory [START_REF] Jaffray | Linear utility theory for belief functions[END_REF], Smets' two-level decision theory [START_REF] Smets | Decision making in a context where uncertainty is represented by belief functions[END_REF], decision theories for possibility theory [START_REF] Dubois | On the possibilistic decision model: from decision under uncertainty to case-based decision[END_REF][START_REF] Giang | Two axiomatic approaches to decision making using possibility theory[END_REF] and partially consonant belief functions [START_REF] Giang | A decision theory for partially consonant belief functions[END_REF], and Shafer's constructive decision theory [START_REF] Shafer | Constructive decision theory[END_REF].

Comparison with Jaffray's axiomatic theory

Jaffray's axiomatic theory is based on considering the set of all belief functions on O as a mixture set as follows. Suppose m 1 and m 2 are BPAs for O, and suppose λ ∈ [0, 1]. Then m defined as:

m(a) = λ m 1 (a) + (1 -λ)m 2 (a) (28) 
for all a ∈ 2 O , is a BPA for O. BPA m can be written as m = λ m 1 + (1 -λ)m 2 , and called a mixture of m 1 and m 2 . Using the Jensen-version [START_REF] Jensen | An introduction to Bernoullian utility theory: A discussion[END_REF] of vN-M axiom system, Jaffray uses the following axioms, all of which are expressed using mixture BPA functions:

Assumption 5.1 (Completeness and transitivity). The relation is complete and transitive over L bf .

Assumption 5.2 (Independence). For all

L 1 = [O, m 1 ] and L 2 = [O, m 2 ] in L bf , and λ ∈ (0, 1), L 1 L 2 implies [O, λ m 1 + (1 -λ) m] [O, λ m 2 + (1 -λ) m]. Assumption 5.3 (Continuity). For all L 1 = [O, m 1 ], L 2 = [O, m 2 ], and L 3 = [O, m 3 ] in L bf such that L 1 L 2 L 3 , there exists λ and µ in (0, 1) such that [O, λ m 1 + (1 -λ) m 3 ] [O, m 2 ] [O, µ m 1 + (1 -µ) m 3 ].
Theorem 5.1 (Jaffray's representation theorem [START_REF] Jaffray | Linear utility theory for belief functions[END_REF]). The preference relation on L bf satisfies Assumptions 5.1-5.3 if and only if there exists a utility function u :

L bf → R such that for any lottery L = [O, m] in L bf , u(L) = ∅ =a⊆O m(a) u a ( 29 
)
where

u a = u([O, m d a ]
), and m d a is a deterministic BPA for O such that m d a (a) = 1. Thus, Jaffray's axioms result in the same solution as that of Corollary 4.1, which is a special case of Theorem 4.2. As Jaffray's axioms do not use Dempster's rule explicitly, it is not clear whether Eq. ( 29) applies to the D-S framework or not. The mixture BPA m derived from BPAs m 1 and m 2 using Eq. ( 28) is not Dempster's combination rule, although Eq. ( 28) can be derived from a belief function model using Dempster's rule. In [START_REF] Jaffray | Dynamic decision making with belief functions[END_REF], Jaffray writes:

"It has been shown by [START_REF] Jaffray | Linear utility theory for belief functions[END_REF][START_REF] Jaffray | Linear utility theory and belief functions: A discussion[END_REF] that, in the lower probability interpretation of belief functions, the axioms of von Neumann-Morgenstern linear utility theory could be justified with the same arguments as in the case of risk (probabilized uncertainty)" (emphasis added). Also, in [START_REF] Jaffray | Decision making with belief functions: Compatibility and incompatibility with the sure-thing principle[END_REF], Jaffray and Wakker write: "Given the widespread use of belief functions, it is remarkable that only recently were decision criterion for the above-mentioned type of situations proposed and axiomatized in [START_REF] Jaffray | Linear utility theory for belief functions[END_REF]. He uses as a primitive axiom the independence condition with respect to mixtures of belief functions over the outcomes to generalize expected utility: [START_REF] Jaffray | Linear utility theory and belief functions: A discussion[END_REF] justifies this condition by means of a lower-probability interpretation of belief functions." (emphasis added). Thus, it is clear that Jaffray has in mind the credal set semantics of belief functions, which are inconsistent with Dempster's combination rule 5 .

In comparison, our representation theorem is based on a set of axioms making use of the basic constructs of DS theory (namely, Dempster's combination rule, marginalization, and conditional embedding), we provide more compelling arguments supporting Eq. ( 29) as a natural definition of the real-valued utility of a bf lottery in the D-S theory.

Also, there is no explicit notion of a bf reference lottery in Jaffray's framework. Thanks to our continuity axiom (Assumption 4.3), the interval-valued utility [u a , 1 -v a ] in our framework receives a simple interpretation as an interval-valued probability of a best outcome O 1 , in a bf reference lottery [O 2 , m a ] that is indifferent to a and such that m a ({O 1 }) = u a , m a ({O r }) = v a , and m a (O 2 ) = 1 -u a -v a . We believe that this simple interpretation can be very helpful when eliciting utilities from DMs, as discussed in Section 4.5.

Comparison with Smets' decision theory

Smets' decision theory [START_REF] Smets | Decision making in a context where uncertainty is represented by belief functions[END_REF] is a two-level framework where beliefs, represented by belief functions, are held at a credal level. When a DM has to make a decision, the marginal belief function for a variable of interest is transformed into a PMF, and the Bayesian expected utility framework is then used to make a decision.

Smets uses a transformation called the pignistic transform to transform belief functions into PMFs. This transform is justified in [START_REF] Smets | Decision making in the TBM: The necessity of the pignistic transformation[END_REF] using a mixture property as follows. Let T denote the belief-PMF transformation. Smets [START_REF] Smets | Decision making in the TBM: The necessity of the pignistic transformation[END_REF] argues that this transformation should be linear, i.e., we should have, for any λ ∈ [0, 1],

T (λ m 1 + (1 -λ) m 2 ) = λT (m 1 ) + (1 -λ)T (m 2 ). ( 30 
)
The unique transformation T verifying ( 30 

for all O ∈ O. The pignistic PMF BetP m is mathematically identical to the Shapley value in cooperative game theory [START_REF] Shapley | A value for n-person games[END_REF]. In [START_REF] Smets | Decision making in the TBM: The necessity of the pignistic transformation[END_REF], Smets attempts to derive Eq. ( 30) from the maximum expected utility principle. The argument, however, is quite technical and not very compelling.

Given the definition in Eq. ( 31 

It is a special case of Eq. ( 22), with

u a = 1 |a| O∈a u {O} .
Smets' decision theory thus amounts to assuming that a DM is indifferent between a bf lottery that gives them an outcome in a for sure, and a bf reference lottery in which the probability of the best outcome is equal to the average utilities of the outcomes in a. This is consistent with our Assumptions 4.1-4.6, but it is inconsistent with Assumption 4.7. For instance, in Example 8, a DM using the pignistic criterion would strictly prefer b to a, even though the act f 1 generating a dominates the act f 2 generating b. Moreover, this restricted model does not have any parameter to represent a DM's attitude toward ambiguity. As a result, it is unable to explain Ellsberg's paradox and the ambiguity aversion of human DMs as described, e.g., in the examples presented in Section 4.3.

Comparison with other axiomatic theories

In this subsection, we compare our axiomatic decision theory with other axiomatic decision theories for D-S belief functions.

Dubois et al. [START_REF] Dubois | On the possibilistic decision model: from decision under uncertainty to case-based decision[END_REF] describe an axiomatic decision theory for the case where uncertainty is described by a possibility distribution, which is a special case of a belief function with nested focal elements (such a belief function is said to be consonant). Dubois et al.'s decision theory consists of two sets of axioms, one for the pessimistic case, and one for the optimistic case. In contrast, Giang and Shenoy [START_REF] Giang | Two axiomatic approaches to decision making using possibility theory[END_REF] propose an axiomatic theory for possibility theory with one set of axioms, and the utility function is binary-valued (binary-valued utilities are possibility distribution values of O 1 and O r for possibilistic reference lotteries). The two axiomatic theories for possibility theory are compared in detail in [START_REF] Giang | Two axiomatic approaches to decision making using possibility theory[END_REF]. The latter theory is generalized in terms of partially consonant belief functions in [START_REF] Giang | A decision theory for partially consonant belief functions[END_REF]. A partially consonant belief function is a belief function where the set of focal elements can divided into groups such that (a) the focal elements in different groups are disjoint, and (b) the focal elements in the same group are nested. The family of partially consonant belief functions include Bayesian belief functions and consonant belief functions.

Giang [START_REF] Giang | Decision with Dempster-Shafer belief functions: Decision under ignorance and sequential consistency[END_REF] compares the Giang-Shenoy decision theory for partially consonant belief functions with Jaffray's axiomatic decision theory for general belief functions. Similar to Jaffray's theory, our decision theory is for the case of general belief functions. While our utility is interval-based, leading to incomplete preferences, Jaffray's theory for general belief functions, and Giang-Shenoy's theory for partially consonant belief functions based on binary utility, result in complete preferences, which is a special case of our theory. Walley [START_REF] Walley | Belief function representation of statistical evidence[END_REF] argues that partially consonant belief functions is the only class of D-S belief functions that is consistent with the likelihood principle of statistics, but this argument applies only to statistical inference, and not to uncertain reasoning in general.

Comparison with Shafer's constructive decision theory

Shafer [START_REF] Shafer | Constructive decision theory[END_REF] argues for a decision theory that allows us to construct both goals and beliefs in response to a decision. In the vN-M utility theory, we start with a probabilistic lottery, and construct a utility function that reflects a DM's risk attitude. Thus, probabilities and utilities are separate constructs that are then combined for the computation of expected utility. In many situations, we have neither objective nor subjective probabilities. For such situations, Shafer argues for constructing belief functions from available evidence, and constructing a set of consistent and monotonic goals. Given a set of actions, we examine which goals each of the actions will achieve. We use belief functions to make judgments based on evidence In practice, implementing the most general form of our axiomatic theory may need assessment of 2 k parameters, where k is the number of focal sets of a bf lottery. In the worst case, k can be as large as 2 |O| -1. Based on additional assumptions, we propose a model based on only two parameters, which can be interpreted as reflecting both the DM's attitude to ambiguity and their indeterminacy. This model, as well as others, will have to be further studied and developed. More generally, a rigorous methodology to elicit interval-valued utilities remains to be designed and validated experimentally.

Finally, in this paper, we start from the assumption that the D-S formalism is an adequate model of an agent's state of knowledge, and we derive a corresponding decision theory from a set of rationality requirements. Thus, a belief function on the state space is assumed to be given, and we generate interval-valued expected utilities for bf lotteries. A further step would be to justify not only utilities, but also the D-S calculus itself (including belief functions and Dempster's rule) from properties of the DM's preference relation over acts, similar to what Savage [START_REF] Savage | The theory of statistical decision[END_REF] did to provide a foundation for decision-making with probability theory, similar to what Dubois et al. [START_REF] Dubois | Decision-theoretic foundations of qualitative possibility theory[END_REF] did to justify decision-making with qualitative possibility theory, and similar to what Gul and Pesendorfer [START_REF] Gul | Expected uncertain utility theory[END_REF], and Zhou et al. [START_REF] Zhou | A Savage-style utility theory for belief functions[END_REF] did for decision-making with a theory of belief functions where the belief functions are interpreted as credal sets. This task remains to be done.
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 1 Figure 1: A two-stage compound lottery reduced to an indifferent simple lottery

Figure 2 :

 2 Figure 2: The substitutability assumption 2.5

Figure 3 :

 3 Figure 3: Reducing a lottery to an indifferent compound lottery and then to an indifferent reference lottery

Assumption 4 . 1 (

 41 Weak ordering of outcomes). The DM's preferences for outcomes in O = {O 1 , . . . , O r } are complete and transitive.

  [START_REF] Choquet | Theory of capacities[END_REF]. Marginalizing the orthogonal sum on O, we get a BPA m . Assumption 4.2 below posits that the resulting simple lottery [O, m ] is equally preferred to the original compound lottery [L, m], i.e., we can reduce the compound lottery to a simple bf lottery on O using the D-S calculus.
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 4 Figure 4: A 2-stage compound belief function lottery. B 1 is drawn from Urn 1, and B 2 is drawn from Urn 2. The corresponding BPAs are shown on the right. In the first stage, m is a BPA for {L 1 , L 2 }. In the second stage, m 1|L1 and m 2|L2 are BPAs for {$100, $0}.
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 5 Figure 5: Reducing a bf lottery to a bf reference lottery
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 6 Figure 6: Ellsberg's urn, choice of lotteries, and the corresponding belief function lotteries
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 7 Figure 7: One red ball urn, choices, and the corresponding belief function lotteries
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 8 Figure 8: Two urns with 1,000 balls, choices, and the corresponding belief function lotteries

  focal set a is preferred or indifferent to the deterministic lottery with focal set b. Then our last assumption can be stated as follows.
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 47 Dominance). For all nonempty subsets a and b of O, if O a O b and O a O b , then a b. Assumption 4.7 implies that the preference between two deterministic lotteries with focal sets a and b is determined only by the best and worst outcomes in a and b. In particular, when O a = O b and O a = O b , then a ∼ b.
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  ) is the pignistic transformation defined as T (m) = BetP m with BetP m (O) = a⊆O m(a) |a| I(O ∈ a)

  ), the expected utility of a bf lottery L = [O, m] according to the pignistic PMF is u BetP (L) = O∈O BetP m (O) u {O} (

  ). For any two outcomes O i and O j , either O

i O j or O j O i . Also, if O i O j and O j O k , then O i O k .

Thus, the preference relation over O is a weak order, i.e., it is complete and transitive.

Given Assumption 2.1, without loss of generality, let us assume that the outcomes are labelled such that O 1 O 2
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The assumption of finiteness of the sets Ω X and O is only for ease of exposition. It is unnecessary for the proof of the representation theorem in this section.

Savage [38] derives both probabilities and utilities from a set of axioms. This approach will not be considered in this paper.

Belief functions can also be mathematically represented by a convex set of PMFs called a credal set, but the semantics of such a representation are incompatible with Dempster's combination rule[40, 

[START_REF] Shafer | Perspectives on the theory and practice of belief functions[END_REF][START_REF] Shafer | Rejoinders to comments on "Perspectives on the theory and practice of belief functions[END_REF][START_REF] Halpern | Two views of belief: Belief as generalized probability and belief as evidence[END_REF]. For these reasons, we skip a credal set representation of a belief function.

This notion was previously introduced in[START_REF] Denoeux | Decision-making with belief functions: A review[END_REF] under the name "evidential lottery."

-v a = β(O a , O a ) u O a + 1 -β(O a , O a ) u Oa ,(23b)

It is possible that in 1989, it was not well understood that credal set semantics of belief functions were incompatible with Dempster's combination rule. This was apparently clarified in the early 1990s by Shafer in[START_REF] Shafer | Perspectives on the theory and practice of belief functions[END_REF][START_REF] Shafer | Rejoinders to comments on "Perspectives on the theory and practice of belief functions[END_REF] and also by Fagin and Halpern in[START_REF] Fagin | A new approach to updating beliefs[END_REF][START_REF] Halpern | Two views of belief: Belief as generalized probability and belief as evidence[END_REF] 
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at random from the urn. You win $100 if the color of the ball drawn from the urn matches the color you chose, and you win $0 if it doesn't. What color do you choose? In [START_REF] Jiroušek | Ambiguity aversion and a decision-theoretic framework using belief functions[END_REF], the authors describe some informal experiments where all respondents chose red for n ≤ 7, and for n ≥ 8, several respondents preferred a color different from red.

Suppose you choose r. The bf lottery L r based on m X is as follows: [{$100, $0}, m r ], where m r ({$100}) = 1/n, and m r ({$0}) = (n -1)/n. If the color you pick is b, then the bf lottery L b is [{$100, $0}, m b ], where m b ({$0}) = 1/n, and m b ({$100, $0}) = (n -1)/n. Thus, we have [u](L r ) = [1/n, 1/n], and

i.e., whenever u {$100, $0} > 1/(n -1), and L r is strictly preferred to L b whenever

i.e., whenever 1 -v {$100, $0} < 1/(n -1). Hence, L b is increasingly preferred to L r when n increases, which is consistent with the findings reported in [START_REF] Jiroušek | Ambiguity aversion and a decision-theoretic framework using belief functions[END_REF]. In our model, when

the two lotteries L r and L b are incomparable. If forced to choose, the DM might just choose arbitrarily. As the experiment reported in [START_REF] Jiroušek | Ambiguity aversion and a decision-theoretic framework using belief functions[END_REF] did not allow the respondents to express inability to choose between the two lotteries, it does not provide any evidence for or against our model.

Example 7 (Urns with 1,000 balls). The following example is discussed in [START_REF] Becker | What price ambiguity? or the role of ambiguity in decision-making[END_REF], where it is credited to Ellsberg in an oral conversation (with the authors of [START_REF] Becker | What price ambiguity? or the role of ambiguity in decision-making[END_REF]). It is also discussed in [START_REF] Einhorn | Decision making under ambiguity[END_REF]. There are two urns, each with 1,000 balls, numbered from 1 -1, 000. Urn 1 has exactly one ball for each number, and there is no ambiguity. Urn 2 has unknown number of balls of each number, and there is much ambiguity. One ball is to be chosen at random from an urn of your choosing. If the number on the ball matches a specific number, e.g., 687, you win $100, and if not, you win nothing ($0). Which one of the two urns will you choose? This choice problem is shown in Figure 8. It is reported in [START_REF] Becker | What price ambiguity? or the role of ambiguity in decision-making[END_REF] that many respondents chose Urn 2. Why? Urn 1 has only one ball numbered 687, and therefore, the probability of winning $100 if the choice is Urn 1 is very small, 0.001. Urn 2 could possibly have anywhere from 0 to 1, 000 balls numbered 687. Thus, the choice of Urn 2, although ambiguous, is appealing. Let's analyze this problem using Theorem 4.2.

Let X 1 denote the number on the ball chosen Urn 1, and let X 2 denote the number on the ball chosen Urn 2. Ω

about what will happen if an action is taken. We then use these belief functions to compute the expected number of goals that an action will satisfy, and pick an action that satisfies the most goals. This can be generalized to the case where not all goals are equally weighted, some are weighted more than others.

Our utility theory is more in line with vN-M utility theory than Shafer's constructive decision theory. There is considerable literature in many domains about the use of utility theory for decision making. While Shafer's constructive decision theory is intriguing and may indicate an interesting direction to explore, there is much to be done before we can apply it in many domains for which we have a decision theory in the vN-M style.

Summary and Conclusions

In this section, we summarize our proposal and sketch some future work. We start with Luce and Raiffa's version of the vN-M utility theory for probabilistic lotteries. We then consider bf lotteries, lotteries when our beliefs about the state of the world is described by DS belief functions. We use a similar set of axioms as vN-M, but first we replace each singleton outcome in a probabilistic lottery by a focal set of a BPA. Second, we replace the reduction of compound lotteries with a corresponding axiom that uses Dempster's combination rule and belief function marginalization in place of probabilistic combination (pointwise multiplication followed by normalization) and probabilistic marginalization (addition). Third, we use a bf reference lottery with two independent parameters. The axioms lead to a decision theory that involves assessing the utility of each focal element of a BPA as an interval-valued utility. Interval-valued utilities lead to a partial preference relation on the set L bf of all bf lotteries. If we use Bayesian bf reference lotteries with a single parameter, then our axiomatic framework leads to a real-valued utility function that is exactly the same as in Jaffray's linear utility theory [START_REF] Jaffray | Linear utility theory for belief functions[END_REF].

The decision theory that results from our axioms is more general than that proposed by Jaffray [START_REF] Jaffray | Linear utility theory for belief functions[END_REF], which can be construed as a decision theory for belief functions interpreted as generalized probabilities. Jaffray's axiomatic theory is based on a set of mixture BPAs. A mixture of two BPAs is not the same as a Dempster's combination of two BPAs, although we could construct a belief function model where the mixture BPA is obtained by Dempster's rule. Thus, it is not clear if Jaffray's linear utility theory is applicable to D-S belief function lotteries or not. Our utility theory confirms that this is indeed the case. Our bf reference lotteries lead to interval-valued utilities, and consequently, a partial preference relation on the set of all bf lotteries.

We also compare our axiomatic theory to Smets' two-level framework [START_REF] Smets | Decision making in a context where uncertainty is represented by belief functions[END_REF][START_REF] Smets | Decision making in the TBM: The necessity of the pignistic transformation[END_REF], and note that his framework is too constrained to explain ambiguity-aversion or ambiguity-seeking behavior of human DMs. Other axiomatic decision theories proposed by Dubois et al. [START_REF] Dubois | On the possibilistic decision model: from decision under uncertainty to case-based decision[END_REF] and Giang and Shenoy [START_REF] Giang | Two axiomatic approaches to decision making using possibility theory[END_REF][START_REF] Giang | A decision theory for partially consonant belief functions[END_REF] are restricted to consonant or quasi-consonant belief functions. Shafer [START_REF] Shafer | Constructive decision theory[END_REF] has recently published his constructive decision theory where he rejects the separation of beliefs and utilities. He proposes, instead, constructing a set of consistent and monotonic goals, and measuring the utility of each choice by the number of goals (or weighted goals) achieved by the choice. Shafer's constructive decision theory needs to be fleshed out before it can be applied to practical decision-making situations.