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1 Context, motivations and objectives

Black-box optimization refers to the global optimization of an objective function (single real-valued)
on which basically no information is available. Black-box optimization algorithms often require a
large number of expensive function evaluations. The use of surrogate models and parallel computing
— or a combination of both — allows to reduce the optimization time and the number of calls to the
objective function. Among available methods, Bayesian Optimization (BO) is of particular interest.
Introduced by Kushner et al. [1] in 1964 and later developed by Mockus et al. [2] in 1974, BO uses
an Acquisition Function (or Infill Criterion) to guide the optimization process. The surrogate
model is used to locate areas of the search space that will most likely improve the optimum value
or the surrogate model. A well-known BO framework is Efficient Global Optimization (EGO),
proposed by Jones et al. in [3]. It uses a Gaussian Process (GP) based surrogate model (also
known as Kriging) which, in addition to a prediction of the objective function values, provides a
quantification of its uncertainty. Based on Kriging predictions and their associated uncertainty,
the Expected Improvement (EI) infill criterion provides a measure of how desirable it is to add a
point to the database of evaluated solutions, balancing exploration and exploitation.

For example, EI is high in regions of high uncertainty (exploration), and in regions with pre-
dicted values close to the current optimum (exploitation). So that, adding the candidate that
maximizes EI achieves a trade-off between the exploration of regions with low surrogate accuracy
and exploitation of areas where the best known solution is located. Based on the assumption that
EI can be improved, new infill criteria have been proposed within the context of BO, but none
performs significantly better than EI.

The GP and EI coupling is a state-of-the-art method that is still competitive with other re-
cently developed BO methods. However, especially if the objective function is implicitly defined by
complex and large-scale numerical simulations, the execution time of the algorithm often remains
very high. Therefore, it is important to enable BO algorithms like EGO to efficiently exploit the
computational power provided by massively parallel high-performance computing platforms. Due
to its inherently sequential nature, the parallelization of the framework is challenging. Several ap-
proaches involving batch parallel evaluations of the objective function have been proposed in the
literature.

Based on EGO, Ginsbourger et al. proposed in [4] a multi-point version of EI (named ¢-
EI) which provides ¢ points per EGO-iteration to be added to the data set, which allows to
perform function evaluations in parallel. For large values of ¢, exactly maximizing ¢-EI can become
prohibitively expensive, so that heuristics are used to provide several distinct points. However, the
difficulty to address the multi-point EI optimization (even with heuristics) makes the infill criteria
computationally expensive. As a consequence, this way to compute the g-points EI does not allow
to efficiently use high number of computational cores.

Multi-point parallel methods for BO can be grossly divided into two groups. The methods in
the first group use the same infill criterion and surrogate model to propose ¢ points. For instance,
g-EGO from [4] proposes an approximated multi-points EI, gradient-based methods for the max-
imization of multi-point EI are used in [5] and niching evolutionary algorithms can be used to
locate several local optima at once [6]. The methods in the second class combine different selec-
tion criteria. For example, Lyu et al. [7] use multi-objective optimization to obtain a Pareto front
of optimal candidates according to different infill criteria and Wang et al. [8] use n infill criteria
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coupled with multi-points proposal inspired by Kriging Believer from [9] to get n * ¢ candidates
per cycle.

Even though EGO and its parallel derivatives achieve excellent results with restricted budgets,
several aspects of the approach can be improved. For instance, the scalability of existing parallel
approaches suffers from the difficulty to provide ¢ different candidate points to evaluate in parallel.
The objective of this work is to tackle these issues by providing a large scale parallel version of
EGO using a fast-to-compute El-based multi-point acquisition function.

2 The proposed approach

As mentioned, a difficulty arising from the optimization of q-EI is that the process becomes com-
putationally expensive for large batch-sizes. Exactly optimizing g-EI is not an option, and even if
heuristics allow to lower the computation cost, improvement must still be done to take advantage of
larger parallelization (¢ > 32). A common way to tackle large optimization problems is to split the
search space and perform optimization on sub-spaces. No occurrence of sub-space decomposition
applied to the BO framework has been found in the current literature. Therefore, we propose to
investigate splitting strategy to the infill criterion optimization problem in order to provide distinct
candidates for evaluation in a reasonable amount of time.

Algorithm 1 presents the idea of BO using space decomposition. As for classical BO, we consider
three phases: first the initial sampling is created as shown in lines 1-2; second the surrogate model
is fitted (line 6) and optimization of the infill criterion is performed (lines 7 to 11); finally the
candidates are evaluated and integrated in the database as shown in lines 12 to 14 of the pseudo-
algorithm. The splitting strategy is applied during the second phase so that the infill criterion is
optimized in each sub-domain.

When partitioning the search space, the acquisition function optimization can be run in parallel
in each sub-domain. For example, considering n computational cores, it is possible to use the exact
optimization of two-points EI (available in [4]) in the n sub-domains in order to provide 2 x n
candidates. A selection operates to keep a batch of n points to evaluate. The multi-point proposal
in each sub-domain intends to avoid wasting budget in areas of low expected improvement. Thus,
thanks to parallel computing, this infill criterion should remain reasonably costly while providing
a large amount of distinct candidates to simulation and enhancing exploration.

Algorithm 1 Framework of the proposed algorithm
f: objective function
D: search space
budget: budget
surrogate: Kriging meta-model
q: number of candidates per batch

1. X = [m(l), cee m(")] < initial_sampling(n, D)

2t y <+ f(X)

3: Ymin  get_best_cost(Y)

4: while budget # 0 do

5: X .o > batch of candidate solutions
6: surrogate < fit_Kriging_model (X, y)

7 (D1, ...,Dxn) « split(D)

8: for i€[l,...,n] do > parallelizable loop
9: B; = ARGM AXp,(q-EI) > one infill criterion per sub-domain
10: end for

11: B, «+ select_best_candidates(Uj_, B;)

12: y. < f(B.) > parallel simulations

13: X+ XUB.

14: y+— YUy,

15: (Tmin, Ymin) < get_best(X,Y)
16: end while

17: return T,in, Ymin
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3 Experimental protocol

The proposed strategy is tested in several classical benchmark functions chosen to represent known
difficulties of Global Optimization such as multi-modal or noisy landscapes. We also tackle an op-
timization problem from a real-world application involving an expensive simulator. The simulator
is constructed with the AuTuMN model which is designed to implement tuberculosis control pro-
grams and to estimate their efficiency [10]. In order to evaluate the scalability of the approach,
experiments are performed on the Grid5000 [11] platform using up to 8 compute nodes with a total
of 256 CPU cores. Extensive experiments are being conducted and the results will be presented at
the OLA’20 conference.

4 Conclusion and ongoing works

Several space partitioning methods exist and can be compared in this context, furthermore it could
be beneficial to dynamically adapt the partition size according to the number of high EI points
found in a specific partition. Indeed, splitting the search space increases the exploration, but some
areas are clearly not worth to be explored. To that end, two attached partitions with low EI may
be merged while a region of high EI can be split. We are currently investigating such an approach.
Furthermore, the use of parallelization makes the size of the data base increase fast, so that the
Kriging model fitting might reach penalizing cost (growing cubically with the data set size). In this
condition, alternate surrogate models such as Bayesian Optimization could replace the Kriging at
a lower cost thanks to its incremental training. As an example, Snoek at al. [12] use deep neural
networks to overcome this issue.
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