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Summary. This paper addresses the problem of deriving the asymptotic distribution of the empirical

distribution function F̂n of the residuals in a general class of time series models, including conditional

mean and conditional heteroscedaticity, whose independent and identically distributed errors have

unknown distribution F . We show that, for a large class of time series models (including the standard

ARMA-GARCH), the asymptotic distribution of
√
n{F̂n(·) − F (·)} is impacted by the estimation but

does not depend on the model parameters. It is thus neither asymptotically estimation free, as is the

case for purely linear models, nor asymptotically model dependent, as is the case for some nonlinear

models. The asymptotic stochastic equicontinuity is also established. We consider an application to

the estimation of the conditional Value-at-Risk.
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1. Introduction

For independent variables η1, . . . , ηn with common distribution F , the celebrated Glivenko-Cantelli

theorem states the uniform almost sure convergence of the empirical distribution,

sup
x∈R
|Fn(x)− F (x)| → 0, a.s.

where Fn(x) = 1
n

∑n
t=1 1{ηt≤x} for all x. The usual Central Limit Theorem (CLT) shows that

√
n{Fn(x)−F (x)} is asymptotically N (0, F (x)(1−F (x)) distributed without any further assump-

tion. Moreover, under the assumption that F is continuous, the sequence {
√
n[Fn(·) − F (·)]} is

stochastically equicontinuous, in the sense that
√
n{Fn(xn) − F (xn)} L→ N (0, F (x)(1 − F (x)) for

any sequence (xn) converging to x in probability, for any x (see Billingsley (1968, Section 22) and

Andrews (1994)). The latter convergence in distribution has important statistical applications, for

instance the derivation of the asymptotic distribution of the empirical quantiles (see below).

Time series observations are rarely independent and identically distributed (iid), but time series

models often involve iid innovations. Modern time series analysis often relies on semi-parametric

models in which the distribution F of the innovations ηt is not fully speci�ed. Many such models

are of the location-scale form yt = mt(θ0) + σt(θ0)ηt, where mt and σt are functions of the past

observations yt−i, i > 0, and the sequence (ηt) is iid. Consistent estimation of the parameter θ0 can

be achieved by several methods. In particular, the Quasi-Maximum Likelihood (QML) estimation

method generally relies on a Gaussian criterion - written as if the distribution F was Gaussian -

but provides consistent estimators while remaining agnostic concerning the true distribution.

Even if no distributional assumption is made during the estimation phase, using semi-parametric

time series models may require information about the errors distribution F . For instance, in the

location-scale model the conditional Value-at-Risk (VaR) at level α ∈ (0, 1) is equal to mt + σtξα

where ξα is the α-quantile of F . Information about F can be obtained via the empirical distribution

function of the residuals (e.d.f.r.) F̂n. Consistent estimation of the parameters produce residuals

which are obviously not iid but converge to the innovations. One question of importance is whether

the previous properties on Fn apply to F̂n, i.e. when innovations are replaced by residuals.

For many applications, the asymptotic distribution of the sequence {
√
n[F̂n(·)−F (·)]} is required.

In the statistical literature, two kinds of results have been established. In some situations, the

asymptotic distribution is asymptotically estimation free (AEF), in the sense that, asymptotically,
√
n{F̂n(·) − F (·)} d

=
√
n{Fn(·) − F (·)}. Such results go back to Boldin (1982), for the AR(p)

process, and have been generalized to linear processes by Kreiss (1991) and Bai (1994). On the

other hand, existing results for nonlinear processes show that the distribution of
√
n{F̂n(·)− F (·)}

can be much more complicated. It can be asymptotically model dependent (AMD), in the sense
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that the asymptotic variance depends on both the law of the innovations F and the parameter

θ0. For di�erent classes of conditionally heteroscedatic time series, the asymptotic distribution was

investigated by Boldin (1998), and Lee and Taniguchi (2005) among others, and for the squared

residuals by Horváth, Kokoszka and Teyssière (2001) and Berkes and Horváth (2003). In all these

works, the distribution of the statistics involving the residuals is AMD. To overcome the AMD,

Koul and Ling (2006) proposed a modi�cation of the Kolmogorov-Smirnov test based on residuals.

See Berkes and Horváth (2002) for a review of the asymptotic behaviour of e.d.f.r.

The main contribution of this paper is to show that, for a large class of time series models (in-

cluding the standard ARMA-GARCH), the asymptotic distribution of
√
n{F̂n(·)− F (·)} is neither

AEF nor AMD. In some cases, which we are able to characterize, the distribution is asymptotically

model free (AMF), however it is impacted by the estimation, i.e. it is asymptotically estimation

dependent (AED), though only through the errors distribution. The AMF property simpli�es dra-

matically the use of such asymptotic results in practical applications based on potentially complex

time series models. On the other hand, the AED property tells us that usual statistics available for

observed iid processes cannot be directly employed.

We start by considering volatility modelling and QML estimation, which constitutes the most

widely used framework for �nancial returns. The absence of a conditional mean and the choice of a

speci�c estimation method allows us to derive �ner results. However, from an extended perspective,

we will also consider conditional location-scale models in which both �rst conditional moments are

involved, and more general estimation methods. We will also investigate an application to the VaR

estimation.

The rest of the paper is organized as follows. In the next section we introduce a general para-

metric volatility model and the main assumptions ensuring the consistency of the e.d.f.r. Next, we

state our �rst main result, establishing the asymptotic distribution of the e.d.f.r. Section 3 considers

the extension to conditional location-scale models. The application to VaR is developed in Section

4. In particular, we provide conditions for the strong consistency and asymptotic normality of the

residuals quantiles. Section 5 concludes. Most proofs are postponed to Section 6 or to an Appendix.

2. Empirical distribution of the residuals for volatility models

In this section, we focus on conditional scale models of the multiplicative form

εt = σtηt, σt = σ(εt−1, εt−2, . . . ;θ0), (1)

where (ηt) is a sequence of iid random variables, E(η2
t ) = 1, θ0 is a vector of unknown coe�cients

which belongs to a compact parameter set Θ ⊂ Rd, and σ is a positive function. Note that we do
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not assume that E(ηt) = 0.

For instance, the standard GARCH(p, q) model writes

εt = σtηt, σ2
t = ω0 +

q∑
i=1

α0iε
2
t−i +

p∑
j=1

β0jσ
2
t−j , (2)

where θ0 = (ω0, α01, . . . , β0p)
′ satis�es ω0 > 0, α0i ≥ 0, β0j ≥ 0. Under strict stationarity, invertibil-

ity of the polynomial B(z) = 1−
∑p

j=1 β0jz
j holds and the volatility σ2

t can indeed be written as a

linear function of the past values of ε2t .

We start by considering the Gaussian QML estimation method for which explicit conditions for

Consistency and Asymptotic Normality (CAN) can be displayed. More general estimators will be

considered in Section 3. The setup can be described as follows. Given observations ε1, . . . , εn, and

using arbitrary initial values ε̃i for i ≤ 0, we de�ne for any θ ∈ Θ,

σ̃t(θ) = σ(εt−1, εt−2, . . . , ε1, ε̃0, ε̃−1, . . . ;θ),

which will be used as a proxy of σt(θ) = σ(εt−1, εt−2, . . . , ε1, ε0, ε−1, . . . ;θ).

A Gaussian QML estimator (QMLE) of θ0 is de�ned as

θ̂n = arg min
θ∈Θ

1

n

n∑
t=1

˜̀
t(θ), ˜̀

t(θ) =
ε2t

σ̃2
t (θ)

+ log σ̃2
t (θ). (3)

Let K > 0 be a generic constant or random variable measurable with respect to F0, where Ft
denotes the σ-algebra generated by {ηs, s ≤ t}. Let ρ ∈ (0, 1). We shall assume the following.

A1: (εt) is a strictly stationary, non-anticipative (i.e. εt ∈ Ft) and ergodic solution of Model (1).

Moreover, E|σt|r <∞ for some r > 0.

A2: For any real sequence (xi), the function θ 7→ σ(x1, x2, . . . ;θ) is continuous di�erentiable.

Almost surely, σt(θ) ∈ (ω,∞] for any θ ∈ Θ and for some ω > 0. Moreover, σt(θ0)/σt(θ) =

1 a.s. i� θ = θ0.

A3: supθ∈Θ |σt(θ)− σ̃t(θ)| ≤ Kρt.

A4: There exists a neighborhood V (θ0) of θ0 such that E
(

supθ∈V (θ0)
σt(θ0)
σt(θ)

)r
< ∞ and

E supθ∈V (θ0) ‖Dt(θ)‖r <∞, where Dt(θ) = σ−1
t (θ)∂σt(θ)/∂θ.

Assumptions A1-A3 are a set of conditions ensuring the strong consistency of θ̂n (see Francq

and Zakoian (2004, 2015)). Assumption A4 is introduced to control the di�erence between the

innovations and the residuals. 1

1For the classical GARCH(p, q) model, under invertibility conditions on the lag polynomial Bθ(z) = 1 −∑p
j=1 βjz

j and assuming that the law of η2t is nondegenerate, A1-A4 reduce to the �rst part of A1.
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Let the residuals η̂t = εt/σ̃t(θ̂n). We note that, at least for t large enough, σ̃t(θ̂n) ≥ ω by A2-

A3. We start by establishing a Glivenko-Cantelli result for the e.d.f.r. F̂n(x) = 1
n

∑n
t=1 1{η̂t≤x}.

2

The following assumption is simply denoted A5 when it holds for all x ∈ R.

A5(x): For x ∈ R, the cdf F of η is Lipschitz continuous in a neighborhood of x.

Theorem 1. Under A1-A4,

(a) If A5(x) holds for x ∈ R, we have |F̂n(x)− F (x)| → 0 a.s.

(b) If A5 holds we have supx∈R |F̂n(x)− F (x)| → 0 a.s.

Notice that the previous uniform convergence was established by Stute (2001) in the case of

ARCH(q) processes. It is known (see for instance Stute and Schumann (1980)) that in the case of a

stationary ergodic sequence, the Glivenko-Cantelli theorem is valid without any assumption on F .

The following example shows that A5 is required for the consistency of the e.d.f.r.

Example 1 (Glivenko-Cantelli in failure). Consider the scale model εt = σηt, σ > 0,

where ηt is distributed over {−
√

2, 0,
√

2} with P (ηt = −
√

2) = P (ηt =
√

2) = 1/4. Let σ̂n be a

consistent estimator of σ. The residuals η̂t = σ
σ̂n
ηt have the e.d.f.r.

F̂n(x) =

(
1

n

n∑
t=1

1lεt<0

)
1l−
√

2 σ

σ̂n
≤x<0 +

(
1

n

n∑
t=1

1lεt≤0

)
1l0≤x<

√
2 σ

σ̂n

+ 1lx≥
√

2 σ

σ̂n

.

It follows that supx∈R |F̂n(x) − F (x)| ≥ |F̂n(−
√

2) − F (−
√

2)| = 1/4 whenever σ < σ̂n, which has

a non vanishing probability for the QML. Indeed, we have σ̂2
n = 1

n

∑n
t=1 ε

2
t , thus P (σ < σ̂n) =

P ( 1
n

∑n
t=1 1lε2t=0 > 1/2) = P (Xn > n/2) where Xn ∼ B(n, 1/2).

We now derive the e.d.f.r. asymptotic distribution under the following additional assumptions.

A6: θ0 belongs to the interior of Θ.

A7: There exist no non-zero x ∈ Rd such that x′ ∂σt(θ0)
∂θ = 0, a.s.

A8: The function θ 7→ σ(x1, x2, . . . ;θ) has continuous second-order derivatives, and

sup
θ∈Θ

∥∥∥∥∂σt(θ)

∂θ
− ∂σ̃t(θ)

∂θ

∥∥∥∥ ≤ Kρt.
A9: There exists a neighborhood V (θ0) of θ0 such that

E sup
θ∈V (θ0)

{∥∥∥∥ 1

σt(θ)

∂σt(θ)

∂θ

∥∥∥∥4

+

∥∥∥∥ 1

σt(θ)

∂2σt(θ)

∂θ∂θ′

∥∥∥∥2

+

∣∣∣∣σt(θ0)

σt(θ)

∣∣∣∣4 +

∣∣∣∣ σt(θ)

σt(θ0)

∣∣∣∣4
}
<∞.

Moreover, κ4 := E|ηt|4 <∞.
2For the classical GARCH(p, q) model, Berkes and Horváth (2003) established a Glivenko-Cantelli theorem

for the empirical cumulative distribution function (cdf) of the squared residuals.
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A10: All the coordinates of ∂σt(θ0)
∂θ are (strictly) positive.

A11: η1 admits a density f which is continuous on R.

A12: For any θ ∈ Θ, for any c > 0, and any sequence (xi), there exits θc ∈ Θ such that

cσ(x1, x2, . . . ;θ) = σ(x1, x2, . . . ;θc).

Assumptions A6 is required for the asymptotic normal distribution of θ̂n. Assumptions A7-A10

and A12 are satis�ed for the standard GARCH (p, q) model, under the already mentioned reg-

ularity assumptions. Assumption A12 is a stability-by-scaling property, which seems a desirable

assumption for any volatility model (examples are provided in Francq and Zakoian (2015)).

We now state our �rst main result showing that the law of
√
n
(
F̂n − F

)
is AED but AMF.

Theorem 2. Let A1-A4, A6-A11 hold. Then, for any sequence (xn) of random variables

converging in probability to x ∈ R,

√
n
(
F̂n(xn)− F (xn)

)
=

1√
n

n∑
t=1

{1lηt<x − F (x)} − xf(x)

2
√
n

Ω′J−1
n∑
t=1

(1− η2
t )Dt + oP (1),

where Ω = E(Dt), J = E(DtD
′
t) with Dt = Dt(θ0).

If in addition A12 holds,

√
n
(
F̂n(xn)− F (xn)

)
L→ N

(
0, F (x){1− F (x)}+

{xf(x)}2

4
(κ4 − 1) + xf(x)%(x)

)
where %(x) = E(η2

01lη0<x)− F (x).

Remark 1. A noticeable outcome of this theorem is that, under A12, the asymptotic distribution

of the e.d.f.r. only depends on the underlying distribution of the innovations. It is completely

independent of the model from which these residuals are derived. In the sense of Robinson (1987),

it means that the e.d.f.r. is adaptive to the unknown value of θ0, and even to the unknown form of

the function σ. This does not mean that we retrieve the asymptotic distribution of Fn derived for

iid data. The usual asymptotic variance, F (x){1 − F (x)}, is only valid when xf(x) = 0. This is

the case when x = 0 because the innovations and residuals at a given date have the same sign. The

e�ect of estimation also vanishes when |x| increases to ∞ (under A9). Parameter estimation may

reduce or increase the asymptotic variance (see Appendix).

Remark 2. One practical interest of adaptiveness is that estimation of the asymptotic variance

reduces to estimation of characteristics of the innovations distribution. In particular, f(x) can be

estimated by a Kernel density estimator based on the residuals. Theorem 2.1 in Kulperger and Yu

(2005) shows that, in the standard GARCH case, the use of residuals instead of innovations has no

asymptotic impact on the estimation of the density.
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3. Including a conditional mean

In ARMA-GARCH models, the conditional variance speci�cation is completed by a linear model for

the conditional mean. In what follows, we consider a more general framework. We will not either

restrict our investigations to the QML estimator. Suppose the model writes yt = mt + εt, εt = σtηt

mt = m(yt−1, yt−2, . . . ;θ0), σt = σ(yt−1, yt−2, . . . ;θ0)
(4)

under the same assumptions on (ηt), θ0 and Θ as before. Model (4) includes the double-AR(p) of

Ling (2007) in which θ0 = (φ01, . . . , φ0p, ω0, α01, . . . , α0p)
′ ∈ Rp × (0,∞)× [0,∞)p and

m(yt−1, yt−2, . . . ;θ0) =

p∑
i=1

φ0iyt−i, σ(yt−1, yt−2, . . . ;θ0) =

√√√√ω0 +

p∑
i=1

α0iy2
t−i,

but also more traditional ARMA-GARCH-type models, in which the volatility initially de�ned in

terms of the εt−i's can be rewritten as a function of the yt−i's.

Let, for arbitrary initial values ỹ0, ỹ−1, . . . , for any θ ∈ Θ, and for 1 ≤ t ≤ n,

m̃t(θ) = m(yt−1, yt−2, . . . , y1, ỹ0, ỹ−1, . . . ;θ), σ̃t(θ) = σ(yt−1, yt−2, . . . , y1, ỹ0, ỹ−1, . . . ;θ).

As in the previous section we denote without "tilde", the functions mt(θ) and σt(θ) in which the

initial values are replaced by variables at times anterior to 0. In the following assumptions, r > 0

denotes a real number which can be chosen arbitrarily small.

B1: (yt) is a strictly stationary, non-anticipative and ergodic solution of Model (4). Moreover,

E|mt|r <∞ and E|σt|r <∞.

B2: θ̂n denotes any consistent estimator of θ0. The functions θ → mt(θ) and θ → σt(θ) are

continuously di�erentiable. Almost surely, σt(θ) ∈ (ω,∞] for any θ ∈ Θ and for some ω > 0.

B3: supθ∈Θ(|mt(θ)− m̃t(θ)|+ |σt(θ)− σ̃t(θ)|) ≤ Ktρ
t where Kt ∈ Ft−1 and suptE(Kr

t ) <∞.

B4: For any neighborhood V (θ0) of θ0, we have

E sup
θ∈V (θ0)

{∥∥∥∥∂mt(θ)

∂θ

∥∥∥∥r + |mt(θ0)−mt(θ)|r + ‖Dt(θ)‖r
}
<∞

where

Dt(θ) =
1

σt(θ)

∂σt(θ)

∂θ
.

Note that the condition K ∈ F0 in A3 has been weaken in B3, in particular to be able to handle

the ARMA-GARCH under standard conditions.

We start by extending the Glivenko-Cantelli-type Theorem 1. Let the residuals η̂t = {yt −

m̃t(θ̂n)}/σ̃t(θ̂n).
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Theorem 3. Under B1-B4 (instead of A1-A4), the conclusions of Theorem 1 hold.

Hence, extending the framework of the previous section does not alter the consistency results. We

will now see that the same conclusion cannot be drawn concerning the asymptotic distribution of
√
n
(
F̂n − F

)
, which will no longer be model-free in general. Another di�erence, which constitutes

a major di�culty, is that Assumption A10 can no longer be made when a conditional mean is

included.3 We now assume that θ̂n admits a Bahadur representation.

B5: The following expansion holds

√
n
(
θ̂n − θ0

)
=

1√
n

n∑
t=1

∆t−1V (ηt) + oP (1),

where V (·) is a measurable function, V : R 7→ Rk for some positive integer k, and ∆t−1 is

a Ft−1-measurable d × k matrix. The variables ∆t and V (ηt) belong to L2 with EV (ηt) =

0, var{V (ηt)} = Υ is nonsingular and E∆t = Λ is full row rank.

Under this assumption, the CLT for stationary second-order martingale di�erences of Billingsley

(1961) can be applied. It follows that the asymptotic law of
√
n
(
θ̂n − θ0

)
is a centered Gaussian

with variance Σ := E(∆tΥ∆′t). Assumption B5 has to be veri�ed on a case by case basis, given

speci�c model and estimator.

Remark 3. For the Gaussian QMLE θ̂n of θ0,

θ̂n = arg min
θ∈Θ

Qn(θ), Qn(θ) =
1

n

n∑
t=1

˜̀
t(θ), ˜̀

t(θ) =
{yt − m̃t(θ)}2

σ̃2
t (θ)

+ log σ̃2
t (θ),

it can be shown that

√
n(θ̂n − θ0) = 2J−1 1√

n

n∑
t=1

{
ηt

1

σt

∂mt(θ0)

∂θ
+ (η2

t − 1)
1

σt

∂σt(θ0)

∂θ

}
+ oP (1), (5)

where

J = E

(
∂`2t (θ0)

∂θ∂θ′

)
= 2Jm + 4Jσ, Jm = E

(
1

σ2
t

∂mt(θ0)

∂θ

∂mt(θ0)

∂θ′

)
and Jσ = EDt(θ0)D′t(θ0). The Bahadur expansion in B5 is thus satis�ed, if E(ηt) = 0, with k = 2

and

V (ηt) = (ηt, η
2
t − 1)′, ∆t−1 = 2J−1

[
1

σt

∂mt(θ0)

∂θ

1

σt

∂σt(θ0)

∂θ

]
, Λ = 2J−1 [Ωm Ωσ] .

We also have Varas{
√
n(θ̂n−θ0)} = 4J−1 {Jm + (κ4 − 1)Jσ + µ3(Jmσ + J ′mσ)}J−1 = Σ, where

Jmσ = E
(

1
σ2
t

∂mt(θ0)
∂θ

∂σt(θ0)
∂θ′

)
and µ3 = Eη3

t .

3For instance in the model yt = m0 + σtηt where σ
2
t = ω+α(yt−1 −m)2, the derivative of σt with respect

to m is not positive, and even not of constant sign.
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The assumptions of Section 2 have to be modi�ed as follows.

B6: The function θ → mt(θ) and θ → σt(θ) have continuous second-order derivatives, and

sup
θ∈Θ

∥∥∥∥∂mt(θ)

∂θ
− ∂m̃t(θ)

∂θ

∥∥∥∥+ sup
θ∈Θ

∥∥∥∥∂σt(θ)

∂θ
− ∂σ̃t(θ)

∂θ

∥∥∥∥ ≤ Ktρ
t,

where Kt is as in B3.

B7: There exists a neighborhood V (θ0) of θ0 such that

E sup
θ∈V (θ0)

{∥∥∥∥ 1

σt(θ0)

∂mt(θ)

∂θ

∥∥∥∥4

+

∥∥∥∥ 1

σt(θ0)

∂2mt(θ)

∂θ∂θ′

∥∥∥∥2
}
<∞.

Let the additional assumption

B8: For n large enough, n > n0 say, the conditional distribution of ηt given θ̂n and Ft−1 admits a

density which is a.s. bounded, uniformly in n > n0 and t < n− t(n) where t(n) = o(
√
n).

Intuitively, the variables θ̂n and ηt should be asymptotically independent in most standard situa-

tions. For instance, consider the simple location model yt = θ0 + σηt, with Gaussian innovations

ηt. The conditional distribution of ηt given θ̂n and Ft−1, where θ̂n is the sample mean, is Gaussian

with variance 1−{n− (t− 1)}−1. Thus B8 is satis�ed for n0 > 1 and t(n) = 1, with bound 1/
√
π.

The next theorem uses the notion of discrete estimator, which has been introduced by Le Cam

(1960) and used by many authors (e.g. Kreiss (1987)).

Theorem 4. Under B1-B8 and A9, A11, if i) (xn) is a non-random sequence converging to

x ∈ R; or ii) xn is a discrete
√
n-consistent estimator of x, then

√
n
(
F̂n(xn)− F (xn)

)
L→ N

(
0, F (x){1− F (x)}+H ′(x)ΣH(x) + 2H ′(x)Λ%(x)

)
where %(x) = E (1lη0<xV (η0)) andH(x) = f(x)(Ωm+xΩσ), Ωm = E

(
1
σt

∂mt(θ0)
∂θ

)
, Ωσ = EDt(θ0).

Every sequence of
√
n-consistent estimators can be truncated to get a discrete sequence. The

discretization can also be avoided, at the price of either reinforcing Assumption B8, or increasing

the speed of convergence of the sequence (xn) (see Appendix).

More explicit forms of the asymptotic variance can be derived for the QMLE under the following

extension of Assumption A12 which will be illustrated below.

A12∗: For any θ ∈ Θ, for any c > 0, and any sequence (xi), there exits θc ∈ Θ such that

cσ(x1, x2, . . . ;θ) = σ(x1, x2, . . . ;θc) and m(x1, x2, . . . ;θ) = m(x1, x2, . . . ;θc).

The next result provides an explicit form for the asymptotic variance when the parameters of the

conditional mean and variance are independent and are estimated by QML.
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Corollary 1. Let θ = (ϕ′,ϑ′)′ and suppose that mt = mt(ϕ), σt = σt(ϑ). Under the assump-

tions of Theorem 4, under A12∗ and using the QMLE of θ0, we have

Varas

{√
n
(
F̂n(xn)− F (xn)

)}
= F (x){1− F (x)}+ xf(x)

{
xf(x)

κ4 − 1

4
+ %(x)

}
+ f(x) {f(x) + 2E(1lη0<xη0)}

×E
(

1

σt

∂mt(ϕ0)

∂ϕ′

){
E

(
1

σ2
t

∂mt(ϕ0)

∂ϕ

∂mt(ϕ0)

∂ϕ′

)}−1

E

(
1

σt

∂mt(ϕ0)

∂ϕ

)
.

Remark 4. The latter variance is obviously AMF if E
(

1
σt

∂mt(ϕ0)
∂ϕ

)
= 0. This occurs in par-

ticular for conditionally homoscedastic ARMA models without intercept.4 However, this property is

not general, as the following example shows. Let

Xt = ϕ01lXt−1>0 + σ0ηt, ϕ0 ∈ R, σ0 > 0,

where, for simplicity, the iid process (ηt) is endowed with a symmetric and continuous distribution

F . Then (Xt) is strictly stationary5 6 and straightforward calculation shows that P (Xt > 0) =

{3− 2F (ϕ0/σ0)}−1. Thus

E

(
1

σ0

∂mt(ϕ0)

∂ϕ′

){
E

(
1

σ2
0

∂mt(ϕ0)

∂ϕ

∂mt(ϕ0)

∂ϕ′

)}−1

E

(
1

σ0

∂mt(ϕ0)

∂ϕ

)
=

1

3− 2F (ϕ0/σ0)
.

For this model, the distribution of the e.d.f.r. is not AMF.

Remark 5. When A12∗ does not hold, even when the conditional mean and variance parameters

are disentangled, the variance is AMD, as the following example shows. Consider the following

DAR(1) model

Xt = φ0Xt−1 +
√

1 + α0X2
t−1ηt, α0 > 0, φ0 ∈ R, θ = (φ, α)′,

under the strict stationarity condition E log |φ0+
√
α0ηt| < 0 (see Ling , 2007). Then it can be shown

that the asymptotic variance of
√
n
(
F̂n(xn)− F (xn)

)
depends on the value of θ0 (see Appendix).

4Let Φ(L)yt = Θ(L)εt under standard assumptions on the lag polynomials Φ(L) = 1 −
∑p
i=1 φ0iL

i and

Θ(L) = 1 −
∑q
j=1 θ0jL

j . Then mt =
∑p
i=1 φiyt−i −

∑q
j=1 θjεt−j , from which we deduce

∂mt(ϕ0)
∂φi

= yt−i −∑q
j=1 θ0j

∂εt−j
∂φi

, and ∂mt(ϕ0)
∂θk

= −
∑q
j=1 θ0j

∂εt−j
∂θk
− εt−k. We also have ∂εt

∂θk
= Θ(L)−1εt−k, hence E

(
∂εt
∂θk

)
= 0

and similarly E
(
∂εt
∂φi

)
= 0. We conclude that E

(
1
σ0

∂mt(ϕ0)
∂ϕ

)
.

5This can be shown by noting that (Xt) is a Markov chain for which the ergodicity criterion of Feigin

and Tweedie (1985, Theorem 1) applies. Indeed, for V (x) = |x| + 1 and M > |ϕ0| + σ0E|ηt|, we have

E{V (Xt)|Xt−1} ≤ |ϕ0|+ σ0E|ηt|+ 1 ≤ (1− δ)V (x) for |x| > M and δ su�ciently small.
6This can also be shown by noting that Zt := 1lXt>0 = atZt−1 + bt(1− Zt−1) where at = 1lϕ0+σ0ηt>0, bt =

1lσ0ηt>0. Thus Zt = bt +
∑∞
k=0 ct . . . ct−kbt−k−1 a.s. where ct = at − bt, where the existence of the in�nite

sum holds by absolute convergence of the partial sums.
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We now consider in details the case of the ARMA(P,Q)-GARCH(p, q) model estimated by Gaussian

QML, which constitutes the model and estimation method most widely used in empirical works.

Let

Φ(L)Xt = Θ(L)εt, εt = σtηt, σ2
t = ω +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j , (6)

with ω > 0, αi, βj ≥ 0 and under standard assumptions on the lag polynomials Φ(L) =

1 −
∑P

i=1 φiL
i and Ψ(L) = 1 −

∑Q
j=1 ψjL

j . Note that this model does not satisfy the assump-

tions of Corollary 1 because the conditional variance function depends on the whole set of pa-

rameters. However, denoting by ϕ the ARMA parameters, Assumption A12∗ is satis�ed, with

θc = (ϕ′, c2ω, c2α1, . . . , c
2αq, β1, . . . , βp)

′, which entails a considerable simpli�cation (see Appendix).

Corollary 2. For the ARMA-GARCH model (6) with symmetrically distributed innovations,

under the assumptions ensuring the CAN of the QMLE, under B8 and A11, and for the sequence

(xn) of Theorem 4, we have

√
n
(
F̂n(xn)− F (xn)

)
L→ N

(
0, F (x){1− F (x)}+

{xf(x)}2

4
(κ4 − 1) + xf(x)E{1lη0<x(η2

0 − 1)}
)
.

In the symmetric ARMA-GARCH case, the asymptotic distribution of the empirical cdf of the

residuals is thus adaptive to the parametric speci�cation contrary to the examples of Remarks 4

and 5. In particular, in the pure ARMA case, estimating the (constant) innovations variance su�ces

to introduce estimation dependence in the asymptotic variance (compare to Bai (1994), Theorem 1).

We now exploit our stochastic equicontinuity results for estimating conditional quantiles.

4. Estimation of the conditional VaR

The conditional VaR of the process (εt) at risk level α ∈ (0, 1), denoted by VaRt(α), is de�ned as

the opposite of the α-quantile of the conditional distribution of εt. Assuming that this distribution

is continuous, VaRt(α) solves

Pt−1[εt < −VaRt(α)] = α,

where Pt−1 denotes the historical distribution conditional on {εu, u < t}. When (εt) is a non-

anticipative solution of Model (1), the conditional VaR at level α is then given by

VaRt(α) = −σ(εt−1, εt−2, . . . ;θ0)ξα,

where ξα = inf{x : F (x) ≥ α} is the α-quantile of the cdf F of ηt. A two-step estimator of

the conditional VaR at level α is thus V̂aRt(α) = −σ̃(εt−1, εt−2, . . . ; θ̂n)ξ̂n,α, where ξ̂n,α is the
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α-quantile of η̂1, . . . , η̂n, that is the dnαe-th order statistics of the residuals, where dxe denotes

the smallest integer larger than x. For standard GARCH, Asymmetric Power GARCH and DAR

models, alternative estimators based on the quantile equivariance property and quantile regression

have been recently studied by Zheng, Zhu, Li and Xiao (2018), Wang, Zhu, Li and Li (2019), and

Zhu and Li (2019). For ARMA-GARCH models, estimators of ξα based on extreme value theory

were investigated by Hoga (2019).

We start by establishing the strong consistency of the empirical quantiles of the residuals. We

make the following assumption.

A13: For α ∈ (0, 1), the cdf F of η satis�es: F (x) > α whenever x > ξα.

Assumption A13 means that the quantile function F− of η is right-continuous at α.

Corollary 3. For Model (1) under A1-A5, A13, for α ∈ (0, 1) we have the strong convergence

ξ̂n,α → ξα a.s.

Without Assumption A13, we have

[lim inf ξ̂n,α, lim sup ξ̂n,α] ⊆ [ξα, ξ
+
α ] a.s., (7)

where ξ+
α = inf{x : F (x) > α}.

When the residuals η̂t are replaced by innovations ηt (and ξ̂n,α replaced by ξn,α) the inclusion in (7)

is in fact an equality (see Appendix). In particular, the empirical quantile ξn,α of the innovations,

and in general the empirical quantile ξ̂n,α of the residuals, do not converge when Assumption A13

is not satis�ed.

To establish the asymptotic distribution of ξ̂n,α, we need the following assumption.

A14: the density f is strictly positive in a neighborhood of ξα.

Corollary 4. For Model (1), under A1-A4, A6-A12 and A14, we have

√
n(ξ̂n,α − ξα) = − 1

f(ξα)

1√
n

n∑
t=1

(1{ηt<ξα} − α) + ξαΩ′
J−1

2
√
n

n∑
t=1

(1− η2
t )Dt + oP (1).

Thus

√
n
(
ξ̂n,α − ξα

)
L→ N

(
0,
α(1− α)

f2(ξα)
+
ξα%(ξα)

f(ξα)
+
κ4 − 1

4
ξ2
α

)
.

Direct proof of this result would be quite complex, but with the help of Theorem 2 it is simplistic.



Empirical distribution of residuals in conditional location scale models 13

Proof. Note that Assumptions A5 and A13 are satis�ed under A11 and A14. Thus, by Corollary

3, ξ̂n,α → ξα a.s. The empirical cdf being a step function with jumps of size 1/n, we have F̂n(ξ̂n,α)−

α ≤ 1/n. It follows that, by Theorem 2,

√
n
(
α− F (ξ̂n,α)

)
=
√
n
(
F̂n(ξ̂n,α)− F (ξ̂n,α)

)
+ oP (1)

=
1√
n

n∑
t=1

{1lηt<ξα − F (ξα)} − ξαf(ξα)

2
√
n

Ω′J−1
n∑
t=1

(1− η2
t )Dt + oP (1).

By the delta method applied with the function F−1 we conclude. 2

Again, we emphasize the fact that the distribution of the empirical quantile of the residuals is

AMF, though not AEF (since the second and third terms in the asymptotic variance vanish when

the residuals are replaced by the innovations). Asymptotic con�dence intervals for the conditional

VaR could be derived from the joint asymptotic distribution of θ̂n and ξ̂n,α as in Theorem 4 of

Francq and Zakoian (2015).

5. Concluding remarks

The main contribution of this article is to show that the asymptotic distribution of the residuals

of conditional location-scale models can be model free. In the absence of a conditional mean, the

e�ect of estimation on the asymptotic variance is dependent of the error distribution but does not

depend on the parametric model. When the conditional mean is present in the model, we give

explicit characterizations of situations where this unexpected adaptiveness property holds, leading

to simple-to-implement tests on the error distribution.

We now point out several topics for future research. Multivariate extensions are far from trivial

because the quantile function does not have a natural extension (see Hallin, Paindaveine and �iman

(2010) for a new multivariate concept of quantile). However, when the innovations have a spherical

distribution, estimating the quantile of a linear combination reduces to estimating the cdf of any

component of the innovation vector. It would be interesting to extend the results of our paper in

this setting (in particular to handle applications involving the VaR of portfolios). Another area of

extension concerns nonstationary time series. Ling (1998) showed that the inclusion of a unit root in

autoregressive processes renders AMD the distribution of the e.d.f.r., unlike in the stationary case.

In the case of an explosive GARCH component, the intercept cannot be consistently estimated (see

Francq and Zakoian (2013b)) and the consistency of the cdf of the residuals is an open question.
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6. Proofs

This section contains the proofs of Theorems 1, 2, 4. More detailed proofs can be found in the

Appendix.

6.1. Proof of Theorem 1

Let ηt(θ) = εt/σt(θ) and η̃t(θ) = εt/σ̃t(θ), so that ηt = ηt(θ0) and η̂t = η̃t(θ̂n). By A2-A3,

sup
θ∈Θ
|ηt(θ)− η̃t(θ)| ≤ Kρt|εt|.

Moreover, a Taylor expansion shows that

ηt(θ̂n) = ηt − ηt(θt)D′t(θt)
(
θ̂n − θ0

)
(8)

where θt is between θ̂n and θ0. Under A1-A3, θ̂n tends to θ0 a.s. (see Francq and Zakoian (2013a),

Theorem 1). Since η̂t = η̃t(θ̂n), it follows that

|η̂t − ηt| ≤ |ηt| sup
θ∈V (θ0)

σt(θ0)

σt(θ)
sup

θ∈V (θ0)
‖Dt(θ)‖

∥∥∥θ̂n − θ0

∥∥∥+Kρt|εt|

for n large enough. Thus, we have

|η̂t − ηt| ≤ K
(
ρtσt +

∥∥∥θ̂n − θ0

∥∥∥)ut|ηt|, (9)

for n large enough, where ut ∈ Ft−1 and, by A1, A2, A4, E(|ut|r/2) < ∞. Without loss of

generality, assume that K = 1 in (9). Let an = ‖θ̂n − θ0‖. For all x ∈ R, ε > 0, S > 0 and M > 0,

we then have ∣∣1{η̂t≤x} − 1{ηt≤x}
∣∣ ≤ 1{x−(ρtσt+an)ut|ηt|≤ηt≤x+(ρtσt+an)ut|ηt|}

≤ 1At,ε,M,S + 1an>ε + 1ut|ηt|>M + 1σt>S ,

with the event At,ε,M,S =
{
x−

(
ρtS + ε

)
M ≤ ηt ≤ x+

(
ρtS + ε

)
M
}
. For t large enough such

that ρtS ≤ ε, we have At,ε,M,S ⊂ At,2ε,M with At,ε,M = {x− εM ≤ ηt ≤ x+ εM} . Assumption

A5(x) implies, for εM small enough, E1At,ε,M =
∫ x+εM
x−εM dF (y) ≤ 2K0εM where K0 is the Lipschitz

constant. For all κ > 0, we thus have a small ε > 0 and large M > 0 and S > 0 such that

E
{

1At,2ε,M + 1ut|ηt|>M + 1σt>S
}
≤ κ. Recall that, under A1-A3, an tends to zero almost surely,

and thus 1an>ε = 0 for n large enough. Since κ can be chosen arbitrarily small, it follows that,

almost surely, by the ergodic theorem we have

lim
n→∞

1

n

n∑
t=1

1{η̂t≤x} = lim
n→∞

1

n

n∑
t=1

1{ηt≤x} = P (ηt ≤ x) , ∀x ∈ R.

We have shown that |F̂n(x) − F (x)| → 0 a.s. and the uniform convergence follows from the fact

that, for any ε > 0, any cdf has a �nite number of jumps of size larger than ε. 2
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6.2. A Marcinkiewicz type law of large numbers

The following result, which will be used in the proof of Theorem 2 is of independent interest. Since

we have not been able to �nd this result in the literature, we provide a proof, which is adapted from

arguments kindly given to us by L. Horváth.

Lemma 1. Let (Xt,FXt ) a strictly stationary martingale di�erence sequence, where FXt is a

�ltration, such that EX2
t <∞. Then, for any s > 0, 1

n1/2+s

∑n
t=1Xt → 0 a.s.

Proof. Let Sn =
∑n

t=1Xt. We have, using the martingale di�erence property,

ES2
n = nEX2

1 . (10)

In view of Theorem 15.1 in Burkholder (1973), we have the Rosenthal's type inequality

E max
1≤k≤n

S2
k ≤ Kn. (11)

Letting ς > 0, using (10) and the Markov inequality, we have

P
(
|Sbkςc| ≥ εbkςcs+1/2

)
≤

ES2
bkςc

ε2bkςc2(s+1/2)
≤ Kbkςc
ε2bkςc2(s+1/2)

=
K

ε2bkςc2s
,

which is summable provided ς > 1/2s. It follows, by the Borel-Cantelli lemma, that

Sbkςc

(bkςc)s+1/2
→ 0, a.s as k →∞ when ς > 1/2s.

When n ∈ [kς , (k+ 1)ς ], we write Sn = Sbkςc+
∑n

i=bkςc+1Xi. Using (11) and noting that the length

of the interval [kς , (k + 1)ς ] is less than ς(k + 1)ς−1 when ς > 1, we have

P

 max
bkςc≤j≤b(k+1)ςc

∣∣∣∣∣∣
j∑

i=bkςc+1

Xi

∣∣∣∣∣∣ ≥ εkς(s+1/2)

 ≤ K

ε2k2sς+1
,

which is always summable. The result follows by

|Sn|
ns+1/2

≤
|Sbkςc|

(bkςc)s+1/2
+

maxbkςc≤j≤b(k+1)ςc

∣∣∣∑j
i=bkςc+1Xi

∣∣∣
kς(s+1/2)

. 2

6.3. Proof of Theorem 2

Recall that Fn(x) = 1
n

∑n
t=1 1l{ηt≤x} and let

ên(x) =
√
n{F̂n(x)− F (x)}, en(x) =

√
n{Fn(x)− F (x)}, χ̃t,n = σ̃t(θ̂n)/σt(θ0),

χt,n = σt(θ̂n)/σt(θ0), hn(x) = xf(x)

{
1

n

n∑
t=1

D′t(θ0)

}
√
n(θ̂n − θ0).
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We have ên(x)

=
1√
n

n∑
t=1

1lηt≤xχt,n − F (xχt,n)︸ ︷︷ ︸
ên,1(x)

+
1√
n

n∑
t=1

F (xχt,n)− F (x)︸ ︷︷ ︸
ên,2(x)

+
1√
n

n∑
t=1

1lηt≤xχ̃t,n − 1lηt≤xχt,n︸ ︷︷ ︸
ên,3(x)

.

Let, for a a vector of the same size as θ (su�ciently small so that θ0 + a/
√
n ∈ Θ),

en,1(x,a) =
1√
n

n∑
t=1

{
1lηt≤xγt,n(a) − F (xγt,n(a))

}
, γt,n(a) =

σt(θ0 + a√
n

)

σt(θ0)
.

Write

en,1(x,a)− en(x) =
1√
n

n∑
t=1

zt,n(x,a), (12)

where

zt,n(x,a) = 1lηt≤xγt,n(a) − F (xγt,n(a))− {1lηt≤x − F (x)} .

We will establish a number of auxiliary lemmas.

Lemma 2. For any u > 0 and su�ciently large n,

P

(∣∣∣∣∣ 1√
n

n∑
t=1

zt,n(x,a)

∣∣∣∣∣ > u

)
≤ K

nu4
(x2‖a‖2 + 1).

Proof. By the Markov inequality

P

(∣∣∣∣∣ 1√
n

n∑
t=1

zt,n(x,a)

∣∣∣∣∣ > u

)
≤ 1

n2

1

u4
E

(
n∑
t=1

zt,n(x,a)

)4

.

We note that, for �xed n, x and a, (zt,n(x,a),Ft)1≤t≤n is a martingale di�erence sequence. Hence,

by Rosenthal's inequality (see for instance Hall and Heyde (1980), Theorem 2.11)

E

(
n∑
t=1

zt,n(x,a)

)4

≤ K

E
(

n∑
t=1

E(z2
t,n(x,a)|Ft−1)

)2

+

n∑
t=1

Ez4
t,n(x,a)

 .

Because |zt,n(x,a)| ≤ 2, it su�ces to show that

E

(
n∑
t=1

E(z2
t,n(x,a)|Ft−1)

)2

≤ nKx2‖a‖2. (13)

Noting that the second-order conditional moment of zt,n(x,a) is the variance of a Bernoulli distri-

bution, we have, using A11,

n∑
t=1

E[z2
t,n(x,a)|Ft−1] ≤

n∑
t=1

|F (xγt,n(a))− F (x)| ≤ K|x|√
n

n∑
t=1

∥∥∥∥ 1

σt(θ0)

∂σt(θ
∗
t )

∂θ

∥∥∥∥ ‖a‖,
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where θ∗t is between θ0 and θ0 + a/
√
n. It follows that

E

{
n∑
t=1

E[z2
t,n(x,a)|Ft−1]

}2

≤Kx
2

n

n∑
s,t=1

E

∥∥∥∥ 1

σs(θ0)

∂σs(θ
∗
s)

∂θ

∥∥∥∥∥∥∥∥ 1

σt(θ0)

∂σt(θ
∗
t )

∂θ

∥∥∥∥ ‖a‖2,
and thus (13) holds. 2

Lemma 3. Let K a compact subset of R. We have supx∈K
∣∣n−1/2

∑n
t=1 zt,n(x,a)

∣∣ = oP (1).

Proof. Fix ε > 0 and let K ⊂
[
−Nε√

n
, Nε√

n

]
with N = O(

√
n). De�ne xj = jε√

n
for j = −N,−N +

1, . . . , N − 1, N . It follows that, by Lemma 2, for any u > 0, there exists K = K(u,a, ε) such that

P

(
max

−N≤j≤N

∣∣∣∣∣ 1√
n

n∑
t=1

zt,n(xj ,a)

∣∣∣∣∣ > u

)
≤ K√

n
. (14)

Noting that

sup
x∈K

∣∣∣∣∣ 1√
n

n∑
t=1

zt,n(x,a)

∣∣∣∣∣ ≤ max
−N≤j≤N−1

sup
x∈[xj ,xj+1]

∣∣∣∣∣ 1√
n

n∑
t=1

zt,n(x,a)

∣∣∣∣∣
≤ max
−N≤j≤N−1

{
sup

x∈[xj ,xj+1]

∣∣∣∣∣ 1√
n

n∑
t=1

zt,n(x,a)− 1√
n

n∑
t=1

zt,n(xj ,a)

∣∣∣∣∣
+

∣∣∣∣∣ 1√
n

n∑
t=1

zt,n(xj ,a)

∣∣∣∣∣
}
,

it remains to show that

lim sup
n→∞

P

{
max

−N≤j≤N−1
sup

x∈[xj ,xj+1]

∣∣∣∣∣ 1√
n

n∑
t=1

zt,n(x,a)− 1√
n

n∑
t=1

zt,n(xj ,a)

∣∣∣∣∣ > u

}
= 0. (15)

We have, for j = 0, . . . , N − 1,

sup
x∈[xj ,xj+1]

1√
n

∣∣∣∣∣
n∑
t=1

1lηt≤xγt,n(a) − F (xγt,n(a))−
{

1lηt≤xjγt,n(a) − F (xjγt,n(a))
}∣∣∣∣∣

≤ sup
x∈[xj ,xj+1]

1√
n

n∑
t=1

1lηt≤xγt,n(a) − 1lηt≤xjγt,n(a)

+ sup
x∈[xj ,xj+1]

1√
n

n∑
t=1

F (xγt,n(a))− F (xjγt,n(a))

≤ 1√
n

n∑
t=1

1lηt≤xj+1γt,n(a) − 1lηt≤xjγt,n(a) +
1√
n

n∑
t=1

F (xj+1γt,n(a))− F (xjγt,n(a))

≤

∣∣∣∣∣ 1√
n

n∑
t=1

{
1lηt≤xj+1γt,n(a) − F (xj+1γt,n(a))

}
−
{

1lηt≤xjγt,n(a) − F (xjγt,n(a))
}∣∣∣∣∣

+ 2Wn(j,a),
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where Wn(j,a) = n−1/2
∑n

t=1 {F (xj+1γt,n(a))− F (xjγt,n(a))} . Therefore,

sup
x∈[xj ,xj+1]

1√
n

∣∣∣∣∣
n∑
t=1

1lηt≤xγt,n(a) − F (xγt,n(a))−
{

1lηt≤xjγt,n(a) − F (xjγt,n(a))
}∣∣∣∣∣

≤ 1√
n

∣∣∣∣∣
n∑
t=1

zt,n(xj+1,a)

∣∣∣∣∣+
1√
n

∣∣∣∣∣
n∑
t=1

zt,n(xj ,a)

∣∣∣∣∣+ Vn(j) + 2Wn(j,a), (16)

where Vn(j) = n−1/2
∣∣∑n

t=1

{
1lηt≤xj+1

− F (xj+1)
}
−
{

1lηt≤xj − F (xj)
}∣∣ . By Assumption A11 and

the mean-value theorem, F (xj+1) − F (xj) ≤ Mε/
√
n where M = supx∈R f(x). From (16) with

a = 0, it follows that

sup
x∈[xj ,xj+1]

1√
n

∣∣∣∣∣
n∑
t=1

1lηt≤x − F (x)−
{

1lηt≤xj − F (xj)
}∣∣∣∣∣

≤ Vn(j) + 2
√
n{F (xj+1)− F (xj)} ≤ Vn(j) + 2Mε. (17)

Therefore, for j = 0, . . . , N − 1, from (16)-(17),

sup
x∈[xj ,xj+1]

∣∣∣∣∣ 1√
n

n∑
t=1

zt,n(x,a)− 1√
n

n∑
t=1

zt,n(xj ,a)

∣∣∣∣∣
≤ 1√

n

∣∣∣∣∣
n∑
t=1

zt,n(xj+1,a)

∣∣∣∣∣+
1√
n

∣∣∣∣∣
n∑
t=1

zt,n(xj ,a)

∣∣∣∣∣+ 2Wn(j,a) + 2Vn(j) + 2Mε,

so

max
0≤j≤N−1

sup
x∈[xj ,xj+1]

∣∣∣∣∣ 1√
n

n∑
t=1

zt,n(x,a)− 1√
n

n∑
t=1

zt,n(xj ,a)

∣∣∣∣∣
≤ max

0≤j≤N

2√
n

∣∣∣∣∣
n∑
t=1

zt,n(xj ,a)

∣∣∣∣∣+ 2 max
0≤j≤N−1

Wn(j,a) + 2 max
0≤j≤N−1

Vn(j)

+2Mε. (18)

By the properties of the modulus of continuity of the empirical process (see Shorack and Wellner

(1986), p. 542), under Assumption A11 we have

max
0≤j≤N−1

Vn(j) = oP (1). (19)

Now, using again the mean-value theorem,

max
0≤j≤N−1

Wn(j,a) ≤ max
0≤j≤N−1

1√
n

n∑
t=1

(xj+1 − xj)γt,n(a)M

≤ Mε

n

n∑
t=1

γt,n(a) ≤ Mε

n

n∑
t=1

(
1 +

∥∥∥∥ 1

σt(θ0)

∂σt(θ
∗
t )

∂θ

∥∥∥∥ ‖a‖√n
)
,

where θ∗t is between θ0 and θ0 + a/
√
n. Thus

max
0≤j≤N−1

Wn(j,a) ≤ Mε

n

n∑
t=1

(
1 + sup

θ∈V (θ0)

(
σt(θ)

σt(θ0)

)
sup

θ∈V (θ0)

∥∥∥∥ 1

σt(θ)

∂σt(θ)

∂θ

∥∥∥∥ ‖a‖√n
)
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= ε×OP (1), (20)

by Assumption A9 and the ergodic theorem. Thus (14), (19) and (20) show that the right-hand

side of (18) is an oP (1). It is clear that the same bound can be obtained when max0≤j≤N−1 is

replaced by max−N≤j≤−1. Thus (15) is established. 2

Lemma 4. Let K be a compact subset of R. For any A > 0 and A = [−A,A]d,

sup
x∈K

sup
a∈A
|en,1(x,a)− en(x)| = oP (1).

Proof. In view of (12) will show that

sup
a∈A

Xn(a) = oP (1), where Xn(a) = sup
x∈K

∣∣∣∣∣ 1√
n

n∑
t=1

zt,n(x,a)

∣∣∣∣∣ . (21)

Let ε > 0 such that N := 2A/ε is an integer and de�ne a(k) = −A+kε, for 1 ≤ k ≤ N . For any 1 ≤

k1, k2, . . . kd ≤ N let k = (k1, . . . , kd) and consider the grid of Nd points a(k) = (a(k1), . . . , a(kd)).

Let also A(k) = {(a1, . . . , ad) ∈ A|a(ki) − ε ≤ ai ≤ a(ki)} and a∗(k) = (a(k1) − ε, . . . , a(kd) − ε).

We have, for j = 1, . . . , d and aj ≤ a(kj)

F (xγt,n(a1, . . . , aj−1, a(kj), aj+1, . . . , ad))− F (xγt,n(a1, . . . , aj−1, aj , aj+1, . . . , ad))

= f
{
xγt,n(a∗t,j)

} x√
n

(a(kj)− aj)
1

σt(θ0)

∂σt(θ0 +
a∗t,j√
n

)

∂θ′
ej ,

where ej is the j-th element of the canonical basis of Rd, and a∗t,j is a point between the arguments

of γt,n above. By A11 and E|ηt| < ∞, we have supx |x|f(x) < ∞. The latter di�erence is thus

bounded, uniformly in x ∈ R and aj ∈ [a(kj)− ε, a(kj)], by

K
ε√
n

1

σt(θ0 +
a∗t,j√
n

)

∂σt(θ0 +
a∗t,j√
n

)

∂θ′
ej .

Therefore, for n large enough,

sup
a∈A(k)

sup
x∈R

n∑
t=1

|F (xγt,n(a))− F (xγt,n(a(k)))| ≤ K
ε√
n

n∑
t=1

sup
θ∈V (θ0)

∥∥∥∥ 1

σt(θ)

∂σt(θ)

∂θ

∥∥∥∥ ,
and thus, because γt,n(·) is an increasing function of its arguments by A10,

sup
a∈A(k)

sup
x∈K

∣∣∣∣∣
n∑
t=1

zt,n(x,a)− zt,n(x,a(k))

∣∣∣∣∣
≤ K

ε√
n

n∑
t=1

sup
θ∈V (θ0)

∥∥∥∥ 1

σt

∂σt(θ)

∂θ

∥∥∥∥+ sup
x∈K

∣∣∣∣∣
n∑
t=1

1lηt≤xγt,n(a(k)) − 1lηt≤xγt,n(a∗(k))

∣∣∣∣∣
≤ 2K

ε√
n

n∑
t=1

sup
θ∈V (θ0)

∥∥∥∥ 1

σt

∂σt(θ)

∂θ

∥∥∥∥+ sup
x∈K

∣∣∣∣∣
n∑
t=1

zt,n(x,a(k))

∣∣∣∣∣+ sup
x∈K

∣∣∣∣∣
n∑
t=1

zt,n(x,a∗(k))

∣∣∣∣∣ .
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Note that

sup
a∈A

Xn(a)

≤ max
k∈{1,...,N}d

sup
a∈A(k)

sup
x∈K

∣∣∣∣∣ 1√
n

n∑
t=1

[zt,n(x,a)− zt,n(x,a(k))]

∣∣∣∣∣+ max
k∈{1,...,N}d

Xn(a(k))

≤ 2Kε

n

n∑
t=1

sup
θ∈V (θ0)

∥∥∥∥ 1

σt

∂σt(θ)

∂θ

∥∥∥∥+ 2 max
k∈{1,...,N}d

Xn(a(k)) + max
k∈{1,...,N}d

Xn(a∗(k)).

By the ergodic theorem and A9, the �rst term in the r.h.s. is almost surely less than a constant

times ε when n is large. The two other terms tend to zero in probability because Xn(a) = oP (1)

by Lemma 3 and the maximas are over a �nite number of points. Therefore (21) is established. 2

Lemma 5. Let K be a compact subset of R. Then supx∈K |ên,2(x)− hn(x)| → 0 a.s.

Proof. A Taylor expansion yields, for x∗t = xσt(θ
∗
t )/σt(θ0) with θ∗t between θ̂n and θ0,

|ên,2(x)− hn(x)|

=

∣∣∣∣∣ 1√
n

n∑
t=1

{
F (xχt,n)− F (x)− xf(x)

1

σt

∂σt(θ0)

∂θ′
(θ̂n − θ0)

}∣∣∣∣∣
≤ |x| 1

n

n∑
t=1

∣∣∣∣f(x∗t )
1

σt

∂σt(θ
∗
t )

∂θ
− f(x)

1

σt

∂σt(θ0)

∂θ

∣∣∣∣ ∥∥∥√n(θ̂n − θ0)
∥∥∥

≤ |x|

(
1

n

n∑
t=1

|f(x∗t )− f(x)|2
)1/2(

1

n

n∑
t=1

∣∣∣∣ 1

σt

∂σt(θ
∗
t )

∂θ

∣∣∣∣
)1/2 ∥∥∥√n(θ̂n − θ0)

∥∥∥
+|x|f(x)

1

n

n∑
t=1

∣∣∣∣ 1

σt

∂σt(θ
∗
t )

∂θ
− 1

σt

∂σt(θ0)

∂θ

∣∣∣∣ ∥∥∥√n(θ̂n − θ0)
∥∥∥ (22)

by Cauchy-Schwarz inequality. We have, for any ∆ > 0 and n large enough

1

n

n∑
t=1

sup
x∈K
|f(x∗t )− f(x)|2 ≤ 1

n

n∑
t=1

sup
δ:‖δ‖≤∆

sup
x∈K

∣∣∣∣f (xσt (θ0 + δ)

σt(θ0)

)
− f(x)

∣∣∣∣2 + 1l‖θ̂n−θ0‖>∆
.

The �rst term in the r.h.s. converges a.s. to

E sup
δ:‖δ‖≤∆

sup
x∈K

∣∣∣∣f (xσt (θ0 + δ)

σt(θ0)

)
− f(x)

∣∣∣∣2
which can be made arbitrarily small for ∆ small enough by the dominated convergence theorem.

The last term in the r.h.s. is a.s. equal to zero for n large enough. It follows that the �rst term is

the r.h.s. of the inequality (22) tends to zero almost surely uniformly in x ∈ K. The second term

is handled similarly. 2

Lemma 6. For any s > 0, we have n1/2−s
∥∥∥θ̂n − θ0

∥∥∥ = o(1) a.s.
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Proof. This is a direct consequence of the Bahadur expansion

√
n(θ̂n − θ0) =

−J−1

2
√
n

n∑
t=1

(1− η2
t )Dt + oP (1) (23)

and Lemma 1 with Xt being any component of (1− η2
t )Dt (noting that EX2

t <∞ under A9). 2

Lemma 7. We have supx∈R |ên,3(x)| = oP (1).

Proof. In view of A2-A3, we have∣∣∣ηt(θ̂n)− η̃t(θ̂n)
∣∣∣ =
|σ̃t(θ̂n)− σt(θ̂n)|
σ̃t(θ̂n)σt(θ̂n)

σt |ηt| ≤ Kρtσt |ηt| .

It follows that∣∣1lηt≤xχ̃t,n − 1lηt≤xχt,n
∣∣ =

∣∣∣1lη̃t(θ̂n)≤x − 1l
ηt(θ̂n)≤x

∣∣∣ ≤ 1l
x−Kρtσt|ηt|≤ηt(θ̂n)≤x+Kρtσt|ηt|

≤ 1l
x−Kρt/3≤ηt(θ̂n)≤x+Kρt/3

+ 1l|ηt|≥1/ρt/3 + 1lσt≥1/ρt/3 .

Now, by Markov's inequality and A1

E
1√
n

n∑
t=1

1lσt≥1/ρt/3 =
1√
n

n∑
t=1

P (ρt/3σt > 1) = O(n−1/2).

Similarly it can be shown that n−1/2
∑n

t=1 1l|ηt|≥1/ρt/3 = OP (n−1/2). It remains to show that

sup
x∈R

1√
n

n∑
t=1

dt,n(x) = oP (1), dt,n(x) = 1lχt,nx−Kχt,nρt/3≤ηt≤χt,nx+Kχt,nρt/3 .

Let (an) and (bn) be two sequences of real numbers, and let s > 0. Consider the events An =

{min1≤t<t′≤n |ηt − ηt′ | ≥ an}. We have supx∈R n
−1/2

∑n
t=1 dt,n(x) ≤

∑5
i=1 ci,n, with

c1,n = sup
x∈R

1√
n

dn1/4e−1∑
t=1

dt,n(x) ≤ 1

n1/4
,

c2,n = sup
x∈R

1√
n

n∑
t=dn1/4e

1lχt,nx−Kbnρn≤ηt≤χt,nx+Kbnρn1lAn , ρn = ρ
n1/4

3 ,

c3,n =
1√
n

n∑
t=1

1lχt,n≥bn1l√
n‖θ̂n−θ0‖≤ns , c4,n =

√
n1l√

n‖θ̂n−θ0‖≥ns , c5,n =
√
n1lAcn .

Note that c2,n = 1/
√
n when an ≥ 2Kbnρn. Now, for some θt between θ̂n and θ0, we have

χt,n = 1 +
1

σt(θ0)

∂σt(θt)

∂θ

(
θ̂n − θ0

)
.

Using A9 and assuming bn > 1, it follows that

Ec3,n =
1√
n

n∑
t=1

P
(
χt,n ≥ bn,

√
n‖θ̂n − θ0‖ ≤ ns

)
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≤ 1√
n

n∑
t=1

P

(
sup

θ∈V (θ0)

∥∥∥∥ 1

σt(θ0)

∂σt(θ)

∂θ

∥∥∥∥ns−1/2 ≥ bn − 1

)
≤ K n2s

√
n(bn − 1)2

.

By Lemma 6, we have c4,n = 0 a.s. for n large enough. Since f is bounded under A11, we have

P (|η1 − η2| < an) =

∫ (∫ x+an

x−an
f(y)dy

)
f(x)dx ≤ Kan.

Therefore Ec5,n =
√
nP (Acn) ≤

√
nK
(
n
2

)
an ≤ Kn2+1/2an. By taking, for instance, an = n−3,

bn =
√
n and s < 1/2, it can be checked that ci,n = oP (1) for i = 1, . . . , 5. We conclude that

|ên,3(x)| ≤ 1√
n

n∑
t=1

|1lηt≤xχ̃t,n − 1lηt≤xχt,n | = oP (1). 2

Lemma 8. Let K be a compact subset of R. We have supx∈K |ên(x)− en(x)− hn(x)| = oP (1).

Proof. We have

|ên(x)− en(x)− hn(x)| ≤ |ên,1(x)− en(x)|+ |ên,2(x)− hn(x)|+ |ên,3(x)|.

Note that ên,1(x) = en,1(x,
√
n(θ̂n − θ0)). Thus, any u,A > 0 and A = [−A,A]d,

P

(
sup
x∈K
|ên,1(x)− en(x)| > u

)
≤ P

(
sup
x∈K

sup
a∈A
|en,1(x,a)− en(x)| > u

)
+P

(√
n(θ̂n − θ0) /∈ A

)
.

By Lemma 4, the �rst term in the r.h.s. tends to zero, while the second term can be made arbitrarily

small by letting A → ∞. Thus supx∈K |ên,1(x) − en(x)| = oP (1). The conclusion follows using

Lemmas 5 and 7. 2

The stochastic equicontinuity property stated in the following lemma follows from Billingsley

(1968) (see Appendix).

Lemma 9. If x is a real number and (xn) is a sequence of real random variables such that xn → x

in probability, and if F is continuous, then en(xn)− en(x) = oP (1).

Now we complete the proof of Theorem 2 establishing the asymptotic distribution of ên(xn). By

A11, hn(xn)− hn(x) = oP (1). By Lemmas 8-9 and (23), it then follows that

ên(xn) = en(xn) + hn(xn) + oP (1)

=
1√
n

n∑
t=1

{1lηt<x − F (x)} − xf(x)

2
√
n

Ω′J−1
n∑
t=1

(1− η2
t )Dt + oP (1).

We conclude by using Ω′J−1Ω = 1 under A12 (see Remark 3 in Francq and Zakoian, 2013a). 2
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6.4. Proof of Theorem 4

By comparison with the proof of Theorem 2, the major di�culty comes from the non-monotonicity of

the conditional mean and variance with respect to the parameters (A10 can no longer be assumed).

To solve this di�culty we will introduce a partition of the past, so that the mean and variance are

monotonous conditional on this partition.

We recall some notations and introduce new ones. Let

ên(x) =
√
n{F̂n(x)− F (x)}, en(x) =

√
n{Fn(x)− F (x)}, χ̃t,n =

σ̃t(θ̂n)

σt(θ0)
,

χt,n =
σt(θ̂n)

σt(θ0)
, λ̃t,n =

m̃t(θ̂n)−mt(θ0)

σt(θ0)
, λt,n =

mt(θ̂n)−mt(θ0)

σt(θ0)
,

χ∗t,n = 1 +
1

σt(θ0)

∂σt(θ0)

∂θ′

(
θ̂n − θ0

)
, λ∗t,n =

1

σt(θ0)

∂mt(θ0)

∂θ′

(
θ̂n − θ0

)
,

Hn(x) = f(x)

(
x

{
1

n

n∑
t=1

1

σt

∂σt(θ0)

∂θ′

}
+

{
1

n

n∑
t=1

1

σt

∂mt(θ0)

∂θ′

})
√
n(θ̂n − θ0).

We have

ên(x) =
1√
n

n∑
t=1

1lηt≤xχ∗t,n+λ∗t,n − F (xχ∗t,n + λ∗t,n)︸ ︷︷ ︸
ên,4(x)

+
1√
n

n∑
t=1

F (xχ∗t,n + λ∗t,n)− F (x)︸ ︷︷ ︸
ên,5(x)

+
1√
n

n∑
t=1

1lηt≤xχ̃t,n+λ̃t,n
− 1lηt≤xχ∗t,n+λ∗t,n︸ ︷︷ ︸

ên,6(x)

. (24)

Let, for a a vector of the same size as θ, su�ciently small so that θ0 + a/
√
n ∈ Θ,

λt,n(a) =
mt(θ0 + a√

n
)−mt(θ0)

σt(θ0)
, γt,n(a) =

σt(θ0 + a√
n

)

σt(θ0)
,

en,4(x,a) =
1√
n

n∑
t=1

{
1lηt≤xγ∗t,n(a)+λ∗t,n(a) − F

(
xγ∗t,n(a) + λ∗t,n(a)

)}
,

λ∗t,n(a) =
1

σt(θ0)

∂mt(θ0)

∂θ′
a√
n
, γ∗t,n(a) = 1 +

1

σt(θ0)

∂σt(θ0)

∂θ′
a√
n
.

For a, b ∈ Rd let

z∗t,n(x,a, b) = 1lηt≤xγ∗t,n(a)+λ∗t,n(b) − F
(
xγ∗t,n(a) + λ∗t,n(b)

)
− {1lηt≤x − F (x)} .

Write yt−1 = (yt−1, yt−2, . . .). Let S = {s1, . . . , s22d} the elements of {−1, 1}2d taken in the lex-

icographical order (thus s1 = (−1, . . . ,−1) and s22d = (1, . . . , 1)). For any vector Z ∈ R2d, let

s[Z] = (s1, . . . , s2d) denote the element of S such that si = sgn(Zi), i = 1, . . . , 2d. De�ne {Ri}i∈I
a partition of R∞, with I = {1, . . . , 22d} such that, for i ∈ I,

yt−1 ∈ Ri ⇔ s

[(
∂mt

∂θ′
(θ0),

∂σt
∂θ′

(θ0)

)′]
= si := (s

(1)
i , s

(2)
i )



24

where s(j)
i ∈ {−1, 1}d, j = 1, 2.

Lemma 10. We have, for any u > 0 and su�ciently large n, for any sequences (ai)i∈I and

(bi)i∈I

P

(∣∣∣∣∣∑
i∈I

1√
n

n∑
t=1

z∗t,n(x,ai, bi)1lyt−1∈Ri

∣∣∣∣∣ > u

)
≤ K

nu4

{
(x sup

i∈I
‖ai‖)2 + sup

i∈I
‖bi‖2 + 1

}
.

Proof. We note that, for �xed n and x, (z̃t,Ft)1≤t≤n is a martingale di�erence sequence, where

z̃t =
∑

i∈I z
∗
t,n(x,ai, bi)1lyt−1∈Ri . Hence, by the Markov and Rosenthal inequalities

P

(∣∣∣∣∣ 1√
n

n∑
t=1

z̃t

∣∣∣∣∣ > u

)
≤ 1

n2

1

u4
E

(
n∑
t=1

z̃t

)4

≤ K

n2u4

E
(

n∑
t=1

E(z̃2
t |Ft−1)

)2

+

n∑
t=1

Ez̃4
t

 .

We have

E(z̃2
t |Ft−1) =

∑
i∈I

E[z∗2t,n(x,ai, bi)|Ft−1]1lyt−1∈Ri

≤
∑
i∈I
|F
(
xγ∗t,n(ai) + λ∗t,n(bi)

)
− F (x)|1lyt−1∈Ri .

By A11, letting K = supy f(y) <∞,∣∣F (xγ∗t,n(ai) + λ∗t,n(bi)
)
− F (x)

∣∣
≤ |x|K|γ∗t,n(ai)− 1|+K|λ∗t,n(bi)|

≤ K√
n

{
|x|
∥∥∥∥ 1

σt(θ0)

∂σt(θ0)

∂θ

∥∥∥∥ ‖ai‖+

∥∥∥∥ 1

σt(θ0)

∂mt(θ0)

∂θ

∥∥∥∥ ‖bi‖} .
The rest of the proof is similar to that of Lemma 2. 2

Lemma 11. Let K a compact subset of R. We have, for any sequence (ai)i∈I and (bi)i∈I such

that supi∈I ‖ai‖+ ‖bi‖ <∞,

X n((ai)i∈I , (bi)i∈I) := sup
x∈K

∣∣∣∣∣∑
i∈I

1√
n

n∑
t=1

z∗t,n(x,ai, bi)1lyt−1∈Ri

∣∣∣∣∣ = oP (1).

Proof. Using Lemma 10, the proof is similar to that of Lemma 3. See Appendix. 2

Lemma 12. Let K be a compact subset of R. We have, for any A > 0 and A = [−A,A]d

sup
x∈K

sup
a∈A
|en,4(x,a)− en(x)| = oP (1).

Proof. Note that en,4(x,a)− en(x) = n−1/2
∑n

t=1 z
∗
t,n(x,a,a). We will thus show that

sup
a,b∈A

X∗n(a, b) = oP (1), where X∗n(a, b) = sup
x∈K

∣∣∣∣∣ 1√
n

n∑
t=1

z∗t,n(x,a, b)

∣∣∣∣∣ . (25)
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Let ε > 0 such that N := 2A/ε is an integer and de�ne a(k) = −A + kε for 1 ≤ k ≤ N . For 1 ≤

k1, k2, . . . kd ≤ N , let k = (k1, . . . , kd) and consider the grid of Nd points a(k) = (a(k1), . . . , a(kd)).

Let also A(k) = {(a1, . . . , ad) ∈ A|a(kj) − ε ≤ aj ≤ a(kj), j ∈ {1, . . . , d}}. De�ne, for i ≥ 1, and

si = (s
(1)
i , s

(2)
i ) = (s

(1)
i1 , . . . , s

(1)
id , s

(2)
i1 , . . . , s

(2)
id )

as(`)i
(k) = (as(`)i1

(k1), . . . , as(`)id
(kd)), as(`)ij

(kj) = a(kj)1ls(`)ij =1 + {a(kj)− ε}1ls(`)ij =−1,

as(`)i
(k) = (as(`)i1

(k1), . . . , as(`)id
(kd)), as(`)ij

(kj) = a(kj)1ls(`)ij =−1 + {a(kj)− ε}1ls(`)ij =1.

We have, for j = 1, . . . , d,

F
(
xγ∗t,n(a) + λ∗t,n(b1, . . . , bj−1, a(kj), bj+1, . . . , bd)

)
− F

(
xγ∗t,n(a) + λ∗t,n(b)

)
= f

{
xγ∗t,n(a) + λ∗t,n(bt,j)

} a(kj)− bj√
n

1

σt(θ0)

∂mt(θ0)

∂θ′
ej ,

where ej is the j-th element of the canonical basis of Rd, and bt,j is a point between the arguments

of λt,n above. By A11, we have supx f(x) <∞. The absolute value of the latter di�erence is thus

bounded, uniformly in x ∈ R, a ∈ A and b ∈ A(k), by K ε√
n

1
σt(θ0)

∣∣∣∂mt(θ0)
∂θ′ ej

∣∣∣ .
Similarly, for j = 1, . . . , d,

∣∣F (xγ∗t,n(a1, . . . , aj−1, a(kj), aj+1, . . . , ad) + λ∗t,n(b)
)
− F

(
xγ∗t,n(a) + λ∗t,n(b)

)∣∣
=

∣∣∣∣xf {xγ∗t,n(at,j) + λ∗t,n(b)
} a(kj)− aj√

n

1

σt(θ0)

∂σt(θ0)

∂θ′
ej

∣∣∣∣ ≤ K ε√
n

1

σt(θ0)

∣∣∣∣∂σt(θ0)

∂θ′
ej

∣∣∣∣ ,
uniformly in x ∈ K, b ∈ A and a ∈ A(k). Therefore, for n large enough,

sup
a∈A(k),b∈A(`)

sup
x∈K

n∑
t=1

∣∣F (xγ∗t,n(a) + λ∗t,n(b)
)
− F

(
xγ∗t,n(a(k)) + λ∗t,n(b(`))

)∣∣
≤ K

ε√
n

n∑
t=1

∥∥∥∥ 1

σt(θ0)

∂σt(θ0)

∂θ

∥∥∥∥+

∥∥∥∥ 1

σt(θ0)

∂mt(θ0)

∂θ

∥∥∥∥ := K
ε√
n

n∑
t=1

Zt.

It can be shown (see Appendix) that

sup
a∈A(k),b∈A(`)

sup
x∈K

∣∣∣∣∣ 1√
n

n∑
t=1

z∗t,n(x,a, b)− z∗t,n(x,a(k),a(`))

∣∣∣∣∣
≤ X n

(
(as(2)i

(k))i∈I , (as(1)i
(`))i∈I

)
+ X n

(
(as(2)i

(k))i∈I , (as(1)i
(`))i∈I

)
+X n

(
(as(2)i

(k))i∈I , (as(1)i
(`))i∈I

)
+ X n

(
(as(2)i

(k))i∈I , (as(1)i
(`))i∈I

)
+ 3K

ε

n

n∑
t=1

Zt.

Note that

sup
a,b∈A

X∗n(a, b)
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≤ max
k,`∈{1,...,N}d

sup
a∈A(k),b∈B(`)

sup
x∈K

∣∣∣∣∣ 1√
n

n∑
t=1

[z∗t,n(x,a, b)− z∗t,n(x,a(k), b(`))]

∣∣∣∣∣
+ max
k,`∈{1,...,N}d

X∗n(a(k),a(`))

≤ 3Kε

n

n∑
t=1

Zt + 5 max
(ai),(bi)

X n ((ai)i∈I , (bi)i∈I) ,

where the last max is taken over all sequences of the form as(`)i
(k) or as(`)i (k), ` ∈ {1, 2} and

k, ` ∈ {1, . . . , N}d. The end of the proof of (25) is similar to that of (21) using Lemma 11. 2

Lemma 13. Let K be a compact subset of R. Then supx∈K |ên,5(x)−Hn(x)| → 0 a.s.

Proof. A Taylor expansion yields, for x∗t between x and xχ∗t,n + λ∗t,n,

F (xχ∗t,n + λ∗t,n)− F (x) = f(x∗t )
1

σt

(
x
∂σt(θ0)

∂θ′
+
∂mt(θ0)

∂θ′

)
(θ̂n − θ0).

It follows that

|ên,5(x)−Hn(x)| =

∣∣∣∣∣ 1√
n

n∑
t=1

{f(x∗t )− f(x)} 1

σt

(
x
∂σt(θ0)

∂θ′
+
∂mt(θ0)

∂θ′

)
(θ̂n − θ0)

∣∣∣∣∣
≤

(
1

n

n∑
t=1

|f(x∗t )− f(x)|2
)1/2

×

(
1

n

n∑
t=1

|x|2
{∥∥∥∥ 1

σt

∂σt(θ0)

∂θ

∥∥∥∥+

∥∥∥∥ 1

σt

∂mt(θ0)

∂θ

∥∥∥∥}2
)1/2 ∥∥∥√n(θ̂n − θ0)

∥∥∥
by Cauchy-Schwarz inequality. We have, for any ∆ > 0 and n large enough

1

n

n∑
t=1

sup
x∈K
|f(x∗t )− f(x)|2

≤ 1

n

n∑
t=1

sup
δθ:‖δθ‖≤∆

sup
x∈K

∣∣∣∣f (x+
1

σt

(
x
∂σt(θ0)

∂θ′
+
∂mt(θ0)

∂θ′

)
δθ

)
− f(x)

∣∣∣∣2
+1l‖θ̂n−θ0‖>∆

.

The �rst term in the r.h.s. converges a.s. to

E sup
δθ:‖δθ‖≤∆

sup
x∈K

∣∣∣∣f (x+
1

σt

(
x
∂σt(θ0)

∂θ′
+
∂mt(θ0)

∂θ′

)
δθ

)
− f(x)

∣∣∣∣2
which can be made arbitrarily small for ∆ small enough by the dominated convergence theorem.

The last term in the r.h.s. is a.s. equal to zero for n large enough. The conclusion follows. 2

Write

ên,6(x) =
1√
n

n∑
t=1

1lηt≤xχ̃t,n+λ̃t,n
− 1lηt≤xχt,n+λt,n︸ ︷︷ ︸

ên,7(x)

+
1√
n

n∑
t=1

1lηt≤xχt,n+λt,n − 1lηt≤xχ∗t,n+λ∗t,n︸ ︷︷ ︸
ên,8(x)

.
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Lemma 14. We have |ên,6(xn)| = oP (1).

Proof. We prove in the Appendix that supx∈R |ên,7(x)| = oP (1). From Taylor expansions we get

|xχt,n + λt,n − (xχ∗t,n + λ∗t,n)|

≤ 2

σt(θ0)
sup

θ∈V (θ0)

{
|x|
∥∥∥∥∂2σt(θ)

∂θ∂θ′

∥∥∥∥+

∥∥∥∥∂2mt(θ)

∂θ∂θ′

∥∥∥∥}∥∥∥θ̂n − θ0

∥∥∥2
:= δt(x)

∥∥∥θ̂n − θ0

∥∥∥2
,

where θt,θt and θt are between θ0 and θ̂n. It follows that, for any ∆n > 0,

|ên,8(xn)| ≤ 1√
n

n∑
t=1

1lxnχ∗t,n+λ∗t,n−δt(xn)∆2
n≤ηt≤xnχ∗t,n+λ∗t,n+δt(xn)∆2

n
+
√
n1l‖θ̂n−θ0‖>∆n

. (26)

Let ∆n = ns−1/2, for some s > 0. The last term in (26) is equal to c4,n = 0 for su�ciently large n.

Now, �rst suppose that the sequence (xn) is non random, xn → x. Note that the sequence (δt(xn))t

is stationary, and integrable by Assumptions A9 and B7. Let ft,n the conditional density of ηt

introduced in Assumption B8, and let K its uniform upper bound. Then, by the law of iterated

expectations, the expectation of the �rst term in (26) is bounded, for n > n0, by

2
√
n∆2

nKE{δ1(xn)}+
t(n)√
n

= o(1).

The conclusion follows in case i). Turning to case ii), using Lemma 4.4 in Kreiss (1987), we can

deduce that the conclusion also holds. 2

Lemma 15. Let K be a compact subset of R. We have supx∈K |ên(x)− en(x)−Hn(x)| = oP (1).

Proof. In view of (24), |ên(x)− en(x)−Hn(x)| ≤ |ên,4(x)− en(x)|+ |ên,5(x)−Hn(x)|+ |ên,6(x)|.

Note that ên,4(x) = en,4(x,
√
n(θ̂n − θ0)). Thus, any u,A > 0, A = [−A,A]d,

P

(
sup
x∈K
|ên,4(x)− en(x)| > u

)
≤ P

(
sup
x∈K

sup
a∈A
|en,4(x,a)− en(x)| > u

)
+P

(√
n(θ̂n − θ0) /∈ A

)
.

The conclusion follows as in Lemma 8, using lemmas 12, 13 and 14. 2

To complete the proof of Theorem 4, note that, by arguments used to prove Theorem 2, we have

ên(xn) =
1√
n

n∑
t=1

{1lηt<x−F (x)}+f(x)(Ω′m+xΩ′σ)
1√
n

n∑
t=1

∆t−1V (ηt)+oP (1). 2
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Fig. 1. Failure of the Glivenko-Cantelli property for residuals when A5 does not hold (Example 1).

Appendix

A. Illustration of Example 1 and Remark 1

A graph illustrating the discrepancy between F̂n(x) and F (x) is displayed in Figure 1.

A graph illustrating the e�ect of the estimation on the asymptotic distribution of the e.d.f.r in

displayed in Figure 2.

B. Proof of Theorem 3

The proof requires the following changes in the proof of Theorem 1. Let ηt(θ) = (yt−mt(θ))/σt(θ)

and η̃t(θ) = (yt− m̃t(θ))/σ̃t(θ). We have supθ∈Θ |ηt(θ)− η̃t(θ)| ≤ Ktρ
t(1 + |yt|). Thus, by a Taylor

expansion,

|η̂t − ηt| ≤
∥∥∥θ̂n − θ0

∥∥∥xt +Ktρ
t(1 + |yt|) (27)

for n large enough, where

xt =

{
|ηt| sup

θ∈V (θ0)

σt(θ0)

σt(θ)
+ sup
θ∈V (θ0)

|mt(θ0)−mt(θ)|
σt(θ)

}
sup

θ∈V (θ0)
‖Dt(θ)‖+ sup

θ∈V (θ0)

1

σt(θ)

∥∥∥∥∂mt(θ)

∂θ

∥∥∥∥ .
(28)

In view of (27)-(28), we have

|η̂t − ηt| ≤ Ktρ
t(1 + |yt|) + (ut|ηt|+ vt)

∥∥∥θ̂n − θ0

∥∥∥ , (29)
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Fig. 2. Asymptotic variances of the empirical distribution for residuals (dotted red lines) and innovations

(full blue line), for standardized Gaussian, GED (Generalized Error Distribution) and Student distributions.

for n large enough, where ut, vt ∈ Ft−1 and, by B4, E(|ut|r/2) < ∞ and E(|vt|r/2) < ∞. The rest

of the proof of the Glivenko-Cantelli property is similar to that of Theorem 1, using the consistency

of θ̂n. 2

C. Complements to Theorem 4

The next two results avoid the discreteness of the estimator in Theorem 4. Instead, we �rst assume

faster convergence of the sequence (xn).

Proposition 1. Let x ∈ R and let (xn) a sequence of random variables such that
√
n(xn−x) =

o(1) a.s. Then, under B1-B8 and A9, A11, the conclusions of Theorem 4 hold.

Proof. The proof is the same as that of Theorem 4, except for Lemma 14. Let ε > 0, xn =

x− n−1/2ε, and xn = x+ n−1/2ε. Then, by the law of iterated expectations, the expectation of the

�rst term in (26) is bounded, for n large enough, by

√
n(xn − xn)E(χ∗1,n) + 2

√
n∆2

nKE{δ1(xn)} = 2ε+ o(1).

Because ε can be chosen arbitrarily small, the conclusion follows. 2

In our second result, discreteness is avoided at the price of reinforcing Assumption B8. For any

sequence (xn) of random variables, let the assumption
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B8 (xn): For n large enough, n > n0 say, the conditional distribution of ηt given (θ̂n, xn,Ft−1)

admits a density which is a.s. bounded, uniformly in n > n0 and t < n − t(n) where t(n) =

o(
√
n).

Proposition 2. Let x ∈ R and let (xn) a sequence of random variables such that xn → x in

probability. Then, under B1-B7, B8(xn) and A9, A11, the conclusions of Theorem 4 hold.

Proof. Again, we just change the proof of Lemma 14. Noting that, for n > n0 and t < n− t(n)

E
(

1lxnχ∗t,n+λ∗t,n−δt(xn)∆2
n≤ηt≤xnχ∗t,n+λ∗t,n+δt(xn)∆2

n
| θ̂n, xn,Ft−1

)
= 2Kδt(xn)∆2

n,

the conclusion follows. 2

Noting that there is no guarantee that γ∗t,n(a) be almost surely positive, we de�ne

γ∗∗t,n(a) =
∣∣γ∗t,n(a)

∣∣ .
Before showing Lemma 11, we need to slightly modify Lemma 10. Let

z∗∗t,n(x,a, b) = 1lηt≤xγ∗∗t,n(a)+λ∗t,n(b) − F
(
xγ∗∗t,n(a) + λ∗t,n(b)

)
− {1lηt≤x − F (x)} .

Lemma 16. We have, for any u > 0 and su�ciently large n, for any sequences (ai)i∈I and

(bi)i∈I

P

(∣∣∣∣∣∑
i∈I

1√
n

n∑
t=1

z∗∗t,n(x,ai, bi)1lyt−1∈Ri

∣∣∣∣∣ > u

)
≤ K

nu4

{
(x sup

i∈I
‖ai‖)2 + sup

i∈I
‖bi‖2 + 1

}
.

Proof. Let žt =
∑

i∈I z
∗∗
t,n(x,ai, bi)1lyt−1∈Ri . Note that, for �xed n and x, (žt,Ft)1≤t≤n is also a

martingale di�erence sequence. Hence, we conclude by the arguments of the proof of Lemma 10

and ∣∣F (xγ∗∗t,n(ai) + λ∗t,n(bi)
)
− F (x)

∣∣ ≤ |x|K|γ∗∗t,n(ai)− 1|+K|λ∗t,n(bi)|

≤ |x|K|γ∗t,n(ai)− 1|+K|λ∗t,n(bi)|,

using the elementary inequality ||a| − |b|| ≤ |a− |b||. 2

Proof of Lemma 11. With the notations of Lemma 3, Lemma 10 and Lemma 16 entail that for

any u > 0,

P

(
max

−N≤j≤N

∣∣∣∣∣∑
i∈I

1√
n

n∑
t=1

z∗t,n(xj ,ai, bi)1lyt−1∈Ri

∣∣∣∣∣ > u

)
≤ K√

n
, (30)

P

(
max

−N≤j≤N

∣∣∣∣∣∑
i∈I

1√
n

n∑
t=1

z∗∗t,n(xj ,ai, bi)1lyt−1∈Ri

∣∣∣∣∣ > u

)
≤ K√

n
. (31)
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As argued in the proof of Lemma 3, using (30) it remains to show that

max
−N≤j≤N−1

sup
x∈[xj ,xj+1]

∣∣∣∣∣∑
i∈I

1√
n

n∑
t=1

{
z∗t,n(x,ai, bi)− z∗t,n(xj ,ai, bi)

}
1lyt−1∈Ri

∣∣∣∣∣ = oP (1). (32)

For all j, we have∑
i∈I

1√
n

n∑
t=1

{
z∗t,n(x,ai, bi)− z∗t,n(xj ,ai, bi)

}
1lyt−1∈Ri = an(x) + bn(x),

with

an(x) =
∑
i∈I

1√
n

n∑
t=1

{
1lηt≤xγ∗t,n(ai)+λ∗t,n(bi) − F

(
xγ∗t,n(ai) + λ∗t,n(bi)

)
−1lηt≤xjγ∗t,n(ai)+λ∗t,n(bi) + F

(
xjγ
∗
t,n(ai) + λ∗t,n(bi)

)}
1lyt−1∈Ri

and

bn(x) =
1√
n

n∑
t=1

{
1lηt≤x − F (x)− 1lηt≤xj + F (xj)

}
.

By (17) and (19), max−N≤j≤N−1 supx∈[xj ,xj+1] |bn(x)| = oP (1). For j = 0, . . . , N − 1,

sup
x∈[xj ,xj+1]

|an(x)|

≤ 1√
n

∑
i∈I

n∑
t=1

{
1lηt≤xj+1γ∗t,n(ai)+λ∗t,n(bi) − 1lηt≤xjγ∗t,n(ai)+λ∗t,n(bi)

}
1lγ∗t,n(ai)≥01lyt−1∈Ri

+
1√
n

∑
i∈I

n∑
t=1

{
1lηt≤xjγ∗t,n(ai)+λ∗t,n(bi) − 1lηt≤xj+1γ∗t,n(ai)+λ∗t,n(bi)

}
1lγ∗t,n(ai)<01lyt−1∈Ri

+
1√
n

∑
i∈I

n∑
t=1

{
F
(
xj+1γ

∗
t,n(ai) + λ∗t,n(bi)

)
− F

(
xjγ
∗
t,n(ai) + λ∗t,n(bi)

)}
1lγ∗t,n(ai)≥01lyt−1∈Ri

+
1√
n

∑
i∈I

n∑
t=1

{
F
(
xjγ
∗
t,n(ai) + λ∗t,n(bi)

)
− F

(
xj+1γ

∗
t,n(ai) + λ∗t,n(bi)

)}
1lγ∗t,n(ai)<01lyt−1∈Ri

≤ 1√
n

∑
i∈I

n∑
t=1

{
1lηt≤xj+1γ∗∗t,n(ai)+λ∗t,n(bi) − 1lηt≤xjγ∗∗t,n(ai)+λ∗t,n(bi)

}
1lyt−1∈Ri

+
1√
n

∑
i∈I

n∑
t=1

{
1lηt≤−xjγ∗∗t,n(ai)+λ∗t,n(bi) − 1lηt≤−xj+1γ∗∗t,n(ai)+λ∗t,n(bi)

}
1lyt−1∈Ri

+
1√
n

∑
i∈I

n∑
t=1

{
F
(
xj+1γ

∗∗
t,n(ai) + λ∗t,n(bi)

)
− F

(
xjγ
∗∗
t,n(ai) + λ∗t,n(bi)

)}
1lyt−1∈Ri

+
1√
n

∑
i∈I

n∑
t=1

{
F
(
−xjγ∗∗t,n(ai) + λ∗t,n(bi)

)
− F

(
−xj+1γ

∗∗
t,n(ai) + λ∗t,n(bi)

)}
1lyt−1∈Ri

≤

∣∣∣∣∣∑
i∈I

1√
n

n∑
t=1

z∗∗t,n(xj+1,ai, bi)1lyt−1∈Ri

∣∣∣∣∣+

∣∣∣∣∣∑
i∈I

1√
n

n∑
t=1

z∗∗t,n(xj ,ai, bi)1lyt−1∈Ri

∣∣∣∣∣
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+

∣∣∣∣∣∑
i∈I

1√
n

n∑
t=1

z∗∗t,n(−xj+1,ai, bi)1lyt−1∈Ri

∣∣∣∣∣+

∣∣∣∣∣∑
i∈I

1√
n

n∑
t=1

z∗∗t,n(−xj ,ai, bi)1lyt−1∈Ri

∣∣∣∣∣
+V ∗n (j) + 2W ∗n(j,ai, bi),

where

W ∗n(j,ai, bi) =
1√
n

∑
i∈I

n∑
t=1

{
F
(
xj+1γ

∗∗
t,n(ai) + λ∗t,n(bi)

)
− F

(
xjγ
∗∗
t,n(ai) + λ∗t,n(bi)

)
+F

(
−xjγ∗∗t,n(ai) + λ∗t,n(bi)

)
− F

(
−xj+1γ

∗∗
t,n(ai) + λ∗t,n(bi)

)}
1lyt−1∈Ri ,

V ∗n (j) =n−1/2

∣∣∣∣∣
n∑
t=1

{
1lηt≤xj+1

− F (xj+1)
}
−
{

1lηt≤xj − F (xj)
}

+
{

1lηt≤−xj − F (−xj)
}
−
{

1lηt≤−xj+1
− F (−xj+1)

}∣∣ .
Thus (32) is established using (31) and the arguments of the proof of Lemma 3. 2

Detailed proof of Lemma 12. Note that en,4(x,a) − en(x) = n−1/2
∑n

t=1 z
∗
t,n(x,a,a). We will

thus show that

sup
a,b∈A

X∗n(a, b) = oP (1), where X∗n(a, b) = sup
x∈K

∣∣∣∣∣ 1√
n

n∑
t=1

z∗t,n(x,a, b)

∣∣∣∣∣ . (33)

Let ε > 0 such that N := 2A/ε is an integer and de�ne a(k) = −A + kε for 1 ≤ k ≤ N . For 1 ≤

k1, k2, . . . kd ≤ N , let k = (k1, . . . , kd) and consider the grid of Nd points a(k) = (a(k1), . . . , a(kd)).

Let also A(k) = {(a1, . . . , ad) ∈ A|a(kj) − ε ≤ aj ≤ a(kj), j ∈ {1, . . . , d}}. De�ne, for i ≥ 1, and

si = (s
(1)
i , s

(2)
i ) = (s

(1)
i1 , . . . , s

(1)
id , s

(2)
i1 , . . . , s

(2)
id )

as(`)i
(k) = (as(`)i1

(k1), . . . , as(`)id
(kd)), as(`)ij

(kj) = a(kj)1ls(`)ij =1 + {a(kj)− ε}1ls(`)ij =−1,

as(`)i
(k) = (as(`)i1

(k1), . . . , as(`)id
(kd)), as(`)ij

(kj) = a(kj)1ls(`)ij =−1 + {a(kj)− ε}1ls(`)ij =1.

We have, for j = 1, . . . , d,

F
(
xγ∗t,n(a) + λ∗t,n(b1, . . . , bj−1, a(kj), bj+1, . . . , bd)

)
− F

(
xγ∗t,n(a) + λ∗t,n(b)

)
= f

{
xγ∗t,n(a) + λ∗t,n(bt,j)

} a(kj)− bj√
n

1

σt(θ0)

∂mt(θ0)

∂θ′
ej ,

where ej is the j-th element of the canonical basis of Rd, and bt,j is a point between the arguments

of λt,n above. By A11, we have supx f(x) <∞. The absolute value of the latter di�erence is thus

bounded, uniformly in x ∈ R, a ∈ A and b ∈ A(k), by K ε√
n

1
σt(θ0)

∣∣∣∂mt(θ0)
∂θ′ ej

∣∣∣ .
Similarly, for j = 1, . . . , d,∣∣F (xγ∗t,n(a1, . . . , aj−1, a(kj), aj+1, . . . , ad) + λ∗t,n(b)

)
− F

(
xγ∗t,n(a) + λ∗t,n(b)

)∣∣
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=

∣∣∣∣xf {xγ∗t,n(at,j) + λ∗t,n(b)
} a(kj)− aj√

n

1

σt(θ0)

∂σt(θ0)

∂θ′
ej

∣∣∣∣ ≤ K ε√
n

1

σt(θ0)

∣∣∣∣∂σt(θ0)

∂θ′
ej

∣∣∣∣ ,
uniformly in x ∈ K, b ∈ A and a ∈ A(k). Therefore, for n large enough,

sup
a∈A(k),b∈A(`)

sup
x∈K

n∑
t=1

∣∣F (xγ∗t,n(a) + λ∗t,n(b)
)
− F

(
xγ∗t,n(a(k)) + λ∗t,n(b(`))

)∣∣
≤ K

ε√
n

n∑
t=1

∥∥∥∥ 1

σt(θ0)

∂σt(θ0)

∂θ

∥∥∥∥+

∥∥∥∥ 1

σt(θ0)

∂mt(θ0)

∂θ

∥∥∥∥ := K
ε√
n

n∑
t=1

Zt.

For a ∈ A(k) and b ∈ A(`) we have, for yt−1 ∈ Ri and x ≥ 0,

xγ∗t,n(as(2)i
(k)) + λ∗t,n(as(1)i

(`)) ≤ xγ∗t,n(a) + λ∗t,n(b) ≤ xγ∗t,n(as(2)i
(k)) + λ∗t,n(as(1)i

(`)),

while, for x ≤ 0,

xγ∗t,n(as(2)i
(k)) + λ∗t,n(as(1)i

(`)) ≤ xγ∗t,n(a) + λ∗t,n(b) ≤ xγ∗t,n(as(2)i
(k)) + λ∗t,n(as(1)i

(`)).

It follows that,

sup
a∈A(k),b∈A(`)

sup
x∈K

∣∣∣∣∣ 1√
n

n∑
t=1

z∗t,n(x,a, b)− z∗t,n(x,a(k),a(`))

∣∣∣∣∣
≤ sup

a∈A(k),b∈A(`)
sup
x∈K

1√
n

n∑
t=1

∣∣∣1lηt≤xγ∗t,n(a(k))+λ∗t,n(a(`)) − 1lηt≤xγ∗t,n(a)+λ∗t,n(b)

∣∣∣
+ sup
a∈A(k),b∈A(`)

sup
x∈K

1√
n

n∑
t=1

∣∣F (xγ∗t,n(a(k)) + λ∗t,n(a(`))
)
− F

(
xγ∗t,n(a) + λ∗t,n(b)

)∣∣
≤ sup

x∈K

∑
i∈I

1√
n

n∑
t=1

{
1lηt≤xγ∗t,n(a

s
(2)
i

(k))+λ∗t,n(a
s
(1)
i

(`)) − 1lηt≤xγ∗t,n(a
s
(2)
i

(k))+λ∗t,n(a
s
(1)
i

(`))

}
1lyt−1∈Ri1lx≥0

+ sup
x∈K

∑
i∈I

1√
n

n∑
t=1

{
1lηt≤xγ∗t,n(a

s
(2)
i

(k))+λ∗t,n(a
s
(1)
i

(`)) − 1lηt≤xγ∗t,n(a
s
(2)
i

(k))+λ∗t,n(a
s
(1)
i

(`))

}
1lyt−1∈Ri1lx<0

+K
ε

n

n∑
t=1

Zt

= sup
x∈K

∑
i∈I

1√
n

n∑
t=1

{
z∗(x,as(2)i

(k),as(1)i
(`))− z∗(x,as(2)i (k),as(1)i

(`))
}

1lyt−1∈Ri1lx≥0

+ sup
x∈K

∑
i∈I

1√
n

n∑
t=1

{
F (xγ∗t,n(as(2)i

(k)) + λ∗t,n(as(1)i
(`)))− F (xγ∗t,n(as(2)i

(k)) + λ∗t,n(as(1)i
(`)))

}
1lyt−1∈Ri1lx≥0

+ sup
x∈K

∑
i∈I

1√
n

n∑
t=1

{
z∗(x,as(2)i

(k),as(1)i
(`))− z∗(x,as(2)i (k),as(1)i

(`))
}

1lyt−1∈Ri1lx<0

+ sup
x∈K

∑
i∈I

1√
n

n∑
t=1

{
F (xγ∗t,n(as(2)i

(k)) + λ∗t,n(as(1)i
(`)))− F (xγ∗t,n(as(2)i

(k)) + λ∗t,n(as(1)i
(`)))

}
1lyt−1∈Ri1lx<0

+K
ε

n

n∑
t=1

Zt
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≤ X n((as(2)i
(k)), (as(1)i

(`))) + X n((as(2)i
(k)), (as(1)i

(`)))

+X n((as(2)i
(k)), (as(1)i

(`))) + X n((as(2)i
(k)), (as(1)i

(`))) + 3K
ε

n

n∑
t=1

Zt.

Note that

sup
a,b∈A

X∗n(a, b) ≤ max
k,`∈{1,...,N}d

sup
a∈A(k),b∈B(`)

sup
x∈K

∣∣∣∣∣ 1√
n

n∑
t=1

[z∗t,n(x,a, b)− z∗t,n(x,a(k), b(`))]

∣∣∣∣∣
+ max
k,`∈{1,...,N}d

X∗n(a(k),a(`))

≤ 3Kε

n

n∑
t=1

Zt + 5 max
(ai),(bi)

X n((ai), (bi)),

where the last max is taken over all sequences of the form as(`)i
(k) or as(`)i (k), ` ∈ {1, 2} and

k, ` ∈ {1, . . . , N}d. The end of the proof of (33) is similar to that of (21) using Lemma 11. 2

Proof that supx∈R |ên,7(x)| = oP (1) in Lemma 14.

By B2-B3,
∣∣∣ηt(θ̂n)− η̃t(θ̂n)

∣∣∣ ≤ Ktρ
t. It follows that∣∣∣1lηt≤xχ̃t,n+λ̃t,n

− 1lηt≤xχt,n+λt,n

∣∣∣ =
∣∣∣1lη̃t(θ̂n)≤x − 1l

ηt(θ̂n)≤x

∣∣∣ ≤ 1l
x−Ktρt≤ηt(θ̂n)≤x+Ktρt

≤ 1l
x−ρt/2≤ηt(θ̂n)≤x+ρt/2

+ 1lKtρt/2≥1.

We have, by B3 and Markov inequality

E
1√
n

n∑
t=1

1lKtρt/2≥1 =
1√
n

n∑
t=1

P (Ktρ
t/2 ≥ 1) ≤ 1√

n

n∑
t=1

E(Kr
t ρ
tr/2) = O(n−1/2).

Letting

dt,n(x) = 1l
x−ρt/2≤ηt(θ̂n)≤x+ρt/2

= 1lχt,nx−χt,nρt/2+λt,n≤ηt≤χt,nx+χt,nρt/2+λt,n ,

we have

sup
x∈R

1√
n

n∑
t=1

dt,n(x) ≤
5∑
i=1

ci,n,

with

c1,n = sup
x∈R

1√
n

dn1/4e−1∑
t=1

dt,n(x) ≤ 1

n1/4
,

c2,n = sup
x∈R

1√
n

n∑
t=dn1/4e

1lχt,nx−bnρn+λt,n≤ηt≤χt,nx+bnρn+λt,n1lAn , ρn = ρ
n1/4

2 ,

c3,n =
1√
n

n∑
t=1

1lχt,n≥bn1l√
n‖θ̂n−θ0‖≤ns , c4,n =

√
n1l√

n‖θ̂n−θ0‖≥ns , c5,n =
√
n1lAcn ,

where (an) and (bn) are sequences of real numbers, An = {min1≤t<t′≤n |ηt − ηt′ | ≥ an} and s > 0.

Note that c2,n = 1/
√
n when an ≥ 2bnρn. Now, for some θt between θ̂n and θ0, we have

χt,n = 1 +
1

σt(θ0)

∂σt(θt)

∂θ′

(
θ̂n − θ0

)
. (34)
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Using B7 and choosing for instance bn =
√
n+ 1, we obtain

Ec3,n =
1√
n

n∑
t=1

P
(
χt,n ≥ bn,

√
n‖θ̂n − θ0‖ ≤ ns

)
≤ 1√

n

n∑
t=1

P

(
sup

θ∈V (θ0)

∥∥∥∥ 1

σt(θ0)

∂σt(θ)

∂θ

∥∥∥∥ns−1/2 ≥
√
n

)
= o(1).

By Lemma 1 and B5, we have almost surely c4,n = 0 for n large enough. In the proof of Lemma 7,

we have seen that Ec5,n = o(1) when, for instance, an = n−3. Hence the lemma is established. 2

Detailed proof of Lemma 14. From (34) and a similar expansion for λt,n

|xχt,n + λt,n − (xχ∗t,n + λ∗t,n)|

=

∣∣∣∣ 1

σt(θ0)

{
x

(
∂σt(θt)

∂θ′
− ∂σt(θ0)

∂θ′

)
+

(
∂mt(θt)

∂θ′
− ∂mt(θ0)

∂θ′

)}(
θ̂n − θ0

)∣∣∣∣
≤ 1

σt(θ0)

{
|x|
∥∥∥∥∂σt(θt)∂θ

− ∂σt(θ0)

∂θ

∥∥∥∥+

∥∥∥∥∂mt(θt)

∂θ
− ∂mt(θ0)

∂θ

∥∥∥∥}∥∥∥θ̂n − θ0

∥∥∥
≤ 1

σt(θ0)

{
|x|
∥∥∥∥∂2σt(θt)

∂θ∂θ′
(θt − θ0)

∥∥∥∥+

∥∥∥∥∂2mt(θt)

∂θ∂θ′
(θt − θ0)

∥∥∥∥}∥∥∥θ̂n − θ0

∥∥∥
≤ 2

σt(θ0)
sup

θ∈V (θ0)

{
|x|
∥∥∥∥∂2σt(θ)

∂θ∂θ′

∥∥∥∥+

∥∥∥∥∂2mt(θ)

∂θ∂θ′

∥∥∥∥}∥∥∥θ̂n − θ0

∥∥∥2
:= δt(x)

∥∥∥θ̂n − θ0

∥∥∥2
,

where θt,θt and θt are between θ0 and θ̂n. It follows that, for any ∆n > 0,

|ên,8(xn)| ≤ 1√
n

n∑
t=1

∣∣1lηt≤xnχt,n+λt,n − 1lηt≤xnχ∗t,n+λ∗t,n

∣∣
≤ 1√

n

n∑
t=1

1lxnχ∗t,n+λ∗t,n−δt(xn)∆2
n≤ηt≤xnχ∗t,n+λ∗t,n+δt(xn)∆2

n
+
√
n1l‖θ̂n−θ0‖>∆n

. (35)

Let ∆n = ns−1/2, for some s > 0. The last term in (35) is equal to c4,n = 0 for su�ciently large n.

Now, �rst suppose that the sequence (xn) is non random, xn → x. Note that the sequence (δt(xn))t

is stationary, and integrable by Assumptions A9 and B7. Let ft,n the conditional density of ηt

introduced in Assumption B8, and let K its uniform upper bound. Then, by the law of iterated

expectations, the expectation of the �rst term in (35) is bounded, for n > n0, by

2
√
n∆2

nKE{δ1(xn)}+
t(n)√
n

= o(1).

The conclusion follows in case i). Turning to case ii), using Lemma 4.4 in Kreiss (1987), we can

deduce that the conclusion also holds. 2
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D. QMLE of the location scale model

D.1. Consequence of Assumption A12∗ for the QMLE

Consider the function g : c 7→ g(c) = Qn(θ̂n,c) = 1
n

∑n
t=1

{yt−m̃t(θ̂n)}2

c2σ̃2
t (θ̂n)

+ log{c2σ̃2
t (θ̂n)}. Because the

function g reaches its minimum for c = 1, we must have µ̂2 = 1 a.s.

Now we have

µ̂2 :=
1

n

n∑
t=1

η̃2
t (θ̂n) =

1

n

n∑
t=1

η2
t (θ̂n) + oP (1) =

1

n

n∑
t=1

η2
t +

∂µ2,n(θ0)

∂θ′
(θ̂n − θ0) + oP (1),

where

µ2,n(θ) =
1

n

n∑
t=1

η2
t (θ),

∂µ2,n(θ0)

∂θ′
=
−2

n

n∑
t=1

ηt

{
1

σt

∂mt(θ0)

∂θ′
+ ηt

1

σt

∂σt(θ0)

∂θ′

}
= −2Ω′σ + oP (1).

Thus

√
n(µ̂2 − 1) =

1√
n

n∑
t=1

(η2
t − 1)− 2Ω′σ

√
n(θ̂n − θ0) + oP (1). (36)

It follows from (36) and (5) that

√
n(µ̂2 − 1) = −4Ω′σJ

−1 1√
n

n∑
t=1

ηt
1

σt

∂mt(θ0)

∂θ

+
1√
n

n∑
t=1

(η2
t − 1)

(
1− 4Ω′σJ

−1 1

σt

∂σt(θ0)

∂θ

)
+ oP (1). (37)

Since, in (37), the asymptotic distribution of the l.h.s. is degenerate, we deduce that

0 = 16Ω′σJ
−1{Jm + (κ4 − 1)Jσ + µ3(Jmσ + Jσm)}J−1Ωσ + (κ4 − 1)(1− 8Ω′σJ

−1Ωσ)

−4µ3(Ω′σJ
−1Ωm + Ω′mJ

−1Ωσ). (38)

We retrieve the fact that in the absence of location m, Jσ = J/4 and thus Ω′σJ
−1
σ Ωσ = 1. In the

Gaussian case we also get Ω′σJ
−1
σ Ωσ = 1 (with or without a location).

Finally, (38) writes

4Ω′σΣΩσ + (κ4 − 1)(1− 8Ω′σJ
−1Ωσ)− 4µ3(Ω′σJ

−1Ωm + Ω′mJ
−1Ωσ) = 0.

D.2. Proof of Corollary 1

Let θ = (ϕ′,ϑ′)′. We have

Ωm =

(
E

(
1

σt

∂mt(ϕ0)

∂ϕ′

)
,0

)′
, Ωσ =

(
0, E

(
1

σt

∂σt(ϑ0)

∂ϑ′

))′
, Jmσ = J ′σm = 0,

Jm =

 K 0

0 0

 , Jσ =

 0 0

0 L

 , J =

 2K 0

0 4L

 , Σ =

 K−1 0

0 κ4−1
4 L−1

 ,
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where K = E
(

1
σ2
t

∂mt(ϕ0)
∂ϕ

∂mt(ϕ0)
∂ϕ′

)
, L = E

(
1
σ2
t

∂σt(ϑ0)
∂ϑ

∂σt(ϑ0)
∂ϑ′

)
. Moreover, (38) entails

E

(
1

σt

∂σt(ϑ0)

∂ϑ′

){
E

(
1

σ2
t

∂σt(ϑ0)

∂ϑ

∂σt(ϑ0)

∂ϑ′

)}−1

E

(
1

σt

∂σt(ϑ0)

∂ϑ

)
= 1.

The conclusion follows. 2

D.3. Proof of Remark 5

We have

Ωm =

 E
(
Xt−1

σt

)
0

 , Ωσ =

 0

E
(
X2
t−1

2σ2
t

)  , Jm =

 E
(
X2
t−1

σ2
t

)
0

0 0

 , Jσ =

 0 0

0 1
4E
(
X4
t−1

σ4
t

)  .

Hence

J =

 2E
(
X2
t−1

σ2
t

)
0

0 E
(
X4
t−1

σ4
t

)
 , Σ =

 {
E
(
X2
t−1

σ2
t

)}−1
0

0 (κ4 − 1)
{
E
(
X4
t−1

σ4
t

)}−1

 ,

H(x) = f(x)

 E
(
Xt−1

σt

)
xE
(
X2
t−1

2σ2
t

)
 , Λ =


E
(
Xt−1

σt

)
E

(
X2
t−1

σ2t

) 0

0
E

(
X2
t−1

σ2t

)
E

(
X4
t−1

σ4t

)

 ,

H(x)′ΣH(x) = f(x)2

{
E
(
Xt−1

σt

)}2

E
(
X2
t−1

σ2
t

) + {xf(x)}2κ4 − 1

4

{
E
(
X2
t−1

σ2
t

)}2

E
(
X4
t−1

σ4
t

) ,

2H(x)′Λ%(x) = 2f(x)

{
E
(
Xt−1

σt

)}2

E
(
X2
t−1

σ2
t

) E{1lη0<xη0}+ xf(x)

{
E
(
X2
t−1

σ2
t

)}2

E
(
X4
t−1

σ4
t

) E{1lη0<x(η2
0 − 1)}.

Finally, for this model,

Varas
{√

n
(
F̂n(xn)− F (xn)

)}
= F (x){1− F (x)}+ f(x)

{
E
(
Xt−1

σt

)}2

E
(
X2
t−1

σ2
t

) {f(x) + 2E{1lη0<xη0}}

+xf(x)

{
E
(
X2
t−1

σ2
t

)}2

E
(
X4
t−1

σ4
t

) {
xf(x)

κ4 − 1

4
+ E{1lη0<x(η2

0 − 1)}
}
.

which is clearly model-dependent. Note that if the distribution of ηt is symmetric we have

E
(
Xt−1

σt

)
= 0 and thus the second term in the right-hand side vanishes. If, in addition, α0 → 0,

the asymptotic variance converges to

F (x){1− F (x)}+ xf(x)
1 + φ2

0

6φ2
0

{
xf(x)

κ4 − 1

4
+ E{1lη0<x(η2

0 − 1)}
}
.
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D.4. Proof of Corollary 2

Let θ = (ϕ′,ϑ′)′, where ϕ = (φ1, . . . , φP , ψ1, . . . , ψQ)′, ϑ = (ω, α1, . . . , αq, β1, . . . , βp)
′, and mt =

mt(ϕ), σt = σt(ϕ,ϑ). We know that the asymptotic variance Σ of the QMLE is block-diagonal

(see Francq and Zakoian (2019), Remark 7.4). Moreover, we have ∂mt(ϕ0)
∂φi

= Θ(L)−1Xt−i and
∂mt(ϕ0)
∂ψj

= −Θ(L)−1εt−j . Hence E
(

1
σt

∂mt(ϕ0)
∂ϕ

)
= 0 using the fact that σt is an even function of the

ηt−i, i > 0. Since ∂mt(ϕ0)
∂ϑ = 0 we thus have Ωm = 0 and it can similarly be shown that Ωσ is of the

form Ωσ = 1
2(0′,ω′σ)′, where ωσ is a vector of dimension p+ q + 1. We also have

Jm =

 E
(

1
σ2
t

∂mt(ϕ0)
∂ϕ

∂mt(ϕ0)
∂ϕ′

)
0

0 0

 , Jσ =

 E
(

1
σ2
t

∂σt(θ0)
∂ϕ

∂σt(θ0)
∂ϕ′

)
0

0 1
4K


where K = E

(
1
σ4
t

∂σ2
t (θ0)
∂ϑ

∂σ2
t (θ0)
∂ϑ′

)
. The block-diagonality of Jσ follows from the fact that 1

σ2
t

∂σ2
t (θ0)
∂ϑ

is an even function of the ηt−i, i > 0, while 1
σ2
t

∂σ2
t (θ0)
∂ϕ is an odd function. Hence, for some matrices

M and N which we do not need to make explicit,

J =

 M 0

0 K

 , Σ =

 N 0

0 (κ4 − 1)K−1

 .

Since Assumption A12∗ is satis�ed, (38) holds and can be written ω′σK
−1ωσ = 1. We also have

H(x) = xf(x)
2 (0′,ω′σ)′ , hence

H(x)′ΣH(x) = {xf(x)}2κ4 − 1

4
, H(x)′Λ%(x) =

xf(x)

2
E{1lη0<x(η2

0 − 1)}.

The conclusion follows. 2

E. Proof of the stochastic equicontinuity property in Lemma 9

Noting that Ut := F (ηt) is uniformly distributed on [0, 1], we have

en(x) =
1√
n

n∑
t=1

1Ut≤F (x) − F (x) = Yn(F (x)), Yn(u) =
1√
n

n∑
t=1

1Ut≤u − u.

Billingsley (1968) studied the modulus of continuity of {Yn(u), u ∈ [0, 1]} and showed in (22.13)

that, for each ε > 0 and η > 0, there exists τ ∈ (0, 1] such that

P

(
sup
|u−v|<τ

|Yn(u)− Yn(v)| ≥ ε

)
≤ η (39)

for large n. For any ε > 0 and δ > 0, we have

P (|en(xn)− en(x)| ≥ ε) ≤ P

(
sup
|y−x|≤δ

|en(y)− en(x)| ≥ ε

)
+ P (|xn − x| ≥ δ) .
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Fig. 3. Example of cdf.

The last probability tends to zero because xn → x in probability. Now, note that

P

(
sup
|y−x|≤δ

|en(y)− en(x)| ≥ ε

)
= P

(
sup

|u−v|≤F (δ)
|Yn(u)− Yn(v)| ≥ ε

)
≤ η

when n is large enough to satisfy (39) with τ > F (δ). Since η can be taken arbitrarily small, the

result follows. 2

F. Complements for Section 4

F.1. Proof and complements to Corollary 3

The di�erent items introduced in Corollary 3 and Lemma 17 are illustrated in Figure 3.

Proof of Corollary 3. The �rst convergence being a particular case of the second part of the

theorem � since under A13, ξα = ξ+
α � it will be su�cient to prove the latter. Let ε > 0. By

de�nition of ξα and ξ+
α we have,

F (ξα − ε) < α− δ and F (ξ+
α + ε) > α+ δ, (40)

for some δ > 0. By Theorem 1, assume n large enough so that supx∈R |F̂n(x) − F (x)| < δ a.s. It

follows from (40) that

ξα − ε ≤ ξ̂n,α ≤ ξ+
α + ε. (41)

Indeed, if ξα − ε > ξ̂n,α then F (ξα − ε) ≥ F (ξ̂n,α) = F (ξ̂n,α) − F̂n(ξ̂n,α) + F̂n(ξ̂n,α) ≥ α − δ which

contradicts the �rst inequality in (40). Moreover, if ξ+
α +ε < ξ̂n,α then F (ξ+

α +ε) ≤ F̂n(ξ+
α +ε)+δ ≤
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α + δ which contradicts the second inequality in (40). The strong convergence of ξ̂n,α to the set

[ξα, ξ
+
α ] follows from (41). The conclusion follows. 2

The asymptotic behaviour of the empirical quantile when the residuals are replaced by innova-

tions is given for the sake of comparison in the following lemma. Having been unable to �nd a

reference for this result, we provide a proof for completeness. Let ξn,α the empirical α-quantile of

the innovations η1, . . . , ηn.

Lemma 17. For the iid sequence (ηt) and α ∈ (0, 1) we have:

(a) If ξ+
α 6= ξα, then lim inf ξn,α = ξα, lim sup ξn,α = ξ+

α , a.s.

Moreover, P (ξn,α ≤ ξα) = 1− P (ξn,α ≥ ξ+
α )→ 1/2 as n→∞.

(b) If ξ+
α = ξα (Assumption A13), then ξn,α → ξα a.s. Moreover, letting α− = P (ηt < ξα) and

α+ = P (ηt ≤ ξα):

(i) If α > α−: P (ξn,α < ξα)→ 0 as n→∞.

(ii) If α < α+: P (ξn,α ≤ ξα)→ 1 as n→∞.

(iii) If α = α−: P (ξn,α < ξα)→ 1/2 as n→∞.

(iv) If α = α+: P (ξn,α ≤ ξα)→ 1/2 as n→∞.

Proof. The argument used in the proof of Corollary 3 shows that ξα − ε ≤ ξn,α ≤ ξ+
α + ε, noting

that the usual Glivenko-Cantelli lemma does not require assumption A5. Because there are no ηt's

in the interval (ξα, ξ
+
α ), it follows that, for su�ciently large n,

ξα − ε ≤ ξn,α ≤ ξα or ξ+
α ≤ ξn,α ≤ ξ+

α + ε. (42)

If ξ+
α 6= ξα, the last inequalities entail that {lim inf ξn,α, lim sup ξn,α} ⊂ {ξα, ξ+

α }, a.s. Note that

ξn,α ≥ z i� 1
n

∑n
t=1 1lηt<z < α. Moreover P (ηt < ξ+

α ) = P (ηt ≤ ξα) = F (ξα) ≥ α. Because

ξ+
α > ξα, we actually have F (ξα) = α. Therefore

P (ξn,α ≥ ξ+
α ) = P

(
1

n

n∑
t=1

1lηt<ξ+α < α

)
= P (Zn < 0),

where

Zn =
1√
n

n∑
t=1

1lηt<ξ+α − α√
α(1− α)

L→ N (0, 1).

The conclusion follows in case 1.

Now, if ξ+
α = ξα, the strong consistency of ξn,α follows from (42). To show the results in (a)-(d),

the previous arguments can be adapted: for instance we have

P (ξn,α ≥ ξα) = P

(
1√
n

n∑
t=1

1lηt<ξα − α−√
α−(1− α−)

<
√
n

α− α−√
α−(1− α−)

)
,
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Fig. 4. For α = 1/2, computations of ξn,α for two simulations of length 101 of a density which does not

satisfy A13.

from which (a) and (c) can be deduced. The arguments for (b) and (d) are similar, using the

characterization: ξn,α ≤ z i� 1
n

∑n
t=1 1lηt≤z ≥ α. 2

The �rst part of this lemma shows that, for iid observations, (7) is replaced by

[lim inf ξn,α, lim sup ξn,α] = [ξα, ξ
+
α ] a.s.

In particular, the empirical quantile does not converge when Assumption A13 is not satis�ed, as

illustrated in Figure 4. The second part shows, in particular, that if α− < α < α+ then P (ξn,α = ξα)

tends to 1. On the other hand, when α− = α+ (no mass at ξα) then P (ξn,α = ξα) tends to 0.

When A13 does not hold, not only ξn,α but also the sample quantile ξ̂n,α of the residuals may

not converge to ξα. For instance, in the constant scale model, εt = σηt, we have η̂t = σ
σ̂ηt where the

ratio converges to 1 and thus both ξn,α and ξ̂n,α = σ
σ̂ ξn,α do not converge.
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