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Non-conforming finite elements on polytopal meshes

Jérôme Droniou∗, Robert Eymard†, Thierry Gallouët and Raphaèle Herbin‡

July 13, 2020

Abstract

In this work we present a generic framework for non-conforming finite elements on poly-
topal meshes, characterised by elements that can be generic polygons/polyhedra. We first
present the functional framework on the example of a linear elliptic problem representing a
single-phase flow in porous medium. This framework gathers a wide variety of possible non-
conforming methods, and an error estimate is provided for this simple model. We then turn to
the application of the functional framework to the case of a steady degenerate elliptic equation,
for which a mass-lumping technique is required; here, this technique simply consists in using
a different –piecewise constant– function reconstruction from the chosen degrees of freedom.
A convergence result is stated for this degenerate model. Then, we introduce a novel spe-
cific non-conforming method, dubbed Locally Enriched Polytopal Non-Conforming (LEPNC).
These basis functions comprise functions dedicated to each face of the mesh (and associated
with average values on these faces), together with functions spanning the local P1 space in
each polytopal element. The analysis of the interpolation properties of these basis functions
is provided, and mass-lumping techniques are presented. Numerical tests are presented to
assess the efficiency and the accuracy of this method on various examples. Finally, we show
that generic polytopal non-conforming methods, including the LEPNC, can be plugged into
the gradient discretization method framework, which makes them amenable to all the error
estimates and convergence results that were established in this framework for a variety of
models.

1 Introduction

Problems involving elliptic partial differential equations are often efficiently approximated by
the Lagrange finite element method, yielding an approximation of the unknown functions at
the nodes of the mesh. In some cases, it may however be more interesting to approximate the
unknown functions at the centre of the faces of the mesh. This is for example the case for the
Stokes and Navier-Stokes problems, where an approximation of the velocity of a fluid at the
faces of the mesh leads to an easy way to take into account the conservation of fluid mass in
each element. This property is the basis of the success of the Crouzeix-Raviart approximation
for the incompressible Stokes and Navier-Stokes equations; see the seminal paper by Crouzeix
and Raviart [7], and recent extensions including linear elasticity [9].

Another situation for which approximating functions at the face centre is highly relevant is
found in underground flows in heterogeneous porous media. Several coupled models require to
simultaneously solve an elliptic equation associated with the pressure of the fluid, and equa-
tions associated with the transport of species by different mechanisms including convection
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with the displacement of the fluid, diffusion/dispersion mechanisms, and chemical and ther-
modynamic reactions. In such cases, the accuracy of the model on relatively coarse meshes can
only be obtained if the elements of the mesh are homogeneous, in order to compute the flows
in the high permeability zones as precisely as possible, without integrating in these zones some
porous volume belonging to low permeability zones. Non-conforming methods with unknowns
at the face naturally lead to finite volume properties on the elements, which are useful for the
discretisation of such coupled equations. Note that non-conforming methods are in some way
strongly linked with mixed finite elements on the same mesh, in the sense that the matrix
resulting from the mixed hybrid condensed formulation for the Raviart-Thomas finite element
is the same as the non conforming P1 finite element [5, 19].

The aim of this paper is twofold.
On one hand, we wish to provide a general framework for the functional basis of non-

conforming methods on polytopal meshes. Polytopal meshes have elements that can be generic
polygons or polyhedra; they have gained considerable interest because they allow to mesh
complex geometries or match specific underground features. For example, in the framework of
petroleum engineering, general hexahedra have been used for several years; numerical devel-
opments for the computation of porous flows on such grids may be found in [2], for multi-point
flux approximation finite volume methods for instance, in [20] for multi-point mixed approx-
imations, or in [15] for mimetic finite difference methods. The use of polytopal meshes for
underground flows has motivated so many papers that it is impossible to give an exhaustive
list; we refer the reader to the introduction of [8] for a thorough literature review on the topic.

Let us focus on the non-conforming finite element method for second order differential
forms, described on simplicial meshes for example in [6, 21]. By non-conforming finite element
method we refer to a method such that:

• the restriction to each element of the approximate solution belongs to H1,

• the approximate solution can be discontinuous at the common face between two elements
everywhere, but some weak (averaged or at a certain point on the face) continuity is
imposed,

• the approximate gradient is defined as the broken gradient, which is locally (i.e. on each
cell) the gradient of the function.

The mathematical properties behind the nature of the continuity conditions at the faces,
needed for the convergence of the method, are sometimes called the “patch test” [17]. In
Section 2, we revisit these properties, plugging all the non-conforming methods into a broken
continuous H1 space defined on a general polytopal mesh. We thus obtain in Section 2.2, a
general error estimate in the case of a linear elliptic equation in heterogeneous and anisotropic
cases. Section 2 can be read as a simple introduction, using a basic linear model as illustration,
to generic non-conforming finite-element methods on polytopal meshes.

In Section 3, we explore the use of these methods on a more challenging model, which is
however very relevant to applications in geosciences: a nonlinear degenerate elliptic equation
of the Stefan or porous medium equation type. We introduce in Section 3.2 a mass lumping
technique, which is mandatory for designing robust numerical schemes for this model.

We then focus, in Section 4, on a new specific non-conforming approximation on general
polytopal meshes, called the Locally Enriched Polytopal Non-Conforming (LEPNC) method.
This method is based on the H1 piecewise approximation, imposing the continuity of the mean
value on the interfaces. The advantage of the method presented here is its robustness, which
is not the case for other possible simpler methods, such as choosing on each cell polynomials
of degree k with dim Pk(Rd) larger than or equal to the number of faces of the polytopal
cell (this condition is necessary to obtain a decent approximation, see e.g. the hexagonal
example of Section 4, but it is not sufficient to solve robustness issues, see Remark 4.5). In
particular, the LEPNC method allows for hanging nodes which frequently occur when meshing
two different zones such as in domain decomposition methods. Another important feature of
the finite element method presented here is that it can be used together with P1 nonconforming
finite elements on simplicial parts of the mesh. The LEPNC basis functions are described in
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Sections 4.1–4.2, and the approximation properties of the method are detailed in Section 4.3.
The convergence theorems for the LEPNC method are given in Section 4.5. Various numerical
tests are then proposed in Section 4.6, showing the accuracy and the efficiency of this method
on problems presenting some complex features.

Section 5 covers the generic analysis of the convergence of non-conforming methods, which
is encompassed in the framework of the Gradient Discretization method [11]. Some perspec-
tives are then drawn in Section 6.

2 Principles of polytopal non-conforming approxi-
mations

2.1 The model: linear single-phase incompressible flows in porous
media

The principles of a generic polytopal non-conforming method are first presented on the fol-
lowing linear model of pressure for a single-phase incompressible flow in a porous medium:{

−div(Λ∇ū) = f + div(F ) in Ω ,
ū = 0 on ∂Ω,

(1)

with the following assumptions on the data:

• Ω is a polytopal open subset of Rd (d ∈ N?), (2a)

• Λ is a measurable function from Ω to the set of d× d

symmetric matrices and there exists λ, λ > 0 such that,

for a.e. x ∈ Ω, Λ(x) has eigenvalues in [λ, λ], (2b)

• f ∈ L2(Ω) , F ∈ L2(Ω)d. (2c)

We note in passing that a polytopal open set is simply a bounded polygon (if d = 2) or
polyhedron (if d = 3) without slit, that is, it lies everywhere on one side of its boundary; see
[11, Section 7.1.1] for a more formal definition.

The solution to (1) is to be understood in the standard weak sense:

Find ū ∈ H1
0 (Ω) such that, ∀v ∈ H1

0 (Ω),∫
Ω

Λ∇ū · ∇vdx =

∫
Ω

fvdx−
∫

Ω

F · ∇vdx. (3)

2.2 Polytopal non-conforming method

A polytopal non-conforming scheme for (3) is obtained by replacing the continuous space
H1

0 (Ω) in this weak formulation by a finite-dimensional subspace of a “non-conforming Sobolev
space”. Let us first give the definition of polytopal mesh we will be working with; this definition
is a simplified version of [11, Definition 7.2].

Definition 2.1 (Polytopal mesh) Let Ω satisfy Assumption (2a). A polytopal mesh of Ω
is a triplet T = (M,F ,P), where:

1. M is a finite family of non empty connected polytopal open disjoint subsets of Ω (the
“cells”) such that Ω = ∪K∈MK. For any K ∈ M, ∂K = K \K is the boundary of K,
|K| > 0 is the measure of K and hK denotes the diameter of K, that is the maximum
distance between two points of K.

2. F = Fint ∪ Fext is a finite family of disjoint subsets of Ω (the “faces” of the mesh –
“edges” in 2D), such that any σ ∈ Fint is contained in Ω and any σ ∈ Fext is contained
in ∂Ω. Each σ ∈ F is assumed to be a non empty open subset of a hyperplane of Rd, with
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a strictly positive (d − 1)-dimensional measure |σ|, and a relative interior σ\σ of zero
(d − 1)-dimensional measure. We denote by xσ the centre of mass of σ. Furthermore,
for all K ∈ M, there exists a subset FK of F such that ∂K = ∪σ∈FKσ. We set
Mσ = {K ∈ M : σ ∈ FK} and assume that, for all σ ∈ F , either Mσ has exactly one
element and then σ ∈ Fext, or Mσ has exactly two elements and then σ ∈ Fint. For
K ∈M and σ ∈ FK , nK,σ is the (constant) unit vector normal to σ outward to K.

3. P = (xK)K∈M is a family of points of Ω such that xK ∈ K for all K ∈ M. We denote
by dK,σ the signed orthogonal distance between xK and σ ∈ FK (see Fig. 1), that is:

dK,σ = (x− xK) · nK,σ, for all x ∈ σ. (4)

(Note that (x−xK) ·nK,σ is constant for x ∈ σ.) We then assume that each cell K ∈M
is strictly star-shaped with respect to xK , that is dK,σ > 0 for all σ ∈ FK . This implies
that for all x ∈ K, the line segment [xK ,x] is included in K.

For all K ∈ M and σ ∈ FK , we denote by DK,σ the pyramid with vertex xK and basis
σ, that is

DK,σ = {txK + (1− t)y : t ∈ (0, 1), y ∈ σ}. (5)

We denote, for all σ ∈ F , Dσ =
⋃
K∈Mσ

DK,σ (this set is called the “diamond” associated
with the face σ, and for obvious reasons DK,σ is also referred to as an “half-diamond”).

The size of the polytopal mesh is defined by hM = sup{hK : K ∈M} and the mesh regularity
parameter γT is defined by:

γT = max
K∈M

(
max
σ∈FK

hK
dK,σ

+ Card(FK)

)
+ max
σ∈Fint ,Mσ={K,L}

(
dK,σ
dL,σ

+
dL,σ
dK,σ

)
. (6)

dK,σ′

nK,σ′

nK,σ

σ′

σ

dK,σ

K
DK,σxK

Figure 1: A cell K of a polytopal mesh

We can now define the notion of non-conforming Sobolev space, which is built from the
standard broken Sobolev space on a mesh by imposing some weak continuity property between
the cells.

Definition 2.2 (Non-conforming H1
0 (Ω) space) Let T = (M,F ,P) be a polytopal mesh

of Ω in the sense of Definition 2.1. The non-conforming H1
0 (Ω) space on T, denoted by H1

T,0,
is the space of all functions w ∈ L2(Ω) such that:

1. [H1-regularity in each cell] For all K ∈ M, the restriction w|K of w to K belongs to
H1(K). The trace of w|K on σ ∈ FK is denoted by w|K,σ.
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2. [Continuity of averages on internal faces] For all σ ∈ Fint with Mσ = {K,L},∫
σ

w|K,σ =

∫
σ

w|L,σ. (7)

3. [Homogeneous Dirichlet BC for averages on external faces] For all σ ∈ Fext with Mσ =
{K}, ∫

σ

w|K,σ = 0. (8)

If w ∈ H1
T,0, its “broken gradient” ∇Mw is defined by

∀K ∈M , ∇Mw = ∇(w|K) in K

and we set ‖w‖H1
T,0

:= ‖∇Mw‖L2(Ω)d .

It can easily be checked that ‖·‖H1
T,0

is indeed a norm on H1
T,0. The continuity (7) is a

“0-degree patch test”, and some functions in H1
T,0(Ω) are therefore not conforming (they do

not belong to H1
0 (Ω)). Actually, disregarding the boundary condition (8), the non-conforming

Sobolev space strictly lies between the classical Sobolev space H1(Ω) and the fully broken
Sobolev space H1(M) = {v ∈ L2(Ω) : v|K ∈ H1(K) for all K ∈M}.

A polytopal non-conforming approximation of (3) is obtained by selecting a finite-dimensional
subspace VT,0 ⊂ H1

T,0, by replacing, in this weak formulation, the infinite-dimensional space
H1

0 (Ω) by VT,0, and by using broken gradients instead of standard gradients:

Find u ∈ VT,0 such that, ∀v ∈ VT,0,∫
Ω

Λ∇Mu · ∇Mvdx =

∫
Ω

fvdx−
∫

Ω

F · ∇Mvdx.
(9)

Since ‖·‖H1
T,0

is a norm on VT,0, the Lax-Milgram theorem immediately gives the existence and

uniqueness of the solution to (9). The following error estimate is a straightforward consequence
of the analysis carried out in Section 5 (see in particular Theorem 5.1 and Proposition 5.4).

Theorem 2.1 (Error estimates for polytopal non-conforming methods) We assume
that the solution ū of (3) and the data Λ and F in Hypotheses (2) are such that Λ∇ū+ F ∈
H1(Ω)d. Let VT,0 be a finite-dimensional subspace of H1

T,0 and let u be the solution of the

non-conforming scheme (9). Then, there exists C > 0 depending only on Ω, λ, λ in (2b) and
increasingly depending on γT such that

‖ū− u‖L2(Ω) + ‖∇ū−∇Mu‖L2(Ω)d ≤ ChM‖Λ∇ū+ F ‖H1(Ω)d + C min
v∈VT,0

‖ū− v‖H1
T,0
. (10)

Remark 2.2 (Role of the terms in (10)) The term ChM‖Λ∇ū + F ‖H1(Ω)d in the right-
hand side of (10) comes from the non-conformity of the space VT,0, and from the fact that an
exact Stokes formula is not satisfied in this space (as measured by WD in Section 5.1). The
minimum appearing in (10) measures the approximation properties of the space VT,0, as in the
second Strang lemma [16] (see SD in Section 5.1).

3 Application to a non-linear model: mass-lumping

3.1 Model: stationary Stefan/porous medium equation

We now consider the polytopal non-conforming approximation of a more challenging model,
which encompasses the stationary versions of both the Stefan model and the porous medium
equation: {

ū− div(Λ∇ζ(ū)) = f + div(F ) in Ω ,
ζ(ū) = 0 on ∂Ω.

(11)
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We still assume that (2) holds and, additionally, that

ζ : R→ R is non-decreasing, ζ(0) = 0 and

∃C1, C2 > 0 such that |ζ(s)| ≥ C1|s| − C2 for all s ∈ R.
(12)

The weak form of (11) is

Find ū ∈ L2(Ω) such that ζ(ū) ∈ H1
0 (Ω) and, ∀v ∈ H1

0 (Ω),∫
Ω

(ūv + Λ∇ζ(ū) · ∇v) dx =

∫
Ω

fvdx−
∫

Ω

F · ∇vdx. (13)

3.2 Mass-lumping

As explained in the introduction of [10] (see also Appendix B therein), using a standard
(conforming or non-conforming) Galerkin approximation for (13) leads to a numerical scheme
whose properties are difficult to establish. In particular, no convergence result seems attainable
if F 6= 0 and, in the case F = 0, only weak convergence can be obtained in general. Instead, a
modified approximation must be considered that uses a mass-lumping operator for the reaction
term.

Specifically, let VT,0 be a subspace of H1
T,0; we select a basis (χi)i∈I of VT,0 and disjoint

subsets (Ui)i∈I of Ω, and we define the mass-lumping operator ΠT : VT,0 → L∞(Ω) by:

∀v =
∑
i∈I

viχi , ΠTv =
∑
i∈I

vi1Ui , (14)

where 1Ui(x) = 1 if x ∈ Ui and 1Ui(x) = 0 otherwise. Note that the design of ΠT actually
depends on VT,0, and not just on the polytopal mesh T, but the natural notation ΠVT,0 has
been simplified to ΠT for legibility.

The function ΠTv is piecewise constant and can be considered a good substitute of v,
provided that each vi represents some approximate value of v on Ui. In this setting, it also
makes sense to define ζ(v) ∈ VT,0 by applying the non-linear function ζ component-wise:

∀v =
∑
i∈I

viχi , ζ(v) =
∑
i∈I

ζ(vi)χi.

Remark 3.1 (Mass-lumping of the non-conforming P1 method) Let us illustrate the
mass-lumping process on the non-conforming P1 method on a simplicial mesh. A basis of its
space is given by (χσ)σ∈Fint , where each χσ is piecewise linear in each element, with value 1
at the centre of σ and 0 at the centres of all other faces. A mass-lumping operator ΠT for
this method is constructed in the following way: for each v =

∑
σ∈Fint

vσχσ, let ΠTv be the
piecewise constant function equal to vσ on each diamond Dσ, σ ∈ Fint, (and ΠTv = 0 on the
half-diamonds around boundary faces), see Fig. 2 for an illustration.

A non-conforming approximation of (13) is then obtained replacing H1
0 (Ω) by VT,0, ∇ with

∇M and using ΠV in the reaction and source terms:

Find u ∈ VT,0 such that, ∀v ∈ VT,0,∫
Ω

(ΠTuΠTv + Λ∇Mζ(u) · ∇Mv) dx =

∫
Ω

fΠTvdx−
∫

Ω

F · ∇Mvdx.
(15)

Remark 3.2 (Computing the source and reaction terms) In practice, the right-hand
side in (15) is never computed exactly, but through a low order quadrature rule on f , assuming
that f is approximated by a piecewise constant function on each Ui. If f is continuous, for
example, one can take ∫

Ω

fΠTvdx ≈
∑
i∈I

|Ui|f(xi)vi

6



Ω

v

Ω

ΠTv

Figure 2: Example of a non-conforming P1 function (left) and its mass-lumped version (right).

where xi is a point selected in or close to Ui. The reaction term in (15) is trivial to (exactly)
compute: ∫

Ω

ΠTuΠTvdx =
∑
i∈I

|Ui|uivi.

The matrix associated with this term in the scheme is therefore diagonal, as expected. These
considerations show that only the measures of (Ui)i∈I are actually needed to implement (15).

The following convergence theorem results from the analysis in Section 5 – see Theorems
5.2 and 5.5 together with Lemma 5.3. Error estimates could also be stated, but they are more
complicated to present and require stronger assumptions on the solution to the Stefan equation;
we therefore refer the interested reader to [10] for details, in which a partial uniqueness result
is also stated for the solution of (15). We also mention in passing that error estimates for
transient Stefan/porous medium equations are established in [4]; these estimates are stated
in the generic framework of the Gradient Discretisation Method, which covers polytopal non-
conforming methods.

Theorem 3.3 (Convergence of polytopal non-conforming methods for the Stefan problem)
Let γ > 0 be a fixed number, and let (Tm)m∈N be a sequence of polytopal meshes such that
γTm ≤ γ for all m ∈ N and such that hMm → 0 as m → ∞. For each m ∈ N, take a finite-
dimensional subspace VTm,0 of H1

Tm,0 and a mass-lumping operator ΠTm : VTm,0 → L∞(Ω) as
in (14), and assume the following:

min
v∈VTm,0

‖φ− v‖H1
T,0
→ 0 as m→∞, ∀φ ∈ H1

0 (Ω), (16)

max
v∈VTm,0\{0}

‖v −ΠTmv‖L2(Ω)

‖∇Mmv‖L2(Ω)d
→ 0 as m→∞. (17)

Then, for all m ∈ N there exists um ∈ VTm,0 solution of (15) and, as m→∞, ΠTmζ(um)→
ζ(ū) strongly in L2(Ω), ∇Mmζ(um)→ ∇ζ(ū) strongly in L2(Ω)d, and ΠTmum → ū weakly in
L2(Ω), where ū is a solution to (13).

4 A locally enriched polytopal non-conforming finite
element scheme

We describe here a non-conforming method that can be applied to almost any polytopal mesh
as per Definition 2.1. Actually, the only additional assumption we make on the mesh is the
following:

∀σ ∈ F , σ is convex. (18)

This convexity assumption on the face is rather weak, and the cells themselves can be non-
convex – which is often the case in 3D.
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Let us first describe the underlying idea. To ensure the consistency of the method, a basic
requirement would be for the local spaces (restriction of VT,0 to a cell K ∈ M) to contain
P1(K). Denoting by P1(M) the space of piecewise linear functions on the mesh, without
continuity conditions, this means that we should have P1(M)∩H1

T,0 ⊂ VT,0. This suggests to
take P1(M) ∩ H1

T,0 as our non-conforming finite-dimensional space. However, if the number
of faces of most of the elements is greater than d + 1, the constraints of continuity at the
faces will impede a correct interpolation. For instance, on a domain Ω that can be meshed
by uniform hexagons (see Fig. 3), the space P1(M) ∩ H1

T,0 is reduced to {0}. Indeed, the
three boundary conditions on the exterior edges of element 1 imply that the constant gradient
vanishes in element 1. Therefore the mean values at the three interior edges of element 1 also
vanish, so that the same reasoning holds in element 2. By induction, the gradient vanishes in
all the elements of the mesh.

12
13

14
15

16
17
18
19
20
21
22

1
2

3
4

5
6
7
8
9
10
11

Figure 3: Hexagonal mesh

We therefore enrich this initial space with functions associated with the faces, that we use
to ensure the proper continuity conditions by “localising” the basis of P1 inside each element.
The resulting global basis is made of functions associated with the faces and of additional
local functions on the cell. As a consequence, we call the corresponding method the Locally
Enriched Polytopal Non-Conforming finite element method (LEPNC for short).

Remark 4.1 (Link with the non conforming P1 finite element method) Note that, when
applied to a triangular mesh in 2D, the LEPNC yields 6 degrees of freedom on each triangle,
while the classical non conforming P1 finite element (NCP1FE) method has only 3. However,
when performing static condensation (see Remark 4.15) on the LEPNC scheme on triangles,
only the 3 degrees of freedom pertaining to the faces remain, so that the computational cost is
close to that of the NCP1FE scheme. In fact, the precision of the methods are close. Morever,
in the case of an elliptic equation with non homogeneous Dirichlet boundary conditions and
a zero right hand side, the approximate solutions given by the NCP1FE and the condensed
LEPNC schemes are identical.

4.1 Local space

We first describe the local spaces and shape functions. Let K ∈M, for σ ∈ FK , the pyramid
DK,σ has σ as one of its faces, as well as faces τ that are internal to K, and gathered in the
set FKσ,int; see Fig. 4 for an illustration.

Let φK,σ : K → R be the piecewise-polynomial function such that, inside DK,σ, φK,σ is the
product of the distances to each internal face τ ∈ FKσ,int, and outside DK,σ we set φK,σ = 0.
Additionally, φK,σ is scaled in order to have an average equal to one on σ. The function φK,σ
vanishes on all the faces of DK,σ except σ. Under the convexity assumption (18) and letting
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K

DK,σ

σ

τ ∈ FKσ,int

nKσ,τxK

Figure 4: Notations for the design of the local polytopal non-conforming space of Section 4.1

nKσ,τ be the outer unit normal to DK,σ on τ ∈ FKσ,int, we therefore set

φK,σ(x) = cK,σ
∏

τ∈FKσ,int

[(xK − x) · nKσ,τ ]+ ∀x ∈ K, (19)

where s+ = max(s, 0) is the positive part of s ∈ R. As previously mentioned, cK,σ > 0 is
chosen to ensure that φK,σ has an average of one on σ; since this function vanishes outside
DK,σ, this means that we have

1

|σ|

∫
σ

φK,σ = 1 , and

∫
σ′
φK,σ = 0 ∀σ′ ∈ FK\{σ}. (20)

We then define the local space on K of the LEPNC method by

V LEPNC
K := span(P1(K) ∪ {φK,σ : σ ∈ FK}). (21)

The component P1(K) will be responsible for the approximation properties of the global space,
whereas the face-based basis functions will be used to glue local spaces together and ensure
(7).

Remark 4.2 (Nature of the functions in the local space) The functions of V LEPNC
K are

continuous on K, and polynomial in each pyramid DK,σ for σ ∈ FK . The maximal polynomial
degree of functions in V LEPNC

K is maxσ∈FK Card(Eσ), where Eσ is the set of edges of σ (vertices
in 2D, in which case the maximal degree is 2).

A practical implementation of any non-conforming method requires to integrate the local
functions and their gradients on each cell. For V LEPNC

K , this is very easy: one simply has
to select quadrature rules in K that are constructed by assembling quadrature rules on each
pyramid. This is actually a standard way of constructing quadrature rules on polytopal cells,
these pyramids being then cut into tetrahedra on which quadrature rules are known.

4.2 Global LEPNC space and basis of functions

The global non-conforming space of the Locally Enriched Polytopal Non-Conforming method
is

V LEPNC
T,0 = {v ∈ H1

T,0 : v|K ∈ V LEPNC
K ∀K ∈M}. (22)

9



By construction of (V LEPNC
K )K∈M, an explicit and local basis of V LEPNC

T,0 can be constructed
thanks to the functions (φK,σ)K∈M , σ∈FK . For each σ ∈ F , first define the function φσ : Ω→
R by patching the local functions, in the cells on each side of σ, associated with σ:

(φσ)|K = φK,σ ∀K ∈Mσ , (φσ)|L = 0 if L 6∈ Mσ. (23)

The properties (20) ensure that φσ satisfies 1. and 2. in Definition 2.2 (it also satisfies 3. if
σ ∈ Fint). We also note that each φσ is a sort of bubble function on the diamond Dσ, as it
vanishes on all its faces (but, contrary to standard bubble functions, φσ is not in H1(Dσ)).

We then select, for each K ∈M, d+1 vertices (s0, . . . , sd) of K which maximise the volume
of their convex hull, that is, maximise their determinant; in fact the determinant only needs
to be non-zero, but maximising it leads to better conditioned matrices. We then define the
nodal basis (ψK,i)i=0,...,d of P1(K) associated to these vertices, that is, the basis that satisfies
ψK,i(sj) = 1 if i = j and 0 if i 6= j. We will see in Section 4.4 that this choice is relevant for
mass lumping techniques. For each i = 0, . . . , d, we set

φK,i = ψK,i −
∑
σ∈FK

ψK,i,σφK,σ with ψK,i,σ =
1

|σ|

∫
σ

ψK,i. (24)

This choice ensures that ∫
σ

φK,i = 0 ∀σ ∈ FK . (25)

Extended by 0 outside K, each φK,i therefore belongs to H1
T,0. It can also easily be checked

that {φK,i : i = 0, . . . , d} ∪ {φK,σ : σ ∈ FK} spans V LEPNC
K (the basis (ψK,i)i=0,...,d of P1(K)

can be obtained by linear combinations of these functions). As shown in the following lemma,
a basis of V LEPNC

T,0 is then obtained by gathering all the functions (23) (for internal faces) and
(24).

Lemma 4.3 (Basis of the LEPNC global space) The following family forms a basis of
V LEPNC
T,0 defined by (22):

{φK,i : K ∈M , i = 0, . . . , d} ∪ {φσ : σ ∈ Fint}. (26)

Moreover, for any v ∈ V LEPNC
T,0 we have

v =
∑
K∈M

d∑
i=0

vK,iφK,i +
∑

σ∈Fint

vσφσ, (27)

with

vσ =
1

|σ|

∫
σ

v ∀σ ∈ Fint. (28)

and, for all K ∈M ,
vK,i = v|K(si) ∀i = 0, . . . , d. (29)

Remark 4.4 (Single-valuedness of vσ) We note that, since v ∈ H1
T,0, the condition (7)

ensures that vσ is uniquely defined by (28) (it depends only on σ, not on the choice of a cell
in Mσ in which we would consider the values of v).

Proof. Proving (27)–(29) for a generic v ∈ V LEPNC
T,0 shows that (26) spans this space, and

also that it is a linearly independent family since all coefficients in the right-hand side of (27)
vanish when the left-hand side v vanishes.

Let us take v ∈ V LEPNC
T,0 . It suffices to show that (27) holds on each cell K ∈ M. Since

{φK,i : i = 0, . . . , d}∪{φK,σ : σ ∈ FK} spans V LEPNC
K 3 v|K , there are coefficients (λK,i)i=0,...,d

and (λK,σ)σ∈FK such that

v|K =

d∑
i=0

λK,iφK,i +
∑
σ∈FK

λK,σφσ. (30)

10



K L

Figure 5: Hexagons with aligned (left) and almost aligned (right) edges.

Taking the average over one face σ ∈ FK and using (20) and (25), we obtain

λK,σ =
1

|σ|

∫
σ

v|K .

Hence, by Remark 4.4, λK,σ = vσ defined by (28). Applying now (30) at one of the vertices
si, recalling the definition (24), the fact that (ψK,j)j=0,...,d is the nodal basis associated with
(sj)j=0,...,d, and noticing that all functions φK,σ vanish at the vertices of K (consequence of
(19) and of the fact that each vertex either does not belong to DK,σ, or belongs to one face in
FKσ,int), we see that v|K(si) = λK,i. To summarise, (30) is written

v|K =

d∑
i=0

vK,iφK,i +
∑

σ∈FK∩Fint

vσφσ, (31)

the restriction of the last sum to internal edges coming from
∫
σ
v = 0 whenever σ ∈ Fext, see

(8). Since all functions φL,i vanish on K whenever L 6= K, and all φσ vanish on K whenever
σ 6∈ FK , (31) proves that (27) holds on K. �

Let C(M) denote the functions whose restriction to each K ∈ M is continuous on K.
Lemma 4.3 shows us how to define a natural interpolator IT : H1(Ω) ∩ C(M) → V LEPNC

T,0 : for
all u ∈ H1(Ω) ∩ C(M):

ITu =
∑
K∈M

d∑
i=0

uK,iφK,i +
∑

σ∈Fint

uσφσ (32a)

where (uσ)σ∈Fint and (uK,i)K∈M, i=0,··· ,d are defined by

uσ =
1

|σ|

∫
σ

u ∀σ ∈ Fint , (32b)

uK,i = u|K(si) ∀K ∈M , ∀i = 0, . . . , d. (32c)

Remark 4.5 (The need to enrich the bubble functions) As the above construction shows
(see in particular (24)), the design of a finite-dimensional subspace of the non-conforming space
H1

T,0 requires access, for each face σ of each cell K, to a local basis function that has average 1
on σ and 0 on all other faces of K. Instead of using the bubble functions (19), an alternative
idea is to use a rich enough space of polynomial functions. The question of “how rich” this
space should be (which degree the polynomials should have) is however not easy to answer,
when considering generic polytopal meshes.

11



Consider for example the cell K on the left of Fig. 5, an hexagon with 4 aligned edges.
Since it has a total of 6 edges, the minimum local space of polynomial should be P2(K), which
has dimension 6. However, the restrictions of functions in P2(K) on the line of the aligned
edges are polynomials of degree 2 in dimension 1, and form therefore a space of dimension 3.
This space is not large enough to contain, for each of the 4 edges, a function with average 1
on this edge and 0 on all other edges. This shows that we should at least consider P3(K) as
the local polynomial space on K; note that this argument only discusses the space dimension:
it would still have to be fully established that P3(K) is indeed rich enough.

The situation is perhaps more severe, from the robustness point of view, for the hexagon
L on the right of Fig. 5. Since its edges are not aligned, from the pure dimensional point
of view it might be sufficient to consider P2(L) as the local polynomial space on L. However,
because L has almost aligned edges, the basis functions we would construct (with average 1
on one edge and 0 on all other edges) would form an “almost dependent” set of functions –
even more so as the edges become more and more aligned, e.g. along a sequence of refined
meshes. The practical consequence is that, in an implementation of the scheme using these
basis functions, some local mass or stiffness matrices would be close to singular, which would
lead to an ill-conditioned global system and a poor numerical resolution.

On the contrary, the usage of the (piecewise-polynomial) basis functions (19) solves these
two issues: the local space is always defined as the span of P1 and the bubble functions, inde-
pendently of the cell geometry, and, even when edges become aligned, the basis functions remain
well independent (recall that the vertices (s0, . . . , sd) are chosen in each cell to maximise the
volume they encompass and thus, in Fig. 5, they would be chosen as the three leftmost vertices
in each case and would not become aligned or close to aligned).

4.3 Approximation properties of the LEPNC space

The approximation properties of the LEPNC space require a slightly more stringent, but still
very flexible, regularity condition on the meshes than the boundedness of γT (see (6)).

Definition 4.1 (ρ-regular polytope and polytopal mesh) A polytopal open set K ⊂ Rd
is said to be a ρ-regular polytope, where ρ > 0, if:

1. There exists xK ∈ K and open disjoint simplices (Ki)i=1,...,n such that K =
⋃n
i=1 Ki,

and, for i = 1, . . . , n, xK is a vertex of Ki, exactly one face of Ki is included in ∂K and
all the other faces of Ki are common with a neighbouring simplex Kj.

2. There exists xKi ∈ Ki such that B(xKi , ρhK) ⊂ Ki.

A ρ-regular polytopal mesh of Ω is a polytopal mesh T as per Definition 2.1, such that any cell
K ∈ M is a ρ-regular polytope and if, for any simplex Ki as above, there exists σ ∈ FK such
that one face of Ki is included in σ.

Remark 4.6 (ρ-regular polytope and polytopal mesh) The number n in Definition 4.1
is always bounded by 1/ρd, the ratio of the measure of B(xK , hK) and that of B(xKi , ρhK).
As a consequence, it can be easily checked that γT (defined by (6)) is bounded above by a real
number depending only on ρ.

The additional requirement, for a polytopal mesh, that one face of Ki is included in one
of the mesh face prevents the situation where the face of Ki that lies in ∂K is actually split
between two mesh faces (the mesh faces could be different from the geometrical faces of its
elements, e.g. in case of non-conforming meshes with hanging nodes).

To state approximation properties of the global non-conforming space (22), we first define an
alternate interpolator, which does not require the functions to be continuous on each cell and
therefore enjoys boundedness properties for a larger class of functions. For all K ∈ M, let
JK : H1(K)→ V LEPNC

K be such that

JKu = JFKu+ PK(u− JFKu) ∀u ∈ H1(K), (33)
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where
JFKu =

∑
σ∈FK

uσφK,σ with (uσ)σ∈FK given by (32b), (34)

and PK : L2(K) → V LEPNC
K is the L2-orthogonal projector on span{φK,i : i = 0, . . . , d}. The

global interpolator JT : H1
0 (Ω)→ V LEPNC

T,0 is obtained patching the local ones:

(JTu)|K = JK(u|K) ∀u ∈ H1
0 (Ω) , ∀K ∈M.

Using (20) and (25), it is easily verified that JTu indeed belongs to V LEPNC
T,0 .

Theorem 4.7 (Approximation properties of V LEPNC
T,0 ) Assume that T is a ρ-regular poly-

topal mesh. Then, there exists C depending only on ρ such that

‖u− JTu‖L2(Ω) + hM‖∇M(u− JTu)‖L2(Ω) ≤ Ch
2
M|u|H2(Ω) ∀u ∈ H1

0 (Ω) ∩H2(Ω), (35)

where |·|H2(Ω) denotes the H2(Ω)-seminorm.

Remark 4.8 (Approximation properties in generic Sobolev spaces) Using the results
of [8, Chapter 1], a straightforward adaptation of the proof below shows that the approxima-
tion property (35) also holds with L2, H1

0 and H2 replaced by Lp, W 1,p
0 and W 2,p, for any

p ∈ [1,∞).

Before proving this theorem, let us estabish the boundedness of the local interpolator JK .

Lemma 4.9 (Boundedness of JK) Assume that K is a ρ-regular polytope. Then, there
exists C > 0 depending only on ρ such that, for all u ∈ H1(K),

‖JKu‖L2(K) ≤ C(‖u‖L2(K) + hK‖∇u‖L2(K)d) , (36)

‖∇JKu‖L2(K)d ≤ C‖∇u‖L2(K)d . (37)

Proof.
In this proof, C > 0 denotes a generic real number, that can change from one line to the

next but depends only on ρ.
Step 1: Polynomial invariance of JK and estimates on the basis functions.
The definitions (24) and (34) show that φK,i = ψK,i − JFKψK,i for all i = 0, . . . , d.

Hence, PK(ψK,i − JFKψK,i) = PKφK,i = φK,i and JKψK,i = JFKψK,i + φK,i = ψK,i. Since
P1(K) = span{ψK,i : i = 0, . . . , d} this establishes the following polynomial invariance of JK :

JKq = q ∀q ∈ P1(K). (38)

The definition (19) and the ρ-regularity of K imply that φK,σ ≥ cK,σChnσσ on a ball Bσ in
σ of diameter Chσ, where hσ is the diameter of σ and nσ = Card(FKσ,int). Integrating this
relation over Bσ, using (20) and noticing that |σ| ≤ C|Bσ|, we infer cK,σ ≤ Ch−nσσ and thus,
since hK ≤ Chσ by ρ-regularity of K,

|φK,σ| ≤ C on K. (39)

The same definition (19) also yields |∇φK,σ| ≤ cK,σChnσ−1
K on K, and therefore

|∇φK,σ| ≤ Ch−1
K on K. (40)

Step 2: Estimate on ∇JKu.
By (38), JK1 = 1 and thus ∇JKu = ∇JK(u− uK), where uK = 1

|K|

∫
K
u, which implies

∇JKu = ∇JFK (u− uK) +∇PK [(u− uK)− JFK (u− uK)]. (41)

Let us first estimate ∇JFK (u− uK). By [11, Est. (B.11)] we have

|uσ − uK |2 ≤
ChK
|σ|

∫
K

|∇u|2dx ∀σ ∈ FK ,

13



from which we deduce

|∇JFK (u− uK)| ≤ C
∑
σ∈FK

hK
(|σ|hK)1/2

‖∇u‖L2(K)d |∇φK,σ|.

The estimate (40) yields ‖∇φK,σ‖L2(K)d ≤ Ch−1
K |K|

1/2 and thus, since |K| ≤ C|σ|hK and
Card(FK) ≤ C (consequence of Remark 4.6),

‖∇JFK (u− uK)‖L2(K)d ≤ C ‖∇u‖L2(K)d . (42)

The same arguments with φK,σ instead of ∇φK,σ and (39) instead of (40) yields

‖JFK (u− uK)‖L2(K) ≤ ChK ‖∇u‖L2(K)d . (43)

We now turn to the second term in the right-hand side of (41). The range of PK is
contained in a space of piecewise polynomials, with uniformly bounded degree, on a regular
subdivision of K. The inverse inequality of [8, Lemma 1.28 and Remark 1.33] therefore gives

‖∇PK [(u− uK)− JFK (u− uK)]‖L2(K)d ≤ Ch
−1
K ‖PK [(u− uK)− JFK (u− uK)]‖L2(K).

Since PK is an L2-orthogonal projection, we infer

‖∇PK [(u− uK)− JFK (u− uK)]‖L2(K)d ≤ Ch
−1
K ‖(u− uK)− JFK (u− uK)‖L2(K)

≤ Ch−1
K ‖u− uK‖L2(K) + Ch−1

K ‖JFK (u− uK)‖L2(K)

≤ C‖∇u‖L2(K)d , (44)

where we have used ‖u− uK‖L2(K) ≤ ChK‖∇u‖L2(K)d (see [11, Est. (B.12)]) and (43) in the
last line. Combined with (42) and (41), this proves (37).

Step 3: Estimate on JKu.
We use the triangle inequality together with JKuK = uK (see (38)) to write

‖JKu‖L2(K) ≤ ‖JK(u− uK)‖L2(K) + ‖uK‖L2(K)

≤ ‖JFK (u− uK)‖L2(K) + ‖PK [(u− uK)− JFK (u− uK)]‖L2(K) + ‖u‖L2(K)

≤ ‖JFK (u− uK)‖L2(K) + ‖(u− uK)− JFK (u− uK)‖L2(K) + ‖u‖L2(K)

≤ ChK‖∇u‖L2(K)d + ‖u‖L2(K),

where we have used the definition 33 of JK together with Jensen’s inequality (to write
‖uK‖L2(K) ≤ ‖u‖L2(K)) in the second line, and the same arguments that led to (44) to
conclude. The proof of (36) is complete. �

We can now complete the proof of Theorem 4.7.
Proof. [Theorem 4.7] As in the proof of Lemma 4.9, C denotes here a generic constant that
can change from one line to the other but depends only on ρ. Let K ∈ M and denote by q1
the L2-orthogonal projection of u|K on P1(K). By [8, Theorem 1.45], we have that

‖u− q1‖L2(K) + hK‖∇(u− q1)‖L2(K)d ≤ Ch
2
K |u|H2(K). (45)

Using the polynomial invariance (38) and the triangle inequality, we write, for s = 0, 1,

|u− JKu|Hs(K) = |(u− q1)− JK(u− q1)|Hs(K) ≤ |u− q1|Hs(K) + |JK(u− q1)|Hs(K).

The boundedness properties (36) and (37) together with the approximation property (45) then
yield

|u− JKu|Hs(K) ≤ C(‖u− q1‖L2(K) + h1−s
K ‖∇(u− q1)‖L2(K)d) ≤ Ch2−s

K |u|H2(K).

Squaring, for each s = 0, 1, this inequality and summing over K ∈ M yields the estimate on
each term in the left-hand side of (35). �
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Figure 6: Regions for mass-lumping of the LEPNC method in dimension d = 2. Here, $ is small
and most of the weight has been put on the three chosen vertices (s0, s1, s2).

4.4 Mass-lumping of the LEPNC method

As discussed in Section 3.2, approximating non-linear models such as (11) requires the usage
of mass-lumping, which necessitates to identify a basis of V LEPNC

T,0 such that the coefficients of
v ∈ V LEPNC

T,0 on this basis represent approximate values of v in some portions of Ω.

Definition 4.2 (Mass-lumping operator for the LEPNC method) Let $ ∈ [0, 1] be a
weight, representing the fraction of mass allocated to the faces. For each K ∈ M, create
a partition ((Ki)i=0,...,d, (Kσ)σ∈FK ) of K into (d + 1) + Card(FK) sets, such that, for all
i = 0, . . . , d and σ ∈ FK ,

si ∈ Ki , xσ ∈ Kσ, (46)

|Ki| = (1−$)
|K|
d+ 1

, |Kσ| = $
|K|

Card(FK)
. (47)

The mass-lumping operator ΠLEPNC
T : V LEPNC

T,0 → L∞(Ω) is then defined by: for all v ∈ V LEPNC
T,0 ,

ΠLEPNC
T v =

∑
K∈M

d∑
i=0

vK,i1Ki +
∑

σ∈Fint

vσ1Kσ ,

with (vσ)σ∈Fint and (vK,i)K∈M, i=0,··· ,d given by (28)-(29).

Remark 4.10 (Shape of the partition of K) Fig. 6 illustrates possible choices of regions
Ki and Kσ. In practice, due to the usage of quadrature rules for source terms (see Remark
3.2), the precise shapes of these region are irrelevant. Only their measures are required to
implement the scheme (15).

The following lemma shows that the above designed mass-lumping technique preserves the
approximation properties of the LEPNC, see Lemma 5.3.

Lemma 4.11 (Estimate for the mass-lumping operator of the LEPNC) Let T be a
ρ-regular polytopal mesh in the sense of Definition 4.1, and let ΠLEPNC

T be given by Definition
4.2. Then, there exists C > 0 depending only on ρ and d such that

‖v −ΠLEPNC
T v‖L2(Ω) ≤ ChM‖∇Mv‖L2(Ω)d ∀v ∈ V LEPNC

T .
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Proof. In this proof, C is a real number that may vary, but depends only on ρ and d. Let
v ∈ V LEPNC

T . For all K ∈M, the function v|K is Lipschitz-continuous on K and the ρ-regularity
of K together with the mean value theorem gives, for all i = 0, . . . , d and σ ∈ FK ,

|vK,i − v| = |v|K(si)− v| ≤ ChK‖∇v|K‖L∞(K)d on K

and
|vσ − v| ≤ ChK‖∇v|K‖L∞(K)d on K.

Writing v|K =
∑d
i=0 v1Ki +

∑
σ∈FK

v1Kσ and subtracting the definition of ΠLEPNC
T v we infer

|v|K − (ΠLEPNC
T v)|K | ≤

d∑
i=0

ChK‖∇v|K‖L∞(K)d1Ki +
∑
σ∈FK

ChK‖∇v|K‖L∞(K)d1Kσ .

Since ∇v|K is piecewise polynomial on a regular subdivision of K, with a degree bounded
above by a positive real number depending only on ρ, the inverse Lebesgue inequalities of [8,

Lemma 1.25 and Remark 1.33] yield ‖∇v|K‖L∞(K)d ≤ C|K|−
1
2 ‖∇v|K‖L2(K)d . Plugging this

estimate into the above relation and using
∑d
i=0 1Ki +

∑
σ∈FK

1Kσ = 1 on K, we infer

|v|K − (ΠLEPNC
T v)|K | ≤ ChK |K|−

1
2 ‖∇v|K‖L2(K)d .

The proof is complete by taking the L2(K)-norm of this estimate, squaring, summing over
K ∈M and taking the square root. �

4.5 Convergence results

Together with the above analysis of the LEPNC properties, the general nonconforming frame-
work of Section 2 yields the following results. We first give an error estimate for the LENPC
approximation of the linear problem (1).

Theorem 4.12 (Error estimates for the LEPNC approximation) We assume that the
solution ū of (3) and the data Λ and F in Hypotheses (2) are such that Λ∇ū+ F ∈ H1(Ω)d

and ū ∈ H2(Ω). Let T be a ρ-regular polytopal mesh in the sense of Definition 4.1. Let u be
the solution of the non-conforming scheme (9), letting VT,0 = V LEPNC

T,0 defined by (22). Then,

there exists C > 0 depending only on Ω, ρ and λ, λ in (2b) such that

‖ū− u‖L2(Ω) + ‖∇ū−∇Mu‖L2(Ω)d ≤ ChM(‖Λ∇ū+ F ‖H1(Ω) + |u|H2(Ω)), (48)

where |·|H2(Ω) denotes the H2(Ω)-seminorm.

Proof. The result is an immediate consequence of Theorem 2.1 and Theorem 4.7. �
Turning to the nonlinear problem (13), the following theorem states the convergence of the

LEPNC method.

Theorem 4.13 (Convergence of the LEPNC method for the Stefan problem) Let ρ >
0 be a fixed number, and let (Tm)m∈N be a sequence of ρ-regular polytopal mesh polytopal
meshes, in the sense of Definition 4.1, such that hMm → 0 as m→∞.

Then, for all m ∈ N, letting VTm,0 = V LEPNC
Tm,0 defined by (22) and ΠTm = ΠLEPNC

Tm from
Definition 4.2, there exists um solution of (15) and, as m→∞, ΠLEPNC

Tm ζ(um)→ ζ(ū) strongly
in L2(Ω), ∇Mmζ(um) → ∇ζ(ū) strongly in L2(Ω)d, and ΠLEPNC

Tm um → ū weakly in L2(Ω),
where ū is a solution to (13).

Proof. We apply Theorem 3.3. Property (16) is a consequence of Theorem 4.7, and of the
density of H2(Ω) ∩H1

0 (Ω) in H1
0 (Ω). Property (17) is proven by Lemma 4.11. �
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4.6 Numerical tests

We present here some numerical results obtained by the LEPNC method on the linear single-
phase incompressible flow (1) and on the Stefan/porous medium equation problem (11), on
Ω = (0, 1)2 and with the diffusion tensor Λ = Id. The schemes we consider are therefore (9)
and (15) with the space V LEPNC

T,0 and the mass-lumping operator ΠLEPNC
T . The tests below were

run using the LEPNC implementation available in the HArDCore2D library [1]. We note that
some of the tests here involve non-homogeneous Dirichlet boundary conditions; adapting the
LEPNC scheme to this case is straightforward, and done as for standard non-conforming P1

finite elements. We also refer the interested reader to [4] for a numerical assessment of the
LEPNC (and comparison with other methods) on the transient porous medium equation.

Let us first make some remarks relative to the practical implementation of these LEPNC
schemes.

Remark 4.14 (Choice of implementation unknown for the Stefan model) Owing to
Lemma 4.3, the unknowns for the implementation of the LEPNC represent function values
XK,i at the chosen vertices si inside each cell K ∈ M, and function values Xσ at the center
of mass of each face σ ∈ F (such values are order 2 approximations of the averages appear-
ing in (28)). When considering the scheme (15) for the Stefan problem and because of the
plateaux of ζ, however, these values may not be values of u, but sometimes of ζ(u). Specif-
ically, if $ = 0, then the face values of the unknowns u do not appear in the mass-matrix
in each Newton iteration on (15); if we were to use these face values as unknown Xσ for the
implementation, they would be multiplied in the stiffness matrix by ζ′(Xk−1

σ ), where Xk−1
σ is

the face value at the previous Newton iteration; this factor ζ′(Xk−1
σ ) could vanish, leading to a

zero line in the complete linear system. For this reason, when $ = 0, each Xσ should represent
the value on σ of ζ(u), not u; this way, when writing Newton iterations, no linearisation is
performed on this unknown in the stiffness matrix, which ensures that it remains invertible.
For the same reason, if $ = 1, each unknown XK,i should represent values at si of ζ(u), not
u. We refer the reader to [10, Remark 3.1] for more on this topic.

Remark 4.15 (Static condensation of cell-based degrees of freedom) For each K ∈
M, the basis functions {φ̃K,i : i = 0, . . . , d} have support in K. In the linear systems to be
solved (at each iteration of the Newton algorithm in the case of non-linear problems), the stencil
of their associated unknowns therefore only contains the unknowns of the other basis functions
related to K, and of the basis functions related to the faces of K. A static condensation
process can thus be applied, exactly as in Hybrid High-Order methods (see [8, Appendix B.3.2]),
to eliminate the cell-based unknowns. The resulting globally coupled linear system then only
involves face-based unknowns, and two faces are in a stencil of this matrix only if they share
a cell.

Remark 4.16 (Alternate construction of the basis functions) Instead of using the nodal
basis functions (ψK,i)i=0,...,d in (24), one can instead take the scaled and translated monomial

basis functions: ψK,0 = 1 and ψK,i(x) =
xi−xK,i
hK

, where xi is the i-th coordinate of x and

xK,i is the i-th coordinate of the centre of mass of K. The obtained basis (φK,i)i=0,...,d can
afterwards be transformed by linear combinations into a nodal basis (ensuring that (27)–(29)
holds). This implementation is the choice made in the HArDCore library.

When an analytical solution is available, we present error estimates in the following relative
norms:

EL2 :=
‖u− ITū‖L2(Ω)

‖ITū‖L2(Ω)

and EH1 :=
‖∇M(u− ITū)‖L2(Ω)d

‖∇MITū‖L2(Ω)d

for the linear model, and

EL2,ml :=
‖ΠLEPNC

T (u− ITū)‖L2(Ω)

‖ΠLEPNC
T ITū‖L2(Ω)

and EH1,ζ :=
‖∇M(ζ(u)− ITζ(ū))‖L2(Ω)d

‖∇MITζ(ū)‖L2(Ω)d
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Figure 7: Examples of members from the mesh families used in numerical tests: hexagonal (left),
Kershaw (centre) and locally refined Cartesian (right).

for the non-linear model; here ū is the exact analytical solution to (11), u is the solution to
the LEPNC scheme, IT is the interpolator defined by (32), and ΠLEPNC

T is the mass-lumping
operator given by Definition 4.2.

The tests have been run using three families of meshes, an example of each is represented
in Fig. 7: (mostly) hexagonal meshes, Kershaw meshes and locally refined Cartesian meshes.
The last two are taken from the FVCA5 Benchmark [14]. In all the tests we have chosen a
mass-lumping weight $ of 0 on the edges; tests (not reported here) with other weights show
similar results, except that the Newton iterations converge sometimes more slowly when mass
is allocated to the edges.

4.6.1 Linear single-phase incompressible flow

We first test the LEPNC method on (1) with Λ = Id and exact solution ū(x, y) = sin(πx) sin(πy).
For comparison, we also present the results obtained with the HHO(k, `) method detailed in
[8, Section 5.1], with degree of edge unknowns k = 0 and degree of element unknowns ` = 1.
The reason for choosing these particular (k, `) is that the HHO(0, 1) method has (whether
before or after static condensation) the same number of degrees of freedom as the LEPNC
method. The results for the three families of meshes are presented in Fig. 8. Note that for
the the HHO(0, 1) method, the error EH1 is measured using the discrete H1-norm defined in
[8, Eq. (2.35)], and EL2 is computed from the L2-norm of the element unknowns.

As expected from Theorem 4.12, the rate of convergence of the LEPNC scheme in H1-norm
is 1 on all three families of meshes. An improved rate of order 2 is observed in L2-norm and,
even though it is not stated in Theorem 4.12, it is also quite expected since LEPNC is close
to a lowest-order finite element method (we note that improved L2 estimates can be obtained,
using a Nitsche argument, in the context of the GDM [13]).

In terms of H1-error, HHO(0, 1) seems to over-perform LEPNC on all meshes, especially
on distorted ones (Kershaw, hexagonal) where the difference is a full order of magnitude; the
difference is less perceptible on more regular meshes like the locally refined ones. This is
also the case, although much less pronounced (factor 2 instead of a full order of magnitude),
in L2-norm on hexagonal and Kershaw meshes; interestingly, the trend is actually reversed
on locally refined meshes, with LEPNC providing an L2-error about five times smaller than
HHO(0, 1), indicating that LEPNC seems to produce a better approximation of the solution
itself (if not its gradient) on regular meshes. Of course, all these comparisons must be taken
with a grain of salt since they do not exactly use the same norms. Additionally, it should be
noted that the HHO(0, 1) scheme does not readily produce an explicit function that embeds
all the methods’ design (it is, in this sense, more of a virtual method), whereas LEPNC does.
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(b) EL2 vs. h.

Figure 8: Errors versus mesh size for the linear equation.

Figure 9: Exact solution ū (left) and ζ(ū) (right) for Test S1.

4.6.2 Stefan problem

We consider the problem (13) with the following Stefan non-linearity:

ζ(s) =


s if s ≤ 0,
0 if 0 ≤ s ≤ 1,
s− 1 if s ≥ 1.

Test S1. For this test, we take an exact smooth solution ū such that ζ(ū) is also smooth,
but not trivial (the solution ū crosses the value 0 at which ζ is not differentiable). Setting
s(x, y) = x+y√

2
the coordinate along the first diagonal, the exact solution is ū(x, y) = (s(x, y)−

0.5)3. The functions ū and ζ(ū) are represented in Fig. 9
The convergence graphs are given in Fig. 10. For solutions that are piecewise smooth on the

mesh, the analysis of [10] shows that, for a low-order scheme as the LEPNC, the expected rate
of convergence in energy error EH1,ζ for the regular variable ζ(u) is O(h), which corresponds
to the rate observed for all three families in Fig. 10a. The convergence rate in mass-lumped
L2-norm on the u variable is always larger than one: it is almost 2 for the hexagonal and
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Figure 10: Errors versus mesh size for Test S1.

locally refined mesh families, and around 1.5 for the Kershaw family. This convergence is
however less regular than the convergence on the variable ζ(u).

Test S2. The previous test is not representative of the typical behaviour of solutions to
Stefan problems. In the general case, and in particular with null source terms, these solutions
ū are discontinuous in the range of values where ζ remains constant, which therefore does
not prevent ζ(ū) from being continuous. This next test case, taken from [10], displays such a
behaviour. Setting γ = 1

3
, the exact solution is

ū(x, y) = cosh(s(x, y)− γ) if s(x, y) ≥ γ , ū(x, y) = 0 if s(x, y) < γ,

where, as in Test S1, s(x, y) = x+y√
2

is the coordinate along the first diagonal. This solution is

discontinuous along the line s(x, y) = γ, but ζ(ū) is continuous (and even in H2(Ω)); see Fig.
11. This function corresponds to a zero source term in (11).

The convergence results are presented in Fig. 12. As expected from the results of [10],
we observe in Fig. 12a an estimate of the kind EH1,ζ = O(h). The convergence rate in
mass-lumped L2 error EL2,ml for the variable u is however much lower (and, as in Test S1,
rather irregular), which is expected since u is discontinuous; the overall convergence rate of
EL2,ml is about O(h0.6) for all mesh families. Fig. 13 shows the approximate variables u and
ζ(u) obtained on the second hexagonal mesh in the family; the discontinuity of ū, typical in
Stefan’s problems, clearly impacts the convergence on this variable.

4.6.3 Porous medium equation

We now consider the stationary porous medium equation, corresponding to (11) with non-
linearity

ζ(s) = |s|m−1s with m ≥ 1.

Test P1. For this test, the exact solutions ū and ζ(ū) are both smooth. We take ū(x, y) =
sin(πx) sin(πy), and m ∈ {1, 2, 3, 4}. Note that the case m = 1 actually corresponds to
ζ(s) = s, so (11) is the linear equation (1) with an added reaction term u. The results of the
test, on the same Kershaw, locally refined and hexagonal meshes as in Tests S1 and S2, are
presented in Fig. 14.

Looking first at the case m = 1, we notice that the results are worse on the Kershaw
meshes; despite the smoothness of the solution, the distortion of these meshes impact the
approximation error negatively. We still see an order O(h) convergence in both energy and
mass-lumped L2 norm; this is expected for the energy error given that LEPNC is a low-order
scheme, but one could have hoped to see a super-convergence effect in the L2-norm. On the
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Figure 11: Exact solution ū (left) and ζ(ū) (right) for Test S2.

Kershaw locally refined hexagonal
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Figure 12: Errors versus mesh size for Test S2.
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Figure 13: Approximate solution u (left) and ζ(u) (right) obtained on the second member of the
hexagonal mesh family in Test S2.

contrary, for locally refined and hexagonal meshes, this super-convergence is visible and the
L2-norm error decays as O(h2), while the energy norm decays as O(h).

Considering now the nonlinear cases m = 2, 3, 4, we see that the energy error still decays as
h for the locally refined and hexagonal meshes. However, the L2-norm error no longer super-
converges with an order 2, but rather with an order 1.5. The results for the Kershaw meshes
show much lower convergence rates. For m = 2 rate for the L2-norm error is still close to 1,
but the energy error only decays as about O(h0.5). For m = 3, 4, the rates in L2-norm and
energy error are respectively 0.5 and 0.3 – at least at the considered mesh sizes. Looking at
the pictures it seems that the rate in energy norm has a tendency to increase towards the last
meshes in the Kershaw family. It should be mentioned here that for certain cases (typically,
the finest hexagonal or Kershaw meshes, with m = 3, 4), a straightforward Newton algorithm
does not converge and relaxation has to be applied.

Test P2. This test features a less regular exact solution ū. We take ū(x, y) = max(ρ2 −
r(x, y)2, 0), where ρ = 0.3 and r(x, y)2 = (x−0.5)2 +(y−0.5)2. In the domain Ω, the graph of
ū is the tip of a paraboloid; this solution belongs to H1(Ω) but not to H2(Ω). We take m = 2,
so ζ(ū) ∈ H2(Ω). For this value of m, the singularity of ū at the circle r(x, y)2 = ρ2 is typical
of the singularity exhibited by the Barenblatt solution in the transient setting [3, 18]. The
results are presented in Fig. 15. As in Test P1, we see that the energy error decays as O(h),
except for the very distorted Kershaw meshes for which a rate of about 0.3 is achieved with
the last two meshes (further refinement might improve that rate). In terms of the L2-error,
all three mesh families lead to a rate of convergence of about 1. Even for the relatively regular
mesh families (hexahedral, locally refined), no super-convergence is observed. This is somehow
expected given that the exact solution is not H2-regular.
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Figure 14: Errors versus mesh size for Test P1.
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Figure 15: Errors versus mesh size for Test P2.
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5 Analysis of polytopal non-conforming finite ele-
ment schemes

Polytopal non-conforming finite element schemes are gradient discretisation methods (GDM)
and, as such, enjoy all the error estimates and convergence results of GDMs. We recall here
the notion of GDM and associated results, which yield in particular the theorems 2.1 and 3.3.
Most of the following material is taken from [11, Section 9.1].

5.1 Gradient discretisation method

The GDM is a generic framework for designing and analysing numerical schemes for elliptic and
parabolic problems (although extensions to linear advection is also possible [12]). It consists
in replacing, in the weak formulation of the model, the continuous space and operator by their
discrete analogues given by a gradient discretisation (GD).

Definition 5.1 (Gradient discretisation for homogeneous Dirichlet boundary conditions)
A gradient discretisation for homogeneous Dirichlet boundary conditions is a triplet D =
(XD,0,ΠD,∇D) where

• XD,0 is a finite-dimensional space of unknowns, that encodes the homogeneous boundary
conditions,

• ΠD : XD,0 → L2(Ω) is a linear operator that reconstructs a function from a vector of
unknowns,

• ∇D : XD,0 → L2(Ω)d is a linear operator that reconstructs a “gradient” from a vector of
unknowns; it must be chosen such that ‖∇D · ‖L2(Ω)d is a norm on XD,0.

A gradient discretisation D is said to have a piecewise constant reconstruction if there exists
a basis (ei)i∈I of XD,0 and disjoint subsets (Ui)i∈I of Ω such that

ΠDv =
∑
i∈I

vi1Ui ∀v =
∑
i∈I

viei ∈ XD,0, (49)

where 1Ui is the characteristic function of Ui (equal to 1 in this set and to 0 elsewhere).

Once a GD D is chosen, a gradient scheme (GS) for the linear diffusion problem (3) is
obtained by writing:

Find u ∈ XD,0 such that, ∀v ∈ XD,0,∫
Ω

Λ∇Du · ∇Dvdx =

∫
Ω

fΠDvdx−
∫

Ω

F · ∇Dvdx.
(50)

If D has a piecewise constant reconstruction, then it makes sense, for a generic function
g : R → R and v ∈ XD,0, to define g(v) ∈ XD,0 component-by-component: if v =

∑
i∈I viei,

then g(v) =
∑
i∈I g(vi)ei. This definition is justified by the following commutation property,

coming from (49):
ΠDg(v) = g(ΠDv) ∀v ∈ XD,0.

Then, a GS for the non-linear model (13) is obtained writing

Find u ∈ XD,0 such that, ∀v ∈ XD,0,∫
Ω

(ΠDuΠDv + Λ∇Dζ(u) · ∇Dv) dx =

∫
Ω

fΠDvdx−
∫

Ω

F · ∇Dvdx.
(51)

The accuracy and convergence of a GS is assessed through the following quantities and
notions.
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1. Coercivity. The discrete Poincaré constant of a GD D is

CD := max
v∈XD,0

‖ΠDv‖L2(Ω)

‖∇Dv‖L2(Ω)d
.

A sequence (Dm)m∈N is coercive if (CDm)m∈N is bounded.

2. Consistency. The interpolation error of a GD D is

SD(φ) := min
v∈XD,0

(
‖ΠDv − φ‖L2(Ω) + ‖∇Dv −∇φ‖L2(Ω)d

)
∀φ ∈ H1

0 (Ω).

A sequence (Dm)m∈N is consistent if SDm(φ)→ 0 as m→∞, for all φ ∈ H1
0 (Ω).

3. Limit-conformity. The defect of conformity of a GD D is

WD(ψ) := max
v∈XD,0\{0}

1

‖∇Dv‖L2(Ω)d

∣∣∣∣∫
Ω

ΠDv divψ +∇Dv ·ψx
∣∣∣∣ ∀ψ ∈ Hdiv(Ω).

A sequence (Dm)m∈N is limit-conforming ifWDm(ψ)→ 0 asm→∞, for allψ ∈ Hdiv(Ω).

4. Compactness. A sequence (Dm)m∈N is compact if, for any (vm)m∈N such that vm ∈ XDm,0
for all m ∈ N and (‖∇Dmv‖L2(Ω)d)m∈N is bounded, the sequence (ΠDmv)m∈N is relatively

compact in L2(Ω).

We then recall an error estimate for the linear model and a convergence result for the
non-linear model.

Theorem 5.1 (Error estimate for the linear model [11, Theorem 2.28]) Let ū be the
solution to (3), D be a GD, and u be the solution to the gradient scheme (50). Then, there
exists C depending only on Ω and λ, λ in (2b) such that

‖ū−ΠDu‖L2(Ω) + ‖∇ū−∇Du‖L2(Ω)d ≤ C(1 + CD)(WD(Λ∇ū+ F ) + SD(ū)).

Theorem 5.2 (Convergence for the nonlinear model [10, Theorem 2.9]) Let (Dm)m∈N
be a sequence of GDs which is consistent, limit-conforming and compact (which implies its co-
ercivity [11, Lemma 2.10]), and such that each Dm has a piecewise constant reconstruction.
Then, for any m ∈ N there exists a solution to (51) with D = Dm and there exists a solution
ū to (13) such that, as m→∞, the following convergences hold:

ΠDmum → ū weakly in L2(Ω),

ΠDmζ(um)→ ζ(ū) strongly in L2(Ω),

∇Dmζ(um)→ ∇ζ(ū) strongly in L2(Ω)d.

The following lemma is particularly useful when considering mass-lumping of a given gra-
dient discretisation. It shows that, under a simple assumption comparing the original and
mass-lumped reconstructions, the properties of gradient discretisations that ensure the con-
vergence of the gradient scheme are preserved.

Lemma 5.3 (Mass-lumping preserves the approximation properties [11, Theorem 7.50])
Let (Dm)m∈N be a sequence of gradient discretisations that is coercive, consistent, limit-
conforming and compact. For each m ∈ N let D∗m = (XDm,0,Π

∗
Dm ,∇Dm) be a gradient

discretisation that differs from Dm only through its function reconstruction. Assume the exis-
tence of a sequence (ωm)m∈N of positive numbers such that ωm → 0 as m → ∞ and, for all
m ∈ N,

‖ΠDmv −Π∗Dmv‖L2(Ω) ≤ ωm‖∇Dmv‖L2(Ω)d ∀v ∈ XDm,0.
Then, the sequence (D∗m)m∈N is also coercive, consistent, limit-conforming and compact.
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5.2 Non-conforming gradient discretisations

We recall here that polytopal non-conforming methods, as defined in Section 2, are gradient
discretisation methods for gradient discretisations that satisfy the properties required for the
error estimates/convergence of the scheme.

Let VT,0 be a finite-dimensional subspace of H1
T,0, and define the gradient discretisation D

by:
XD,0 = VT,0 , ΠDv = v and ∇Dv = ∇Mv ∀v ∈ XD,0. (52)

Then, the non-conforming scheme (9), for the linear model, based on VT,0 is the gradient
scheme (50) based on D. Likewise, if ΠT : VT,0 → L∞(Ω) is a piecewise-constant reconstruction
of the form (14) and D∗ = (VT,0,ΠT,∇M), then the non-conforming scheme (15) for the
Stefan/PME model is the gradient scheme (51) with D∗ instead of D.

Proposition 5.4 (Estimates for non-conforming methods [11, Proposition 9.5]) Let
T be a polytopal mesh and assume that γT ≤ γ. Let VT,0 be a finite-dimensional subspace of
H1

T,0 and define the GD D by (52). Then, there exists C > 0 depending only on Ω and γ such
that

CD ≤ C (53)

SD(φ) ≤ C min
v∈VT,0

‖v − φ‖H1
T,0

∀φ ∈ H1
0 (Ω) , (54)

WD(ψ) ≤ ChM‖ψ‖H1(Ω)d ∀ψ ∈ H1(Ω)d. (55)

Theorem 5.5 (Properties of polytopal non-conforming methods [11, Theorem 9.6])
Let (Tm)m∈N be a sequence of polytopal meshes such that hMm → 0 as m→∞ and (γTm)m∈N
is bounded. For each m ∈ N let VTm,0 be a finite-dimensional subspace of H1

Tm,0 and assume
that

min
v∈VTm,0

‖v − φ‖H1
Tm,0

→ 0 as m→∞, ∀φ ∈ H1
0 (Ω).

Then, the sequence (Dm)m∈N defined from (VTm,0)m∈N as in (52) is coercive, consistent, limit-
conforming, and compact.

Remark 5.6 (Mass-lumped non-conforming method) Combining this theorem with Lemma
5.3 shows that mass-lumped versions of polytopal non-conforming methods, such as the one
presented in Section 4.4, usually also inherits the coercivity, consistency, limit-conformity and
compactness properties.

6 Perspectives

The LEPNC presented here is a low-order method. It is possible to extend this method into
an arbitrary order approximation method. Let k ≥ 1 be a sought approximation degree. For
K ∈ M, σ ∈ FK and q ∈ Pk−1(σ), by the Riesz representation theorem in L2(σ) for the
Lebesgue measure weighted by φK,σ (which is strictly positive on σ), there exists a unique
qK ∈ Pk−1(σ) such that ∫

σ

(φK,σ)|σqKr =

∫
σ

qr , ∀r ∈ Pk−1(σ). (56)

Set φK,σ,q = φK,σ q̂K , where q̂K ∈ Pk−1(K) is defined by q̂K(x) = qK(πσ(x)) with πσ : Rd →
Hσ the orthogonal projection on the hyperspace Hσ spanned by σ. Then, the local k-degree
LEPNC space is

V LEPNC,k
K := span(Pk(K) ∪ {φK,σ,q : σ ∈ FK , q ∈ Pk−1(σ)}).

For any set of moments of degree ≤ k − 1 on σ, there exists q ∈ Pk−1(σ) that has the
same moments and thus, in virtue of (56), φK,σ,q also has these same moments on σ. Let
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(ψK,i)i=1,...,nk be a basis of Pk(K). For each i = 1, . . . , nk we can find a linear combination∑
σ∈FK

φK,σ,qi that has the same moments of degree ≤ k − 1 as ψK,i on each σ ∈ FK . The
function ψK,i −

∑
σ∈FK

φK,σ,qi therefore has zero moments of degree ≤ k − 1 on each face
and, extended by 0 outside K, satisfies the (k − 1)-degree patch test: its moments on each
face coincide when viewed from each side of the faces.

When {K,L} =Mσ, for a given q ∈ Pk−1(σ), by (56) the functions φK,σ,q and φL,σ,q have
the same moments of degree ≤ k − 1 on σ. Hence, in a similar way as in (23), we can glue
φK,σ,q and φL,σ,q to obtain a global function that satisfies the (k − 1)-degree patch test.

The family of these extended functions span a non-conforming space that has approxima-
tion properties of order k (that is, (35) holds with O(hk+1

M ) instead of O(h2
M) in the right-hand

side). The only caveat is the following: letting (qj)j=1,...,`k be a basis of Pk−1(σ), the family
{ψK,i : i = 1, . . . , nK} ∪ {φK,σ,qj : σ ∈ FK , j = 1, . . . , `k} spans the local space V LEPNC,k

K ;
however, it is not clear if, in general, this family is linearly independent. Hence, describing a
space of the local space (and, in consequence, the global space) requires to actually solve local
linear problems, extracting a basis from a generating family.
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[12] J. Droniou, R. Eymard, T. Gallouët, and R. Herbin. The gradient discretisation method
for linear advection problems. Comput. Methods Appl. Math., page 23p, 2019.

27

https://github.com/jdroniou/HArDCore2D-release
https://github.com/jdroniou/HArDCore2D-release


[13] J. Droniou and N. Nataraj. Improved L2 estimate for gradient schemes and super-
convergence of the tpfa finite volume scheme. IMA J. Numer. Anal., page 40p, 2017.
To appear, DOI: 10.1093/imanum/drx028.

[14] R. Herbin and F. Hubert. Benchmark on discretization schemes for anisotropic diffusion
problems on general grids. In Finite volumes for complex applications V, pages 659–692.
ISTE, London, 2008.

[15] K. Lipnikov, G. Manzini, and M. Shashkov. Mimetic finite difference method. J. Comput.
Phys., 257-Part B:1163–1227, 2014.

[16] G. Strang and G. Fix. An analysis of the finite element method. Wellesley-Cambridge
Press, Wellesley, MA, second edition, 2008.

[17] F. Stummel. The generalized patch test. SIAM Journal on Numerical Analysis, 16(3):449–
471, 1979.

[18] J. Vázquez. The porous medium equation: Mathematical Theory. Oxford Mathematical
Monographs. The Clarendon Press Oxford University Press, 2007.
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