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Abstract. The construction of models of biological networks from prior
knowledge and experimental data often leads to a multitude of candidate
models. Devising a single model from them can require arbitrary choices,
which may lead to strong biases in subsequent predictions.
We introduce here a methodology for a) synthesizing Boolean model
ensembles satisfying a set of biologically relevant constraints and b) rea-
soning on the dynamics of the ensembles of models. The synthesis is
performed using Answer-Set Programming, extending prior work to ac-
count for solution diversity and universal constraints on reachable fixed
points, enabling an accurate specification of desired dynamics. The sam-
pled models are then simulated and the results are aggregated through
averaging or can be analyzed as a multi-dimensional distribution.
We illustrate our approach on a previously published Boolean model of a
molecular network regulating the cell fate decisions in cancer progression.
It appears that the ensemble-based approach to Boolean modelling brings
new insights on the variability of synergistic interacting mutations effect
concerning propensity of a cancer cell to metastasize.

1 Introduction

The ability to derive one single model from observations of a biological system
usually faces arbitrary choices, sometimes referred to as art.

Computational models of molecular interaction networks are usually built
from data related to the architecture of the network from known interactions;
and data related to its dynamics, such as measurements of gene expressions or
proteins activity at different times and/or conditions. However, despite huge
advances in experimental technologies, observations of the biological processes
stay very scarce, either in terms of temporal resolution, number of observed
entities, synchronisation between measure points, or a variety of experimental
conditions. Combined with complex structures for molecular interactions, the
model engineering problem, in this case, appears to be largely under-specified,
leading to (too) many potential candidate models.
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Boolean Networks (BNs), and logical models in general, are widely adopted
for the modelling of signalling pathways and gene and transcription factors net-
works [5,28,3]. With BNs, the activity of components is caricatured to “off” and
“on”, and their evolution is computed according to logical rules (e.g., gene 1
can be active only whenever its activators 2 and 3 are active). However, in prac-
tice, biological data still let open a multitude of candidate BNs. Thus, arbitrary
modelling choices have to be made, e.g., by prioritizing certain logics between
regulators or by preferring smallest/largest models, which may introduce biases
in subsequent model predictions.

In this paper, we present an approach aiming at reducing modelling biases
by constructing and reasoning on dynamics of ensembles of BNs. The idea of en-
semble modelling has recently gained momentum with machine learning, notably
with random forests. By analogy, we constitute ensembles of BNs sampled from
the whole multitude of models compatible with network architecture and dynam-
ical properties. They are then simulated asynchronously and the simulations are
aggregated through averaging. The obtained results allow an interpretation at
the level of cell population and take into account its potential heterogeneity.

In the literature, ensembles of random BNs have been employed to show
emerging properties of families of BNs sharing properties related to their ar-
chitecture or logic rules [14,16]. In [21], ensembles of BNs sharing a network
architecture are used to assess dynamical properties of qualitative differential
equations. In contrast, our approach is focused on ensembles of models which
satisfy a set of constraints both on their architecture and on their dynamics.
Synthesis of BNs from such constraints received a lot of interest in the litera-
ture [6,24,7,27,13,2], and methods like [6,27,13,2] allows reasoning implicitly on
ensembles of models, notably by enabling checking for their emptiness.

Here, we extend prior work on BNs synthesis from reachability and attractor
properties with Most Permissive semantics [2] to support universal properties
on (reachable) fixed points and the specification of network perturbations. The
synthesis is performed with the logic framework of Answer-Set Programming [1]
(ASP). Then, we use heuristics to drive the ASP solver in different regions of
the solution space to sample ensembles of BNs capturing the diversity of the
comprehensive solution set. Dynamics of ensembles are then explored through
stochastic simulations for quantifying the propensities of reachable attractors,
subject to different network perturbations. To that aim, we extended the simu-
lator MaBoSS [22] to support ensembles of BNs as input.

We illustrate our approach on a model of molecular pathways regulating
tumour invasion and migration [4]. We sampled ensembles of BNs sharing the
same network architecture as the original model and constrained by the dynam-
ical properties related to attractor reachability. Then, as in the original study,
we evaluated the shift of reachable phenotypes caused by an epistatic interaction
between mutations in model genes (gain of Notch function and loss of p53 func-
tion). It appears that, contrary to the initial single model analysis, the ensemble
approach reveals a potential variability in the effectiveness of the double mutant
to enhance the metastasis potential.
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2 Background

2.1 Boolean Networks

A Boolean network (BN) of dimension n is a function

f : Bn → Bn (1)

where B := {0, 1}. For all i ∈ [n], fi : Bn → B denotes the local function of
the i-th component. A vector x ∈ Bn is called a configuration of the BN f . The
set of components which value differs between two configurations x, y ∈ Bn is
denoted by ∆(x, y) := {i ∈ [n] | xi 6= yi}.

A BN f is said locally monotonic whenever each of its local functions is
monotonic (this does not imply f monotonicity). Intuitively, local monotonic-
ity imposes that a variable always appears with the same sign in a minimal
disjunctive/conjunctive normal form of the local functions.

Fig. 1 is an example of locally-monotonic BN with n = 3.

Mutations In the following, we will consider the analysis of a BN f subject to
some permanent perturbations of its components, that we refer to as mutations,
being either a gain of function (GoF; locked to 1) and loss of function (LoF;
locked to 0). A mutation is specified by a couple (i, v), where i ∈ [n] is a com-
ponent and v ∈ B is its forced value. Given a BN f and a set of mutations
M ⊆ [n] × B, we denote by f/M the mutated BN, where, for each i ∈ [n],
(f/M)i(x) := v if (i, v) ∈M , and (f/M)i(x) := fi(x) otherwise.

Influence graph For each i ∈ [n], fi typically depends on a small subset of
components of the BN. The influence graph summarizes these dependencies with
a positive (resp. negative) edge from node j to i if there are configurations in
which the sole increase of j would strictly increase (resp. decrease) the value of
fi. A node can have both positive and negative influences on i, indicating that
fi is non-monotonic. Remark that different BNs can have the same influence
graph. Fig. 1 (right) shows the influence graph of the BN example.

Definition 1. Given a BN f of dimension n, its influence graph G(f) is a
directed graph ([n], E+, E−) with positive and negative edges such that (j, i) ∈
E+ (resp. (j, i) ∈ E−) iff ∃x, y ∈ Bn s.t. ∆(x, y) = {j}, xj < yj, and fi(x) <
fi(y) (resp. fi(x) > fi(y)). The influence graph G = ([n], E+, E−) is a subgraph
of G′ = ([n], E′+, E

′
−), denoted by G ⊆ G′, iff E+ ⊆ E′+ and E− ⊆ E′−.

f1(x) := ¬x2

f2(x) := ¬x1

f3(x) := ¬x1 ∧ x2

1

3

2

Fig. 1. Example of Boolean network f and its influence graph G(f) where positive
edges are with normal tip and negative edges are with bar tip.
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2.2 BN Semantics

From a configuration x ∈ Bn, semantics of BNs specify how to compute the
next possible configurations. One of the most classical semantics is the fully-
asynchronous (often simply called asynchronous), where only one component i
is updated at a time (to the value fi(x)). It can be defined as a binary relation
f−→
a1

between configurations:

Definition 2 (Fully-asynchronous semantics).

∀x, y ∈ Bn, x
f−→
a1
y iff ∃i ∈ [n] : ∆(x, y) = {i} ∧ yi = fi(x) .

We write ρfa1(x) := {y ∈ Bn | x f−→
a1

∗ y} the set of configurations in transitive

relation with x, with
f−→
a1

∗ the reflexive and transitive closure of
f−→
a1

.

However, as demonstrated in [19], the fully-asynchronous semantics of BNs,
as the synchronous and (general) asynchronous, are not faithful abstractions of
quantitative systems: they can both introduce spurious behaviours (as expected
with qualitative models) and miss others.

The Most Permissive (MP) semantics of BNs [19] offers the guarantees to not
preclude any behaviour realisable in any quantitative refinement of the model,
thus providing a formal over-approximation of dynamics. Moreover, the abstrac-
tion is minimal: any behaviour it predicts is realisable by a quantitative re-
finement of the BN using the asynchronous semantics. Importantly, the com-
plexity for deciding main dynamical properties is considerably lower than with
(a)synchronous semantics, as we will mention in the next subsection.

MPBNs can be defined by the means of hypercubes (partially) closed by f ,
a hypercube being specified by a vector associating each component to either a
fixed Boolean value or free (∗).

Definition 3 (Hypercube). A hypercube h of dimension n is a vector in
(B ∪ {∗})n. The set of its associated configurations is denoted by c(h) := {x ∈
Bn | ∀i ∈ [n], hi 6= ∗ ⇒ xi = hi}.

Given two hypercubes h, h′ ∈ (B ∪ {∗})n, h is smaller than h′ if and only if
∀i ∈ [n], h′i 6= ∗ ⇒ hi = h′i.

Definition 4 (K-closed hypercube). Given a subset of components K ⊆ [n],
a hypercube h ∈ (B ∪ {∗})n is K-closed by f whenever for each configuration
x ∈ c(h), for each component i ∈ K, hi ∈ {∗, fi(x)}.
It is minimal whenever no different K-closed hypercube is smaller than it.

A hypercube [n]-closed by f is also known as a trap space [15].

Example 1. Let us consider the BN f : B3 → B3 with f1(x) := 1, f2(x) := x1,
and f3(x) := x1 ∧ ¬x3. The hypercube 1 ∗ ∗ is closed by f , with c(1 ∗ ∗) =
{100, 101, 110, 111}. The hypercube 1∗0 is the smallest hypercube {2}-closed by
f containing 100; it is not closed by f , nor the smallest hypercube {2}-closed by
f containing 110.
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010 110

000 100

011 111

001 101

010 110

000 100

011 111

001 101

010 110

000 100

011 111

001 101

K = {2} K = {1, 3} K = {1, 2, 3}
1 ∗ 0 10∗ 1 ∗ ∗

Fig. 2. Examples of smallest K-closed hypercubes containing the configuration 100
for the BN f of dimension 3 defined by f1(x) := 1, f2(x) := x1, f3(x) := x1 ∧ ¬x3.
Configurations belonging to the hypercube are in bold; these verifying the MP reacha-
bility property are boxed. The hypercube 11∗ is the only one which is closed by f and
minimal.

Starting from a configuration x ∈ Bn, the MP semantics allows transitions
towards any configuration y which is present in at least one smallest K-closed
hypercube h containing x, for some K ⊆ n, and so that the state of each com-
ponent i ∈ K of y can be computed by fi from a configuration of h.

Definition 5 (Most-Permissive semantics). Given a BN f of dimension n
and two configurations x, y ∈ Bn, y ∈ ρfmp(x) if and only if there exists K ⊆ [n]
such that the smallest K-closed hypercube h containing x verifies (1) y ∈ c(h),
and (2) ∀i ∈ K, there exists a configuration z ∈ c(h) such that fi(z) = yi.

Fig. 2 gives examples of computations of ρfmp.
A way to interpret the MP semantics is to see the components free in a

hypercube as being in the course of changing of state, while other components
can independently consider them either as 0 or 1. This abstracts the missing
information on the ordering of thresholds of activation/inhibition between com-
ponents: while the quantitative value of component u progressively increases, at
a given time it can be high enough to activate a component (i.e., 1) but not
yet high enough to activate another one (i.e., 0). These dynamic states are over-
looked by asynchronous semantics, making it an incorrect over-approximation
of quantitative systems, contrary to the MP semantics [19].

2.3 Dynamical properties

In the following, we will focus on two main dynamical properties of BNs: reach-
ability which relates to the existence of trajectories between two configurations,
and attractors which relates to long-run behaviours by identifying the smallest
sets of configurations closed by reachability.

Definition 6 (Reachability). Given two configurations x, y ∈ Bn of a BN f
with semantics σ, y is reachable from x whenever y ∈ ρfσ(x).
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Definition 7 (Attractor). A non-empty set of configurations A ⊆ Bn is an
attractor of the BN f with semantics σ whenever ∀x ∈ A, ρfσ(x) = A.
When A = {x} for some x ∈ Bn, we say that x is a fixed point.

With MP semantics, attractors match with minimal trap spaces. With fully-
asynchronous semantics, deciding if y ∈ ρfa1(x) or if x belongs to an attractor are
both PSPACE-complete problems. With MP semantics, deciding if y ∈ ρfmp(x)

is PTIME if f is locally-monotonic and PNP otherwise; deciding if x belongs to
an attractor is coNP if f is locally-monotonic and coNPcoNP otherwise. Deciding
if there exists a fixed point is NP-complete with both semantics [19].

Notice the following relations between MP and fully-asynchronous semantics:

– x ∈ Bn is a fixed point with MP semantics if and only if it is a fixed point
with full-asynchronous semantics (iff f(x) = x);

– y ∈ Bn is reachable from x ∈ Bn with the fully-asynchronous semantics only
if it is reachable with MP semantics (ρfa1(x) ⊆ ρfmp(x));

– the number of attractors with MP semantics is less than or equal to the
number of attractors with fully-asynchronous semantics.

2.4 Answer-Set Programming

Answer Set Programming (ASP; [1,10]) is a declarative approach to solving com-
binatorial satisfaction problems. It is close to SAT (propositional satisfiability)
[17] and known to be efficient for enumerating solutions of NP problems com-
prising up to tens of millions of variables while providing a convenient language
for specifying the problem. We give a very brief overview of ASP syntax and
semantics that we use in the next sections; see [10] for more details.

An ASP program is a Logic Program (LP) being a set of logical rules with
first order logic predicates of the form:

1 a0 ← a1, . . ., an, not an+1, . . ., not an+k.

where ai are (variable-free) atoms, i.e., elements of the Herbrand base, which is
built from all the possible predicates of the LP. The Herbrand base is built by
instantiating the LP predicates with the LP terms (constants or elements of the
Herbrand universe).

Essentially, such a logical rule states that when all a1, . . . , an are true and
none of an+1, . . . , an+k can be proven to be true, then a0 has to be true as well.
Whenever a0 is ⊥ (false), the rule, also called integrity constraint, becomes:

2←a1, . . ., an, not an+1, . . ., not an+k.

Such a rule is satisfied only if the right-hand side of the rule is false (at least
one of a1, . . . , an is false or at least one of an+1, . . . , an+k is true). On the other
hand, a0 ← > (a0 is always true) is abbreviated as a0. A solution (answer set)
is a stable Herbrand model, that is, a minimal set of true atoms where all the
logical rules are satisfied. For instance, consider the following program:
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3 a.

4 b ← a.

5 d ← a, c.

It has for unique solution {a, b}: indeed, whereas {a, b, d} does not contradict
the rules, d is not a fact and cannot be derived from a rule; so it is not stable.

ASP allows using variables (starting with an upper-case) instead of terms/pred-
icates: these template declarations will be expanded before the solving. We also
use the notation a(X): b(X) which is satisfied when for each b(X) true, a(X) is
true. If any term follows such a condition, it is separated with ;.

ASP can express disjunctive logic programs [18], by the means of disjunctions
in the rule head (“;”-separated atoms):

6 a; b ← body.

Such a disjunctive rule implies that solutions are subset minimal: an answer set
is a solution only if none of its subsets is itself a solution [9]. For instance, let’s
consider the disjunction:

7 a; b; c.

The interpretation I = {a, b} is a model but not minimal: both interpretations
{a} and {b} are smaller than I and satisfy the rule. Hence I is not a solution. As
showed in [8], the complexity of problems addressed with ASP can be extended
thanks to disjunctive rules up to 2QBF, i.e. a two quantification levels Boolean
formula (∀x∃y.φ or ∃y∀x.φ where φ is a quantifier-free propositional formula).
Indeed, 2QBF can be reduced to the problem of verifying the existence of an
answer set of a disjunctive ASP program.

3 BN Synthesis from Architecture and Dynamical
Properties

We formulate the problem of BN synthesis as a Boolean satisfiability problem
encoded in ASP. With this approach, we leverage a priori knowledge and ex-
perimental data as constraints on the network architecture and the dynamical
properties of the models under the MP semantics. Our method is based on
[2], which implements constraints on existence and absence of trajectories be-
tween partially-specified configurations, existence of (reachable) fixed points and
trap spaces. In biological applications, these constraints match well the observed
properties of cell populations evolving towards mutually exclusive phenotypes.

In this paper, we extend [2] to support universal properties on (reachable) at-
tractors. This enables specifying tight dynamical constraints. For instance, given
a set of experimentally observed phenotypes, existential constraints guarantee
that at least one attractor of the model dynamics match with each phenotype,
whereas a universal constraint ensures that every attractor matches with at least
one of the phenotype.

A universal property involves by nature universal quantifiers. ASP can ad-
dress formulas implying one level of universal quantifier (i.e., of the form ∃x∀y :



8 S. Chevalier, V. Noël, et al.

P (x, y)) thanks to a technique presented in [8]. To explore a set of values and
check the respect of a property for each, it uses a disjunctive rule and a saturation
on the same term. A disjunctive rule implies the subset minimality semantics.
This minimality ensures an answer set is a solution only if none of its subsets is
itself a solution [9]. Hence, saturating the answer set with the predicates of the
disjunction cleverly exploits this minimality: the solver is forced to ensure that
no strict subset of these predicates form a solution.

3.1 Universal constraints on fixed points

We exploit this saturation technique [8,9] for ensuring universal constraints on
the fixed points or fixed points reachable from a given configuration. We de-
scribe here the ASP rules for the universal fixed point constraint, which ensures
that all the fixed points of the BN are compatible with a given set of markers
(observations). To that purpose, we let the solver deduce a configuration z by
the disjunctive rule:

8 cfg(z,N,-1) ; cfg(z,N,1) ← node(N).

The predicate template cfg(X,N,V) assigns the value V to the literal N in the
configuration X. Through the above rule, a set of node values is thus constituted
to define a configuration z, with the predicate cfg(z,N,_) subject to the subset
minimality semantics. To respect the desired property, each configuration z is
either not a fixed point (f(z) 6= z) or has the same component states than the
ones expressed in a dedicated predicate. A configuration is not a fixed point
whenever at least one of its component can change of state:

9 mcfg(z,N,V) ← cfg(z,N,V).

10 valid ← cfg(z,N,V) ; eval(z,N,-V).

mcfg(X,N,V) predicate template leads to the evaluation of the configuration X

given the Boolean rules of the network [2]. The reachable values are then stored
in the predicate eval(X,N,V). Whenever it is possible to evaluate a component N

to the opposite value than in z, then z is not a fixed point, making valid true.
Otherwise, z has to have the same component states than those specified by

an observation X marked by the predicate is_universal_fp(X), which is expressed
by the following ASP rule:

11 valid ← cfg(z,N,V):obs(X,N,V); is_universal_fp(X).

Observe in l.10 and l.11 that each time an assignment is in agreement with the
desired property, a predicate valid is deduced, which triggers the saturation of
the configuration z:

12 cfg(z,N,-V) ← cfg(z,N,V), valid.

Thus, when valid is deduced, the answer set contains all possible component
values for z. According to the subset minimality semantics, the solver is then
forced to ensure that there is no sub-answer set. And the only way to find such a
smaller answer-set is to find a z from which valid cannot be deduced, i.e., which
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is a counter-example to the universal property: in that case, l.13 eliminates the
answer set:

13← not valid.

A variant of this constraint enables to restrict the universal property to fixed
points that are reachable from a given initial configuration. This is specified by
is_universal_fp(X,S) predicates, where S points the initial configuration, and X

to an observation, as used above. By combining such predicates, one can then
specify sets of phenotypes reachable from a given configuration. The encoding
of this variant contains a third way to deduce valid: the non-reachability of the
configuration z from S.

Our implementation also offers to specify mutations, which can be combined
with reachability and with universal constraints on reachable fixed points to
leverage observations about cell fates in different mutation conditions.

3.2 Synthesis problem

Synthesis requires (i) an influence graph to delimit the interactions that can be
used by the BNs and (ii) the dynamical properties of the behaviours that have
to be reproduced. For modelling the tumour invasion and migration as in [4], the
dynamical properties refer to cell fate observations in different mutation condi-
tions. These fates are described by sets of markers (i.e. a set of values for some
nodes of the network) which constitutes partial observations of genes activity. In
term of dynamics, these observations are related to reachable attractors in the
corresponding mutated BNs.

A (partial) observation o of a configuration of dimension n is specified by a
set of couples associating a component to a Boolean value: o ⊆ [1]n×B, assuming
there is no i ∈ [n] such that {(i, 0), (i, 1)} ⊆ o.

Formally, the synthesis problem we tackle is the following.
Given

– an influence graph G = {[n], E+, E−)
– p partial observations o1, . . . , op

– sets FP, UFP and UA of indices of observations
– sets PR, URFP and URA of couples of indices of observations: URFP ⊆ [p]2

find a locally-monotonic BN f of dimension n such that

– G(f) ⊆ G,
– there exist p configurations x1, . . . , xp such that:
• (observations) ∀m ∈ [p],∀(i, v) ∈ om, xmi = v,

• (positive reachability) ∀(m,m′) ∈ PR, xm
′ ∈ ρfmp(xm),

• (fixed points) ∀m ∈ FP, f(xm) = xm,
• (universal fixed point) ∀z ∈ Bn, f(z) = z ⇒ ∃m ∈ UFP : ∀(i, v) ∈
om, zi = v;

• (universal reachable fixed point) ∀z ∈ Bn, f(z) = z ⇒ ∃(x, s) ∈ URFP :
z /∈ ρfmp(s) ∨ ∀(i, v) ∈ x, zi = v;
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Each of these constraints can be parametrized by mutations, in which case, the
properties have to be verified on the mutated f .

Remark that such a problem can be non-satisfiable.
Our encoding also offers constraints related to the absence of paths between

configurations (negative reachability) and to trap space where a set of compo-
nents have a fixed state matching with a given observation [2]. Moreover, one
can optionally impose that the influence graph of f is equal to the input G.

Our implementation avoids redundancy in the models by enumerating only
among non-equivalent BNs (i.e., their values differ for at least one configuration).
This is achieved by using a canonical representation of Boolean functions in
disjunctive normal form with a total ordering between clauses.

In total, our encoding generates O(ndk2) atoms and O(nd2k2) rules, where
d is the in-degree of nodes in the influence graph, and k is a fixed bound on
the number of clauses of Boolean functions. Whenever k is set to

(
d
bd/2c

)
, the

complete set of solutions can be enumerated.

3.3 Sampling the diversity of all solutions

The whole set of constraints, comprising the domain of admissible BNs and the
dynamical properties they should satisfy, is represented by a single logic program
expressed in ASP, such that each solution corresponds to a distinct BN.

Whereas the enumeration of ASP solutions is known to be efficient, typical
solvers will enumerate solutions by slightly varying parts of a firstly identified
one. Thus, a partial enumeration will very likely give a set of solutions which are
all look alike, e.g., where the Boolean function of only one component varies.

Inspired by [20], we tweak heuristics of the solver clingo [11] to stir it towards
distant solutions: at each solution, we randomly select a subset of variables
assignments and ask the solver to avoid them in the next iterations. At the cost
of enumeration speed, this allows sampling ensembles of diverse BNs.

4 Stochastic Simulations of Ensembles of BNs

4.1 Continuous-time Boolean modelling

We first recall the continuous-time Markov chain interpretation of BNs intro-
duced in [23]. Considering a BN f of dimension of n, we represent the state
evolution by a Markov process s : t→ s(t) defined on t ∈ I ⊂ R applied on the
network state space, with I the simulation interval. This process is defined by:

1. Its initial condition:

P [s(0) = x], ∀x ∈ Bn

2. Its conditional probabilities (of a single condition):

P [s(t) = y|s(t′) = x], ∀x, y ∈ Bn,∀t′, t ∈ I, t′ < t
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In continuous-time, these conditional probabilities are defined as transition
rates [25]: ρ(x → y)(t) ∈ [0,∞]. Because we want a generalization of the fully-
asynchronous Boolean dynamics, transition rates ρ(x → y) are non-zero only

if x
f−→
a1
y, i.e., a single component i ∈ [n] is changing of value. In that case,

each local function fi(x) is replaced by two functions R
up/down
i (x) ∈ [0,∞]. The

transition rates are defined as follows:

ρ(x→ y) =

{
Rupi (x) if xi = 0

Rdowni (x) if xi = 1
with ∆(x, y) = {i}

where Rupi corresponds to the activation rate of node i, and Rdowni corresponds
to the inactivation rate of node i. Therefore, the continuous Markov process is
completely defined by all these Rup/down and an initial condition. By default,
the value of these rates is set to 1, but they can be modified to represent the
time scales of different processes.

To explore the probability space of this Markov process, we use the Gillespie
algorithm [12]. This algorithm produces a set of realizations or stochastic trajec-
tories of the Markov process. From this finite set, probabilities can be estimated.

To relate continuous-time probabilities to real processes, an observable time
window δt is defined. A discrete-time τ ∈ N stochastic process s(τ) can be
extracted from the continuous-time Markov process:

P [s(τ) = x] ≡ 1

δt

∫ (τ+1)δt

τδt

P [s(t) = x]dt

For each trajectory j, we compute the time for which the system is in state
x in the window [τδt, (τ + 1)δt], and divide it by δt. We obtain an estimate of
P [s(τ) = x] for trajectory j, i.e. P̂j [s(τ) = x]. Then to compute the estimate of

a set of trajectories, we compute the average over j of all P̂j [s(τ) = x].

4.2 Lifting to ensembles of BNs

To simulate an ensemble of BNs, we first choose a total number of stochas-
tic trajectories M . We generate M/k stochastic trajectories for each model and
compute the average P̂k[s(τ) = x] for all models k. We then compute the average
over k of all P̂k[s(τ) = x], to obtain the P [s(τ) = x] for the ensemble of boolean
networks. We also keep the option to export the individual probability distribu-
tions P̂k[s(τ) = x] to allow us analyzing the composition of the ensemble. The
approach results in time-series of the probability for each observed state. The
case study hereafter focuses on steady-state analysis. This imposes to simulate
the ensemble long enough to reach stationarity, requiring a preliminary analysis.
We can then study the proportion of each attractor for our ensemble.

We implemented this new feature in the MaBOSS simulation software [22]5.

5 https://maboss.curie.fr, https://github.com/colomoto/pyMaBoSS

https://maboss.curie.fr
https://github.com/colomoto/pyMaBoSS
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Fig. 3. Influence graph of Cohen’s model relating 32 nodes with 159 edges, where
positive edges are in green and negative in red.

5 Case Study on Cell Fate Decision Modelling

5.1 Background Model

We illustrate our ensemble modelling approach on a published model of cell
fate decision leading to the early events of the metastasis or cell death through
apoptosis [4]. Initial triggers, such as DNA damage or micro-environmental cues,
and the activity of some genes or proteins participating in the process affect the
final decision. The signalling pathway involves TGFbeta, WNT, beta-catenin,
p53 and its homologs, selected miRNA, and transcription factors of the epithelial
to mesenchymal (EMT) transitions. Fig. 3 shows the influence graph of the BN.

The functions of the BN, we refer to as “Cohen’s model”, have been designed
manually so the simulations fit with experimental data related to stable pheno-
types under different single mutations. Then, the initial publication explored the
synergy between mutants that led to metastatic phenotypes.

5.2 Single Model Analysis

We first reproduced part of the analysis of [4] on the original Cohen’s model
by computing the propensities of attractors reachable from 4 possible initial
conditions, where all nodes are inactive, except miRNAs that are active, and
the 2 nodes modelling DNA damage and micro-environment cues that are free.
We considered the wild-type condition (Fig. 4(a)) with no mutation, and the
double-mutant of p53 LoF and Notch GoF (Fig. 4(b)).
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The wild-type model has 9 fixed points that each correspond to one of the 4
identified physiological phenotypes: Apoptosis, EMT, Metastasis (or equivalent
to Migration) and Homeostatic State (HS). The double-mutant shows exclusively
the Metastasis phenotype.

5.3 Ensemble Analysis

Synthesis To test the impact of alternative Boolean functions, we synthesised
ensembles of BNs that share the same influence graph as Cohen’s model and
reproduce the desired dynamics. We synthesized two ensembles of 1,000 diverse
BNs each, where we disallowed having cyclic attractors. The first ensemble en-
sures only the wild-type (WT) behaviour, meaning that all the fixed points match
with one of the 4 physiological phenotypes, and each physiological phenotype is
reachable from at least one of the initial condition. The second ensemble adds
further constraints related to the single mutations of p53 LoF, which should show
the same behaviour as WT, and Notch GoF, where only 2 of the WT phenotypes
and a third different one should be observed6.

Ensemble Simulations With the same settings as with Cohen’s model, we
performed stochastic simulations of the two synthesized ensembles, with uniform
activation and de-activation rates. The WT behaviours look similar, with some
differences in propensities of phenotypes (Fig. 4(c,e)). The double-mutant on
the ensembles shows a much less contrasted picture than on the Cohen’s model.
While Migration becomes the most likely outcome, several other phenotypes are
observed, suggesting a potential variability of the effect of the double-mutation.
Interestingly, even the single mutant constraints of the second ensemble are not
sufficiently restrictive to guarantee the behaviour observed in Cohen’s model.

Variability of propensities of phenotypes To study the ensemble composi-
tion, we want to analyze the steady-state probabilities for each model. Depending
on the results we might have a lot of visited states, which bring a dimensionality
issue. We choose to represent these results using Principal Component Analysis
(PCA)[26], which allows us to visualize the distribution of attractor’s proportions
in a reduced number of dimensions.

We apply PCA to the probability distribution of each model within the en-
semble from WT and single mutants constraints, allowing us to represent their
respective probability distributions (Fig. 5). The first component, representing
56% of the observed variance, shows a negative correlation between apoptotic
and EMT phenotypes. The second component, representing 24% of observed
variance, shows a negative correlation between EMT without Migration and

6 Code, data, and notebooks at https://doi.org/10.5281/zenodo.3938904; Synthe-
sis has been performed on 36-cores CPUs @ 2.6Ghz with 192Go of RAM; first en-
semble was generated at a rate of 5s/model/CPU; second ensemble was generated
at a rate of 3min/model/CPU

https://doi.org/10.5281/zenodo.3938904
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Fig. 4. Simulations results for phenotypes propensities in Cohen’s model (a,b), ensem-
ble from WT constraints (c,d), and ensemble from WT and single mutants constraints
(e,f), in wild-type condition (a,c,e) and double-mutant p53 LoF/Notch GoF (b,d,f).

Fig. 5. PCA representation of the steady-state distribution of each model of the ensem-
ble from WT and single mutants constraints. Each point represents the result of one
model simulation (blue one are from WT simulations, orange one from p53 LoF/Notch
GoF). Large blue and orange circles highlight the position of the original single Cohen’s
model simulation. The triangular pattern of the distribution comes from the fact that
the phenotype probabilities are located in the n-dimensional simplex.
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EMT with Migration. The distribution of the ensemble’s probability distribu-
tions is diverse, illustrating the performance of the all possible model diversity
sampling. The p53 LoF/Notch GoF double mutant shows a shift towards EMT
and/or Migration phenotypes, away from Apoptotic phenotypes. The alignment
of models on the top-left corresponds to models which don’t show any apoptotic
phenotypes (∼ 96% of the models).

6 Conclusion

The synthesis of BNs from network architecture and dynamical constraints can
lead to a multitude of admissible solutions.

In this work, we employed Answer-Set Programming to sample ensembles of
diverse BNs, all possessing the same network architecture and satisfying the same
set of dynamical constraints. We significantly extend the previously described
methodology with the new type of biologically relevant universal constraints.

Our synthesis framework enables specifying existence and absence of reach-
ability properties between (partial) configurations of the BN, existence of fixed
points and cyclic attractors matching with observations, and universal proper-
ties on the fixed points and reachable fixed points; all these properties can be
parametrized by mutation settings.

The dynamics of ensembles is explored by stochastic simulations using the
new Ensemble MaBoSS simulator, which is introduced here for the first time.
The ensemble-based simulations are used for computing and comparing propen-
sities of reachable attractors under different mutations or their combinations.
The result of an ensemble-based simulation represents a multidimensional dis-
tribution of the vectors of attractor probabilities, which can be aggregated by
computing its mean point. Moreover, the multi-variate variance of the distribu-
tion can be explored, e.g. by applying the standard machine learning methods
such as Principal Component Analysis, which can lead to the insights about
the diversity of possible modelling scenarios compatible with available biological
knowledge and the experimental data.

As illustrated on a biological case study, BN ensemble modelling brings an
insight into the potential variability of predictions subject to model uncertainty.

In future work, we plan to address the evaluation of the diversity of sam-
pled ensembles, with metrics helping estimate required sample size and compare
sampling heuristics.
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Di Stefano, B., Thomas-Chollier, M., Graf, T., Thieffry, D.: Logical model-
ing of lymphoid and myeloid cell specification and transdifferentiation. Pro-
ceedings of the National Academy of Sciences 114(23), 5792–5799 (2017).
https://doi.org/10.1073/pnas.1610622114

6. Corblin, F., Tripodi, S., Fanchon, E., Ropers, D., Trilling, L.:
A declarative constraint-based method for analyzing discrete ge-
netic regulatory networks. Biosystems 98(2), 91–104 (nov 2009).
https://doi.org/10.1016/j.biosystems.2009.07.007

7. Dorier, J., Crespo, I., Niknejad, A., Liechti, R., Ebeling, M., Xenarios, I.: Boolean
regulatory network reconstruction using literature based knowledge with a ge-
netic algorithm optimization method. BMC Bioinformatics 17(1), 410 (2016).
https://doi.org/10.1186/s12859-016-1287-z

8. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming:
Propositional case. Annals of Mathematics and Artificial Intelligence 15(3), 289–
323 (Sep 1995). https://doi.org/10.1007/BF01536399

9. Eiter, T., Ianni, G., Krennwallner, T.: Answer Set Programming: A
Primer, pp. 40–110. Springer Berlin Heidelberg, Berlin, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03754-2 2

10. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan
and Claypool Publishers (2012)

11. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control:
Preliminary report. CoRR abs/1405.3694 (2014)

12. Gillespie, D.T.: A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. Journal of computational physics 22(4),
403–434 (1976). https://doi.org/10.1016/0021-9991(76)90041-3

13. Goldfeder, J., Kugler, H.: BRE:IN - a backend for reasoning about interaction
networks with temporal logic. In: Computational Methods in Systems Biology, pp.
289–295. Springer International Publishing (2019). https://doi.org/10.1007/978-3-
030-31304-3 15

14. Kauffman, S.: A proposal for using the ensemble approach to understand genetic
regulatory networks. Journal of Theoretical Biology 230(4), 581–590 (oct 2004).
https://doi.org/10.1016/j.jtbi.2003.12.017

15. Klarner, H., Bockmayr, A., Siebert, H.: Computing maximal and minimal
trap spaces of boolean networks. Natural Computing 14(4), 535–544 (2015).
https://doi.org/10.1007/s11047-015-9520-7

https://doi.org/10.1109/ICTAI.2019.00014
https://doi.org/10.1038/s41568-020-0258-x
https://doi.org/10.1371/journal.pcbi.1004571
https://doi.org/10.1073/pnas.1610622114
https://doi.org/10.1016/j.biosystems.2009.07.007
https://doi.org/10.1186/s12859-016-1287-z
https://doi.org/10.1007/BF01536399
https://doi.org/10.1007/978-3-642-03754-2_2
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1007/978-3-030-31304-3_15
https://doi.org/10.1007/978-3-030-31304-3_15
https://doi.org/10.1016/j.jtbi.2003.12.017
https://doi.org/10.1007/s11047-015-9520-7


Synthesis and Simulation of Ensembles of Boolean Networks 17

16. Krawitz, P., Shmulevich, I.: Basin entropy in boolean network ensembles. Physical
Review Letters 98(15) (apr 2007). https://doi.org/10.1103/physrevlett.98.158701

17. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic pro-
gram by SAT solvers. Artificial Intelligence 157(1), 115–137 (2004).
https://doi.org/10.1016/j.artint.2004.04.004

18. Lobo, J., Minker, J., Rajasekar, A.: Foundations of disjunctive logic programming.
MIT press (1992)
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