
HAL Id: hal-02898841
https://hal.science/hal-02898841v1

Submitted on 13 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Drawing the Line: Basin Boundaries in Safe Petri Nets
Stefan Haar, Loïc Paulevé, Stefan Schwoon

To cite this version:
Stefan Haar, Loïc Paulevé, Stefan Schwoon. Drawing the Line: Basin Boundaries in Safe Petri Nets.
CMSB 2020 - 18th International Conference on Computational Methods in Systems Biology, Sep 2020,
Konstanz / Online, Germany. �10.1007/978-3-030-60327-4_17�. �hal-02898841�

https://hal.science/hal-02898841v1
https://hal.archives-ouvertes.fr

Drawing the Line: Basin Boundaries in Safe
Petri Nets

Stefan Haar1, Löıc Paulevé2, and Stefan Schwoon1

1 INRIA and LSV, CNRS & ENS Paris-Saclay, Université Paris-Saclay, France
2 Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, Talence, France

Abstract. Attractors of network dynamics represent the long-term be-
haviours of the modelled system. Understanding the basin of an attrac-
tor, comprising all those states from which the evolution will eventually
lead into that attractor, is therefore crucial for understanding the re-
sponse and differentiation capabilities of a dynamical system. Building
on our previous results [2] allowing to find attractors via Petri net Un-
foldings, we exploit further the unfolding technique for a backward ex-
ploration of the state space, starting from a known attractor, and show
how all strong or weak basins of attractions can be explicitly computed.
Keywords: dynamical systems, qualitative models, attractors, concur-
rency, biological networks, epigenetics, reprogramming

1 Introduction

Multistability is a central feature of models for biological systems. It is implied by
many fundamental biological processes, such as cellular differentiation, cellular
reprogramming, and cell fate decision.

In qualitative models such as Boolean and multivalued networks, multistabil-
ity is tied to the notion of attractors and to their basins. Attractors are usually
defined as the smallest subsets of states from which the system cannot escape.
Then, basins refer to the states of the system which can reach a given attractor.
One can distinguish two kinds of basins for an attractor A: the weak basin of
A which gathers all the states that can reach A, but possibly others; and the
strong basin of A which is the subset of the weak basin which cannot reach other
attractors than A. The strong basin includes the attractor itself, and possibly
other preceding states [15].

Understanding how the system switches from a weak to a strong basin is a
recurrent question when analysing models of signalling and gene regulatory net-
works [5,19]. In [10], the authors provide a method for identifying the states in
which one transition leads to losing the reachability of a given attractor (bifurca-
tion transitions). Whereas the approach can still enumerate only the bifurcation
transitions, it then loses the precious information of the contexts in which the
transitions make the system bifurcate from the attractor. Thus, besides listing of
the states on the boundary of a strong basins, the challenge resides in identifying
the specific contexts and sequences of transitions leading to a strong basin.

Let us illustrate on the small automata network example showing bifurcation
transitions reproduced in Fig. 1. The model gathers 3 automata a, b, and c with
respectively 3, 2, and 3 local states. The automata start in the the state in gray,
then can undergo transitions (fully) asynchronously. Transitions labeled with
the local states of other automata can only be taken whenever the referenced
automata are in these states. This results in the transition graph of Fig. 2. Two
attractors are reachable: the fixpoint (i.e. singleton attractor) 〈a2, b1, c0〉, and
the cyclic attractor where c is fixed to 2, and a and b oscillate between 0 and
1. The states in gray in Fig. 2 form the weak basin of the fixpoint〈a2, b1, c0〉.
In specific states of this basin, firing the transition t8, which is the transition
of c from 1 to 2 makes the system lose the capability to reach the fixpoint, by
entering in (the strong basin of) the cyclic attractor.

Fig. 1. Running example: Automata network, from [10]; grey-shaded states are initial

In this paper, we address the computation of strong basins that are reachable
from a fixed initial state. We rely on concurrency theory to obtain compact
representations of reachable sequences of transitions by means of safe Petri nets
unfoldings, which avoid the explicit exploration of all interleavings. They provide
a compact and insightful representation of strong basins, by focusing on the
causality and context of transitions.

Safe (or 1-bounded) Petri nets [20] are close to Boolean and multivalued
networks [3], although they enable a more fine-grained specification of the con-
ditions for triggering value changes. Focussing on safe PNs entails no limitation
of generality of the model, as two-way behaviour-preserving translations between
boolean and multivalued models exist (see [3] and the appendix of [2] for dis-
cussion). Indeed, instead of a function whose evaluation gives the next value
for each node of the network, Petri nets explicitly specify the nodes that ac-
tually enable each value change, which are typically very few. Unfoldings [8]
of Petri nets, which are essentially event structures in the sense of Winskel et
al. [21] with additional information about states that are crucial in our work
here, bring an acyclic representation of the possible sequences of transitions,

Fig. 2. Transition graph for the automata network of Figure 1, from [10]. Attractors
are {〈a2, b1, c0} and {〈a1, b1, c2〉, 〈a0, b1, c2〉, 〈a0, b0, c2〉, 〈a1, b0, c2〉}.

akin to Mazurkiewicz traces [7]1 but enriched with branching information. From
an unfolding, all reachable states and even attractors [2] can be extracted. Like
the authors of [11] did for transition systems, we will exploit both forward and re-
verse dynamics, by constructing reverse unfoldings to explore co-reachable states
(i.e. states from which a given set can be reached).

Here again, the restriction to 1-safe nets is a technical convenience for unfold-
ings but not a strict necessity; the use of finite complete prefixes and application
of our techniques is possible for general bounded2 nets via careful model trans-
lations, not discussed here due to lack of space. Also, there is a variety of other
formal approaches that use concurrency to avoid state space explosion, such as
partial order reduction in reachability-related tasks following Godefroid [12], or
dihomotopy in the sense of Goubault [13]; their angle of attack is on the level of
transition systems, whereas our approach focusses on local causal relations.

Outline. After providing the necessary definitions for Petri nets and their
unfoldings in Section 2, we will turn our attention to attractors in Section 3.
The algorithm that we had developped in [2] for finding the complete list of
attractors in a safe Petri net, will be extended here. The extended algorithm
Attmap below provides, in addition to the attractors, information about which
system state, called marking for Petri nets, allows to reach which attractor.
The output of Attmap includes a function Sig(•) that assigns to every marking

1 which Cousot at al. [6] have recently use as theoretical foundation for capturing
which entity of a program is responsible of a given behavior

2 note that infinite-state Petri nets do not have finite complete prefixes in our sense.

the set of attractors in whose basin of attraction the marking lies. Inversely,
the strong basin of an attractor A consists precisely of those markings M for
which Sig(M) = {A}. The second, and final, step is then taken in Section 5:
we develop two algorithmic methods (on-line and off-line) built on the same
principle; they delimit the strong basin of any attractor of the net, via a reverse
Petri net unfolding that explores the possible processes that might have led into
a given attractor. Truncating this unfolding at the boundary of the strong basin
allows to exhibit the strong basin as the set of interior configurations in the sense
defined below, of the net structure obtained from unfolding. Section 6 concludes.

2 Petri Nets and Unfoldings

Petri Nets. A Petri net is a bipartite directed graph where nodes are either
places or transitions, and places may carry tokens. In this paper, we consider
only safe Petri nets where a place is either active or inactive (as opposed to
general Petri nets, where each place can receive an arbitrary number of tokens,
safe Petri nets allow at most one token per place). The set of currently active
places form the state, or marking, of the net. A transition is called enabled in a
marking if all its input places are active, and no output place is active unless it
is also an input place. The firing of a transition modifies the current marking of
the net by rendering the input places inactive and output places active.

Formally, a net is a tuple N = (P ,T ,F), where T is a set of transitions, P
a set of places, and F ⊆ (P × T) ∪ (T × P) is a flow relation whose elements
are called arcs. A subset M ⊆ P of the places is called a marking. A Petri net
is a tuple N = 〈N ,M0〉, with M0 ⊆ P an initial marking.

In figures, places are represented by circles and the transitions by boxes
(each one with a label identifying it). The arrows represent the arcs. The initial
marking is represented by dots (or tokens) in the marked places. The reverse

net of N is
←−
N def

= (P ,T ,F−1). For any node x ∈ P ∪ T , we call pre-set of x the
set •x = {y ∈ P ∪ T | (y, x) ∈ F} and post-set of x the set x• = {y ∈ P ∪ T |
(x, y) ∈ F}. A transition t ∈ T is enabled at a marking M , denoted M

t→, if
and only (i) •t ⊆ M , and (ii) (M ∩ t•) ⊆ •t . Note that the second requirement is
usually not made in the Petri net literature; however in the class of safe nets (see
below), condition (ii) is true whenever (i) is true. An enabled transition t can

fire, leading to the new marking M ′ = (M \ •t)∪ t•; in that case write M
t→ M ′.

A firing sequence is a (finite or infinite) word w = t1t2t3 . . . over T such that

there exist markings M1,M2, . . . such that M0
t1→ M1

t2→ M2
t3→ All markings

in such a firing sequence are called reachable from the initial marking M0. We
denote the set of markings reachable from some marking M in N by RN (M)
(dropping the subscript N if no confusion can arise).

A marking M reachable in (
←−
N ,M0) is said co-reachable from M0 in N ; denote

as
←−
RN (M0) the set of co-reachable markings for M0 and N .

•
a0

a1

a2

b1

•
b0

c2

c1

• c0

θ α β γ δ = t8

ζηε

Fig. 3. Right hand side: A Petri net version of the automata network from Figure 1,
reproduced on the left hand side.

Semantics of Safe Petri Nets. As an important restriction, we require all
Petri nets arising in this paper to be safe, that is, in any reachable marking M
and any transition t such that •t ⊆ M , one has (M ∩ t•) ⊆ •t . For an easier
formalization of the following concepts, it is possible to introduce complementary
places: a place p is a complement of place p iff

1. •p = p• and p• = •p, and
2. [M0 ∩ {p, p}| = 1.

A Petri net N = (P ,T ,F ,M0) is called complete iff every place in P has at
least one complement in P . Complete Petri nets are safe by construction, since
the number of tokens on a pair of complementary places is an invariant of the
transition firing. Moreover, the reverse net of a complete net is also complete, and
thus safe. For a net N = (P ,T ,F), the completion of N is N̂ = (P]P ,T ,F]F),
where P = { p | p ∈ P } is disjoint from P , and

F
def
= { (p, t) | (t, p) ∈ F ∩ (T × P) } ∪ { (t , p) | (p, t) ∈ F ∩ (P × T) }

From an initial marking of the net, one can recursively derive all possible
transitions and reachable markings, resulting in the marking graph (Def. 1).
The marking graph is always finite in the case of safe Petri nets. The attrac-
tors reachable from some initial marking of the net are the terminal strongly
connected components of the associated reachability graph.

Definition 1. Let N = (P, T, F) be a net and M a set of markings. The mark-
ing graph induced by M is a directed graph (M, E) such that E ⊆ M × M
contains (M ,M ′) if and only if M

t→ M ′ for some t ∈ T ; the arc (M ,M ′)
is then labeled by t. The reachability graph of a Petri net (N ,M0) is the
marking graph G(N ,M0) induced by RN (M0). The transition system of a com-
plete net N = (P] P ,T ,F] F) is the marking graph TS(N) induced by
{M ∪ P \M |M ⊆ 2P }.

a0 b0 c0

a1

a1

a0

a0

a0 a0

b1

b1 b1

a2

c0b0

b0

b0

b0c1

c2

αβ

α β α β

α β

ε
η

θ

θ

ζγ γ

δγ

Fig. 4. A finite complete prefix of the unfolding of the Petri net of Figure 3; underlined
names indicate fixed conditions, events without outgoing arcs are cut-offs.

Note that complementary places are uniquely defined. To keep the presen-
tation legible and compact, we will henceforth drop all complement places from
both notations and figures.

Unfoldings. Let us now recall the basics of Petri net unfoldings and how
to use them in finding attractors, following [2].; . Roughly speaking (a more
extensive treatment can be found, e.g., in [8]), the unfolding of a Petri netN is an
acyclic Petri net U that has the same behaviours as N (modulo homomorphism).
In general, U is an infinite net, but if N is safe, then it is possible to compute a
finite prefix � of U that is “complete” in the sense that every reachable marking
of N has a reachable counterpart in �, and vice versa [18,8].

Definition 2 (Causality, conflict, concurrency). Let N = 〈P, T, F 〉 be a
net and x, y ∈ P ∪ T two nodes of N . We say that x is a causal predecessor
of y, noted x < y, if there exists a non-empty path of arcs from x to y. We note
x ≤ y if x < y or x = y. If x ≤ y or y ≤ x, then x and y are said to be causally
related. x and y are in conflict, noted x # y, if there exist u, v ∈ T such that
u 6= v, u ≤ x, v ≤ y, and •u∩ •v 6= ∅. We call x and y concurrent, noted x co y,
if they are neither causally related nor in conflict.

Definition 3 (Occurrence net). Let N = 〈P, T, F,M0〉 be a Petri net. We
say that N is an occurrence net if it satisfies the following properties:

a0 b0 c0

a1
a0

a0

b1

b1

b0 c1

a0

b0 c0
a2

a0
c2

a1

b0

θ

α β

α β

γ

b1a0

b0

αβ

α β

ε
η

θ

ζγ

δ

Fig. 5. The attractors for the Petri net of Figure 3, represented in the unfolding prefix
of Figure 4.

1. The causality relation < is acyclic;
2. |•p| ≤ 1 for all places p, and p ∈M0 iff |•p| = 0;

3. For every transition t, t # t does not hold, and [x]
def
= {x | x ≤ t} is finite.

We say that N is a reverse occurrence net iff
←−
N is an occurrence net.

As we said before, an unfolding is an “acyclic” version of a safe Petri net N .
This notion of acyclicity is captured by Definition 3.

As is convention in the unfolding literature, we shall refer to the places of an
occurrence net as conditions and to its transitions as events. Due to the structural
constraints, the firing sequences of occurrence nets have special properties: if
some condition c is marked during a run, then the token on c was either present
initially or produced by one particular event (the single event in •c); moreover,
once the token on c is consumed, it can never be replaced by another token, due
to the acyclicity constraint on <.

Definition 4 (Configuration, cut). Let N = 〈B ,E ,G , c0〉 be an occurrence
net. A set C ⊆ E is called configuration of N if (i) C is causally closed, i.e.
e′ < e and e ∈ E imply e′ ∈ E; and (ii) C is conflict-free, i.e. if e, e′ ∈ C , then
¬(e # e′). The cut of C , denoted cut(C), is the set of conditions (c0∪C •)\•C .

Intuitively, a configuration is a set of events that can fire during a firing
sequence of N , and its cut is the set of conditions marked after that firing
sequence. Note that ∅ is a configuration, and that c0 is its cut.

We can now define the notion of unfoldings. Let N = 〈P ,T ,F ,M0〉 be a safe
Petri net. The unfolding U = 〈B ,E ,G , c0〉 of N is an (infinite) occurrence net
(equipped with a homomorphism h) such that the firing sequences and reachable
markings of U are exactly the firing sequences and reachable markings of N
(modulo h). U can be inductively constructed as follows:

1. The condition set B is a subset of (E ∪{⊥})×P . For a condition b = 〈e, p〉,
we will have e = ⊥ iff b ∈ c0; otherwise e is the singleton event in •b.
Moreover, h(b) = p. The initial marking c0 contains exactly one condition
〈⊥, p〉 for each initially marked place p ∈ M0 of N .

2. The events of E are a subset of 2B ×T . More precisely, for every cut c and
B′ ⊆ c such that {h(b) | b ∈ B ′ } = •t , we have an event e = 〈B ′, t〉. In this
case, we add edges 〈b, e〉 for each b ∈ B ′ (i.e. •e = B ′), we set h(e) = t ,
and for each p ∈ t•, we add to B a condition b = 〈e, p〉 connected by an
edge 〈e, b〉.

Intuitively, a condition 〈e, p〉 represents the possibility of putting a token onto
place p through a particular firing sequence, while an event 〈B ′, e〉 represents a
possibility of firing transition e in a particular context.

Recall that a finite configuration C of U represents a possible firing sequence
whose resulting marking corresponds, due to the construction of U , to a reachable
marking of N . This marking is defined as Mark(C) := {h(b) | b ∈ cut(C) }.
Since U is infinite in general, we are interested in computing an initial portion
of it (a prefix) that completely characterizes the behaviour of N .

Definition 5 (complete prefix). Let N = 〈P ,T ,F ,M0〉 be a safe Petri net
and U = 〈B ,E ,G , c0〉 its unfolding. A finite occurrence net � = 〈B ′,E ′,G ′, c0〉
is said to be a prefix of U if E ′ ⊆ E is causally closed, B ′ = c0 ∪ E ′

•
, and G ′

is the restriction of G to B ′ and E ′. A prefix � is said to be complete if for
every reachable marking M of N there exists a configuration C of � such that
(i) Mark(C) = M , and (ii) for each transition t ∈ T enabled in M , there is an
event 〈B ′′, t〉 ∈ E ′ enabled in cut(C).

We shall write Π0(N ,M) to denote an arbitrary complete prefix of N from
initial marking M . It is known [18,9] that the construction of such a complete
prefix is indeed possible, and efficient tools [22,14] exist for this purpose. The
precise details of this construction are out of scope for this paper; for what follows
it suffices to know that it essentially follows the construction of U outlined above
but that certain events are flagged as cut-offs when they do not “contribute any
new reachable markings”. The construction then does not continue beyond any
such cut-off event.

3 Attractors

Definitions and Fundamental Properties. The notion of attractor denotes,
informally, a set of states from which the system cannot ’escape’, i.e. from any

state of an attractor, only states inside the same attractor are reachable; that is,
the attractors are exactly the terminal SCCs of the transition system. The strong
basin of an attractor A collects those states from which the system eventually
enters A (never to leave it again), and its weak basin those states from which
the system may enter A.

Definition 6. Let N = (P ,T ,F) be a net. An attractor A ⊆ 2P is a bottom
(terminal) strongly connected component (SCC) of TS(N). Denote the set of
attractors (of N) by A, and the set of attractors reachable from a marking M by

Sig(M)
def
= {A ∈ A : A ∩R(M) 6= ∅}.

In particular, an attractor A is a fixed point iff there is M ∈ M such that

A = {M }, and for any t ∈ T , M
t→ M ′ implies M = M ′.

It is important to stress the fact that the SCCs to be considered as attractors
have to be terminal. In the example, the system may (though this is not likely)
cycle forever in the set of states in which neither a2 nor c2 holds; however, this
set is not an attractor. When we wish to give a dynamic characterization of
attraction, and in particular of basins of attraction, it is not enough to require
the existence of infinite runs that stay inside a given state set; we need to restrict
to those runs that ’eventually explore all accessible branches’. This intuition can
be captured by the notion of fairness: any transition that is enabled infinitely
often, must also eventually occur :

Definition 7. In N as above, an infinite firing sequence M0
t1→ M1

t2→ . . . is fair
iff for all t ∈ T : ∣∣∣{i ∈ N; Mi

t→
}∣∣∣ =∞⇒ {j ∈ N; tj = t} 6= ∅ (1)

Note that this notion corresponds to weak fairness in the sense of [23], which
is sufficient for our purposes (see also Abadi et al [1]); we thus speak only of
fairness here. Any such fair sequence will eventually leave any spurious SCC,
and, the state space of the net is finite, sooner or later enter a bottom SCC,
which, of course, it cannot leave anymore. We are thus ready to define:

Definition 8. Let A′ ⊆ A. The strong basin BA′ ⊆ 2P of A′ is the set of
markings from which every fair firing sequence leads eventually into some A ∈
A′; the weak basin WA′ ⊆ 2P of A′ is the set of markings from which some
A ∈ A′ is reachable. By abuse of notation, we will write BA (WA) for BA′

(WA′) when A′ = {A}.

Note that for all attractors A, we have A ⊆ BA ⊆ WA. Also, two distinct
attractors A,A′ must be disjoint, and their strong basins too. However, two
weak basins BA,BA′ are never disjoint, as each contains at least M0.

Signatures for Configurations. Lifting the notion of attraction to the level of
configurations, and by abuse of notation, we set, for any configuration C , Hence,

Sig(C)
def
= Sig(Mark(C)).

Note that in general, for any M there will be several C such that Mark(C) = M .

4 Extracting attractors from unfoldings

In this section, we present a new method that identifies, for a given Petri net
N , both its attractors and their basins, based on the unfolding of N . We first
recall the method from our previous work [2] that identifies attractors, and then
present the new algorithm.

Representation of attractors as finite complete prefixes. The method
from [2] uses unfoldings in two ways: first to find a set of markings which inter-
sects all the attractors, and secondly to output the attractors as a set of finite
complete prefixes.

Every attractor A can be compactly represented as a finite complete prefix
of the unfolding of the Petri net N initialized at some marking M ∈ A. Let us
denote this prefix UM : the markings associated to the configurations of UM are
precisely those of the attractor, moreover the prefix shows the dynamics of the
net while in the attractor. Lastly, the size of UM (as number of non cut-off events)
can be up to exponentially smaller (in case of highly concurrent behaviour) than
the number of markings in the attractor and never exceeds it.

Maximal configurations and attractors. Let us recall from [2]:

Property 1. Let N be a Petri net and U a finite complete prefix of its unfolding.
For every attractor A of N , there exists (at least) one maximal configuration of
U whose associated marking belongs to A.

The Attractor Map. The following algorithm generates a ‘map’ of attrac-
tors, i.e. the set of these attractors together with the information which marking
obtained from a maximal configuration of the first complete prefix leads into
which attractor. It is an extension of the algorithm from [2] for finding attrac-
tors.

Algorithm Attmap. Initialize ̂
def
= ∅, A∗ def

= ∅ and Â def
= ∅.

1. Compute a finite complete prefixΠ0 of the unfolding ofN ; initialiseΠ
def
= Π0.

2. InitializeM to the setMmax of markings corresponding to maximal config-
urations of Π0.

3. Loop: for M in M do

– Compute a finite complete prefix ΠM of the Petri net N = (N ,M).
Grow Π by appending a copy of ΠM to every configuration CM of Π
such that Mark(CM) = M .

– Compute the set nextM
def
= {M ′ ∈M\{M } : M ′ ∈ R(M)} of markings

in M that are reachable from M (reachability check done using ΠM).
• If nextM 6= ∅ then update ̂ := ̂ ∪ ({M } × nextM);
• If nextM = ∅ then update Â := Â ∪ {ΠM } and A∗ := A∗ ∪ {M }.

4. Output the attractor candidates, i.e. marking set A∗ and the set Â of un-

folding prefixes, and the transitive closure
def
= (̂)∗ of ̂.

5. Define the equivalence relation ≡ on A∗ by M ≡ M ′ 4↔ M M ′ ∧ M ′ M
6. In the quotient of A∗ under ≡, one obtains the set of root markings of

attractors as the set A∗ of -maximal elements; the set A of attractors is
the set of prefixes rooted in some marking from A∗.

7. Compute Sig(•):
– For every marking M ∈ A∗, Sig(M)

def
= [M]≡.

– For other M ∈M: Sig(M)
def
= {[M ′]≡ : M ′ ∈ Â ∧M M ′}.

– For all families of configurations (Ci)i∈I ,
• Sig(

⋂
i∈I Ci) =

⋃
i∈I Sig(Ci), and

• if CI
def
=
⋃

i∈I Ci ∈ C, then Sig(CI) =
⋂

i∈I Sig(Ci).

Note that every attractor can be represented as an occurrence net AM
def
= UM

rooted at some attractor marking M , and that no M can be the root of (or even
belong to the marking set of) two distinct attractors. Moreover, the sets C(M)
contain full information about which marking from M allows to reach which
attractors, via the relation ⊆M2.

Comparison with the original algorithm from [2].

– Attmap explores, for every M ∈ M, all markings that are reachable from
M , whereas in [2] it was sufficient to detect existence of some such markings;
the worst-case complexity is thus increased by one exponential factor.

– The information about how some attractor was reached is stored during
the procedure, which induces only a bounded increase of computational and
storage effort.

– A more fundamental difference is that attractors come out of the [2] algo-
rithm as individual markings, rather than equivalence classes as in Attmap.
The reason is that the [2] algorithm discards every marking from which an
attractor representative marking is reachable; this reduction is not available
in the above since all reachability information between the candidate mark-
ings is to be stored. In general, this will include mutual reachabilities; the
quotient with respect to ≡ contracts these strongly connected components.
Since, by a classical result from order theory, the preorder is collapsed into
a partial order by the quotient operation, one retrieves indeed all attractors
from the maximal nodes of /≡.

5 Basins And Their Boundaries

In this section, we will present methods for computing an unfolding-based rep-
resentation of the strong basin of a given attractor. The two methods represent
different tradeoffs w.r.t. time vs space requirements. We will present a so-called
on-line method first and the off-line method later.

On-line Method for Computing Strong Flow Basins. Let N be a net and
A an attractor of N , i.e. a terminal SCC of TS(N). The following procedure
gives a method to compute B(A).

1. Fix any marking M ∈ A, and compute Φ(M)
def
= Π0(

←−
N ,M) = (B,E, F, c0).

Clearly, all M ′ ∈ A, and even all M ′′ ∈ W(A), are represented in Φ(M).
2. Let M← be the set of markings of maximal configurations of Φ(M).
3. Set CA := ∅. For all M ′ ∈M←, do the following:

(a) Apply the algorithm Attmap on the net (N ,M ′); this computes, among
other things, a complete prefix Π(M ′) as well as Sig(M ′′) for all markings
M ′′ reachable from M ′.

(b) For all minimal configurations C ′ of Π(M ′) satisfying Sig(C ′) = {A},
find a configuration C of Φ(M) such that Mark(C) = Mark(C ′), and
add C to CA.

4. With E′ :=
⋃

C∈CA C and B′ = •E′ ∪ E′• ∪ c0, let Ψ(A) = (B′, E′, F, c0),
i.e. Ψ(A) is the restriction of Φ(M) to the events of configurations in CA.

•
p1

•
p2

•
p3

p4

¬A A

p7

a b c

d

e

p1 p2 p3

p4

A

p7

b c

d

e

p1

p4

A

p7

b

d

p2

p4

A

p7

c

d

p3

A

e

Fig. 6. Illustration of the techniques and concepts used in the computation of Ψ(A).
The attractors of the Petri net on the left hand side are the fixed points, i.e. singleton
markings, A = {{A}} and A = {{¬A}}. From the initial marking M0 = {p1, p2} both
attractors are reachable. Reverse exploration from A yields M← = {{p1, p2}, {p3}}.
Computing Φ({A}) yields the reverse occurrence net second-from-left. The three inte-
rior configurations of Ψ(A) are shown in the figures from center to right; the strong
basin of A is the collection of these configurations and their suffixes.

B(A) is now represented by Ψ(A) and CA in the sense that M1 ∈ B(A) iff
there exists a configuration C ′ ⊆ C with Mark(C ′) = M1 and C ∈ C. We shall
call CA the interior configurations of A, motivated by the following two results:

Lemma 1. Let C ′ ⊆ C be a configuration of Ψ(A) such that C ∈ CA. Then
Mark(C ′) ∈ B(A).

Proof: Let M1 = Mark(C ′) and M ′′ = Mark(C). Since C ′ ⊆ C, we have

that M ′′ is reachable from M1 in
←−
N , and hence M1 is reachable from M ′′ in

N . Since Sig(M ′′) = {A}, the only attractor reachable from M1 can be A, too.
Moreover, A is indeed reachable from M1 because C ′ is a configuration of Φ(M),

and therefore reachable in
←−
N from M , where M ∈ A. �

Lemma 2. For every state M1 ∈ B(A), there is a configuration C ′ of ψ(A)
such that Mark(C ′) = M1 and C ′ ⊆ C for some C ∈ CA.

Proof: In step 1 of the algorithm, Φ(M) represents all markings, including
M1, that can reach A in N and hence M . Therefore, in Φ(M) there exists some
configuration whose marking is M1 and which reaches some maximal configura-
tion of Φ(M). Thus, among the maximal markings in M←, there must be some
M ′ such that M ′ reaches M through M1. On each such path there must be a
first marking M ′′ with Sig(M ′′) = {A}, i.e. M ′′ can reach only A and no other
attractor. Since Π(M ′) contains all markings reachable from M ′, step 3(b) of
the algorithm is bound to find some configuration C ′ whose marking is such an

M ′′. Since M ′′ is also reachable from M in
←−
N , it is represented in Ψ(M), and

therefore a configuration C with Mark(C) = M ′′ will be added to CA. �

•
p1

•
p2

p3 p4 p5 p6

A¬A

a b

x

c d

uzy

p1 p2

p3 p4 p5 p6

A¬A A¬A

a b

x

c d

uzy

Fig. 7. A net (left) and its complete unfolding (right) with a bifurcation between two
attractors, {A} and {¬A} that requires coordination of two choices. From markings
{p3, p5} and {p4, p6}, it is inevitable to reach {¬A}. That is, the two concurrent choices
- between a and b on the one hand, and c and d on the other - must be coordinated to
ensure that, e.g., {A} is eventually reached; no local choice can achieve this alone.

Note that in general the set of configurations of net Ψ(A) overapproximates
the basin, as there may be non-interior configurations spanned by Ψ(A). The
example in Figure 6 illustrates this point, see the discussion in the caption.

Off-line computation. In step 3 of the above on-line method, the algo-
rithm Attmap is called at runtime, every time some marking M ′ from M←
is inspected. An alternative procedure, which we call off-line, would consist in
computing, before any basin is inspected, the signature for all states of the tran-
sition system of N ; then, the value of Sig(C) would be found, when needed, by
a lookup. Indeed, this computation can be implemented by applying Attmap
to a modified complete net with places P ∪ P : add a new place p0 to P and
its complement place p0 to P . Make M ′0 := P ∪ {p0} the initial marking, and
for each place p ∈ P , add a transition tp with •tp = {p0, p} and tp

• = {p0, p}.

Add a further transition t0 from p0 to p0, i.e. •t0 = {p0} and t0
• = {p0}, and

add p0 to the presets and postsets of all the original transitions of N . In this
way, the modified net can first decide to move to any marking M ⊆ P before
firing t0 and then behaving just like N would, if starting at M . The advantage
of the off-line method is that it avoids computing the same signatures several
times, in the case of overlaps, and that it produces a very rich set of information
about the dynamics of a net, for any further use. Moreover, the computation of
Φ(M) can be limited and treat events e with Mark([e]) 6= {A} as cut-off points.
Its drawback is in the potentially very big data structures to be explored; the
on-line method may be preferred if the system exhibits many small basins, lim-
iting the number of signatures that are actually required. Which method is to
be preferred, will need to be decided for every net individually.

Example. It is worth noting that the entry into a strong basin need not
be linked to a unique transition; depending on the context, the same transition
may lead either towards or away from some attractor. Consider Figure 7, letting

M1
def
= {p3, p5} and M2

def
= {p4, p6}. Indeed, the predecessors of M1 are {p1, p5}

and {p3, p2}, both of which are in the weak basins of both A and ¬A, and thus
not in B¬A (the case for M2 is symmetric). That is, any transition from {a, b, c, d}

p1 p1 p2 p2

p3 p4 p5 p6

A

a b c d

uy

p3 p4 p5 p6

A

uy

Fig. 8. Continuation of the example from Figure 7. Left: backward unfolding from A
to obtain Φ({A}); one has M← = {{p1}, {p2}}. Right: Ψ({A}), allowing two maximal
and interior configurations.

may contribute to a path into A, or into ¬A; it is the coordination among these
transitions that decides between the two attractors: occurrence of {a, c} or {b, d}
leads to ¬A, that of {a, d} or {b, c} to A.

Boundaries. We note that the above two cases exhibit two very different
behaviours at the boundaries of their strong basins. Let us define a boundary
configuration to be a configuration C that is not interior, but such that there
exists an ’immediate predecessor’ interior configuration C ′ ⊆ with C\C ′ con-
sisting in a single event. Then, in the example of Figure 6, we have a unique
boundary configuration C = {b, c, d} with immediate predecessors C1 = {b, d}

and C2 = {c, d}, and we observe that C is obtained by a sort of closure operation
from the interior configurations, in the sense that C = C1 ∪ C2. By contrast,
the example of Figures 7 and 8, the boundary configurations are C1 = {a, u},
C2 = {d, u}, C3 = {b, y}, and C4 = {c, y}, and the immediate interior successors
C1 = y and C2 = {u}. No obvious combination of C1 and C2 can produce any
Ci. Further classification and study of these (and potentially other) boundary
types is left to future work.

6 Conclusion

We have developped Petri net-represented structures that allow to identify com-
pletely the strong basins of attraction for all attractors present in a finite safe
Petri net. Future work will investigate further the different types of boundaries
encountered here, and aim at refining and evaluating robustness of attractors
and reprogramming strategies [17,16] in the context of concurrency. Finally, in
regard to benchmarks in prior work relying on Petri net unfoldings [2,4], the
time and space consumption of the proposed algorithms allows to envisage their
application to networks with two-digit numbers of nodes. In future work, we will
investigate the implementation of the on-line and off-line algorithms and their
tractability on real-world models of biological systems.

Acknowledgments This research was supported by Agence Nationale de la
Recherche (ANR) with the ANR-FNR project AlgoReCell (ANR-16-CE12-0034);
Labex DigiCosme (project ANR-11-LABEX-0045-DIGICOSME) operated by
ANR as part of the program “Investissement d’Avenir” Idex Paris-Saclay (ANR-
11-IDEX-0003-02).

References

1. Martin Abadi and Leslie Lamport. The existence of refinement mappings. Theor.
Comput. Sci., 82(2):253–284, 1991.

2. Thomas Chatain, Stefan Haar, Löıg Jezequel, Löıc Paulevé, and Stefan Schwoon.
Characterization of reachable attractors using Petri net unfoldings. In Pedro
Mendes, editor, Proceedings of the 12th Conference on Computational Methods
in System Biology (CMSB’14), volume 8859 of Lecture Notes in Bioinformatics,
pages 129–142, Manchester, UK, November 2014. Springer-Verlag.

3. Thomas Chatain, Stefan Haar, Juraj Kolcák, Löıc Paulevé, and Aalok Thakkar.
Concurrency in Boolean networks. Natural Computing, 2019. To appear.

4. Thomas Chatain and Löıc Paulevé. Goal-driven unfolding of petri nets. In Roland
Meyer and Uwe Nestmann, editors, 28th International Conference on Concurrency
Theory, CONCUR 2017, September 5-8, 2017, Berlin, Germany, volume 85 of
LIPIcs, pages 18:1–18:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

5. David P. A. Cohen, Loredana Martignetti, Sylvie Robine, Emmanuel Barillot,
Andrei Zinovyev, and Laurence Calzone. Mathematical modelling of molecu-
lar pathways enabling tumour cell invasion and migration. PLoS Comput Biol,
11(11):e1004571, 2015.

6. Chaoqiang Deng and Patrick Cousot. Responsibility analysis by abstract inter-
pretation. In Bor-Yuh Evan Chang, editor, Static Analysis - 26th International
Symposium, SAS 2019, Porto, Portugal, October 8-11, 2019, Proceedings, volume
11822 of Lecture Notes in Computer Science, pages 368–388. Springer, 2019.

7. Volker Diekert and Grzegorz Rozenberg, editors. The Book of Traces. World
Scientific, 1995.

8. Javier Esparza and Keijo Heljanko. Unfoldings – A Partial-Order Approach to
Model Checking. Springer, 2008.

9. Javier Esparza, Stefan Römer, and Walter Vogler. An improvement of McMillan’s
unfolding algorithm. FMSD, 20:285–310, 2002.

10. Louis Fippo Fitime, Olivier Roux, Carito Guziolowski, and Löıc Paulevé. Identifi-
cation of bifurcation transitions in biological regulatory networks using Answer-Set
Programming. Algorithms for Molecular Biology, 12(1):19, 2017.

11. S. Fueyo, P.T. Monteiro, A. Naldi, J Dorier, É Remy, and C. Chaouiya. Re-
versed dynamics to uncover basins of attraction of asynchronous logical models.
F1000Research, 30(6), August 2017.

12. Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Sys-
tems - An Approach to the State-Explosion Problem, volume 1032 of Lecture Notes
in Computer Science. Springer, 1996.

13. Eric Goubault and Martin Raußen. Dihomotopy as a tool in state space analy-
sis. In Sergio Rajsbaum, editor, LATIN 2002: Theoretical Informatics, 5th Latin
American Symposium, Cancun, Mexico, April 3-6, 2002, Proceedings, volume 2286
of Lecture Notes in Computer Science, pages 16–37. Springer, 2002.

14. V. Khomenko. Punf. http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/.
15. H. Klarner, H. Siebert, S. Nee, and F. Heinitz. Basins of attraction, commitment

sets and phenotypes of boolean networks. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics, 2018.

16. Hugues Mandon, Cui Su, Stefan Haar, Jun Pang, and Löıc Paulevé. Sequential
reprogramming of boolean networks made practical. In Luca Bortolussi and Guido
Sanguinetti, editors, Proceedings of the 17th Conference on Computational Methods
in System Biology (CMSB’19), volume 11773 of Lecture Notes in Bioinformatics,
pages 3–19, Trieste, Italy, September 2019. Springer-Verlag.

17. Hugues Mandon, Cui Su, Jun Pang, Soumya Paul, Stefan Haar, and Löıc Paulevé.
Algorithms for the sequential reprogramming of boolean networks. IEEE/ACM
Transaction on Computational Biology and Bioinformatics, 2019. To appear.

18. K. L. McMillan. Using unfoldings to avoid the state explosion problem inthe
verification of asynchronous circuits. In CAV, pages 164–177, 1992.

19. Nuno D. Mendes, Rui Henriques, Elisabeth Remy, Jorge Carneiro, Pedro T. Mon-
teiro, and Claudine Chaouiya. Estimating attractor reachability in asynchronous
logical models. Frontiers in Physiology, 9, 2018.

20. T. Murata. Petri nets: Properties, analysis and applications. Proc. of the IEEE,
77(4):541–580, 1989.

21. Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri nets, event struc-
tures and domains, part I. Theor. Comput. Sci., 13:85–108, 1981.

22. S. Schwoon. Mole. http://www.lsv.ens-cachan.fr/ schwoon/tools/mole/.
23. Walter Vogler. Fairness and partial order semantics. Inf. Process. Lett., 55(1):33–

39, 1995.

