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Abstract: 

This paper presents a variable stiffness mechanism suitable for use in robotic rehabilitation.  By 

inherently varying both the magnitude and direction of loading in the mechanism using a single 

input, a large variation in effective stiffness is achieved.  Design and analysis of the variable 

stiffness mechanism are presented, along with an example illustrating performance capabilities. 

This paper presents a serial robot for upper limb rehabilitation whose noteworthy characteristics 

are a degree of redundancy and variable stiffness in its four active degrees of freedom.  These traits 

make the robot suitable for various rehabilitation tasks.  The kinematic solution is derived, and 

simulations of two characteristic movements demonstrate how the variable stiffness and 

redundancy contribute to task performance. 
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1 Introduction 

With improvements in health care, populations are aging [1], and it is becoming ever more 

important to focus on maintaining quality of life into the later years.  Additionally, many millions 

of people worldwide are living with disabilities, whether caused by injury or illness, which cause 

upper limb weakness and negatively impact the ability to participate in activities of daily living 

(ADL) [2].  To be effective, therapeutic strategies for augmenting and training weak muscles 

require mass repetition of meaningful, everyday tasks, as well as progressive variation in the 

amount of assistance or correction provided.  These factors motivate the creation of robotic 

rehabilitation technology to maximize quality of life. 

However, current technologies tend to be either low-tech and affordable (e.g., “slings and springs” 

that provide the most basic level of assistance) or high-tech and expensive (e.g., robots using 

feedback control to vary assistance).  This latter category is limited by factors such as cost, 

portability, and general availability of these devices.  Simple and low-cost “variable-stiffness” 

features in robotic therapy devices are needed to promote functional independence.  It should be 

noted that since the most common way to achieve variable stiffness is through high-bandwidth 

control approaches [3], this limits the ability to reduce cost in these systems. 

Existing robotic devices for arm rehabilitation have proliferated in recent years.  Examples include 

ArmeoPower, ARM guide [4], ARMin [5], Bi-Manu-Track [6], GENTLE/s [7], InMotion ARM, 

MIME [8], MIT-Manus [9], Myomo, T-WREX/Armeo Spring [10-12] among many others.  

However, a recent review of more than 120 upper extremity rehabilitation robots [13] shows that 

commercially available solutions are few in number and range from somewhat portable, low-DOF 

systems (e.g., Myomo, a 1-DOF elbow orthosis) to stationary, high-DOF systems (e.g., 

ArmeoPower, a 7-DOF exoskeleton).  These can generally be classified as either joint-by-joint 

(exoskeleton) designs (e.g., ArmeoPower) or end effector-type systems in which a particular point 

on the limb is guided (e.g., InMotion ARM).  The review revealed that while there is no shortage 

in the development of robotic systems for arm rehabilitation, there is a significant technology gap 

pertaining to the simple, low-cost implementation of variable-stiffness features using those 

systems. 

In light of robots’ potential interactions with humans, one of the key technological limitations of 

most robot designs is their relatively high stiffness, which is compounded by the difficulty of 

modifying this property on the fly. An ideal robot for robotic rehabilitation would be lightweight, 

have low inertia, provide adequate power for a range of tasks, and allow a range of impedance or 

stiffness characteristics, all while being inherently safe. In a recent review of upper extremity 

rehabilitation robots and their control modes [14], it was pointed out that rehabilitation tasks may 

be assistive, resistive, or corrective in nature. This spectrum of functionality necessitates variable, 

anisotropic stiffness as a property of rehabilitation robots, particularly when accounting for inter-

patient variability and the evolving needs of each individual patient over time. 

In a recent review of variable-stiffness actuators, Vanderborght [3] used a four-category 

classification: variable stiffness using control, inherent compliance, inherent damping, and inertial 

variation. Numerous drawbacks to the control-based approach were identified, including difficulty 

handling shock loading, storing and releasing energy, and exploiting energy-efficient natural 

dynamics, as well as the general complexity and need for accurate dynamic models. Although 

varying effective stiffness through control software is probably the most common way that human-

robot interaction is implemented, another key drawback in the context of assistive robotics is that 



this requires expensive, high-performance actuator systems to provide the needed bandwidth for 

an appropriate stiffness range characteristic of human interaction tasks.  

The main drawback of variable-damping devices (e.g., friction-based, fluidic, electro-rheological, 

magneto-rheological) is that they are energy-dissipating devices and thus inefficient. Inertial 

devices use flywheels or gyroscopic effects to modulate inertial forces and thus change the 

apparent stiffness; these devices can be bulky, store a lot of energy, and may suffer from limited 

bandwidth in terms of system dynamics. 

To increase safety and flexibility of use, as well as decrease cost in high-performance actuators, it 

is desirable for robot stiffness to be mechanically adjustable (a system-level approach to flexible 

robotics) rather than implemented as a layer of control software; therefore, we favor the category 

of inherent-compliance devices as classified in Vanderborght [3]. These devices can take various 

forms and have the advantage of large bandwidth in terms of adjusting to a wide range of 

stiffnesses and/or natural frequencies. Basic examples include series arrangements of actuators and 

springs [15,16], though these tend to require high-performance actuators to induce the desired 

stiffness characteristic through the spring. Likewise, antagonistic arrangements of springs and 

actuators have been proposed [17-19]. However, these are similarly inefficient because motors 

have to carry the spring loads. Zhou et al. [20] recently presented an active variable stiffness 

module using cables and springs in which adjustment of the preloads modulates stiffness. Another 

recent approach [21] involved an intermediate torque arm with moveable springs to scale the 

apparent stiffness. Vanderborght et al. [3] classified this type of device as changing the 

transmission between the load and the spring. Another option is to change the spring properties to 

vary its stiffness, such as changing the active number of coils [22] or reorienting a beam to alter 

the effective moment of inertia [23]. Kani et al. [24] created a distributed array of small actuators 

with springs to produce an overall variable-stiffness actuator pack. These approaches appear to 

suffer from various disadvantages, such as increased bulk and mechanical complexity [20-21,24], 

limited stiffness range [21,23], and/or poor energy efficiency [17,24]. 

A somewhat limited body of work has focused on using a lever concept to enable variable stiffness 

in a compact actuator package. In Tsagarakis [25], a cam-type lever arm with an adjustable pivot 

driven by a rack and gear mechanism allowed variation of rotational stiffness based on offset linear 

springs. In a modification of this design [26], the linear springs were replaced with torsion springs 

and the rack/gear pivot adjustment was replaced with a ball screw. A similar but slightly later 

design by a different group [27,28] used a Cardan gear mechanism to adjust the pivot point. The 

advantages shared by these designs are large stiffness range, ease of adjustment, and relatively 

compact structure. However, they are not easily modularized (they have to be built into each 

actuator) and this causes a cascade effect into decreased dynamic performance and decreased 

suitability for robots directly interacting with humans. 

In this paper, a simple variable-stiffness transmission is presented which draws on some of the 

principles from prior literature.  Stiffness is adjusted mechanically, using a compliant beam as the 

stiffness element.  Adjustment of the mechanism simultaneously changes the load on the spring 

element, as well as the orientation of the load with respect to the spring (effectively changing the 

transmission ratio).  The result is a wide range of achievable stiffness properties.  We also present 

a redundant robot for upper limb rehabilitation in which these variable-stiffness elements are 

inserted between drive motors and joint axes, rather than using control-based approaches with 

high-performance actuators placed directly on the joints.  This concept has been referred to as 

“inherent compliance” [3] or (more generally) “mechanical intelligence”.  We describe the robot 



design, derive its kinematic relationships, and show how joint stiffnesses are mapped to stiffness 

at the end effector.  Two examples of trajectory-following tasks, relevant to arm rehabilitation, 

involving deterministic translational and rotational wrist patient movements, have been simulated.  

They show the ability to control the robot compliance using the variable-stiffness mechanism. 

 

2 System Design 

The variable stiffness mechanism (see Figure 1) consists of a primary actuator, a driven rotational 

joint, a belt coupling, a spring-loaded idler (freely rotating pulley mounted on an elastic beam), 

and a lead screw with secondary actuator.  The lead screw is used to adjust the position of the base 

of the beam with respect to the primary actuator and driven joint.  The belt couples the primary 

actuator to the driven joint under a no-slip condition, but is also acted upon by the idler mounted 

on the distal extremity of the beam.  Actuation of the lead screw results in variation of the stiffness 

response of the driven joint with respect to the actuator input.  In other words, the result is a 

variable-stiffness spring acting between the position-controlled input and the output axis.  It is 

assumed that other friction and backdriveability considerations related to gearing are negligible 

relative to the effects of this “spring” since they would occur primarily on the actuator side of the 

mechanism. 

 

 

 

 

 

 

 

Fig. 1. Representation of the variable stiffness mechanism mounted on a robot arm (driving a 

differential mechanism); A: driving joint (actuator), B: driven joint, C: freely rotating idler, 

D: beam spring, E: belt, F: lead screw. 

 

3 Robot Design 

The robot consists of two serial links connected by actuated differentials (universal joints), giving 

the robot a total of four degrees of freedom (DOF).  The end effector can be thought of as a passive 

spherical joint attached to the wrist or forearm of the patient to facilitate path-following tasks.  The 

robot is therefore suitable for 3-DOF arm guidance tasks, possessing 1 degree of redundancy.  As 

seen in Figure 2, since the most distal active joint is in the differential at the base of the second 

link, it is possible for the second (distal) link to be slim and lightweight, since its drive motors can 

be mounted on the proximal link.  
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Fig. 2. Representation of redundant double-differential robot and differential joint. 

 

4 Kinematic Analysis 

We define L1 and L2 as the two dimensional parameters of the robot and 1 to 4 as the four joint 

variables. Referring to the body-fixed reference frames of the robot in Figure 3, the incremental 

transformations are as follows. 

 

Fig. 3. Kinematic reference frames (left); redundancy of elbow position (right). 

0T1 = Rz(1),  
1T2 = Rx(2),  

2T3 = Sy(L1),  
3T4 = Rz(3),  

4T5 = Ry(4),  
5T6 = Sx(L2)    (1) 

The end-effector transformation is (using s and c to represent sin and cos respectively): 

 T = 0T1 
1T2 

2T3 
3T4 

4T5 
5T6 = (2) 

[

𝑐1c3c4 – s1c2s3c4 –  s1s2s4 −c1s3 –  s1c2c3

s1c3c4 + c1c2s3c4 + c1s2s4 −s1s3 + c1c2c3

s2s3c4 –  c2s4 s2c3

c1c3s4 –  s1c2s3s4 + s1s2c4 −L1s1c2 + L2(c1c3c4 –  s1c2s3c4 –  s1s2s4)
s1c3s4 + c1c2s3s4 –  c1s2c4 L1c1c2 + L2(s1c3c4 + c1c2s3c4 + c1s2s4)

s2s3s4 + c2c4 L1s2 + L2(s2s3c4 –  c2s4)
] 

and the end-effector position is 

 P = [Px Py Pz 1]T = T[0 0 0 1]T = [t14 t24 t34 1]T (3) 

With one degree of redundancy, the robot has an infinite number of solutions for following a 

desired set of waypoints along a trajectory.  A classical method of resolving the redundancy would 

be to increment from an initial position using a Jacobian pseudoinverse approach which minimizes 

joint motion along the trajectory: 

 



  = JT (J JT)-1P (4) 

Here we pursue a more direct and ultimately more flexible approach for resolving the redundancy, 

which we believe to be novel for this robot.  As shown in Figure 2, for any pose P, the redundancy 

of the 4-DOF robot in reaching a 3-DOF pose in Cartesian space allows the “elbow” of the robot 

(denoted as P1) to lie at any point on a circle symmetric about the line OP.  This circle can be 

described by the following system of two equations, one representing a sphere centered at Q and 

the other constraining the circle to lie in a plane normal to the line OP through Q. 

 (P1x – Qx)
2 + (P1y – Qy)

2 + (P1z – Qz)
2 = r2 (5) 

 Qx(P1x – Qx) + Qy(P1y – Qy) + Qz(P1z – Qz) = 0 (6) 

Here, r is the radius of the circle (locus of P1) and is given by 

 r = L1sin (7) 

where  is found using the law of cosines in the triangle POP1: 

 cos = (L1
2 + |OP|2 – L2

2)/(2L1|OP|) (8) 

 |OP| = (Px
2 + Py

2 + Pz
2)1/2 (9) 

From the trigonometry of this construction, point Q is given by a scalar multiple of P: 

[Qx Qy Qz]
T = (L1cos/|OP|)[Px Py Pz]

T = ((L1
2 + |OP|2 – L2

2)/(2|OP|2)) [Px Py Pz]
T (10) 

With point Q determined, the preceding pair of equations which describe the circle (locus of P1) 

are readily solved for a unique value of P1 (elbow location) by the addition of one constraint.  For 

example, specifying any one of {P1x, P1y, P1z} and substituting the orthogonality constraint into 

the equation of the sphere leads to a quadratic equation in the remaining variable.  This can be 

used to assign P1 a value which avoids obstacles in the workspace (e.g., in the arm rehabilitation 

setting, obstacles could include the patient’s body or objects with which the patient is asked to 

interact). 

With P1 determined, it is possible to obtain a closed-form solution to the inverse kinematics by 

dividing the problem into two parts: using P1 to solve for 1 and 2, and then using the desired end-

effector position P to solve for the remaining 3 and 4.  With 

 TP1 = 0T1 
1T2 

2T3 (11) 

the elbow position can be expressed with components 

 [P1x, P1y, P1z]
T = [-L1s1c2, L1c1c2, L1s2]

T (12) 

Solving these equations for the joint variables gives  

 1 = tan-1(-P1x/P1y) (13) 

 2 = sin-1(P1z/L1) (14) 

With these two joint variables determined, the remaining two joint variables can be found by 

standard algebraic elimination and trigonometric identities applied to the expression for point P: 

θ3 = tan−1 (
(Pz−P1z)s2+(Py−P1y)c1c2−(Px−P1x)s1c2

(Px−P1x)c1+(Py−P1y)s1
)                            (15) 



θ4 = sin−1 (
−(Pz−P1z)c2+(Py−P1y)c1s2−(Px−P1x)s1s2

L2
)                        (16) 

Finally, since these four joint variables are actually driven through differentials (as illustrated in 

Figure 1), the true input variables can be denoted i (i = 1…4) with the following forward and 

inverse transformations: 

1 = ½(1 – 2),       2 = ½(1 + 2),       3 = ½(3 – 4),       4 = ½(3 + 4) 

1 = 1 + 2,            2 = 2 – 1,             3 = 3 + 4,             4 = 4 – 3       (17) 

 

Differentiating the expression for P above gives the 3×4 position Jacobian J in terms of 1-4. 

Jθ = 

[

−L1c1c2 − L2(s1c3c4 + c1c2s3c4 + c1s2s4) L1s1s2 + L2(s1s2s3c4 – s1c2s4)
−L1s1c2 + L2(c1c3c4 – s1c2s3c4 – s1s2s4) −L1c1s2 + L2(−c1s2s3c4 + c1c2s4)

0 L1c2 + L2(c2s3c4 + s2s4)

−L2(c1s3c4 + s1c2c3c4) L2(−c1c3s4 + s1c2s3s4 – s1s2c4)
L2(−s1s3c4 + c1c2c3c4) L2(−s1c3s4 – c1c2s3s4 + c1s2c4)

L2(s2c3c4) −L2(s2s3s4 + c2c4)
] 

  (18) 

With respect to the actual input angles , based on their relationships with , the Jacobian is: 

 J = 
1

2
  J [

1 −1
1     1

   0    0
   0    0

0     0
0     0

   1 −1
   1    1

]   (19) 

 

5 Stiffness analysis 

The Jacobian can be used to map the stiffness relationships between the local joint space and the 

global frame of reference as follows.  The Jacobian is defined by 

 P = J (20) 

and also relates loading in the local and global reference frames: 

  = JTF (21) 

where  is the vector of generalized joint efforts and F is the vector of applied loads at the end 

effector.  When the robot is modeled with lumped compliance in the joints, 

  = K (22) 

K is a diagonal matrix where the eigenvalues represent the four local joint stiffnesses that can be 

controlled on each joint by the use of two agonist/antagonist actuators.  K is alternately expressed 

as the inverse of the compliance matrix C, and therefore 

 P = (JK-1JT)F = CgF (23) 

Here we use Cg to denote the global compliance matrix. 

In the rehabilitation setting, this mapping of stiffness/compliance can be used to create assistance 

or resistance along an intended task path (stiffen the manipulator along the tangent direction), or 

to provide correction when deviation from the intended task path is encountered (stiffen the 



manipulator normal to the tangent direction).  These can be thought of as three main control modes 

(assistive, resistive, and corrective [14]) for robot-assisted rehabilitation.  A passive mode (zero 

stiffness) may also be useful.  In this analysis we neglect the considerations of friction and 

backdriveability attributable to the differentials, since the basic differential is highly efficient in 

comparison to gear reduction that would typically be found at the drive motors. 

 

6 System Analysis 

A precise model of the system is highly coupled and does not lend itself to a closed-form solution; 

the orientation of the force on the idler depends on the idler position and the resulting belt angles, 

but the orientation of the force influences the beam deflection and therefore the idler position itself.  

Therefore, a model is pursued which approximates beam deflection behavior based on a widely 

accepted model for large displacements of compliant beams, and assuming that stiffness of the belt 

is much greater than that of the compliant beam (i.e., the belt acts as a kinematic constraint 

(inextensible), with no pretension at the neutral position of the idler).  As we can assume equal 

angles of the input and output wheels (neutral, or no relative displacement), the path of the idler 

(point P in Figure 4) allowed by the belt is an arc of an ellipse.  The considered ellipse is described 

by its major and minor axis lengths, respectively ae and be, as shown in Figure 5.   

                            

Fig. 4. Large-deflection beam model (left) and pseudo-rigid body model (right).  The large 

displacement of the beam’s extremity, in the beam support frame, is a circle centered at K.  

. 

 

Fig. 5. Elliptical model of idler position (top and bottom left); beam model (bottom right). 

With the focal distance c prescribed (the half-spacing of the input and output pulleys), and the 

minor axis set equal to the y-component of the undeflected beam (i.e., no preload in the beam as 

the idler travels across the top-most point of the ellipse), the ellipse axes are given by 

 be = Lb.sin( (24) 

Lb 



 ae = (c2 + be
2)1/2 (25) 

According to the widely adopted pseudo-rigid body model of a compliant fixed-pinned beam of 

length Lb under tip loading with large deflections (nonlinear beam) [29], it has been shown that 

the beam tip traces an approximately circular deflection path, with the center of that path located 

a distance Lb(1 – ) from the base of the beam, and an equivalent torsion spring K located at the 

circle’s center (see Figures 4 and 6).  In other words, the equivalent rigid-body beam has length 

Lb ( = 0.85 gives a relatively accurate approximation for a range of loading orientations [29]).  

The undeflected beam is initially oriented at an angle , and the tip of the deflected beam under 

tip loading is at an angle of (, as in Figure 6. 

 

Fig. 6. Flexible beam model with displacements. 

If the beam has an initial undeflected orientation  (see Figure 6), and the beam/idler carriage is 

displaced a distance dl along the x-axis (see Figures 5 and 6), then the center of rotation of the 

equivalent beam is given by: 

 xc = dl + Lb(1 – ).cos() (26) 

 yc = Lb(1 – ).sin() (27) 

The idler location P (x,y) is then found as the intersection of the circle with the ellipse by solving 

the set of equations 

  (x – xc)
2 + (y – yc)

2 = (Lb)
2 (28) 

 (x/ae)
2 + (y/be)

2 = 1 (29) 

This allows approximation of the (negative-valued) beam deflection angle  using  

 x = xc + Lb.cos() (30) 

 y = yc + Lb.sin() (31) 

 



Fig. 7. Decomposition of belt forces and resultant in a pseudo-equilibrium of the idler (left and 

right belt tension magnitudes are equal. 

The orientation of the force applied by the belt on the idler F is then easily found by averaging 

the angles of the two (left and right) belt segments (i.e., the force bisects the angle made by the 

belt segments as shown in Figure 7): 

 l = tan-1(y/(x + c))  (32) 

 r = tan-1(y/(x – c)) (33) 

 F = (l +r)/2 +  (34) 

To solve for the compliant beam behavior, it is now necessary to improve on the initial 

approximation for , as beam stiffness is nonlinear in  [29].  This value is sensitive to compressive 

loading along the beam, so it is helpful to define n as the ratio of longitudinal to transverse loading 

at the beam tip: 

 n = cot(F –  – ) (35) 

At this point, equations from [29] are used to refine  and calculate K as functions of n.  More 

specifically, a dimensionless stiffness factor K is a function of n (the reader is referred to [29] for 

further details), and 

 K = KEI/Lb (36) 

where EI is the flexural stiffness of the beam.  The moment at the base of the beam is then 

 M = K (37) 

and the transmission ratio relating the orientation of the force on the idler and the force generating 

transverse loading on the beam tip (i.e., the relative angle between the applied load and the beam 

tip orientation) is 

  = sin(F -  - ) (38) 

The apparent stiffness Kapp of the system is then proportional to 

 Kapp ~ M/ (39) 

which is adjustable through the carriage displacement dl.  In other words, if the force applied from 

the belt through the idler onto the beam is normal to the deflected beam, the apparent stiffness is 

simply the stiffness of the beam, but if the force is along the beam length then the system appears 

“infinitely” stiff (up to the stiffness of the belt and other loaded components).  It should be noted 

that since load applied at the joint will tend to deflect the beam and cause relative rotation between 

the input and output rotation axes (further stiffening the system), Kapp should be thought of as a 

local approximation valid for small values of relative rotation. The additional nonlinear effect of 

stiffening through relative joint displacement is not explicitly considered in this model, based on 

the assumption that these deflections would be mitigated (or limited) through the use of an 

appropriate controller. 

 



7 Example of Variable Stiffness Mechanism 

The above analysis procedure was implemented in MATLAB software with nominal values of 

c = 10, Lb = 4, and EI = 3.  Rather than focusing on these arbitrarily selected values, the objective 

is to investigate how the stiffness behavior changes with adjustments in  and Lb.  Notably, from 

the above equations, these two variables influence the aspect ratio of the ellipse as well as the 

effective transmission ratio.  Values of Lb in the range [1 5] and values of  in the range [0 /2] 

were simulated.  Here two sample results are given. 

In Figure 8, the results for Lb = 2 and  = /4 are shown.  One can observe that over a range of 

dl =  [-2 7], the apparent stiffness changes by >10x, without excessive beam deflection (beam angle 

ratio < 1) and with horizontal load carried in the lead screw not exceeding about 35% of the tip 

load on the beam.  In Figure 9, the results for Lb = 4 and  = /6 are shown. Noting the difference 

in stiffness scale between Figures 8 and 9, one can observe that over a range of dl = [-5 5], the 

apparent stiffness changes by about 20x, without excessive beam deflection (beam angle ratio < 1) 

and with horizontal load carried in the lead screw not exceeding about 40% of the tip load on the 

beam.  This appears to be a slightly superior solution. 

 

Fig. 8. Results for Lb = 2 and  = /4. 

 

Fig. 9. Results for Lb = 4 and  = /6. 

8 Examples of Robot Stiffness Behavior 

We take as a first example a rectilinear motion to be traced by the human hand as a rehabilitation 

exercise, guided by the variable-stiffness robot.  The task description is shown in Figure 10. Using 

reflective markers (placed on the shoulder, upper arm, elbow, forearm, wrist, and hand) and a 



Vicon infrared camera system, typical human arm kinematics for this rectilinear motion was 

measured at 100 Hz as a benchmark.  Such a movement is the expression of a prioritized, important 

objective for a patient: translation within a gravity field (functionally representing tasks such as 

reaching for and grasping an object) is a standard motif in rehabilitation.  

The eigenvectors of the global compliance matrix represent directions along which an applied 

force will produce an aligned deflection. To avoid pushing the user off the intended trajectory, 

while controlling stiffness of the manipulator tangent to the path, the eigenvalues of the stiffness 

matrix should be tuned to align with the path tangent.  This is done through optimization of the 

joint stiffnesses.  At the same time, it is important to ensure that the robot and human only interact 

at the end effector, i.e., that the elbow or arm segments of the robot do not physically interfere 

with the elbow or arm segments of the human; this is the motivation for recording the benchmark 

of human motion as in Figure 10. 

           

Fig. 10. Human arm motion task. 

Experiments were conducted with individuals asked to follow the rectilinear hand trajectory shown 

in Figure 10.  The results indicated globally very similar behavior. 

In following the linear trajectory, person A demonstrates a behavior similar to what would be 

expected in pseudoinverse-based robot control (Figure 11 left).  The elbow trajectory of person B 

also follows the equivalent pseudoinverse path, but with deviation that grows little by little along 

the path.  In this second case (Figure 11 right), the resolution of redundancy was accomplished 

using an orthogonal projection (not detailed in this paper) to model the human behavior in the 

context of this arm movement. 

 

Fig. 11. Human arm motion (blue) and equivalent robot motion (red). Person A left; person B 

right. 



The inverse kinematics approach described above was used to solve for the joint angles i (and 

input angles i) which produce the given trajectory with equal link lengths L1 and L2, subject to 

the constraint that the elbow of the robot should remain in the plane z = 0, as shown in Figure 12. 

Using the Jacobian pseudoinverse solution approach, the joint trajectories are slightly different, as 

shown in Figure 13, and the efficiency of motion is apparent – the arm stays nearly in the plane of 

its initial pose, and although motion in 2 is now nonzero, variations in 1 and 4 are very slight, 

suggesting overall lower kinetic energy. 

 

Fig. 12. Illustration of eleven successive kinematic solutions in the tracking of a straight-line 

trajectory (left) from [0.2, 0.2, 0.2]T to [0.7, 0.7, 0.7]T with the robot’s elbow constrained to lie in 

the horizontal plane (z = 0).  The four resulting joint angles (in radians) and condition number of 

the Jacobian matrix (right). 

   

 

Fig. 13. Tracking a straight-line trajectory using the Jacobian pseudoinverse approach (left). The 

motion efficiency in the joint space is clear, but the elbow position cannot be specified as it depends 

on the previous robot configuration. Joint values and condition number of the Jacobian matrix 

(right). 

For equally spaced positions along the trajectory with P1z = 0, the input compliance values c1-4 (the 

inverse of the input stiffness values) were treated as optimization variables in the range [0.01  10] 

using fmincon() in MATLAB, minimizing the angle between the desired trajectory direction vector 

and either of the two “strongest” eigenvectors (those with larger eigenvalues) of the global 

compliance matrix.  The resulting compliance values (entries on the diagonal of C), and the angular 

misalignment of the compliance ellipsoid with the trajectory tangent, are shown in Figure 14.   
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Fig. 14. Compliance values; angular misalignment of compliance ellipsoid (in the simulation of 

the constrained elbow pose). 

It can be noticed that the optimizer pushes some of the component compliances (stiffnesses) to 

their upper and lower bounds. The severe angular misalignment evident in this example illustrates 

the difficulty of using positive-valued, bounded joint stiffness elements to orient the compliance 

ellipsoid when the position solution is fully constrained (i.e., without taking advantage of the 

robot’s redundancy). 

If, instead, the goal is to maintain relatively uniform compliance in all directions, the objective 

function is re-expressed in terms of the relative magnitude of the eigenvalues of the compliance 

matrix, i.e., maximizing the ratio of the minimum to maximum eigenvalue. This forces the 

compliance ellipsoid to be as spherical as possible. With this revised objective function, the 

variation of stiffness values is more within practical bounds (Figure 15), but the achievement of 

the goal is still somewhat elusive, with the aspect ratio of the compliance ellipsoid reaching above 

4.5:1 for the given trajectory. 

 

Fig. 15. Compliance values; aspect ratio of compliance (maximum to minimum eigenvalues). 

Both robot motions with constrained z-plane (as in Figure 12) and with pseudoinverse control (as 

in Figure 13) are compared to the human reference motion in Figure 16. It can be seen that in both 

cases collisions between the robot elbow and arm segments with the human arm are avoided. 



 

Fig. 16. Comparison of robot and human arm trajectories to check for interference; human in blue 

with shoulder location near top of figure; robot base at (0,0,0) with green indicating trajectory with 

z=0 constraint and red indicating pseudoinverse-based trajectory. 

As a second example, also characteristic of a classic patient objective, we now take a helical 

trajectory as shown in Figure 17.  The solution is calculated using the pseudoinverse method for 

the sequence of waypoints along the path.  Once again we take as the goal to maintain relatively 

uniform compliance in all directions, i.e., maximizing the ratio of the minimum to maximum 

eigenvalue of the compliance matrix.  The resulting compliance values and performance of the 

goal function are shown in Figure 18.  One can notice that the compliance values stay nicely within 

bounds and the aspect ratio of the compliance ellipsoid is better than with the straight-line 

trajectory, though still not perfect. 

 

Fig. 17. Helical trajectory; joint angle solution and condition number of the Jacobian. 



  

Fig. 18. Compliance values for helical trajectory; aspect ratio of compliance (maximum to 

minimum eigenvalues). 

These results collectively suggest that the ability to robustly achieve objectives related to the 

compliance ellipsoid properties, and even compliance values in general, may be to take advantage 

of the robot redundancy.  In other words, rather than constrain the kinematic solution (elbow 

location), the additional freedom of robot elbow placement may be used to improve the compliance 

optimization by changing the Jacobian and thereby changing the global compliance matrix.  This 

bears further investigation. 

 

9 Conclusions 

In this paper, a mechanism providing variable stiffness for robotic rehabilitation and other human-

interaction applications has been presented.  By using a compliant beam and optimizing its length 

and orientation, a wide range of stiffness properties was achieved without requiring high 

performance of the stiffness adjustment actuator or introducing excessive complexity in the 

mechanism.  This is expected to enable improved integration of “mechanical intelligence” in 

human-robot applications. 

A redundant robot for upper limb rehabilitation with variable stiffness has also been presented.  Its 

forward kinematics were given, and the robot’s redundancy was used to obtain a simple inverse 

kinematic solution in closed form.  Kinematic solutions with this method were compared with 

those from a Jacobian pseudoinverse approach.  The effects of inserting variable-stiffness elements 

between the actuators and joint axes were described in terms of a mapping from local stiffness to 

global stiffness characteristics as embodied in the global compliance matrix.  Experimental results 

showed that the eigen-properties of this matrix can be difficult to optimize in relation to meaningful 

rehabilitation tasks, without resorting to exploitation of the kinematic redundancy in order to 

explore a larger search space in the overall optimization; this latter approach merits further study 

in future work. 
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