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Abstract. The structure and chemical composition of Ti-Ni-Zr thin
films grown by thermal evaporation were examined by grazing X-
ray diffraction, transmission electron microscopy and secondary neutral
mass spectroscopy. The influence of the deposition temperature and
substrate nature was studied. Although small sizes of crystallites in the
films (1–10 nm) made the analysis of the phases in present difficult
because of the spreading of the diffraction peaks, the knowledge of the
chemical composition of the films helped to conclude that strong deple-
tion in Zr in the films was observed when the deposition temperature
was high.

PACS number: 68.55.-a

1. Introduction

Discovered in the eighties the quasicrystals belong to a new class of materials.
They present particular chemical and physical properties: hardness and fragility
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with fragile-ductile transition with temperature, low friction tribological prop-
erties, good behaviour facing oxidation and corrosion [1–2]. Their structure
is well-ordered, but aperiodic, exhibiting classically forbidden rotation sym-
metries (e. g. fivefold, tenfold rotation axes, etc.). The crystals (obviously
of periodic structure) whose local order and chemistry are close to those of
the quasicrystals are called approximants of the corresponding quasicrystalline
phase.
Recent works of Kelton et al [3] and Nicula et al [4] have shown that the

Ti-Ni-Zr system presents a quasicrystalline phase for the Ti41.5Ni17Zr41.5 com-
position. In the bulk phase, compounds have been found to store in a reversible
way prodigious amounts of hydrogen [5]. The optimization of energy storage
implies the maximization of the surface/volume ratio of the constitutive ma-
terial of hydrogen batteries. Then preparation in the film form becomes an
interesting challenge. It is essential to find a thin film deposition process to
easily control the deposited stoichiometry and to achieve the quasicrystalline
phase. Literature previous works dealing with quasicrystalline films synthesis
show that different deposition methods can be considered. Publications [7–
13] present results concerning films obtained by cathodic sputtering, pulsed
laser deposition, vacuum deposition, sequential or simultaneous evaporation or
electron-ion sputtering. Most of the authors tackled the elaboration of Al-based
quasicrystalline films, none Ti-based ones (except in our work [6]). Some au-
thors suggest post-deposition annealing treatments of deposited matter to obtain
the phases [14-16]. Unfortunately, such treatments can provoke unstitching of
the films from the substrates, namely due to the relative difference of the ther-
mal expansion coefficients between the substrate and the film. Our previous
study [6] showed the feasibility of the quasicrystal synthesis in the shape of a
film by another process: pulsed laser deposition (PLD). The choice of thermal
evaporation was led by the simplicity of its implementation keeping in mind
that no post-deposition treatment should be performed. The goal of this work
is to see if thermal evaporation (TE) process can be as successful. Different
experimental conditions have been tested. Indeed, different substrate tempera-
tures ranging from 160 ◦C to 350 ◦C have been applied. The synthesized films
were systematically analyzed from a structural, morphological and chemical
aspect. The results were discussed and compared in discussion, notably with
the results obtained by Brien et al [6].

2. Experimental Details

2.1. Sample Preparation

Thermal evaporation was performed in an Edwards AUTO 306 vacuum coater
using tungsten filaments. The films were produced from small pieces of matter
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(50 mg) placed on a tungsten filament. These pieces were cut out of an ingot
obtained by melting, and mixing of high purity elements (99.97% for Ni,
99.7% for Ti and Zr) under helium atmosphere in an induction furnace (radio-
frequency melting). An ingot of nominal composition Ti41.5Ni17Zr41.5 was
taken for the preparation of the evaporated films. The chemical composition
and distribution of the elements were checked by electron probe microanalysis
(EPMA). Such a checking led us to show that good homogenization of the ingots
could be achieved by performing three melts followed by undercooling in the
induction furnace. The films were deposited on glass or sapphire substrates
oriented along their [0001] direction. The thermal evaporation setup allows
the heating of the substrate thanks to Joule effect up to 320 ◦C. A resistance
located behind the holders produces it. The temperature of the substrate was
controlled by means of a thermocouple located behind the substrate holders.
Three deposition temperatures have been tested: 150, 270 and 320 ◦C. The
vacuum condition before deposition was 10−7 mbar.

2.2. Techniques of Characterization

The chemical depth profiles of the films were obtained by secondary neutral
mass spectroscopy (SNMS). All the chemical compositions are given within
an experimental error of 5 at.%. The thickness of the films was estimated
by performing profilometry on the SNMS craters and was found to be in the
range of 15–30 nm. Grazing incidence X-Ray diffraction (GXRD) using the
CoKα1 radiation and a curved detector (INEL CPS120) was performed at 0.5◦

incidence for the identification of the phases. The carbon coated copper electron
microscopy grids were systematically placed just next to the film substrate on
the substrate holder to perform transmission electron diffraction and imaging.
Transmission electron microscopy (TEM) observations were carried out on a
PHILIPS CM200 microscope; an accelerating voltage of 200 kV was used.

3. Results

3.1. Structural Analysis

As the nature of substrate (glass, sapphire) has been found to produce no notice-
able difference on results, the GXRD patterns obtained from the films deposited
on glass substrates at the three different temperatures tested are given in Fig. 1.
Vertical strikes, indicating the expected positions of the main peaks: (2/3 0/0
1/2), (2/4 0/0 0/0), (3/4 0/1 0/0) and (4/6 0/0 0/0) of the icosahedral
structure have been drawn on the X-ray diffractograms. They were respec-
tively labeled 2, 1, 4 and 3. The GXRD patterns all exhibit a broad maximum.
Whatever the substrate temperature is, it is located around 2θ = 45◦. Its broad-
ness suggests the films could either be amorphous, either be constituted of very
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small-sized crystallites, or be a mixture of both. To lift up the ambiguity, TEM
analyses were performed. TEM diffraction patterns are reported in Fig. 2a–
c. The corresponding dark field images using the first diffused paraxial ring
were also recorded (Fig. 2d–e). TEM dark field images of the film prepared
at 320 ◦C could not be done because of the prohibitive exposure times. There-
fore, a bright field image was recorded instead (Fig. 2f). All the films were
nanocrystallized. The average size of the crystallites was estimated from the
TEM images and was found to be around 1 nm whatever the deposition temper-
ature was, supporting the fact that broad diffraction peaks have been observed
in GXRD.

20 30 40 50 60 70 80

c

2
4

a

b

2ÿ (deg)

a.
u.

a.
u.

a.
u.

Fig. 1. GXRD patterns of thin films obtained by thermal evaporation on
glass substrates (amorphous signal of glass substrate was subtracted)
(a) film deposited at 150 ◦C; (b) film deposited at 270 ◦C; (c) film de-
posited at 320 ◦C.
Positions of the main peaks of the icosahedral structure have been set
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Because of the broadness of both the GXRD diffraction peaks and the TEM-
diffraction rings, it is rather difficult to identify the phase of the nanocrystallites.
It can however be estimated that the maxima of the broad signal in GXRD are
localized around the (2/3 0/0 1/2), (2/4 0/0 0/0) and (3/4 0/1 0/0) peaks of
the icosahedral structure (Fig. 1).

Fig. 2. TEM diffraction patterns and images of the films prepared by
thermal evaporation at different temperatures
(a) to (c) diffraction patterns; (d) and (e) dark field images obtained on
the first diffused paraxial ring and (f) bright field image showing the
size of the crystallites. Substrate temperatures are labelled

In the same way, the first TEM ring (Fig. 2c, labeled 1) is localized around
the position of the set of the three rings of the icosahedral ones: (1/4 0/1 0/0),
(2/3 0/0 1/2), and (2/4 0/0 0/0). Similarly, the second (labeled 2) and the
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third (labeled 3) rings were found to be very near the positions of the (4/5 0/0
1/0) and (4/6 0/0 0/0) reflections. This would tell the evaporated films could
be made of nanocrystallites of the icosahedral phase or of a close approximant.

3.2. Chemical Analysis

The nature of the substrate (glass, sapphire) was found like for the structural
results to produce no influence on the results obtained for the chemical analysis.
The SNMS depth profiles analyses were carried out on the samples prepared at
the different deposition temperature to look at the influence of the deposition
temperature and at several locations of every sample to check the composition
homogeneity of the films. The obtained profiles are exemplified in Fig. 3, as
a function of the deposition temperature (150 and 270 ◦C) and location on the
same sample. Both profiles recorded on the film prepared at 270 ◦C were on a
distance of 10 mm.

co
nc
en
tr
at
io
n

(a
t.

)

co
nc
en
tr
at
io
n

(a
t.

)depth (nm)

depth (nm)

0
10
20
30
40
50

60
70

0 10 15

0
10
20
30
40
50
60
70

0 10 15

0
10
20
30

40
50
60
70

0 10 15 20 25 30

Zr

Ti

Ni

O

5 5

5

150 C 270 C – A

270 C – B

a

c

b

Fig. 3. SNMS graphs giving the composition profiles of the thermally evaporated
films versus depth. Substrate is on the right
(a) film deposited at 150 ◦C; (b) and (c) film deposited at 270 ◦C; (b) profile recorded
in point A; (c) profile recorded in point B. A and B are 10 mm distant from each
other

On all samples, the chemical composition of the film is not constant along
the film thickness. All the films exhibit a superficial zone of about 5 to 10 nm in
thickness where oxidation seems to have occurred after deposition. Indeed, this
zone is marked by a nickel depletion combined with strong oxygen enrichment,
suggesting the presence of titanium or zirconium oxides on the surface.
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The composition homogeneity can be checked in the sample prepared at
270 ◦C. The recorded profiles are on a distance of 10 mm (Fig. 3b and 3c).
The trends of the in-depth changes in the composition are on the whole same.
Small differences are observed with the substrate near the interface.

Table 1. Average chemical composition (at.%) obtained from SNMS analyses on films
versus the substrate temperature. Nominal composition of evaporated matter was
Ti41.5Ni17Zr41.5

T Average chemical composition
( ◦C) (precision 5 at.%)

150 Ti68Ni24Zr8
270 Ti65Ni29Zr6
320 Ti77Ni22Zr1

The average chemical compositions taken in the non-oxidized zone of the
films were evaluated on the films prepared at different temperatures. They are
given in Table 1. One can realize that whatever the substrate temperature used,
the thermal evaporation produces a big gap between the composition of the
matter to be evaporated and that of the resulting films. A large enrichment of
Ti to the detriment of Zr can be seen. The Zr depletion is particularly important
close to the interface. The films deposited at 320 ◦C do contain almost no Zr
(cf. Table 1). Such an evaporation-condensation technique is a very sensitive
method to the values of the respective saturated vapor pressures of the elements
[17]. The Ni content in the films is also higher than the value expected.

4. Discussion

The TEM observations performed on carbon-coated grids were generally found
to be consistent with the GXRD results performed on glass substrates. One can
exclude then the important substrate effects. This point was also observed when
similar films were grown by PLD [6].
Although the small crystallites constituting the films produce diffraction

signals located around those of the quasicrystalline expected phase, and so,
present close order to the searched one, their chemical composition is far from
Ti41.5Ni17Zr41.5. Indeed, relative vapour saturation tensions differences of dif-
ferent phases in the ingot have a drastic effect on condensation. Further works
should have use ingots of different composition to compensate the loss of Zr
in the films. The obtained compositions seem to be logical with the values
of the vapour saturation tensions of Zr and Ti. This implies that work on the
link between initial nominal composition and the one of the films is neces-
sary. However, the authors think a complementary and careful work has to be
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done on the link between the nature of the phases present in the matter to be
evaporated and the obtained chemistry in the films. Ingots used here are not
quasicrystalline but composed of different phases. This lack of homogeneity in
the initial matter in order to be evaporated must influence the behaviour during
evaporation although it is a quick thermal phenomenon.
The technique has proven to be rather good to provide a homogeneous sam-

ple. Even if the film thickness is out of control in contrary to results of [6],
the simplicity of the technique makes it very attractive for industrial consid-
erations. Moreover, one can imagine equipping the current evaporation setup
with a regular supplying of matter to be able to grow thicker samples.

5. Conclusions

Ti-Ni-Zr films of 15 to 50 nm in thickness have been prepared by TE process.
Different substrate temperatures ranging between 160 ◦C and 350 ◦C have been
applied. The structure, nature and chemical composition of the films have been
studied and compared. The Ti-Ni-Zr icosahedral phase is not formed under the
tested conditions but films seem structurally close regarding different diffraction
patterns although their chemical composition is so far. Conclusive decisions
for a further work have been suggested.
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