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Stochastic and deterministic SIS patch model

T. Yeo ∗†

July 13, 2020

Abstract

Here, we consider a SIS epidemic model where the individuals are distributed
on several distinct patches. We construct a stochastic model and then prove
that it converges to a deterministic model as the total population size tends
to infinity. Furthermore we show the existence and the global stability of a
unique endemic equilibrium provided that the migration rates of susceptible
and infectious individuals are equal. Finally we compare the equilibra with
those of the homogeneous model, and with those of isolated patches.

Keywords: epidemic patch model . law of large numbers . endemic equilibrium

0 Introduction

Early epidemic models were formulated assuming that individuals in the population
mix homogeneously [2, 5, 9, 16, 25]. In this consideration, all pairs of individuals in
the population have the same probability of coming into contact with each other.
But, it is well known that in a large population several groups can be formed due to
heterogeneity arising, for example, from social and economic factors. Some people
may live in cities while others may live in rural areas. Consequently, demographic and
disease parameters may vary for each group, and then the persistence and extinction
of infectious diseases in those communities can be different. Furthermore, people
may travel between the groups, which leads to the spread of the disease between
groups. Then it is clear that spatial heterogeneity, habitat connectivity and rates
of movement of individuals play an important role in the outbreak of an infectious
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disease. Those considerations have lead to the development of epidemic models that
take into account the structure of the population. For this reason, several authors
studied heterogeneous epidemic models, by structuring the spatial environment
into patches. Fulford et al. [13] developed a Susceptible-Exposed-Infectious (SEI)
metapopulation model for the spread of an infectious agent by migration. Salmani &
Van den Driessche [19] considered a SEIRS deterministic model in which travel rates
were assumed to depend on the disease status. Disease spread in metapopulation
models involving discrete patches has been also investigated by Arino et al. [3],
Arino & Van den Driessche [4], Jin & Wang [15], Wang & Mulone [23], Wang &
Zho [24]. Arino & Van den Driessche developed a general framework for movement
of susceptible, exposed, infectious, and recovered individuals (SEIRS model) and
define a mobility matrix, an irreducible matrix that defines the spatial arrangement
of patches and rates of movement between patches. Wang and colleagues studied
uniform persistence and global stability of disease-free and endemic equilibria in
Susceptible-Infectious-Susceptible (SIS) metapopulation models. In a similar setting,
Allen et al. [1] showed for a SIS deterministic patch model that, while the population
is at an endemic level and if infectious individuals travel between the patches but
the rate of travel for susceptible individuals approaches zero, then, the endemic
equilibrium approaches a disease–free equilibrium.
Deterministic patch models describe the spread of disease under the assumptions
of mass action, relying on the law of large numbers. But the most natural way
to describe the spread of disease is stochastic. The probabilistic point of view is
recent. Let us mention some authors which treated stochastic epidemic models.
In 2007, McCormack & Allen [17] studied a SIR and a SIS epidemic model. In
this setting both models are deterministic and stochastic. They showed that travel
between patches can lead to either disease persistence or extinction in all patches.
Considering stochastic model, Clancy [10] proposed a SIR model, and then showed
that movement of infectious individuals can decrease the spread of the disease. In
the same considerations, Sani et al. [20] introduced a multi-group SIR model for
the spread of AIDS. In this study, the authors used Markov process to describe the
model. Using an approximating system of the ODEs, they analysed the equilibrium
behaviour of the stochastic model. Finally, let’s mention that stochastic epidemics
in a homogeneous community has been studied recently by Britton & Pardoux [9].

The rest of the paper is organised as follows. In section 1 we introduce a stochastic
model on a finite number of patches. Section 2 is devoted to the law of large numbers.
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In section 3 we show that the limit deterministic model has an unique endemic
equilibrium (EE) which is gloably asymptotically stable. Finally we compare this
endemic equilibrium with the one of the homogeneous model in the section 4.

1 The model

Consider a population consisting of N individuals, where each individual is located
at one of j geographically distinct patches. Sites (or vertices) represent human
communities in which the disease can diffuse and grow. The edges represent links
between communities (see figure 1 below). Individuals in that population can be
classified according to their ability to transmit the disease to others. Susceptible
individuals are those who do not have the disease and who can become infected.
Infectious individuals are those who are infected by the disease and can transmit
it to susceptible individuals. In this work, attention is given to the SIS model, but
the same approach can be developed in the case of the SIRS model and of the SIR
model with demography. For any patch j, the transmission of the disease depends
on three factors: the rate of contacts, the probability that a contact is made with
a susceptible individual, and the probability that a contact between an infectious
and a susceptible individual leads to a successful transmission (see e.g [8, 9]). Sj(t)
(resp. Ij(t) ) denotes the number of susceptible (resp. infectious) individuals in patch
j at time t. We formulate a random Markov epidemic model as a Poisson process
driven stochastic differential equation (SDE). In what follows the Pj are mutually
independent standard Poisson processes. Infections, healings and migrations of
individuals happen according to Poisson processes. In this model

• infections are local;

• when an infectious individual cures, he immediately becomes susceptible again;

• each infectious individual meets other individuals at some rate αj. The
encounter results in a new infection with probability pj if the patner of

the encounter is susceptible, which happens with probability Sj(t)
Sj(t) + Ij(t)

,
since we assume that individuals in each patch mix homogeneously. Letting
λj = αjpj and summing over the infectious individuals at time t gives the

rate λj
Sj(t)

Sj(t) + Ij(t)
Ij(t) at time t. Then Pinf

j

(∫ t

0
λj

Sj(r)Ij(r)
Sj(r) + Ij(r)

dr

)
counts

the number of transitions of type S −→ I on the patch j between time 0 and
time t;
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• recovery of an infectious happens at rate γj, so Prec
j

(∫ t

0
γjIj(r)dr

)
counts the

number of transitions of type I −→ S on the patch j between time 0 and time t.

• The term Pmig
S,j,k

(∫ t

0
νSajkSj(r)dr

)
counts the number of migrations of suscepti-

ble individuals from patch j to k, if we assume that each susceptible migrates
from j to k at rate νSajk, and similarly for the compartment I.

Here, νS and νI are the diffusion coefficients for susceptible and infectious individuals,
respectively. aij represents the degree of movement from patch i into patch j.

• infectious individuals
• susceptible individuals

Figure 1: Metapopulation

Then the propagation of the illness can be modeled by the following system of
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stochastic differential equations

(1.1)



Sj(t) = Sj(0)− Pinf
j

(∫ t

0
λj

Sj(r)Ij(r)
Sj(r) + Ij(r)

dr

)
+ Prec

j

(∫ t

0
γjIj(r)dr

)

−
∑̀
k=1
k 6=j

Pmig
S,j,k

(∫ t

0
νSajkSj(r)dr

)
+
∑̀
k=1
k 6=j

Pmig
S,k,j

(∫ t

0
νSakjSk(r)dr

)

Ij(t) = Ij(0) + Pinf
j

(∫ t

0
λj

Sj(r)Ij(r)
Sj(r) + Ij(r)

dr

)
− Prec

j

(∫ t

0
γjIj(r)dr

)

−
∑̀
k=1
k 6=j

Pmig
I,j,k

(∫ t

0
νIajkIj(r)dr

)
+
∑̀
k=1
k 6=j

Pmig
I,k,j

(∫ t

0
νIakjIk(r)dr

)

t ∈ [0, T ], j = 1, · · · , `.

In the next section we show that this stochastic model converges to a deterministic
epidemic patch model as the total size of population tends to infinity.

2 Law of large numbers

We introduce the martingales Mj(t) = Pj(t)− t and we look instead at the renormal-
ized model by dividing the size of the population in each compartment by N. Hence
by setting

SN
j (t) = Sj(t)

N , IN
j (t) = Ij(t)

N , SN(t) =


SN

1 (t)
...

SN
` (t)

, IN(t) =


IN
1 (t)
...

IN
` (t)

, and

ZN(t) =
 SN(t)

IN(t)

 , then the stochastic model takes the aggregated form

ZN(t) = ZN(0) +
∫ t

0
b
(
r,ZN(r)

)
dr +

k∑
j=1

hj
N Mj

N
∫ t

0
βj
(
ZN(r)

)
dr

,(2.1)

where k is the total number of Pj’s in the system, and

b
(
r,ZN(r)

)
=

k∑
j=1

hjβj
(
ZN(r)

)
;(2.2)

the vectors hj ∈ {−1, 0, 1}2` denote the respective jump directions with jump rates
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βj . The rates

β.
(
ZN(t)

)
∈
{ λjSN

j (t)IN
j (t)

SN
j (t) + IN

j (t) , γjI
N
j (t), νS aijSN

j (t),(2.3)

νI aijIN
j (t), i, j ∈ {1, · · · , `}

}
.

Concerning the initial condition, we assume that ZN(0) = zN = [Nx]/N, for some
x ∈ [0, 1]`, where [Nx] is a vector of integers.
We set FN

t = σ{ ZN
j (r), 0 ≤ r ≤ t, j = 1, · · · , ` } and we shall assume that the

process {ZN(t), t ≥ 0} is defined on the filtered probability space
(
Ω,F ,FN

t ,P
)
. In

what follows, ‖u‖ denotes the L1 norm of an `–dimensional vector u. More precisely,

‖u‖ =
∑̀
j=1
|uj|. We shall say that a vector u is nonnegative (resp. positive) if all its

elements are nonnegative (resp. positive), in with case we will write u ≥ 0 (resp.
u > 0). The following theorem shows that the solution of the stochastic model (2.1)
converges a.s. locally uniformly in t to the solution of a deterministic model, as the
total population size N tends to infinity.

Theorem 2.1 [Law of Large Numbers]
Let ZN denote the solution of the SDEs (2.1) and z the unique solution of the system
of ordinary differential equations dz

dt
(t) = b(t, z(t)), z(0) = x.

Let us fix an arbitrary T > 0. Then sup
0≤t≤T

∥∥∥∥ZN(t)− z(t)
∥∥∥∥ −→ 0 a.s., as N→ +∞.

Note that the solution z(t) =
(
S1(t), I1(t),S2(t), I2(t), · · · ,S`(t), I`(t)

)T
of the deter-

ministic model satisfy

(2.4)



dSj
dt

(t)=−λj
Sj(t)Ij(t)

Sj(t) + Ij(t)
+ γj Ij(t) + νS

∑̀
k=1
k 6=j

(
akj Sk(t)− ajk Sj(t)

)

d Ij
dt

(t)=λj
Sj(t)Ij(t)

Sj(t) + Ij(t)
− γj Ij(t) + νI

∑̀
k=1
k 6=j

(
akj Ik(t)− ajk Ij(t)

)

Sj(0) ≥ 0, Ij(0) ≥ 0

j = 1, · · · , `.

Sj(t) (resp. Ij(t) ) is the proportion of the total susceptible (resp. infectious)
population which is localized on the site j at time t.
Theorem 2.1 ensures that, as the population size N becomes large, the proportion
of susceptible and infectious individuals at each patch is well approximated, on
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any bounded intervall [0, T ] by the solution of the ODEs (2.4), provided the scaled
process starts close to an initial value of the ODEs.

Theorem 2.1 is a special case of Theorem 2.2.7 of Britton & Pardoux [9], where
the proof written for the homogeneous model covers our situation as well. One of
the earliest references on this convergence result is Ethier & Kurtz [12] (chapter 11,
Theorem 2.1). Thus, we do not give details and refer the reader to those papers
for a complete proof. We briefly sketch the idea of the proof. First note that
0 ≤ ZN(t) ≤ 1, for all t ∈ [0, T ]. By using the law of large numbers for Poisson
processes and the second Dini Theorem, it follows that

sup
0≤t≤T

∣∣∣∣ ∑̀
j=1

hj
N Mj

(
N
∫ t

0
βj(ZN(r))dr

) ∣∣∣∣ a.s.−→ 0.

Next, it is not hard to see that b(t, z) is a globally Lipchitz function of z, locally
uniformly in t. From this fact, it follows that, for all t ∈ [0, T ],

∥∥∥∥ZN(t)− z(t)
∥∥∥∥ ≤ ∥∥∥∥zN − x

∥∥∥∥+
∥∥∥∥ ∑̀
j=1

hj
N Mj

(
N
∫ t

0
βj(ZN(r))dr

) ∥∥∥∥(2.5)

+ C
∫ t

0

∥∥∥∥ZN(r)− z(r)
∥∥∥∥dr,

where C is the Lipschitz constant of b. Finally, the result follows from Gronwall’s
Lemma and the fact that the two first terms in the right-hand side of (2.5) tend to
zero as N→∞.

In the following section, we study the equilibra of this system of ODEs.

3 Equilibra of the ODEs and their stability

In this section, we consider properties of the disease free equilibrium (DFE) and
the endemic equilibrium (EE), including its existence, uniqueness and stability.
Throughout this section, we assume that the connectivity matrix A =

(
aij
)

1≤i≤`
1≤j≤`

is

irreducible and symmetric. This irreducibility assumption implies that the patches
cannot be separated into two disjoint subsets such that there is no migration of
individuals from one subset to the other. That is, for any j, k ∈ {1, · · · , `}, j 6= k,
there exists s ≥ 2, a sequence j1, j2, · · · , js ∈ {1, · · · , `} such that j1 = j, js = k

and ajiji+1 6= 0, ∀i ∈ {1, · · · , s− 1}. We shall say that a matrix M =
(
mij

)
1≤i≤`
1≤j≤`

is
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nonnegative (resp. positive) if all its elements are nonnegative (resp. positive), in with
case we will writeM ≥ 0 (resp. M > 0). In what follows, we set Nj(t) = Sj(t)+Ij(t).
Let us mention that the system of ODEs (2.4) obtained in Theorem 2.1 has been
studied by Allen et al. [1], where the authors studied the asymptotic profiles of the
steady states. First, using the irreducibility of the connectivity matrix, they show

Lemma 3.1 (Allen [1] ) [Existence and uniqueness of the DFE]
The system (2.4) has a unique disease-free equilibrium which is given by

ẑ :=
(

Ŝ1, Î1, Ŝ2, Î2, · · · , Ŝ`, Î`
)

=
(1
`
, 0, 1

`
, 0, · · · , 1

`
, 0
)
.

The DFE always exists, an important question is whether an outbreak of the
disease can occur when the population initially contains a small number of infected
individuals. This question may be addressed using stability analysis of the DFE. In
fact if R0, the basic reproduction number (the expected number of secondary cases
produced, in a completely susceptible population, by a typical infective individual)
is less than 1, the DFE is globally asymptotically stable. That is, the trajectory of
the ODEs which starts close to the DFE will be attracted towards the DFE. That is
the content of the next lemma. Before, we use the next-generation matrix approach
of Van den Driessche & Watmough [11] to compute R0. Define the matrices

A = diag(γj)1≤j≤`, F = diag(λj)1≤j≤` and D = (dij)1≤i, j≤`

with dij =


−
∑̀
k=1
k 6=i

aik if i = j,

aij if i 6= j.

A direct application of the result of the above reference yields the following Proposi-
tion.

Proposition 3.1 The basic reproduction number for (2.4) is the spectral radius of
the next-generation matrix:

R0 = ρ(−FV−1),

where V = νID− A.

We have also the

Lemma 3.2 (Allen et al. [1] ) [Stability of the DFE]
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If R0 < 1, then the disease-free equilibrium ẑ is globally asymptotically stable, that is

z(t) −→ ẑ, as t→∞.

We will show at the end of this section that, under a specific condition, the disease-free
equilibrium is globally asymptotically stable if R0 = 1. The existence and uniqueness
of the EE for (2.4) is shown in [1] under the assumption that R0 > 1. In that work,
the authors were not able to prove the stability of the EE, but conjectured that
this EE attracts all solutions whose initial conditions have a nonzero proportion of
infectious (and numerical simulations suggest that this is indeed the case). Here,
we employ the approach in Bichara et al. [7] to prove the globally stability of the
EE, under the assumption that infectious and susceptible individuals have the same
diffusion rate νS = νI := ν.
Assuming that νS = νI := ν, then the sytem given by (2.4) is equivalent to

(3.1)



dNj(t)
dt

= ν
∑̀
k=1
k 6=j

(
akjNk(t)− ajkNj(t)

)

d Ij(t)
dt

= λj

(
1− Ij(t)

Nj(t)

)
Ij(t)− γj Ij(t) + ν

∑̀
k=1
k 6=j

(
akjIk(t)− ajkIj(t)

)

j = 1, · · · , `,

which can be written in the form

(3.2)


dN(t)
dt

= νDN(t)

d I(t)
dt

= νD I(t)− A I(t) +
(
I` − diag(N−1

j (t))diag(I(t))
)

F I(t),

where N = (N1, · · · ,N`)T, I = (I1, · · · , I`)T and I` is the identity matrix with
dimension `× `. Note that

(
I` − diag(N−1

j (t))diag(I(t))
)

F I(t) is the vector of new
infections, νDI(t) is the vector of migrations of infectious individuals and AI(t) is
the vector of transitions of individuals from the compartment I to the compartment
S.

Lemma 3.3 The system dN(t)
dt

= νDN(t) has a unique global asymptotically stable
equilibrium.

Proof : Let Q be the matrix such that qij = aji for i 6= j and qjj = −
∑̀
k=1

akj.
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Hence the system dN(t)
dt

= νDN(t) is equivalent to dNT(t)
dt

= νNT(t)Q. Notice
that Q is the infinitesimal generator of an irreducible Markov process with state
space

{ n
`
, n = 0, 1, · · · , `

}`
. By using Theorem 5.1 of Pardoux [18], it follows that

there exists a unique strictly positive equilibrium N∗ which solves the equation
(N∗)TQ = 0. Since the state space is finite, the Markov process associed to the
infinitesimal generator Q is reccurent, and then the global asymptotic stability of
N∗ is garanteed by the Theorem 6.5 of the above reference.

�

Next we treat the existence and stablity of the endemic equilibrium for the system
given by (3.2). Notice that (3.2) is of triangular form, and hence the theory of asymp-
totically autonomous systems for triangular systems (Vidyasagar [22] ) guarantees
that the asymptotic stability of its equilibrium is equivalent to that of the system

d I(t)
dt

= νD I(t)− A I(t) +
(
I` − diag(1/N∗j)diag(I(t))

)
F I(t),

where (N∗1, · · · ,N∗`) is the unique asymptotically stable equilibrium defined in
Lemma 3.3. The Jacobian matrices of

(
I` − diag(N−1

j (t))diag(I(t))
)

F I(t) and
νD I(t)−A I(t), respectively, at the disease free equilibrium are F and V. For the
convenience of the reader, we recall the following result.

Theorem 3.1 (Vidyasagar[22], Theorem 3.1 and 3.4)
Let f and g be two functions of class C1. Consider the following system

(3.3)



ẋ = f(x)

ẏ = g(x, y) x ∈ Rn, y ∈ Rm

with an equilibrium point (x∗, y∗), i.e. ,

f(x∗) = 0 and g(x∗, y∗) = 0.

If x∗ is globally asymptotically stable (GAS) in Rn for the system ẋ = f(x), and if
y∗ is GAS in Rm for the system ẏ = g(x∗, y), then (x∗, y∗) is locally asymptotically
stable for (3.3). Moreover, if all the trajectories of (3.3) are forward bounded, then
(x∗, y∗) is GAS for (3.3).

We shall need below the

Theorem 3.2 (Hirsch [14], Theorem 6.1)
Let F be a C1 vector field in Rq, whose flow φ preserves Rq

+ for t ≥ 0 and is strongly
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monotone in Rq
+. Assume that the origin is an equilibrium and that all trajectories in

Rq
+ are bounded. If the matrix-valued map DF : Rq −→ Rq×Rq is strictly decreasing,

in the sense that
if x < y then DF (x) > DF (y),

then either all trajectories in Rq
+\{0} tend to the origin, or there is a unique equi-

librium p∗, (p∗ � 0) in the interior of Rq
+ and all trajectories in Rq

+\{0} tend to
p∗.

Now, we are in a position to prove the main result of this section.

Theorem 3.3 [Existence and stability of the EE]
Assume that νI = νS := ν and R0 > 1. Then the system (2.4) has a unique endemic
equilibrium z∗ =

(
S∗1, I∗1,S∗2, I∗2 · · · ,S∗` , I∗`

)
, which is globally asymptotically stable.

Proof : It follows from Theorem 3.1 that it is sufficient to study the stability of
the reduced system

d I(t)
dt

= νD I(t)− A I(t) +
(
I` − diag(1/N∗j)diag(I(t))

)
F I(t).

Note that the set defined by

K =
{(

(u1, · · · , u`), (v1, · · · , v`)
)
∈ R`

+×R`
+ : 0 ≤ vi ≤ ui, 1 ≤ i ≤ ` and

∑̀
i=1
ui = 1

}

is a compact positively invariant for the system (3.1). Define

L(I) = (F + V)I− diag(1/N∗j)diag(I)F I.

The derivative DL(I) is

DL(I) = (F + V)− diag(1/N∗j)diag(I)F− diag(1/N∗j)diag(F I)

= νD− A + F− diag(1/N∗j)diag(I)F− diag(1/N∗j)diag(F I).

Notice that DL(I) is an irreducible Metzler matrix. Since F ≥ 0 and F 6= 0, DL is
clearly stricly decreasing with respect of I. Applying Theorem 3.2, we deduce that
either all trajectories in K tend to the origin, or there is a unique equlibrium in the
interior of K and all trajectories in K\([0,∞)` × {0}`) tend to this equilibrium.
We introduce the stability modulus α(M) of a matrix M , which is the largest real
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part of the elements of the spectrum Spec(M) of M :

α(M) = max
δ∈Spec(M)

Re(δ).

From Theorem 3.13 of Varga [21] (chapter 3), R0 > 1 is equivalent to α(F + V) > 0,
and the disease free equilibrium is unstable in this case. It then follows from
Theorem 3.2 that there exists a unique attracting endemic equilibrium I∗ 6= 0, which
satisfies

(νD− A + F)I∗ − diag(1/N∗j)diag(I∗)F I∗ = 0.(3.4)

Since F is a non-negative matrix and I∗ 6= 0, by using (3.4), it follows that

DL(I∗)I∗ = −diag(1/N∗j)diag(FI∗) I∗ < 0.(3.5)

Using the fact that DL(I∗) is a Metzler matrix, (3.5) implies that it is stable (Berman
& Plemmons [6]: criteron I28 of Theorem 6.2.3). The stability modulus then satisfies
α
(
DL(I∗)

)
< 0. This proves the local asymptotic stability of I∗. Since the attractivity

of I∗ is guaranteed by Hirsh’s Theorem 3.2, we conclude that the endemic equilibrium
I∗ is globally asymptotically stable if R0 > 1.

�

Let us mention that, under the assumption νI = νS := ν, the DFE is globally
assymptotically stable when R0 = 1. Indeed, R0 = 1 is equivalent to α(F + V) = 0.
But since F + V is an irreducible Metzler matrix, there exists a positive vector v
such that (F + V)Tv = 0. Let us consider the Lyapunov function L(I) = 〈 v | I 〉. The
derivative of this function is

L̇(I) = 〈 v | İ 〉

= 〈 v |F + V− diag(1/N∗j)diag(I(t))F I(t) 〉

= −〈 v | diag(1/N∗j)diag(I(t))F I(t) 〉

≤ 0.

Moreover, L̇(I) = 0 only at the DFE. Hence the DFE is GAS if R0 = 1.
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4 Comparison of the equilibra: connected patches
model, homogeneous model, isolated patches

We now consider the deterministic model in an homogeneous community:

(4.1)


dS
dt

(t)=−λS(t)I(t) + γ I(t)

d I
dt

(t)=λS(t)I(t)− γ I(t),

where λ (resp. γ) is the rate of the disease transmission (resp. recovery).
The endemic equilibrium of the system of ODEs (4.1) is z∗ =

(
γ

λ
, 1− γ

λ

)
.

We wish to compare this EE with the one of the deterministic heterogeneous model.

• First, if the disease transmission and recovery rates are the same on all patches,
that is for all j = 1, · · · , `, λj = λ and γj = γ, then the EE of the ODEs (2.4) is
z∗ =

(
γ

`λ
,
1
`

(
1− γ

λ

)
, · · · , γ

`λ
,
1
`

(
1− γ

λ

))
. In this case, we note that the proportion

of the infectious subpopulation in the hemogeneous model is equally distributed
between all patches.

• We now look at the case where the patches have different disease transmission and
recovery rates. In this case it is difficult to obtain the EE, even for a small number
of patches. But it can be found relatively simply using any numerical solver when
the state space is small. Here, we consider the case of two patches and use the solver
"Wolfram Alpha" to compute the EE.
In the below table we give the values of the infectious subpopulation in each patch
at the equilibrium for several values of the parameters. We take γ1 = γ2 = 1
and consider three cases. First λ1 = 1.5, λ2 = 2. In this case when the patches
are isolated, the value of the infectious subpopulation in patch 1 and patch 2 are
I∗1 ≈ 0.333 and I∗2 ≈ 0.5, respectively. Secondly λ1 = 3, λ2 = 2.5, and I∗1 ≈ 0.666
and I∗2 ≈ 0.600 in isolated patches. Finally, in the case λ1 = 1.5, λ2 = 1.2, we have
I∗1 ≈ 0.333 and I∗2 ≈ 0.166.

13



λ1 λ2 γ1 γ2 νI νS

(
I∗1

S∗1 + I∗1
,

I∗2
S∗2 + I∗2

)
1.5 2 1 1 0.0001 0.0001 (0.332 , 0.507)

1.5 2 1 1 0.0001 0.0005 (0.334, 0.497)

1.5 2 1 1 0.001 0.0001 (0.333, 0.497)

1.5 2 1 1 0.0001 0.001 (0.332, 0.497)

3 2.5 1 1 0.0001 0.0001 (0.667 , 0.598)

3 2.5 1 1 0.0007 0.0001 (0.666 , 0.599)

3 2.5 1 1 0.001 0.0001 (0.666 , 0.598)

3 2.5 1 1 0.0001 0.001 (0.666 , 0.598)

1.5 1.2 01 1 0.0001 0.0001 (0.332 , 0.165)

1.5 1.2 1 1 0.0001 0.0009 (0.332 , 0.165)

1.5 1.2 1 1 0.001 0.0001 (0.333 , 0.165)

1.5 1.2 1 1 0.0001 0.008 (0.332 , 0.165)

Table 1: proportion of I∗1 and I∗2 when patches are connected

In the above table, we have the proportions of the infectious subpopulation in each
patch at the equilibrium, for some values of the diffusion coefficients. We observe
that those proportions are very close to those when patches are isolated.

We have shown that the stochastic model is well approximated by a deterministic
patch model. If R0 > 1, the system of ODEs (2.4) has a unique endemic equilibrium
which is globally asymptotically stable. Moreover considering the case of two patches,
it appears that in the heterogeneity case, the final size of the epidemic in each patch
is close to that of isolated patches.
In a future work, we will study the fluctuations of the stochastic model around its
deterministic law of large numbers limit.
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