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Abstract

In this study, an adaptive coupling method is proposed for the combination of the state-based peridy-
namics theory (PD) and the classical finite element method (FEM). The non-local PD theory is used for
dealing with localized cracking process while the FEM is adopted for modeling elastic (or plastic) problems
without localization. The evolving boundary between cracking domain and the elastic or plastic domain
without localization is taken into account. A new bond damage model is implemented into the ordinary
state-based PD theory, by considering the progressive degradation of bond strength and residual strength.
The proposed coupling method and bond damage model are implemented in MATLAB framework. The
accuracy of the FEM-PD coupling method is verified by the analytical solutions in elastic cases. The effi-
ciency of the new bond damage model implemented in the adaptive FEM-PD coupling method for modeling
the progressive failure process in cohesive materials is clearly validated through a series of representative
laboratory tests on concrete structures.

Keywords: State-based peridynamics theory, Finite element method, Adaptive coupling, Crack
propagation, Progressive failure, Cohesive materials

1. Introduction1

Failure in cohesive geological and cement-based materials is relevant to the transition from diffuse2

micro-cracking to localized macro-fracturing (Bažant, 1976, Shao and Rudnicki, 2000, Zhao et al., 2018).3

The macroscopic failure is generally a progressive process due to the internal cohesion of those materials4

(Hillerborg et al., 1976, Rots, 1988, Moës and Belytschko, 2002). Unlike propagation modeling of a single5

existing crack, modelling of the progressive failure from the onset, coalescence and localization of multiple6

cracks is still open issue.7

Considerable efforts have been provided and different kinds of numerical methods have been developed8

during recent decades. Not exhaustively but representatively, some of them are here mentioned. The en-9

riched finite element method (EFEM) (Oliver, 1996) with elementary enrichments and the eXtended finite10
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element method (XFEM) (Moës et al., 1999, Stolarska et al., 2001) with node enrichments have been widely11

used for dealing with cracking problems with strong discontinuities, even with hydromechanical coupling12

(Zeng et al., 2018, 2019). Some comparative studies of different kinds of numerical methods can be found13

in (Jirásek, 2000, Dias-da Costa et al., 2010). But in those previous studies, the choice of specific enrich-14

ment functions and crack propagation criteria was a key issue and not an easy task (Wu et al., 2018, 2019).15

Further, the ability of those methods in dealing with crack coalescence and branching as well as multiple16

cracks propagation is still not fully demonstrated. More recently, the phase-field methods have been devel-17

oped by approximating the sharp crack topology by the regularised one (Miehe et al., 2010). This class of18

methods attracted more and more attention due to their efficiency for describing the transition from diffuse19

damage to localized cracking. However, the development of the real crack is represented by the localized20

damage band which requires an extra scale length parameter to characterize its width (Molnár and Gravouil,21

2017, Wang et al., 2019).22

On the other hand, the peridynamics (PD) theory has been developed as an extension of classical con-23

tinuum mechanics framework (Silling, 2000). Instead of solving partially derivative equations, which is24

particularly delicate with the presence of crack singularities, integral motion equations are solved in PD25

theory. Therefore, this theory is particularly efficient for dealing with cracking problems (Madenci and26

Oterkus, 2014). The cracking process of continuum is directly related to the damage of internal material27

bonds or links. Therefore, the initiation and propagation of cracks can be naturally described without in-28

troducing any extra crack propagation criteria or crack-tracking method. In terms of interactions between29

internal material points, two different formulations of the PD theory are proposed. The bond-based PD the-30

ory was first formulated by only considering pair-wise interactions between two neighboring points (Silling,31

2000). More recently, some improvements have been proposed in the bond-based PD theory by introducing32

rotation effect in order to avoid the restriction of Poisson’s ratio (Zhu and Ni, 2017, Ni et al., 2019). In order33

to describe more complex deformation mechanisms, the state-based PD theory has further been developed34

(Silling et al., 2007). The motion of each material point depends on the interactions with all other points35

inside a limited surrounding zone (Silling et al., 2007). The classical concepts of local stress and strain36

tensors are generalized to the non-local force and deformation states. The constitutive equations are thus37

described by the relations between such states. In addition, the state-based PD theory is able to conve-38

niently describe distortional and volumetric deformations other than the single volumetric deformation in39

the bond-based one (Silling and Lehoucq, 2010, Madenci and Oterkus, 2014). Thus, the state-based PD is40

suitable for modeling the deformation and failure of geological materials, for which the shearing induced41

volumetric dilatancy is an important feature. However, owing to the non-local formulations, the numerical42

methods based on the PD theories are computationally time-consuming. In view of studying large scale43

boundary values problems, it is generally convenient to combine the PD theories in cracking zones with44

the finite element method (FEM) in elastic or plastic zones. A number of works have been reported on the45

combination of bond-based PD theory and FEM (Macek and Silling, 2007, Shojaei et al., 2016, Zaccariotto46

et al., 2018). More recently, the state-based PD theory was also been combined with the FEM framework47

(Madenci et al., 2018, Bie et al., 2018).48
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In terms of description of bond damage, different kinds of criteria have been formulated. For instance, a49

critical bond stretch criterion for the prototype micro-elastic brittle (PMB) material was first proposed and50

implemented in the bond-based PD theory in (Silling and Askari, 2005). This criterion has been widely51

applied to simulate brittle fracture problems (Javili et al., 2018, Diehl et al., 2019). Some improvements52

have been obtained by using a trilinear bond model (Yang et al., 2018). Similar critical bond stretch criteria53

have also been introduced into the state-based PD theory for brittle materials (Madenci and Oterkus, 2014,54

Zhang and Qiao, 2018). However, all those brittle models are not able to correctly describe the progressive55

failure process in cohesive materials such as concrete (Petersson, 1981, Hoover and Bažant, 2014). In56

particular, the progressive softening behavior on the post-peak regime is badly reproduced.57

More recently, a new bond continuum damage model has been formulated in the framework of the bond-58

based PD theory (Tong et al., 2020). In order to overcome the limitations of the bond-based PD theory, the59

bond continuum damage model is here extended to the state-based PD theory, in order to better modeling60

the progressive failure process in cohesive geological materials, especially for the compressive shearing61

conditions. Further, an adaptive switching strategy is also developed for coupling with the standard finite62

element method. The capability of the proposed bond damage model as well as the coupling strategy will63

be verified through three representative laboratory tests.64

This paper is organized as follows. The general framework of the ordinary state-based PD theory is65

first presented in section 2. In section 3, a new bond continuum damage model for cohesive materials is66

introduced into the ordinary state-based PD theory. In section 4, an adaptively strategy for coupling the67

PD theory and finite element method is established. In section 5, the effectiveness of the coupling method68

considering the damage or not is verified.69

2. The ordinary state-based PD theory70

The state-based PD theory can be seen as a generalized framework for the classical solid mechanics71

(Silling et al., 2007, Silling and Lehoucq, 2010). The kernel is the use of the state concept for mapping72

deformation at a material point by including the information of all internal bonds linking to other material73

points within its horizon zone. As shown in Figure 1, every material point x interacts directly with other74

material points x′ within its horizon Hx determined by the prescribed horizon radius δ. Due to the external75

loading, the solid body deforms. Accordingly, the material points x, x′ at the initial configuration are moved76

to y, y′ in the deformed configuration. Now the vector X is defined as the reference vector state mapping77

the initial position of one bond as:78

X〈x′ − x〉 = x′ − x (1)

and Y as the deformation vector state mapping the bond into its deformed image as:79

Y[x, t]〈x′ − x〉 = y(x′, t) − y(x, t) (2)

In these definitions y(x, t) = x + u(x, t), y(x′, t) = x + u(x′, t) , u(x, t) and u(x′, t) are the displacement80

vectors associated to x and x′ respectively. Besides, let T define the force density vector state. The force81
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vector states related to x and x′ are respectively T[x, t] and T[x′, t]. If the force state T is aligned with82

the deformation state Y, the PD theory is named as the ordinary state-based. Otherwise, it is called as the83

non-ordinary state-based PD theory. In this paper, the ordinary state-based PD theory is applied. In this84

case, the motion equation of a material point is defined as: as(Silling et al., 2007):85

ρ(x)ü(x, t) =

∫
Hx

{T[x, t]〈x′ − x〉 − T[x′, t]〈x − x′〉}dVx′ + b(x, t) (3)

where ρ(x) is the mass density, Vx′ the volume associated with the material point x′, and b(x, t) the external86

body force density.87

δ 

δ 

x

 xʹ

X 

 yʹ

y

Y 

Hx 

Hxʹ

 uʹ

u

T 

Tʹ

x

y

0

Initial state Deformed state

Figure 1: Illustration of the ordinary stated-based peridynamics theory

For numerical implementation, the integral formulation (3) is approximation by the discrete for a given88

PD material point xk:89

ρ(xk)ü(xk, t) =

N∑
j=1

(T〈x j − xk〉 − T〈xk − x j〉)V j + b(xk, t) (4)

in which N is the number of material points (x j ) within the horizon of xk, V j is the volume of x j. For the90

case of static or quasi static problems, (4) is simplified to:91

0 =

N∑
j=1

(T〈x j − xk〉 − T〈xk − x j〉)V j + b(xk) (5)

As in the classical continuum mechanics, the force state can be obtained from the derivation of an energy92

functional W(x) with respect to the deformation state (Madenci and Oterkus, 2014). For instance, the force93

states for the material points xk and x j can be expressed as follows:94

T〈x j − xk〉 =
1
V j

∂W(xk)
∂(|y j − yk|)

y j − yk

|y j − yk|
(6)

and95

T〈xk − x j〉 =
1
Vk

∂W(x j)
∂(|yk − y j|)

yk − y j

|yk − y j|
(7)
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For isotropic and elastic materials, the generalized form of the strain energy density function W(x) at any96

PD material point xk is defined as:97

W(xk) = aθ(xk)2 + b
N∑

j=1

ωk j(|y j − yk| − |x j − xk|)2V j (8)

The term θ(xk) is related to volume dilatation and calculated by:98

θ(xk) = d
N∑

j=1

ωk j(|y j − yk| − |x j − xk|)
y j − yk

|y j − yk|

x j − xk

|x j − xk|
V j (9)

In these expressions, a, b and d are three PD parameters which are related to the macroscopic elastic99

constants of materials and the PD horizon radius. ωk j is a non-dimensional influence function which reflects100

the degree of non-locality between material points so that the interaction between points decreases as the101

distance increases (Madenci et al., 2016).102

With the assumption of small deformation, the following simplifying relations can be adopted:103

|u(x j) − u(xk)| << |x j − xk| (10)

104
y j − yk

|y j − yk|

x j − xk

|x j − xk|
≈ 1 (11)

Further, by defining the influence function ωk j as:105

ωk j =
δ

|x j − xk|
(12)

the force vector states in (6) and (7) can be rewtitten as:106

T〈x j − xk〉 = (
2ad2δ2

|x j − xk|

N∑
m=1

|ym − yk| − |xm − xk|

|xm − xk|
Vm + 2bδ

|y j − yk| − |x j − xk|

|x j − xk|
)

x j − xk

|x j − xk|
(13)

and107

T〈xk − x j〉 = (
2ad2δ2

|xk − x j|

N∑
n=1

|yn − y j| − |xn − x j|

|xn − x j|
Vn + 2bδ

|yk − y j| − |xk − x j|

|xk − x j|
)

xk − x j

|xk − x j|
(14)

where xm and xn denote the material points within the respective horizon of xk and x j. Now by using the108

equivalence condition between the classical continuum mechanics and PD theory of the elastic strain energy109

respectively for the shear strain part W(x) and the volumetric strain part θ(x), the PD parameters a, b and d110

can be identified (Madenci and Oterkus, 2014):111 

a =
1
2

(k −
5
3
µ), b =

15µ
2πδ5 , d =

9
4πδ4 , 3D

a =
1
2

(k − 2µ), b =
6µ
πhδ4 , d =

2
πhδ3 , 2D

a = 0, b =
E

2Aδ3 , d =
1

2Aδ2 , 1D

. (15)
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where k, µ and E are the macroscopic bulk modulus, the shear modulus and the Young’s modulus, h is the112

thickness for 2D geometry, A is the cross sectional area for 1D geometry. And k and µ are expressed of113

Young’s modulus E and Poisson’s ratio ν by:114

k =



E
3(1 − 2ν)

, 3D

E
2(1 − ν)

, plane stress

E
2(1 + ν)(1 − 2ν)

, plane strain

, µ =
E

2(1 + ν)
(16)

As in the bond-based PD theory (Foster et al., 2011, Zhang and Qiao, 2018), the stretch (deformation)115

of the bond linking a pair of two points xk and x j is denoted as sk j and calculated by:116

sk j =
|y j − yk| − |x j − xk|

|x j − xk|
(17)

Substituting (17) for (13) and (14), the force states are explicitly expressed as functions of the bond stretches:117

118

T〈x j − xk〉 = (
2ad2δ2

|x j − xk|

N∑
m=1

skmVm + 2bδsk j)
x j − xk

|x j − xk|
(18)

and119

T〈xk − x j〉 = (
2ad2δ2

|xk − x j|

N∑
n=1

s jnVn + 2bδs jk)
xk − x j

|xk − x j|
(19)

The interaction between two materials points can now be defined by a generalized pairwise force density120

function as follows:121

f̃ 〈x j − xk〉 = T〈x j − xk〉 − T〈xk − x j〉 (20)

Substituting (18) and (19) for (20), one gets:122

f̃ 〈x j − xk〉 =

4bδsk j +
2ad2δ2

|x j − xk|
(

N∑
m=1

skmVm +

N∑
n=1

s jnVn)

 x j − xk

|x j − xk|
(21)

Like the that defined in the bond-based PD theory, the generalized pairwise force density function is also123

a function of stretches of paired points. However, as a fundamental difference, it not only depends on the124

own stretches of the paired points but also on the stretches associated with the points within their horizons.125

Based on the above relation between the pairwise force and stretch, it appears convenient to introduce126

a local damage criterion as a function of the bond stretch to describe progressive failure of materials. That127

means that when the stretch of a bond reaches a critical value, the bond is progressively broken and the128

corresponding pairwise force decreases. The effect of bond damage on the bond force is here described129

by introducing a history dependent scalar function ζk j, which represents the status of the invented bond130
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connecting xk and x j. Consequently, the generalized pairwise force density function is updated by taking131

into account the bond damage:132

f̃ 〈x j − xk〉 = ζk j

4bδsk j +
2ad2δ2

|x j − xk|
(

N∑
m=1

ζkmskmVm +

N∑
n=1

ζ jns jnVn)

 x j − xk

|x j − xk|
(22)

In the basic model for prototype micro-elastic brittle (PMB) material (Silling and Askari, 2005, Madenci133

and Oterkus, 2014), the status function ζk j is defined as follows:134

ζk j =


1, sk j < sc

0, otherwise

. (23)

where sc is the critical bond stretch. According to this model, the interaction force between the paired points135

increases linearly with the stretch and drops abruptly as the stretch reaches the critical value, as shown in136

Figure 2a. The value of sc can be determined by considering that the work required to break all bonds across137

a newly created crack surface is equivalent to the macroscopic critical energy release rate Gc, one gets:138

sc =



√
Gc(

(3µ + ( 3
4 )4(k − 5µ

3 )
)
δ
, 3D

√
Gc(

6
πµ + 16

9π2 (k − 2µ)
)
δ
, 2D

. (24)

With a fixed value of Poisson’s ratio ν=1/4 for 3D cases or 2D plane strain cases and ν=1/3 for 2D plane139

stress cases, the terms (k −
5µ
3

) and (k − 2µ) in (24) vanish and one gets the critical bond stretch value used140

in the bond-based PD theory.141

Finally, the macroscopic damage state at any PD point xk is quantified by the scalar variable ϕ(xk) ∈142

[0, 1], which defines the ratio of the number of broken bonds to the total number of bonds:143

ϕ(xk) = 1 −
N∑

j=1

ζk j/N (25)

3. Bond damage model for cohesive materials144

The basic elastic brittle model illustrated in Figure 2a has widely used in modeling brittle failure in145

elastic materials generally subjected to tensile stresses (Javili et al., 2018, Diehl et al., 2019). However,146

as mentioned above, the failure of cohesive materials under compressive stresses is a progressive process147

through the initiation and propagation of cracks in cohesive zones (Planas et al., 1993, Li and Bažant, 1994,148

Zi and Bažant, 2003, Hoover and Bažant, 2014). At the macroscopic scale, one obtains a smooth decrease of149

loading capacity in the post-peak regime (Petersson, 1981, Reinhardt et al., 1986, Bažant, 2002). Obviously,150

the basic elastic brittle model is not able to correctly describe such failure process. Therefore, a new bond151
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damage model is here proposed in the framework of the state-based PD theory. To this end, the bond status152

function for any paired points xk and x j is first modified as follows:153

ζk j =
f̃ 〈x j − xk〉

f̃ max〈x j − xk〉
(26)

where f̃ max〈x j − xk〉 denotes the peak value of the bond force density while the bond stretch reaches the154

elastic limit. Compared with that defined in the bond-based PD theory, the new status function directly155

reflects the current degradation state of the bond force.156

Furthermore, the status function is here expressed as a continuous function of the bond stretch. Accord-157

ing to the result obtained in a concrete beam bending test (Rots, 1988), the global load-deflection response158

can be described by using an exponential form of the stress-crack opening relation. Inspired by this re-159

sults, the exponential law has widely used in modeling tensile softening in concrete materials and structures160

(Bazant and Li, 1997, Winkler et al., 2004, Grassl and Jirásek, 2006, Unger et al., 2007, ?, Wu, 2017, Le161

et al., 2018). Based on those previous studies, an exponential damage evolution function is here introduced162

to describe the local mechanical behavior of bonds for cohesive materials. The new status function is then163

defined as:164

ζk j =


1, s ≤ s0

e
−k1

s − s0

s0 + k2
s − s0

s
, s > s0

. (27)

where s0 denotes the elastic limit stretch, defining the damage initiation of bond. The parameter k1 controls165

the reduction rate of bond force as a function of bond stretch. And the parameter k2 gives the residual bond166

force. As a basic difference with (23), the new status function in (27) evolves continuously from 0 to 1,167

reflecting the progressive damage of bond. With the new bond damage model proposed in (26), (23) and168

(27), the evolutions of bond force and status function are presented in Figure 2b.169
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Figure 2: Evolutions of bond force and status function respectively in the PMB model (a) and new cohesive bond damage model
(b)
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The bond stretch elastic limit s0, the bond force reduction parameter k1 and the residual bond force170

parameter k2 are now determined to completely calibrate the new bond damage model for the state-based171

PD theory. Similarly to the bond-based theory, the value of s0 is also related to the macroscopic critical172

fracture energy Gc. As depicted in Figure 3, the formation of a new crack surface requires the breakage of173

all bonds between the material points xk+ (above the crack surface) and x j− (below the crack surface). Let174

K− denote the number of material points within the horizon of xk+ below the crack surface and intersecting175

with the crack surface. And let J+ represent the number of material points within the horizon of x j− above176

the crack surface and intersecting with the crack surface. By making use of (22) and (27), the critical energy177

density needed to eliminate the interaction force between xk+ and x j− is given by:178

w =

∫ s

0
f̃ ξds

= 4bδξs2
0

(
1
2

+
1
k1

(1 − e−k1
s−s0

s0 ) + k2(
s − s0

s0
− ln

s
s0

)
)

+ 2ad2δ2s2
0

1
2

+
1

2k1
(1 − e−2k1

s−s0
s0 ) +

2k2

k1
(1 − e−k1

s−s0
s0 ) + k2

2(
s2 − s2

0

ss0
− 2ln

s
s0

)


 K−∑

m=1

Vm +

J+∑
n=1

Vn


(28)

in which ξ = |xk+ − x j− |.179

xk+ 

crack 

J+

K-

xj- 

δ 

δ 

Figure 3: Sketch map of the interaction between pairwise points crossing a crack surface

The last term in the bracket of (28) represents the horizon volume of the bond and can be related to the180

horizon radius by:181  K−∑
m=1

Vm +

J+∑
n=1

Vn

 =


πδ3

2
, 3D case

4hδ2

3
, 2D case

. (29)

Subsequently, the sum of energy used to break all the bonds crossing the unit area of a new crack surface is182
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assumed to be equal to macroscopic fracture energy. Thus one gets for 3D cases:183

Gc =

∫ δ

0

∫ 2π

0

∫ δ

z

∫ cos−1 z
ξ

0
wξ2sinφdφdξdθdz

=
2πbδ6

5
s2

0

(
1 +

2
k1

(1 − e−k1
s−s0

s0 ) + 2k2(
s − s0

s0
− ln

s
s0

)
)

+
π2ad2δ9

8
s2

0

1 +
1
k1

(1 − e−2k1
s−s0

s0 ) +
4k2

k1
(1 − e−k1

s−s0
s0 ) + 2k2

2(
s2 − s2

0

ss0
− 2ln

s
s0

)


(30)

and for 2D cases:184

Gc = 2h
∫ δ

0

∫ δ

z

∫ cos−1 z
ξ

0
wξdφdξdz

= bhδ5s2
0

(
1 +

2
k1

(1 − e−k1
s−s0

s0 ) + 2k2(
s − s0

s0
− ln

s
s0

)
)

+
8ad2h2δ7

9
s2

0

1 +
1
k1

(1 − e−2k1
s−s0

s0 ) +
4k2

k1
(1 − e−k1

s−s0
s0 ) + 2k2

2(
s2 − s2

0

ss0
− 2ln

s
s0

)


(31)

According to (30) and (31), the bond stretch elastic limit s0 cannot be directly determined from Gc due185

to the unknown values of k1 and k2. Thus, some simplifications are here made. It is first assumed that the186

energy related to the residual bond force is a very small part in the total energy. This leads to set k2 to 0. It187

is further considered that the bond failure occurs when s is significantly larger than s0. Thus the values of188

(1 − e−k1
s−s0

s0 ) and (1 − e−2k1
s−s0

s0 ) are approximatively equal to 1. Based on these simplifications, the value189

of s0 can be calculated by:190

s0 =



√
Gc

2πbδ6

5 (1 + 2
k1

) + π2ad2δ9

8 (1 + 1
k1

)
, 3D

√
Gc

bhδ5(1 + 2
k1

) + 8ad2h2δ7

9 (1 + 1
k1

)
, 2D

. (32)

The above relations can be further simplified. To this end, the coefficients g1 and g2 are introduced as191

follows:192

g1 =


2πbδ6

5
, 3D

bhδ5, 2D

, g2 =


π2ad2δ9

8
, 3D

8ad2h2δ7

9
, 2D

. (33)

By taking the expressions of b and d from (15) and (16), the absolute value of the ratio g2
g1

is given by:193

|
g2

g1
| =



|
27(4ν−1)

256(1−2ν) |, 3D

|
8(3ν−1)

27π(1−ν) |, plane stress

|
8(4ν−1)

27π(1−2ν) |, plane strain

. (34)

10



It is seen that the value of | g2
g1
| depends on Poisson’s ratio ν, as shown in Figure 4. One can see that the194

value of | g2
g1
| remains much smaller than unit for the range of ν from 0.15 to 0.35. Based on (9), that means195

that the energy caused by the distortional deformation (controlled by g1) is the dominating part against the196

energy related to the volumetric deformation (controlled by g2). Based on this fact, it is possible to take197

(1 + 1
k1

) ' (1 + 2
k1

). Accordingly, the value of s0 can now be calculated by:198

s0 =



√
Gc

( 2πbδ6

5 + π2ad2δ9

8 )(1 + 2
k1

)
, 3D

√
Gc

(bhδ5 + 8ad2h2δ7

9 )(1 + 2
k1

)
, 2D

. (35)
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Figure 4: Variation of | g2
g1
| with ν

By replacing again the expressions of b and d, the elastic limit of bond stretch s0 is expressed as a199

function of macroscopic elastic properties:200

s0 =



√
Gc(

(3µ + ( 3
4 )4(k − 5µ

3 )
)

(1 + 2
k1

)δ
, 3D

√
Gc(

6
πµ + 16

9π2 (k − 2µ)
)

(1 + 2
k1

)δ
, 2D

. (36)

Hence, with a given value of the horizon radius δ, the value of s0 can be calculated from the macroscopic201

fracture energy Gc once the value of k1 is known. The parameter k1 mainly controls the mechanical response202

in the post-peak regime and can be fitted from experimental results. It is worth noticing that the value of203

s0 is here determined by setting k2 = 0. Starting from this primary value, an improved value of s0 can be204

iteratively identified by putting another value of k2.205
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4. Adaptive coupling method206

The non-local numerical method based on the state-based PD theory is suitable to dealing with progres-207

sive damage and cracking process in solid materials. For large scale problems, the computer time can be208

considerably high. On the other hand, for many engineering problems, cracking generally occurs inside209

some small zones. For example, during excavation of an underground cavity, damage and cracking are210

generated only in the close zone to the excavated cavity wall. There is no need to use the damage model211

with the PD theory in far field. In this case, it is generally more efficient to use the classical finite element212

method for solving elastic (even plastic without softening and localization) problems in far field. Therefore,213

it is very convenient to combine the non-local PD theory for dealing with cracking process and the finite214

element method (FEM) for dealing with classical elastic and plastic problems. Further, it is also needed to215

consider that the size of cracking zone progresses during loading history. The boundary between the PD216

and the FEM zones is then not fixe but evolves. For this purpose, an adaptive coupling algorithm is here217

developed. In order to achieve such an adaptive coupling problem with moving PD-FEM boundary, two218

issues should be addressed: when the coupling is needed and how the coupling is realized.219

In the present study, we shall develop an adaptive switching strategy. It is based on the relative elon-220

gation of the bond linking two adjacent FEM nodes (exactly the same as the stretch calculation defined in221

(17)). More precisely, the proposed coupling method is illustrated in Figure 5. One considers two initial222

FEM nodes (the gray square nodes) xk and x j. When the relative elongation between these nodes reaches a223

switching threshold value (Zaccariotto et al., 2018), they are converted to PD points together with all other224

points inside their horizon zones (the blue circle nodes). With the new bond damage model presented above,225

the switching threshold value is set as the bond stretch elastic limit s0. In this way, the switching from FEM226

nodes to PD points is consistent with the crack propagation process. After the switching is turned on, the227

computational domain is divided into three regions (as shown in Figure 5b): the original FEM region, refer-228

ring to the region composed of the quadrilateral elements with four gray square FEM nodes connected by229

the gray straight solid lines; the pure PD region, referring to the region including the blue circle PD points230

interacting with other PD points through the bonds indicated by the magenta curved solid lines; and the231

coupling region, referring to the region consisting of the nominal quadrilateral elements with FEM nodes232

and PD points connected by the gray straight dotted lines and solid lines, and the nominal bonds interacting233

PD points and FEM nodes indicated by the magenta curved dotted lines.234
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skj = s0

(b) Coupling state

xk 

xj 

xk1 

crack 

(a) Initial state

xk 

xj 

Figure 5: Diagram of adaptive coupling strategy: gray square nodes are FEM nodes and blue circle nodes are PD points; the gray
straight solid lines represent the edges of the quadrilateral element in FEM, while the gray straight dotted lines represent the edges
of the nominal elements in coupling region; the magenta curved solid lines indicate the PD bonds (the short magenta lines represent
the bonds omitted for brevity), and the magenta curved dotted lines indicate the nominal bonds in coupling region.

For the effective realization of FEM-PD coupling, the static equilibrium equation of a PD point is first235

written as follows by substituting (22) for (5), it is:236

0 =

N∑
j=1

ζk j

4bδsk j +
2ad2δ2

|x j − xk|
(

N∑
m=1

ζkmskmVm +

N∑
n=1

ζ jns jnVn)

 V j
x j − xk

|x j − xk|
+ b(xk) (37)

Referring to the definition of stretch s of two pairwise points given in (17), and by means of the multiplier237

Vk representing the volume of material point xk, the equilibrium equation at xk can be rewritten as:238

N∑
j=1

ζk j

4bδV jVk

|x j − xk|
(uk − u j) +

N∑
m=1

ζkm
2ad2δ2VmV jVk

|x j − xk||xm − xk|
(uk − um) +

N∑
n=1

ζ jn
2ad2δ2VnV jVk

|x j − xk||xn − x j|
(u j − un)

 = b(xk)Vk

(38)
Observing (38), it is seen that the equilibrium equation of a PD material point has a similar expression to239

that of FEM nodes:240

KP
k U = f k (39)

in which KP
k is treated as the stiffness components of the PD material point xk, it is defined as:241

KP
k =

N∑
j=1

[
· · · ζk j

(
p1 +

N∑
m=1

ζkm p2

)
· · · ζk j (−ζkm p2) · · · ζk j

(
−p1 +

N∑
n=1
ζ jn p3

)
· · · ζk j (−ζ jn p3) · · ·

]
(40)

where p1 =
4bδV jVk
|x j−xk |

, p2 =
2ad2δ2VmV jVk
|x j−xk ||xm−xk |

, p3 =
2ad2δ2VnV jVk
|x j−xk ||xn−x j |

. Correspondingly, U represents the node displace-242

ment vector, which is given as:243

UT =

[
· · · uk · · · um · · · u j · · · un · · ·

]
(41)
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Finally f k = b(xk)Vk denotes the external load acting on xk. Then owing to the expression in (39), the244

coupling can be realized by assembling the stiffness components respectively from FEM nodes and PD245

points into the global stiffness matrix (Galvanetto et al., 2016, Zaccariotto et al., 2018):246

K = KF + KP (42)

where K denotes the global stiffness matrix. KP denotes the stiffness matrix from the PD points as described247

in (40). KF represents the stiffness matrix from FEM nodes, which is obtained by the classical assemblage248

of the elementary stiffness matrices KF
e as follows (Zienkiewicz et al., 1977):249

KF
e =

∫
BT DBdV (43)

where B is the elementary displacement dradient matrix, and D denotes the elastic stiffness matrix for the250

FEM zones. It is worth noticing that the internal forces evaluated with the FEM only act on the FEM nodes,251

while the internal forces calculated using the PD theory are applied on the PD nodes. In other words, the252

internal force acting on a node is of the same nature as the node (Zaccariotto et al., 2018). Subsequently,253

the total system of equilibrium equations can be expressed as follows (Galvanetto et al., 2016, Zaccariotto254

et al., 2018):255

K U = F (44)

F represents the total nodal force vector, which is assembled from the elementary nodal force vectors Fe256

given in the classical FEM framework (Zienkiewicz et al., 1977):257

Fe =

∫
NT pvdV +

∫
NT psdS (45)

where N is the matrix of shape functions, pv denotes the body force vector, ps the surface traction on the258

external boundary. With this system in hand, the nodal displacements can be determined by:259

U = K−1 F (46)

Finally, the numerical method for modeling the progressive failure process in cohesive materials by260

using the new bond damage model and the adaptive FEM-PD coupling is established and illustrated in Al-261

gorithm 1.262
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263

Algorithm 1: Flowchart of the adaptive PD-FEM coupling algorithm
Input: E, ν, Gc , δ, ∆load, k1, k2, s0
Output: Un, f n, ϕn
Initialize Un = Un−1 (U1 = 0);
Calculate the relative elongation s of any two adjacent FEM nodes with (17);
if s < s0 then

Assemble the global stiffness matrix with (42) but KP = 0 ;
else

Update the PD nodes set based on the adaptive switching strategy;
Calculate the bond stretch value sk j with (17);
Calculate the bond status value ζk j with (27);
Assemble the global stiffness matrix with (40), (42) and (43);

end
Solve the system of equilibrium equations and obtain the node displacements Un with (46);
Update the PD bond stretch value sk j with (17);
Update the PD bond status value ζk j with (27);
Calculate the global damage value ϕn of PD points with (25).

264

5. Numerical assessment and experimental validation265

The proposed numerical method is implemented with the MATLAB software. In this section, a few266

linear elastic examples with a fixed PD region are first considered to assess the accuracy of the proposed267

coupling method. Then several typical experimental tests on concrete structures are investigated to verify268

the efficiency of the new bond damage model implemented with the adaptive PD-FEM coupling method269

for modeling the progressive failure process in cohesive materials. In those cases, the PD region is no270

more fixed a priori but depends on the evolution of cracking process. All the numerical calculations are271

performed in 2D plane stress conditions using uniform meshes composed of quadrilateral elements. The272

unit of all length variables is millimeter (mm).273

5.1. Elastic response verification274

We consider first two linear elastic examples to verify the accuracy of the proposed FEM-PD coupling275

method. The first example is a uni-dimensional bar subjected to tensile force. As shown in Figure 6, the bar276

with a length of 50mm is constrained at the left end (which is set to the origin of the coordinates frame), and277

is stretched by a unit force F(F = 1N) at the right end. The cross section area is A = 1mm2. For the mesh,278

the bar is divided by a uniform grid space ∆. The selected value of Young’s nodulus is E = 1GPa. For the279

FEM-PD coupling, the region of 20 ≤ x ≤ 30 (the area filled with pink color) is chosen for the PD modeling.280

And the horizon radius δ is specified as δ = 3∆, as widely used in previous studies (Zaccariotto et al., 2017,281

Madenci and Oterkus, 2017, Gao and Oterkus, 2019). In order to explore the robustness sensitivity of the282

adopted coupling method with respect to the grid size, three cases respectively with ∆ = 2mm, ∆ = 1mm283

and ∆ = 0.5mm are considered. For each case, the solutions obtained by the coupled FEM-PD method and284

from the pure FEM modeling are compared with the analytical ones. From Figure 7, it can be observed that285

15



the displacements obtained by the FEM calculation and by the coupled method perfectly coincide with the286

analytical solutions. It seems to confirm the effectiveness of the developed state-based PD method as well287

as the FEM-PD coupling strategy. Moreover, the numerical results are not dependent on the grid size.288

FFEM FEMPD 

20 2010

20 2010

FFEM FEMPD 

Figure 6: Geometry and boundary conditions of the 1D bar problem
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Figure 7: Comparisons of node displacements for the 1D bar problem

In the second example, two rectangular plates are studied. Their geometry and boundary conditions289

are depicted in Figure 8. In the second plate, a notch with a size of 5mm × 1mm is pre-set on the upper290

edge and at a distance of 2mm from the horizontal symmetry axis line 1′. Both of the plates are fixed at291

the left edge, and are subjected to a uniformly distributed shear force (P = −1N/mm) at the right edge. The292

plate thickness is h = 1mm. The selected values of elastic parameters are: Young’s nodulus E = 1GPa and293

Poisson’s ratio ν = 0.2. The two plates are uniformly meshed by the quadrilateral elements with a size of294

∆x = ∆y = ∆. For the plate without notch, the filled region with a range of 20 ≤ x ≤ 30, 0 ≤ y ≤ 20 is set as295

the PD region. And for the notched plate, the PD nodes are in the region of 20 ≤ x ≤ 30, 0 ≤ y ≤ 15. The296

horizon radius δ is also taken as three times of the grid length ∆. Again, the different grid size are chosen297

as ∆ = 1mm, ∆ = 0.5mm and ∆ = 0.25mm. The displacement solutions given by pure FEM calculation and298

the coupling FEM-PD method are compared along the geometric centerlines (line 1 and line 2 for the plate299

without notch, and along the lines line 1′ and line 2′ for the notched plate). The obtained results are present300

in Figure 9 and Figure 10 respectively. It can be seen that the results based on the coupling method are well301

consistent with those by the FEM calculation for all the cases. However, it is undeniable that the grid size302

does have a certain impact on the results. In general, the relative error between the coupling method and the303

FEM calculation decreases with the decrease of the grid size. For the two cases studied here, the relative304
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error between the two calculations is less than 2%. On the other hand, the maximum relative error between305

three grid sizes for the results obtained by the FEM-PD coupling method is about 3%.306

P2
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20 2010

2

1

PD FEMFEM

(a) Plate without notch

1’5

FEM PD FEM
2’

P2
0

20 2010

21

(b) Plate with notch

Figure 8: Geometry and boundary conditions of the 2D plate problems
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(b) Vertical displacements along line 2

Figure 9: Nodal displacements of the plate without notch
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Figure 10: Nodal displacements of the notched plate

5.2. Wedge splitting test307

We shall now assess the ability of the proposed FEM-PD coupling method for modeling the progressive308

failure process.309

The first example considered is the wedge splitting test of a concrete specimen CP250 reported in310

(Trunk, 1999), and widely used to investigate mode-I fracture process. The geometric and boundary con-311

ditions of the test are presented in Figure 11. The notched specimen is subjected to the symmetrically312

prescribed displacement (u) at the middle point of the upper notch. The material properties are taken from313

the previous study (Trunk, 1999): Young’s modulus E = 28.3GPa, Poisson’s ratio ν = 0.18 and fracture314

energy Gc = 0.3N/mm. The grid size of the adopted mesh is ∆ = 5mm. And the horizon radius δ is equal to315

3∆.316
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Figure 11: Geometrical and boundary conditions of the wedge splitting test

5.2.1. Sensitivity analysis of bond damage parameters317

The sensitivity of numerical results to the key parameters involved in the new bond damage model318

is first evaluated. As described in Section 3, there are three key parameters introduced in the proposed319

bond damage model, which are k1, k2 and s0. s0 can be determined from k1 and k2 according to (30) and320

(31). In consequence, the parameters that play the major role are k1 and k2. Numerical calculations are321

then performed with different values of those parameters in order to verify their impacts on the obtained322

numerical solutions.323

The influence of k1 is first studied by taking k1 = 0.02, k1 = 0.01 and k1 = 0.005, while keeping k2 to 0.324

From Figure 12, one can see that k1 not only affects the peak value of structure strength but also controls325

the reduction rate of force after the peak value. The peak strength decreases when the value of k1 is smaller.326

This is due to the fact that the bond stretch elastic limit s0 decreases when k1 is smaller as predicted by327

(36). As a consequence, the cracking process starts earlier. On the other, the parameter k1 does not affect328

the residual strength. Accordingly, when its value is higher, as the peak strength is higher, one gets a more329

rapid drops of force after the peak strength.330

Three different values of k2 (k2=0, k2 = 0.02, k2 = 0.05) are also considered by taking k1 = 0.005. The331

obtained force-displacement curves are depicted in Figure 13. One observes a quasi uniform increase of332

both the peak and residual strengths when the value of k2 increases. It does not affect the reduction rate of333

force in the post-peak regime. According to (26) and (27), the bond damage rate is lowered by a higher334

value of k2. This leads to the increase of the peak and residual strengths.335

As mentioned above, the value of s0 is theoretically calculated by suing (36). However, several as-336

sumptions are used to reach the simplified form of (36). Therefore, it appears interesting to evaluate the337

sensitivity of numerical results to any perturbation of s0. For this purpose, the reference value of s0 is first338

calculated by (36). Then, two other disturbed values are selected as s01 = 1.10s0 and s02 = 1.05s0. The339

values of k1 and k2 are hold constant in three cases (k1 = 0.005, k2=0). The obtained results are shown in340
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Figure 14. One can see that the influence of s0 is a kind of mixture of those of k1 and k2. The values of s0341

affects significantly the peak strength and slightly the residual strength.342

0 . 0 0 . 2 0 . 4 0 . 6 0 . 80
5

1 0
1 5
2 0
2 5
3 0
3 5

 

 

Fo
rce

 (k
N)

D i s p l a c e m e n t  ( m m )

 k 1 = 0 . 0 2 ,  k 2 = 0  
 k 1 = 0 . 0 1 ,  k 2 = 0
 k 1 = 0 . 0 0 5 ,  k 2 = 0

Figure 12: Sensitivity analysis of k1 with k2 = 0
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Figure 13: Sensitivity analysis of k2 with k1 = 0.005
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Figure 14: Sensitivity analysis of s0 with k1 = 0.005,k2 = 0

5.2.2. Sensitivity analysis of loading increment size343

Crack propagation is a strongly nonlinear problem. The whole loading history is divided into a number344

of loading steps. Increments of forces and displacements are prescribed at each loading step. Due to the345

strong nonlinearity, numerical solutions can be significantly influenced by the size of load increment. For346

this purpose, the influence of the prescribed displacement increment size (∆u) is here evaluated by taking347

four different values. As presented in Figure 15, the size of (∆u) has a significant impact on the overall348

force-displacement responses. Large sizes of ∆u, such as ∆u = 5 · 10−3mm, may delay and under-estimate349

cracking process and generates numerical oscillations. However, the numerical results are convergent when350

the size of ∆u is small enough. For instance, the numerical results seem to become stable when the size of351

∆u is about 5 · 10−4mm or less.352
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Figure 15: Convergence study of overall response for wedge splitting test with respect to displacement increment size ∆u
(k1 = 0.005, k2 = 0)
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5.2.3. Experimental verification353

The numerical results are now compared with the experimental data reported in (Trunk, 1999) in terms354

of overall force-displacement curves. For the parameters involved in the bond damage model, the value of355

k1 is adjusted to 0.005. Two values of k2 are chosen as 0, 0.02. The adopted value of s0 is 10% higher than356

the calculated one by (36). This is consistent with the fact that the value of s0 is slightly under-estimated by357

(36) due to the simplifications made. The size of the prescribed displacement increment us ∆u = 5 · 10−4mm358

based on the sensitivity study presented above.359

As shown in Figure 16a, the numerical results obtained by using the new bond damage model associated360

with the coupled FEM-PD method are in good agreement with the experimental data. Particularly, the361

progressive reduction of force in the post-peak regime is well described. The use of k2 in the new bond362

damage model improves the numerical results and enlarges the model’s ability, for both the peak and residual363

strengths. For further outlining the advantage of the new bond damage model, the numerical results based364

on the classical PMB model are presented in Figure 16b. It is clear that there are large scatters with the365

experimental results. The classical PMB model overestimates the peak strength and the reduction rate of366

force in the post-peak regime while the residual strength is underestimated. Furthermore, some numerical367

oscillations are also observed in the results given by the PMB model.368
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Figure 16: Comparisons of force-displacement curves of wedge splitting test between different bond damage models and experi-
mental data ((Trunk, 1999))

The crack propagation process in the wedge splitting test is also investigated. The overall damage369

distributions are calculated and presented in Figures 17 and 18 at four subsequent loading steps (u = 0.1mm,370

u = 0.2mm, u = 0.4mm, u = 0.8mm), and respectively for two values of k2 (k2 = 0, k2 = 0.02). One can see371

that in both cases the cracking emerges and propagates vertically along the symmetric line during the loading372

history. This is consistent with the experimental observations reported in (Trunk, 1999). Comparing the two373

cases, it is concluded that the residual strength parameter k2 hardly affects the crack propagation pattern,374
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but slightly reduces the maximum damage value.375

(a) u=0.1mm (b) u=0.2mm

(c) u=0.4mm (d) u=0.8mm

Figure 17: Global damage value contours in wedge splitting test (k2 = 0)
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(a) u=0.1mm (b) u=0.2mm

(c) u=0.4mm (d) u=0.8mm

Figure 18: Global damage value contours in wedge splitting test (k2 = 0.02)

5.3. L-shape test376

The second case is a mixed-mode test of an L-shaped concrete structure illustrated in Figure 19. This377

test was carried out in (Winkler et al., 2001). As set in the experiment, a vertical displacement is applied to378

the point at a distance of 30mm from the right edge while the fixed constraints are prescribed on the bottom379

edge. Based on previous studies (Winkler et al., 2001, Le et al., 2018), the mechanical parameters chosen380

are Young’s modulus E = 25.85GPa, Poisson’s ratio ν = 0.18 and critical fracture energy Gc = 0.065N/mm.381

For the mesh, the grid size is set as ∆ = 5mm. The horizon radius δ is again equal to 3∆.382

In the numerical calculation, the size of applied displacement increment is chosen as 10−3mm. The383

damage parameter k1 is taken as 0.01. The value of s0 is adjusted to 1.5 times the value given by (36). The384

obtained force-displacement curves for k2 = 0 and k2 = 0.02 are shown in Figure 20a. In an overall manner,385

the numerical results agree well with the experimental data, especially for the response in the post-peak386

region. Again, the results based on the PMB model are presented in Figure 20b. Once more, large scatters387
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with experimental data are observed. The PMB model predicts a too high peak strength and a too stiff (or388

brittle) behavior in the post-peak region. The advantage of the new bond damage model in modelling the389

progressive failure of cohesive materials is again clearly demonstrated.390

250 250

F(u)

30

2
5
0

2
5
0

thickness:100

Figure 19: Sketch map of the L-shape test

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00
1
2
3
4
5
6
7
8

 E x p e r i m e n t
 A d v i s e d  ( k 2 = 0 )
 A d v i s e d  ( k 2 = 0 . 0 2 )

 

 

Fo
rce

 (k
N)

D i s p l a c e m e n t  ( m m )
(a) Advised damage model

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00

2

4

6

8

1 0

1 2

1 4
 E x p e r i m e n t
 P M B

 

 

Fo
rce

 (k
N)

D i s p l a c e m e n t  ( m m )
(b) PMB damage model

Figure 20: Comparisons of force-displacement curves of L-shape test between different damage models and experimental data
((Winkler et al., 2001))

26



(a) u=0.1mm (b) u=0.2mm

(c) u=0.3mm (d) u=0.5mm

(e) u=0.8mm (f) u=1mm

Figure 21: Global damage value contour in L-shape test (k2 = 0.02)
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The crack propagation patterns are illustrated in Figure 21 in terms of the overall damage contour at391

different loading steps for the case k2 = 0.02. As it can be found, the crack initiates from the corner and392

then curvedly propagates toward the left side. This coincides well with the experimentally observed results393

in (Winkler et al., 2001), particularly the curved cracking path. Moreover, in Figure 22, one presents394

the cracking paths predicted by the bond and state based peridynamics theories and that observed in the395

experiment. On the whole, both numerical predictions are consistent with the experimental observation.396

But the smoothly curvilinear cracking path is better captured by the state-based peridynamics theory. It is397

noticed that by using the adaptive coupling method proposed here, the boundary between the PD and FEM398

zones is not fixed and evolves during the cracking process. For instance, for this example, at the initial399

state, all the domain belongs to the FEM nodes. With the nucleation and propagation of induced cracks, the400

PD zone is introduced. In Figure 23, one can see the current PD points distributions at u=1mm, which are401

surrounded by the FEM nodes.402

(a) bond-based PD (b) state-based PD (c) experiment

Figure 22: Comparisons of cracking path between bond-based PD, state-based PD and experiment observation ((Winkler et al.,
2001))
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Figure 23: Illustration of PD and FEm zones at u=1mm: gray square for FEM nodes and blue circle for PD points
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5.4. Tension-shear test403

Finally, the combined tension-shear test performed in (Nooru-Mohamed et al., 1993) is investigated.404

The geometric parameters and boundary conditions of this test are shown in Figure 24. The double-edge405

notched specimen is under combined tension and shear. The specimen is firstly subjected to the lateral406

force Ps = 5kN along the left edge above the notch, and then subjected to the axial tensile force at the407

top edge while Ps is maintained unchanged. The tensile force is applied in the form of displacement in408

order to capture the post-peak response. Based on previous studies (Wu et al., 2015, Zhang et al., 2015),409

the mechanical parameters are taken as: Young’s modulus E = 32GPa, Poisson’s ratio ν = 0.2 and critical410

fracture energy Gc = 0.11N/mm. The grid size of adopted mesh is ∆ = 1.25mm and the value of PD horizon411

radius δ is again chosen as 3∆.412

After preliminary calculations, the prescribed displacement increment is determined as 2 · 10−4mm.413

Regarding the parameters in the new bond damage model, k1 has a value of 0.002, two values (0 and 0.01)414

are assigned to k2, and s0 is 20% higher than the value calculated with (36).415

The predicted force-displacement curves are presented in Figure 25. Both the peak strength value and416

the post-peak response are in good concordance with the experimental data. The use of the residual force417

parameter (k2 = 0.01) improves the numerical prediction. The results obtained by the classical PMB model418

are once more significantly in disagreement with the experimental data.419

In Figure 26, one illustrates the crack propagation modes by the overall damage contour at different420

loading steps for the case k2 = 0.01. The experimental observations reported in (Nooru-Mohamed et al.,421

1993) are well reproduced. The crack initiates at the corner of the notch and propagates along a curvilinear422

path owing to the combined effect of lateral compression induced shear and axial tension.423
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Figure 24: Geometrical parameters and boundary conditions of the tension-shear test
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Figure 25: Comparisons of force-displacement curves of tension-shear test between different bond damage models and experimen-
tal data (Nooru-Mohamed et al., 1993)
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(a) u=0.01mm (b) u=0.02mm

(c) u=0.03mm (d) u=0.05mm

(e) u=0.08mm (f) u=0.1mm

Figure 26: Global damage value contour in tension-shear test (k2 = 0.01)
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6. Conclusions424

In this paper, a new bond damage model has been proposed and implemented in the state-based peri-425

dynamics theory. This model describes the continuous degradation of bond strength and is able to take426

into account the bond residual strength. At the macroscopic scale, the new model is especially suitable427

for modeling the progressive failure process in cohesive materials and related structures. The local param-428

eters introduced in the bond damage model can be directly related to the macroscopic elastic properties429

and critical fracture energy of materials. With these parameters, the proposed model provides a large abil-430

ity in predicting the macroscopic peak strength, the post-peak response as well as the residual strength of431

structures.432

An adaptive coupling strategy has also been developed for the combination of the state-based peri-433

dynamics theory and classical finite element method. The advantages of each method are conjugated for434

dealing with the progressive failure process in large scale structures. The PB theory based method is used435

for modeling localized cracking process while the FEM is particularly efficient for modeling elastic and436

plastic problems withour localization. Further, the adaptive switching method significantly increases the437

numerical efficiency for dealing with evolutive cracking domains. The accuracy of the proposed coupling438

method has been verified by the analytical solutions for some selected elastic examples.439

The efficiency of the proposed bond damage model implemented in the adaptive coupling method has440

been validated through several representative tests on concrete structures, including the wedge splitting test,441

L-shape test and tension-shear test. Both tensile and mixed-mode cracking patterns have been observed in442

those tests. Both the force-displacement curves and the cracking trajectories have been correctly reproduced443

by the proposed method. Compared to the classical bond model, the advantages of the proposed method in444

predicting the peak strength and the progressive post-peak softening behavior have been clearly highlighted.445

In addition, it seems that the state-based PD theory is more suitable to described the curvilinear cracking446

path than the bond-based PD theory due to the simultaneous consideration of shear and volumetric strains.447

As future prospectives, the proposed method will be applied to numerical analysis of cracking process in448

large scale structures in order to highlight the efficiency of adaptive FEM-PD coupling strategy.449
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Dias-da Costa, D., Alfaiate, J., Sluys, L., Júlio, E., 2010. A comparative study on the modelling of discontinuous fracture by means460

of enriched nodal and element techniques and interface elements. International Journal of Fracture 161 (1), 97.461
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Grassl, P., Jirásek, M., 2006. Damage-plastic model for concrete failure. International journal of solids and structures 43 (22-23),470

7166–7196.471
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