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The Padovan numbers and Perrin numbers share many similar properties. In particular, they have the same recurrence relation, the difference being that the Padovan numbers are initialized via P ad(0) = 0 and P ad(1) = P ad(2) = 1. This means that the two sequences also have the same characteristic equation.

Despite the similarities, the two sequences also have some stark differences. For instance, the Perrin numbers satisfy the remarkable divisibility property that if n is prime, then n divides P n . One can easily confirm that this does not hold for the Padovan numbers. Inspired by the second author's result in [START_REF] Ddamulira | Padovan numbers that are concatenations of two distinct repdigits[END_REF], we study and completely solve the Diophantine equation:

P n = d 1 • • • d 1 times d 2 • • • d 2 m times = d 1 10 -1 9 × 10 m + d 2 10 m -1 9 , (1) 
where d 1 = d 2 ∈ {0, 1, 2, . . . , 9}, d 1 > 0, , m ≥ 1, and n ≥ 0.

We ignore the d 1 = d 2 case for the time being, since it has been covered within a more general context in an upcoming paper, where we study the reverse question of repdigits which are sums of Perrin numbers. In any case, the only such Perrin number which is a solution of the above Diophantine equation is P 11 = 22.

Our main result is the following.

Theorem 1. The only Perrin numbers which are concatenations of two distinct repdigits are 2 Preliminary Results.

P n ∈ {10,
In this section we collect some facts about Perrin numbers and other preliminary lemmas that are crucial to our main argument.

Some properties of the Perrin numbers.

Recall that the characteristic equation of the Perrin sequence is given by φ(x) := x 3 -x-1 = 0, with zeros α, β and γ = β given by:

α = r 1 + r 2 6 and β = -(r 1 + r 2 ) + i √ 3(r 1 -r 2 ) 12 ,
where

r 1 = 3 108 + 12 √ 69 and r 2 = 3 108 -12 √ 69.
For all n ≥ 0, Binet's formula for the Perrin sequence tells us that the nth Perrin number is given by

P n = α n + β n + γ n . (2) 
Numerically, the following estimates hold for the quantities {α, β, γ}:

1.32 <α < 1.33, 0.86 < |β| =|γ| = α -1 2 < 0.87.
It follows that the complex conjugate roots β and γ only have a minor contribution to the right hand side of equation ( 2). More specifically, let e(n)

:= P n -α n = β n + γ n . Then, |e(n)| < 3 α n/2 for all n ≥ 1.
The following estimate also holds:

Lemma 1. Let n ≥ 2 be a positive integer. Then α n-2 ≤ P n ≤ α n+1 .
Lemma 1 follows from a simple inductive argument, and the fact that α 3 = α + 1, from the characteristic polynomial φ.

Let K := Q(α, β) be the splitting field of the polynomial φ over Q. Then [K : Q] = 6 and [Q(α) : Q] = 3. We note that, the Galois group of K/Q is given by 1), (αβ), (αγ), (βγ), (αβγ)} ∼ = S 3 .

G := Gal(K/Q) ∼ = {(
We therefore identify the automorphisms of G with the permutation group of the zeroes of φ. We highlight the permutation (αβ), corresponding to the automorphism σ : α → β, β → α, γ → γ, which we use later to obtain a contradiction on the size of the absolute value of a certain bound.

Linear forms in logarithms.

Our approach follows the standard procedure of obtaining bounds for certain linear forms in (nonzero) logarithms. The upper bounds are obtained via a manipulation of the associated Binet's formula for the given sequence. For the lower bounds, we need the celebrated Baker's theorem on linear forms in logarithms. Before stating the result, we need the definition of the (logarithmic) Weil height of an algebraic number.

Let η be an algebraic number of degree d with minimal polynomial

P (x) = a 0 d j=1 (x -α j ),
where the leading coefficient a 0 is positive and the α j 's are the conjugates of α. The logarithmic height of η is given by

h(η) := 1 d   log a 0 + d j=1 log (max{|α j |, 1})   .
Note that, if η = p q ∈ Q is a reduced rational number with q > 0, then the above definition reduces to h(η) = log max{|p|, q}. We list some well known properties of the height function below, which we shall subsequently use without reference:

h(η 1 ± η 2 ) ≤ h(η 1 ) + h(η 2 ) + log 2, h(η 1 η ±1 2 ) ≤ h(η 1 ) + h(η 2 ), h(η s ) = |s|h(η), (s ∈ Z).
We quote the version of Baker's theorem proved by Bugeaud, Mignotte and Siksek ( [START_REF] Bugeaud | Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers[END_REF], Theorem 9.4).

Theorem 2 (Bugeaud, Mignotte, Siksek, [START_REF] Bugeaud | Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers[END_REF]). Let η 1 , . . . , η t be positive real algebraic numbers in a real algebraic number field K ⊂ R of degree D. Let b 1 , . . . , b t be nonzero integers such that

Γ := η b 1 1 . . . η bt t -1 = 0. Then log |Γ| > -1.4 × 30 t+3 × t 4.5 × D 2 (1 + log D)(1 + log B)A 1 . . . A t , where B ≥ max{|b 1 |, . . . , |b t |}, and 
A j ≥ max{Dh(η j ), | log η j |, 0.16}, for all j = 1, . . . , t.

Reduction procedure.

The bounds on the variables obtained via Baker's theorem are usually too large for any computational purposes. In order to get further refinements, we use the Baker-Davenport reduction procedure. The variant we apply here is the one due to Dujella and Pethő ( [START_REF] Dujella | A generalization of a theorem of Baker and Davenport[END_REF], Lemma 5a). For a real number r, we denote by r the quantity min{|r -n| : n ∈ Z}, the distance from r to the nearest integer.

Lemma 2 (Dujella, Pethő, [START_REF] Dujella | A generalization of a theorem of Baker and Davenport[END_REF]). Let κ = 0, A, B and µ be real numbers such that A > 0 and B > 1. Let M > 1 be a positive integer and suppose that p q is a convergent of the continued fraction expansion of κ with q > 6M . Let

ε := µq -M κq .
If ε > 0, then there is no solution of the inequality

0 < |mκ -n + µ| < AB -k in positive integers m, n, k with log(Aq/ε) log B ≤ k and m ≤ M.
Lemma 2 cannot be applied when µ = 0 (since then ε < 0). In this case, we use the following criterion due to Legendre, a well-known result from the theory of Diophantine approximation.

For further details, we refer the reader to the books of Cohen [START_REF] Cohen | A Course in Computational Algebraic Number Theory[END_REF][START_REF] Cohen | Number Theory. Volume I: Tools and Diophantine Equations[END_REF].

Lemma 3 (Legendre, [START_REF] Cohen | A Course in Computational Algebraic Number Theory[END_REF][START_REF] Cohen | Number Theory. Volume I: Tools and Diophantine Equations[END_REF]). Let κ be real number and x, y integers such that

κ - x y < 1 2y 2 .
Then x/y = p k /q k is a convergent of κ. Furthermore, let M and N be a nonnegative integers such that q N > M . Then putting a(M ) := max{a i : i = 0, 1, 2, . . . , N }, the inequality

κ - x y ≥ 1 (a(M ) + 2)y 2 ,
holds for all pairs (x, y) of positive integers with 0 < y < M .

We will also need the following lemma by Gúzman Sánchez and Luca ([9], Lemma 7): Lemma 4 (Gúzman Sánchez, Luca, [START_REF] Sánchez | Linear combinations of factorials and s-units in a binary recurrence sequence[END_REF]). Let r ≥ 1 and H > 0 be such that H > (4r 2 ) r and H > L/(log L) r . Then

L < 2 r H(log H) r .
3 Proof of the Main Result.

The low range.

We used a computer program in Mathematica to check all the solutions of the Diophantine equation ( 1) for the parameters d 1 = d 2 ∈ {0, . . . , 9}, d 1 > 0 and 1 ≤ , m and 1 ≤ n ≤ 500. We only found the solutions listed in Theorem 1. Henceforth, we assume n > 500.

The initial bound on n.

We note that equation (1) can be rewritten as

P n = d 1 • • • d 1 times d 2 • • • d 2 m times = d 1 • • • d 1 times × 10 m + d 2 • • • d 2 m times = 1 9 d 1 × 10 +m -(d 1 -d 2 ) × 10 m -d 2 . (3) 
The next lemma relates the sizes of n and + m.

Lemma 5. All solutions of (3) satisfy

( + m) log 10 -2 < n log α < ( + m) log 10 + 1.
Proof. Recall that α n-2 ≤ P n ≤ α n+1 . We note that α n-2 ≤ P n < 10 +m .

Taking the logarithm on both sides, we get n log α < ( + m) log 10 + 2 log α.

Hence n log α < ( + m) log 10 + 1. The lower bound follows via the same technique, upon noting that 10 +m-1 < P n ≤ α n+1 .

We proceed to examine (3) in two different steps as follows.

Step 1. From equations ( 2) and (3), we have that

9(α n + β n + γ n ) = d 1 × 10 +m -(d 1 -d 2 ) × 10 m -d 2 .
Hence,

9α n -d 1 × 10 +m = -9e(n) -(d 1 -d 2 ) × 10 m -d 2 .
Thus, we have that

|9α n -d 1 × 10 +m | = | -9e(n) -(d 1 -d 2 ) × 10 m -d 2 | ≤ 27α -n/2 + 18 × 10 m < 4.6 × 10 m+1 ,
where we used the fact that n > 500. Dividing both sides by d 1 × 10 +m , we get

9 d 1 α n × 10 --m -1 < 4.6 × 10 m+1 d 1 × 10 +m ≤ 46 10 . (4) 
We let

Γ 1 := 9 d 1 α n × 10 --m -1. (5) 
We shall proceed to compare this upper bound on |Γ 1 | with the lower bound we deduce from Theorem 2. Note that Γ 1 = 0, since this would imply that α n = 10 +m ×d 1

9

. If this is the case, then applying the automorphism σ on both sides of the preceeding equation and taking absolute values, we have that

10 +m × d 1 9 = |σ(α n )| = |β n | < 1,
which is false. We thus have that Γ 1 = 0.

With a view towards applying Theorem 2, we define the following parameters:

η 1 := 9 d 1 , η 2 := α, η 3 := 10, b 1 := 1, b 2 := n, b 3 := --m, t := 3.
Note that, by Lemma 5 we have that + m < n. Thus we take B = n. We note that

K := Q(η 1 , η 2 , η 3 ) = Q(α). Hence D := [K : Q] = 3.
We note that

h(η 1 ) = h 9 d 1 ≤ 2h(9) = 2 log 9 < 5.
We also have that h(η 2 ) = h(α) = log α 3 and h(η 3 ) = log 10. Hence, we let Comparing the last inequality obtained above with (4), we get log 10 -log 46 < 1.45 × 10 30 (1 + log n).

Hence, log 10 < 1.46 × 10 30 (1 + log n).

Step 2. We rewrite equation (3) as

9α n -d 1 × 10 +m + (d 1 -d 2 ) × 10 m = -9e(n) -d 2 .
That is,

9α n -(d 1 × 10 -(d 1 -d 2 )) × 10 m = -9e(n) -d 2 .
Hence,

|9α n -(d 1 × 10 l -(d 1 -d 2 )) × 10 m | = | -9e(n) -d 2 | ≤ 27 α n/2 + 9 < 36.
Dividing throughout by 9α n , we have that

d 1 × 10 -(d 1 -d 2 ) 9 α -n × 10 m -1 < 36 9α n = 4 α n (7)
We put

Γ 2 := d 1 × 10 -(d 1 -d 2 ) 9 α -n × 10 m -1
As before, we have that Γ 2 = 0 because this would imply that

α n = 10 m × d 1 × 10 -(d 1 -d 2 ) 9 ,
which in turn implies that

10 m d 1 × 10 -(d 1 -d 2 ) 9 = |σ(α n )| = |β n | < 1,
which is false. In preparation towards applying Theorem 2, we define the following parameters:

η 1 := d 1 × 10 -(d 1 -d 2 ) 9 , η 2 := α, η 3 := 10, b 1 := 1, b 2 := -n, b 3 := m, t := 3.
In order to determine what A 1 will be, we need to find the find the maximum of the quantities h(η 1 ) and | log η 1 |.

We note that

h(η 1 ) = h d 1 × 10 -(d 1 -d 2 ) 9 ≤ h(9) + h(10) + h(d 1 ) + h(d 1 -d 2 ) + log 2 ≤ 4 log 9 + log 10 < 1.47 × 10 30 (1 + log n),
where, in the last inequality above, we used [START_REF] Dujella | A generalization of a theorem of Baker and Davenport[END_REF]. On the other hand, we also have that

| log η 1 | = log d 1 × 10 -(d 1 -d 2 ) 9 ≤ log 9 + | log(d 1 × 10 -(d 1 -d 2 ))| ≤ log 9 + log(d 1 × 10 ) + log 1 - d 1 -d 2 d 1 × 10 ≤ log 10 + log d 1 + log 9 + |d 1 -d 2 | d 1 × 10 + 1 2 |d 1 -d 2 | d 1 × 10 2 + • • • ≤ log 10 + 2 log 9 + 1 10 + 1 2 × 10 2 + • • • ≤ 1.46 × 10 30 (1 + log n) + 2 log 9 + 1 10 -1 < 1.47 × 10 30 (1 + log n),
where, in the second last inequality, we used equation [START_REF] Dujella | A generalization of a theorem of Baker and Davenport[END_REF]. We note that D

• h(η 1 ) > | log η 1 |.
Thus, we put A 1 := 4.41 × 10 30 (1 + log n). We take A 2 := log α and A 3 := 3 log 10, as defined in Step 1. Similarly, we take B := n.

Theorem 2 then tells us that log

|Γ 2 | > -1.4 × 30 6 × 3 4.5 × 3 2 × (1 + log 3)(1 + log n)(log α)(3 log 10)A 1 > -6 • 10 12 (1 + log n)A 1 > -3 × 10 43 (1 + log n) 2 .
Comparing the last inequality with [START_REF] Lomelí | Repdigits as sums of two Padovan numbers[END_REF], we have that

n log α < 3 × 10 43 (1 + log n) 2 + log 4. (8) 
Thus, we can conclude that

n < 1.10 × 10 44 (1 + log n) 2 .
With the notation of Lemma 4, we let r := 2, L := n and H := 1.10 × 10 44 and notice that this data meets the conditions of the lemma. Applying the lemma, we have that

n < 2 2 × 1.1 × 10 44 × (log 1.1 × 10 44 ) 2 .
After a simplification, we obtain the bound n < 4.6 × 10 48 .

Lemma 5 then implies that + m < 6.0 × 10 47 .

The following lemma summarizes what we have proved so far: 

The reduction procedure.

We note that the bounds from Lemma 6 are too large for computational purposes. However, with the help of Lemma 2, they can be considerably sharpened. The rest of this section is dedicated towards this goal. We proceed as in [START_REF] Ddamulira | Padovan numbers that are concatenations of two distinct repdigits[END_REF].

Using equation ( 5), we define the quantity Λ 1 as

Λ 1 := -log(Γ 1 + 1) = ( + m) log 10 -n log α -log 9 d 1 .
Equation ( 4) can thus be rewritten as

e -Λ 1 -1 < 46 10 .
If ≥ 2, then the above inequality is bounded above by 1 3 . Recall that if x and y are real numbers such that |e x -1| < y, then x < 2y. We therefore conclude that |Λ We take M := 6×10 47 , which, by Lemma 6, is an upper bound for +m. A computer assisted computation of the convergents of τ returns the convergent p q = p 106 q 106 = 177652856036642165557187989663314255133456297895465 21695574963444524513646677911090250505443859600601 as the first one for which the denominator q = q 106 > 3.6 × 10 48 = 6M . Maintaining the notation of Lemma 2, we computed M τ q and obtained M τ q < 0.0393724. The smallest (positive) value of µq we obtained satisfies µq > 0.0752711, corresponding to d 1 = 3. We thus choose = 0.0358987 < µq -M τ q . We deduce that ≤ log(332q/ ) log 10 < 53.

For the case d 1 = 9, we have that µ(d 1 ) = 0. In this case we apply Lemma 3. The inequality (9) can be rewritten as

log 10 log α - n + m < 92 10 ( + m) log α < 1 2( + m) 2 ,
because + m < 6 × 10 47 := M . It follows from Lemma 3 that n +m is a convergent of κ := log 10 log α . So n +m is of the form p k /q k for some k = 0, 1, 2, . . . , 106. Thus,

1 (a(M ) + 2)(l + m) 2 ≤ log 10 log α - n + m < 92 10 ( + m) log α .
Since a(M ) = max{a k : k = 0, 1, 2, . . . , 106} = 564, we get that l ≤ log 566 × 92 × 6 × 10 47 log α / log 10 < 53.

Thus, ≤ 53 in both cases. In the case < 2, we have that < 2 < 53. Thus, ≤ 53 holds in all cases. Proceeding, recall that d 1 = d 2 ∈ {0, . . . , 9}, d 1 > 0. We now have that 1 ≤ ≤ 53. We define

Λ 2 := log(Γ 2 + 1) = log d 1 × 10 -(d 1 -d 2 ) 9 
-n log α + m log 10.

We rewrite inequality [START_REF] Lomelí | Repdigits as sums of two Padovan numbers[END_REF] as

e Λ 2 -1 < 4 α n .
Recall that n > 500, therefore We take the same κ and its convergent p/q = p 106 /q 106 as before. Since m < l + m < 6 × 10 47 , we choose M := 6 × 10 47 as the upper bound on m. With the help of Mathematica, we get that ε > 0.0000542922, and thus n ≤ log((8/ log α)q/ε) log α < 454.

Therefore, we have that n ≤ 454. Thus, n ≤ 454 in both cases. This contracts our assumption that n > 500. Hence, Theorem 1 is proved.

A 1 :

 1 = 15, A 2 := log α, A 3 := 3 log 10. Thus, we deduce via Theorem 2 that log |Γ 1 | > -1.4 × 30 6 × 3 4.5 × 3 2 × (1 + log 3)(1 + log n)(15)(log α)(3 log 10) > -1.45 × 10 30 (1 + log n).

Lemma 6 .

 6 All solutions to the Diophantine equation (1) satisfy + m < 6.0 × 10 47 and n < 4.6 × 10 48 .

2 , 8 × 6

 286 The case = 1, d 1 = 1, d 2 = 0 leads to µ(d 1 , d 2 ) = 0. So, in this case we use Lemma 3. The inequality (10) can be rewritten as because m < + m < 6 × 10 47 := M . Proceeding along the same lines as before, we have that a(M ) = 564 and thus, × 10 47 log α / log α < 431.

  4 α 2 < 1 2 . Hence |Λ 2 | < 8 αDividing both sides by log α, we have that

		m	log 10 log α	-n +	log((d 1 × 10 -(d 1 -d 2 ))/9) log α	<	8 α n log α	.	(10)
	Again, we apply Lemma 2 with the quantities:	
	κ :=	log 10 log α	, µ(d 1 , d 2 ) :=	log((d 1 × 10 l -(d 1 -d 2 ))/9) log α	, A :=	8 log α	, B := α.

n . Equivalently,

m log 10 -n log α + log d 1 × 10 -(d 1 -d 2 ) 9 < 8 α n .