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Introduction

In the framework of non-smooth modal analysis (mode shapes and corresponding frequencies)
of structural systems, earlier investigations by Carlos Yoong [12] allowed to spot autonomous
periodic motions of a one-dimensional elastic bar with a unilateral contact constraint on the
boundary. This analysis was achieved using the Wave Finite Element Method (WFEM) which is
a shock capturing numerical method. This approach allows to capture accurately discontinuous
stress and velocity wavefronts without any numerical dispersion [11]. In order to further
investigate the problem, the same problem is solved in an analytical manner in order to show the
existence of continuum of solutions. New developments within this framework lead to necessary
conditions for a solution to be a periodic solution. Moreover, solving this problem analytically is
the only way to ensure that we have an exhaustive description of the solutions.

This report also displays a numerical procedure to investigate the orbital stability in the sense
of Poincaré of these periodic motions. We attempted to exhibit a linear First Return mapping in
a continuous framework. We also introduce some details in the formulation of the WFEM which
are specific to a stress-velocity formulation. In appendix are detailed developments, notations
and explanations about scripts that have been developed.
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Chapter 1

Analytical framework for periodic
solutions of one-dimensional unilateral
contact problems

1.1 Integral form of d’Alembert solution

1.1.1 System of interest
The system of interest, depicted in Figure 1.1, is a homogeneous elastic bar of length L > 0
and Young modulus E > 0. Working in the framework of linear elasticity, we assume that both
the cross section of the bar S > 0 and its mass per unit volume ρ > 0 are constant. At rest, the
bar is clamped rigidly at its left extremity and its right extremity is at a distance g0 from a rigid
wall. We assume that the boundary conditions at x = L can switch during the motion from a
homogeneous Neumann boundary condition to inhomogeneous Dirichlet boundary condition.
The boundary switching are ruled by Signorini boundary conditions.

x
u.x; t/

L

g.u.L; t//

Figure 1.1: Elastic bar subject to a unilateral constraint

The full formulation of the problem reads:

• Equilibrium of the bar:

∀x ∈ (0, L), ∀t ≥ 0, ∂2
t u− c2∂2

xu = 0, c =
√
E/ρ; (1.1)

• Boundary conditions at x = 0:

∀t ≥ 0, u(0, t) = 0; (1.2)

• Initial conditions:

∀x ∈ (0, L), u(x, 0) = u0(x), v(x, 0) = v0(x); (1.3)

• Complementary conditions (Signorini conditions) at x = L:

∀t ≥ 0, g(t) = u(L, t)− g0 ≥ 0, σ(L, t) ≤ 0, σ(L, t)g(t) = 0. (1.4)
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1.1.2 Analytical solution
The solution to Equation (1.1) is known to be a superposition of a forward and a backward
traveling wave [8, 7] of the form

∀x ∈ R, ∀t ≥ 0, u(x, t) = f(ct+ x) + h(ct− x). (1.5)

The Dirichlet boundary condition at x = 0 implies h = −f and thus

∀x ∈ R, ∀t ≥ 0, u(x, t) = f(ct+ x)− f(ct− x). (1.6)

We assume that the function f is piecewise continuous on R. It can thus be recast as an integral
of a function φ which is defined almost everywhere in R

∀x ∈ R, ∀t ≥ 0, u(x, t) =

∫ ct+x

ct−x
φ(s) ds. (1.7)

It implies that ∀x ∈ R, lims→x− φ(s) and lims→x+ φ(s) exist. Accordingly, stress and velocity
can be derived as

v(x, t) = cφ(ct+ x)− cφ(ct− x), (1.8)
σ(x, t) = Eφ(ct+ x) + Eφ(ct− x). (1.9)

Hence, we define φ through the provided boundary conditions. It guarantees that the motion is
determined almost everywhere if we know φ.

1.1.3 Enforcement of boundary conditions
The developments exposed in this section would not have been possible without the wise advice
by Pierre DELEZOIDE who provided Equation (1.24).

We now consider that the right extremity of the bar, x = L, switches from a Neumann
boundary condition to Dirichlet boundary condition:

Neumann boundary condition at x = L When the right extremity of the bar is free, the Neu-
mann boundary condition reads φ(s+ L) = −φ(s− L), ∀s ∈ R, which implies that φ is
2L-antiperiodic during free-flight phases;

Dirichlet boundary condition at x = L When contact is closed, the right extremity of the bar
is essentially clamped. Accordingly, this is reflected on φ as a homogeneous Dirichlet
boundary condition of the form φ(s + L) = φ(s − L), ∀s ∈ R. This implies that φ is
2L-periodic during contact phases.

Switching mechanism

We assume that the bar leaves the wall at t = 0. During this first phase, the motion is fully
determined by φ0. The bar then closes the gap with the wall at t = tf and rests on the wall: the
motion is now described by φ1. Since both φ0 and φ1 stem from the same initial condition, then

∀s ∈ [−L,L], φ0(s+ ct−f ) = φ1(s+ 0+). (1.10)

However, φ0(•+t−f ) is 2L-antiperiodic and φ1(•+0+) is 2L-periodic. To extend this relationship
between φ0 and φ1 over R, we consider the function ε(s) = 1, ∀s ∈ [−L,L] and ε is 2L-
antiperiodic. This function is shown in Figure 1.2. From Equation (1.10) and the ε function, the
following is deduced:

∀s ∈ R, φ1(s) = ε(s)φ0(s+ ctf). (1.11)

This relation still holds for the other kind of boundary switching.
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Figure 1.2: ε function on [−5L, 5L]

1.1.4 Admissibility conditions
We assume that the Signorini complementarity conditions are satisfied during the motion, that
is ∀t ≥ 0, g(t) = u(L, t) − g0 ≥ 0, σ(L, t) ≤ 0, σ(L, t)g(t) = 0. This can be solely enforced
through φ.

Free-phase

If g(t) ≥ 0, then by using Equation (1.7), ∀t ∈ [0, tf ]

g(t) = g0 −
∫ ct+L

ct−L
φ0(s) ds = g0 −

∫ −L
ct−L

φ0(s) ds−
∫ L

−L
φ0(s) ds−

∫ ct+L

L

φ0(s) ds

= −
∫ −L
ct−L

φ0(s) ds−
∫ ct+L

L

φ0(s) ds =

∫ −L
ct−L

φ0(s+ 2L) ds−
∫ ct+L

L

φ0(s) ds

=

∫ L

ct+L

φ0(s) ds−
∫ ct+L

L

φ0(s) ds = 2

∫ L

ct+L

φ0(s) ds (1.12)

To be admissible, φ0 must satisfy the condition

∀t ∈ [0, tf ],

∫ ct+L

L

φ0(s) ds ≤ 0. (1.13)

Moreover, to ensure a closing contact at t = tf , φ0 must satisfy∫ ctf+L

L

φ0(s) ds = 0. (1.14)

Contact phase

If σ(L, t) ≤ 0, then via Equations (1.9) and (1.11) and Figure 1.2 together with the fact that φ0

is 2L-antiperiodic

σ(L, t) = Eφ1(ct+ L) + Eφ1(ct− L)

= Eε(ct+ L)(φ0(ctf + ct+ L)− φ0(ctf + ct− L))

= 2Eε(ct+ L)φ0(ctf + ct+ L). (1.15)

To be admissible, φ0 must also satisfy

∀t ∈ [0, tdc], ε(ct+ L)φ0(ctf + ct+ L) ≤ 0. (1.16)
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Moreover, to ensure the contact ends at t = tdc, φ0 must satisfy

ε(ctdc + L)φ0(ctf + ctdc + L) = 0. (1.17)

According to Equation (1.16), since ε(ctdc + L) = −1, the following equivalence holds:

∀t ∈ [0, tdc], φ0(c(T − tdc) + ct+ L) ≥ 0

⇐⇒ ∀x ∈ [L+ c(T − tdc), L+ cT ], φ0(x) ≥ 0. (1.18)

1.2 Motions with one closing contact per period
We are now interested in finding periodic motions for the problem described in the previous
section. We draw our focus on motions with one free phase and one closed phase per period.

1.2.1 Periodicity condition

We assume that the motion starts at an instant of release, so that φ has to be 2L-antiperiodic.
We will refer to the extension on the real axis of φ, defined on [−L,L] only, by writing φ0. We
assume contact to close at t = tf , ie we want the boundary condition to switch at this time. We
use the switching tool defined earlier via the ε function, and get φ1 such that

∀x ∈ R, ∀t ≤ 0, φ1(x) = ε(x)φ0(ctf + x). (1.19)

When release occurs, ie the boundary condition switches again, we get φ2 such that

∀x ∈ R, φ2(x) = ε(x)φ1(ctdc + x). (1.20)

Equations (1.19) and (1.20) are combined and T -periodicity is enforced on φ0(x) as follows:

φ0(x) = φ2(x), (1.21)
φ0(x) = ε(x)φ1(ctdc + x), (1.22)

= ε(x)ε(ctdc + x)φ0(ctf + ctdc + x), (1.23)
· · ·

φ0(x) = ε(x)ε(ctdc + x)φ0(cT + x). (1.24)

Equation (1.24) is of utmost importance in the remainder.

1.2.2 Necessary conditions for existence of a continuum of solutions

Squaring Equation (1.24) yields φ2
0(x) = φ2

0(cT + x), ∀x ∈ R. We want to investigate on the
existence of continua of periodic solutions. Since φ2

0 is 2L-periodic and also T -periodic, then
φ2

0 should be constant, to allow for possible cases with T/(2L) ∈ R − Q [4]. Indeed, a non
constant φ2

0 would lead to Q-parametrized solutions only. However, we seek for T ∈ R then φ2

is constant. This leads to the fact that every displacement will be piecewise linear and that stress
and velocity will be piecewise constant. Without any loss of generality, we assume that φ2

0 = 1,
that is

∀x ∈ R, φ0(x) = ±1. (1.25)
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The function φ0 will have to be multiplied by a factor, in order to be compatible with the existing
gap with the bar at rest, g0. We denote this multiplicative constant by α0. From Equation (1.25),
this constant can be derived from the identity

g0 = u(L, 0) = α0

∫ L

−L
φ0(s) ds. (1.26)

Interestingly, the case g0 = 0 could lead to infinitely many possible solutions with various levels
of energy. The reader has to keep in mind that complex behaviors can arise when this case is
reached. We could expect non “piecewise linear” displacement for instance.

1.2.3 First step to solve Equation (1.24)
We consider a solution φ0 to Equation (1.24) and we assume that it has finitely many discontinu-
ities over [−L,L]. The full set of discontinuities of a function f over R is denoted as D(f). In
physical terms, a discontinuity can be seen as a wave front. We assume that T is irrational and
that φ0,[−L,L] 6= ±ε× ε(•+ ctdc). This implies

If x ∈ D(φ0)−{D(ε)∪(D(ε)−{ctdc})} and φ0 solves (1.24) then (cT+x) ∈ D(φ0). (1.27)

Using Equation (1.24), we can forward and backward iterate this operation a finitely many times
until x+ κcT belongs to {D(ε)∪ (D(ε)− {ctdc})} −D(φ). If we can iterate to infinity, it leads
to a contradiction because cT is irrational and thus

∃(n+, n−) ∈ N∗2,

{
x+ n+cT ∈ {D(ε) ∪ (D(ε)− c{tdc})} − D(φ0),

x− n−cT ∈ {D(ε) ∪ (D(ε)− c{tdc})} − D(φ0).
(1.28)

Since D(ε) ∪ (D(ε)− {ctdc}) = (2Z + 1)L ∪ (2Z + 1)L− ctdc, it leads to two possible cases

∃(p, q) ∈ N∗ × Z,

{
pcT = 2qL,

pcT = 2qL± ctdc.
(1.29)

Since T is irrational, only Equation (1.29) is possible and

∃(p, q) ∈ N∗ × Z, T =
q

p

2L

c
± tdc

p
. (1.30)

If we assume that T ≥ tdc ≥ 0, then q ∈ N.

1.2.4 Reformulation
All the previous results on φ can be recast as

φ0(x) = ε(x)ε(ctdc + x)φ0(cT + x), ∀x ∈ R periodicity condition (1.31a)∫ ct−L

−L
φ0(s) ds ≥ 0, ∀t ∈ [0, tf ] no penetration (1.31b)

φ0(x) ≤ 0, ∀x ∈ [L− ctdc, L] compression condition (1.31c)∫ ctf−L

−L
φ0(s) ds = 0 closure at t = tf (1.31d)

T = tf + tdc (1.31e)
∃(p, q) ∈ N∗ × N, T = (q/p)(2L/c)± (tdc/p) (1.31f)

together which a wise use of the 2L-antiperiodicity of φ0.
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1.2.5 Sequences matching of φ function
Through Equation (1.24), φ0 can be expressed as

∀x ∈ R, φ0(x) =

{
A(x) x ∈ [−L,L− ctdc],

B(x) x ∈ [L− ctdc, L].

(1.32a)
(1.32b)

Cases where cT < ctdc were excluded because physically non-admissible. Others cases are
redundant because of the 4L-periodicity of φ0. Without any loss of generality, we work on A
and B defined respectively on [0, 2L− ctdc] and [0, ctdc] only.

Case ctdc ≤ 2L− ctdc

Using Equation (1.24), we can derive a sequence matching for the φ0 function which is

• ctdc ≤ cT ≤ 2L− ctdc

A(x) = A(x+ cT ) x ∈ [0, 2L− ctdc − cT ]

A(x) = B(x− 2L+ ctdc + cT ) x ∈ [2L− ctdc − cT, 2L− cT ]

A(x) = −A(x− 2L+ cT ) x ∈ [2L− cT, 2L− ctdc]

B(x) = A(x+ cT − ctdc) x ∈ [cT − ctdc, cT ]

(1.33)

• 2L− ctdc ≤ cT < 2L

A(x) = B(x+ cT − 2L+ ctdc) x ∈ [0, 2L− cT ]

A(x) = −A(x+ 2L− cT ) x ∈ [2L− cT, 2L− ctdc]

B(x) = A(x+ cT − ctdc) x ∈ [0, 2L− cT ]

B(x) = B(x− 2L+ cT ) x ∈ [2L− cT, ctdc]

(1.34)

• 2L < cT ≤ 2L+ ctdc

A(x) = −A(x− 2L+ cT ) x ∈ [0, 4L− cT − ctdc]

A(x) = −B(x− 4L+ ctdc + cT ) x ∈ [4L− cT − ctdc, 2L− ctdc]

B(x) = B(x+ cT − 2L) x ∈ [0, 2L+ ctdc − cT ]

B(x) = −A(x− 2L− ctdc + cT ) x ∈ [2L+ ctdc − cT, ctdc]

(1.35)

• 2L+ ctdc ≤ cT ≤ 4L− ctdc

A(x) = −A(x− 2L+ cT ) x ∈ [0, 4L− ctdc − cT ]

A(x) = −B(x− 4L+ ctdc + cT ) x ∈ [4L− ctdc − cT, 4L− cT ]

A(x) = A(x− 4L+ cT ) x ∈ [4L− cT, 2L− ctdc]

B(x) = A(x+ cT − 2L− ctdc) x ∈ [0, ctdc]

(1.36)

• 4L− ctdc ≤ cT ≤ 4L

A(x) = −B(x− 4L+ ctdc + cT ) x ∈ [0, 4L− cT ]

A(x) = A(x− 4L+ cT ) x ∈ [4L− cT, 2L− ctdc]

B(x) = −A(x− 2L+ cT − ctdc) x ∈ [0, 4L− cT ]

B(x) = −B(x+ cT − 4L) x ∈ [4L− cT, ctdc]

(1.37)
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Case ctdc ≥ 2L− ctdc

Using Equation (1.24), we can write a sequence matching for the φ0 function which is

• ctdc ≤ cT < 2L

A(x) = B(x− 2L+ cT + ctdc) x ∈ [0, 2L− cT ]

A(x) = −A(x− 2L+ cT ) x ∈ [2L− cT, 2L− ctdc]

B(x) = A(x+ cT − ctdc) x ∈ [0, 2L− cT ]

B(x) = B(x− 2L+ cT ) x ∈ [2L− cT, ctdc]

(1.38)

• 2L < cT ≤ 4L− ctdc

A(x) = −A(x+ cT − 2L) x ∈ [0, 4L− cT − ctdc]

A(x) = −B(x− 4L+ ctdc + cT ) x ∈ [4L− ctdc − cT, 2L− ctdc]

B(x) = B(x+ cT − 2L) x ∈ [0, 2L− cT + ctdc]

B(x) = −A(x− 2L+ cT − ctdc) x ∈ [2L− cT + ctdc, ctdc]

(1.39)

• 4L− ctdc ≤ cT ≤ 4L

A(x) = −B(x+ 4L− cT ) x ∈ [0, 4L− cT ]

A(x) = A(x− 4L+ cT ) x ∈ [4L− cT, 2L− ctdc]

B(x) = −A(x− 2L+ cT − ctdc) x ∈ [0, 4L− cT ]

B(x) = −B(x− 4L+ cT ) x ∈ [4L− cT, ctdc]

(1.40)

With this matching, it is possible to compute numerical solution to the problem at hand. Indeed,
by dividing the interval [−L,L], the problem is reduced to finding a non trivial kernel of a square
matrix which represents each system of equations described above. The reader has to keep in
mind that the unknowns are the restrictions of A and B over all subdivisions of [−L,L].

1.2.6 Admissibility
Through Equation (1.31c), φ0 can be expressed as

∀x ∈ R, φ0(x) =

{
A(x) x ∈ [−L,L− ctdc]

− 1 x ∈ [L− ctdc, L]
(1.41)

Moreover, from Equation (1.31b) we can exclude every case where A is not positive in the
vicinity of 0. Indeed, if ∃η > 0, A|[0,η] = −1 then the gap becomes negative at t = 0+ which is
absurd. We remind the reader that φ(−L+ η) = A(η). These conditions reduce to the previous
cases as listed below.

Case ctdc ≤ 2L− ctdc

Using Equation (1.24), we can write a sequence matching for the φ0 function which is

• ctdc ≤ cT ≤ 2L− ctdc

A(x) =


− 1 x ∈ [2L− ctdc − cT, 2L− cT ] ∪ [cT − ctdc, cT ]

A(x+ cT ) x ∈ [0, 2L− ctdc − cT ]

− A(x− 2L+ cT ) x ∈ [2L− cT, 2L− ctdc]

(1.42)
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• 2L < cT ≤ 2L+ ctdc

A(x) =

{
1 x ∈ [0, cT − 2L] ∪ [4L− ctdc − cT, 2L− ctdc]

− A(x− 2L+ cT ) x ∈ [0, 4L− cT − ctdc]
(1.43)

• 2L+ ctdc ≤ cT ≤ 4L− ctdc

A(x) =


1 x ∈ [4L− ctdc − cT, 4L− cT ] ∪ [cT − 2L− ctdc, cT − 2L]

A(x− 4L+ cT ) x ∈ [4L− cT, 2L− ctdc]

− A(x− 2L+ cT ) x ∈ [0, 4L− ctdc − cT ]

(1.44)

Case ctdc ≥ 2L− ctdc

Using Equation (1.24), we can write a sequence matching for the φ0 function which is

• 2L < cT ≤ 4L− ctdc

A(x) =

{
1 x ∈ [0, cT − 2L] ∪ [4L− cT − ctdc, 2L− ctdc]

− A(x+ cT − 2L) x ∈ [0, 4L− cT − ctdc]
(1.45)

A first insight on admissible solutions

Via Section 1.2.6, we can be more precise about Equation (1.30). We will show the methodology
to derive some results of Equation (1.43), the others being obtained in a similar fashion. The idea
is to list all the possible cases for the position of the intervals where the function A is defined.
Then we show that there exists a smallest interval included in [0, 2L− ctdc] which must divide
every interval where A satisfies an equation listed on each possible case of Equations (1.43)
to (1.45) and (1.52). Eventually we use this last property over a given interval to exhibit a relation
between T and tdc. To be efficient, this interval must be independent of tdc.

• We assume that cT − 2L > 4L− ctdc − cT , then

A(x) = 1, ∀x ∈ [0, 2L− ctdc]. (1.46)

However, A satisfies Equation (1.52). So this case is absurd since A should change sign in
the vicinity of 4L− ctdc − cT .

• We further assume that cT − 2L ≤ 4L − ctdc − cT , then we consider d = cT − 2L.
A is known over intervals [0, d] and [2L − ctdc − d, 2L − ctdc]. If d does not divide
D = 2L− ctdc − 2d which is the length of [d, 2L− ctdc − d], then

∃(κ, δ) ∈ N× (0, d), D = κd + δ. (1.47)

Two cases now arise with regard to the parity of κ, we focus on the case κ is even (the same
methodology works for odd κ). If we consider I = [D− δ, 2L− ctdc− δ]∩ [D, 2L− ctdc],
then ∀x ∈ I , A(x) = 1 according to Equation (1.52), but also ∀x ∈ I , A(x) = −1
according to Equation (1.52), which is absurd.

• We further assume that D = κd with k ∈ N. Two cases arise with regard to the parity
of κ. If κ is even, then Equation (1.43) yileds A(x) = 1 and A(x) = −1, ∀x ∈ [D,D+ d],
which is absurd. Then the only possibility is D = (2κ+ 1)d. This leads to

T =
2κ+ 4

2κ+ 3

2L

c
− tdc

2κ+ 3
. (1.48)

Knowing the relation between T , tdc and d, a function φ solution of Equation (1.31) is uniquely
determined. This methodology does not give an exhaustive list of all possible solutions.
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1.2.7 Results and discussion
In this subsection are displayed the final results derived from the methodology and equations
introduced in Section 1.2.6.

Analytical expression of admissible φ

The analytical expression of φ leading to a periodic motion can be derived as well. We only give
expressions over interval [−L,L] because φ is 2L-antiperiodic.

Duration ctdc ≤ cT ≤ 2L− ctdc The admissible φ function reads

φ1,κ = α0 ×


(−1)n x ∈ [−L+ nd,−L+ (n+ 1)d]

− 1 x ∈ [L− ctdc − cT,−L+ cT ]

(−1)n x ∈ [−L+ cT + nd,−L+ cT + (n+ 1)d]

− 1 x ∈ [L− ctdc, L]

(1.49)

where d = 2cT − 2L, κ ∈ N, n ∈ J0, 2κK, tdc ∈ [0, L/c] and

α0 =
g0

8(κ+ 1)cT − (8κ+ 10)L
, T =

2κ+ 2

4κ+ 3

2L

c
− tdc

4κ+ 3
.

Duration 2L < cT ≤ 2L+ ctdc or 2L < cT ≤ 4L− ctdc The admissible φ reads

φ2,κ = α0 ×


1 x ∈ [−L, cT − 3L]

(−1)n x ∈ [cT − 3L+ nd, cT − 3L+ (n+ 1)d]

1 x ∈ [3L− ctdc − cT, L− ctdc]

− 1 x ∈ [L− ctdc, L]

(1.50)

where d = cT − 2L, κ ∈ N, n ∈ J0, 2κK, tdc ∈ [0, 2L/c] and

α0 =
g0

cT − 2L− ctdc

, T =
2κ+ 4

2κ+ 3

2L

c
− tdc

2κ+ 3
.

Duration 2L+ ctdc ≤ cT ≤ 4L− ctdc The admissible φ reads

φ3,κ = α0 ×


(−1)n x ∈ [−L+ nd,−L+ (n+ 1)d]

1 x ∈ [3L− ctdc − cT,−3L+ cT ]

(−1)n+1 x ∈ [−3L+ cT + nd,−3L+ cT + (n+ 1)d]

− 1 x ∈ [L− ctdc, L]

(1.51)

where d = 6L− 2cT , κ ∈ N, n ∈ J0, 2κ− 1K, tdc ∈ [0, L/c] and *

α0 =
g0

2cT − 6L
, T =

6κ+ 2

4κ+ 1

2L

c
− tdc

4κ+ 1
.

For whichever κ ∈ N considered, a continuum of solutions parametrized by tdc is depicted.
Via Equations (1.49) to (1.51), we can also parametrize every continuum by T . Moreover, it is
possible to show that all these solutions satisfy Equation (1.31). However the solutions found until
now are not an exhaustive set of solutions, more sophisticated cases can arise from Section 1.3.1.
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ω/ω1 ∈
√
E(ω) (positive) Vertical asymptote

First NSM and
sub harmonics

[2κ+ 1

κ+ 1
, 2
] 2g0

(8κ+ 8)/ω − (2κ+ 5)2L/c

ω

ω1
=

4κ+ 8

2κ+ 5

First NSM Internal
resonances

[16κ+ 4

12κ+ 4
,
16κ+ 4

12κ+ 3

] 2g0
8/ω − 6L/c

ω

ω1
=

16κ+ 4

12κ+ 3

Second NSM and
sub harmonics

[4κ+ 3

κ+ 1
, 4
] 2g0

32(κ+ 1)/ω − (8κ+ 10)L/c

ω

ω1
=

32(κ+ 1)

8κ+ 10

Table 1.1: Overview of continua for energies of the system of interest
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Figure 1.3: Energy frequency diagram: ( ) first NSM [g0 > 0], ( ) first NSM [g0 < 0], ( ) first
NSM internal resonance [g0 > 0], ( ) second NSM [g0 > 0], ( ) second NSM [g0 < 0]

Energy-frequency diagrams for solutions with one closing contact per period

Through the previous developments, the normalized energy of each motions can be derived
as a function of the normalized frequency. We normalize both quantities with regard to the
first clamped-free linear grazing mode. The is summarized in Table 1.1. Admissible periodic
solutions are displayed in an energy-frequency diagram in Figure 1.3 and period versus time of
contact diagram as shown in Figure 1.4. The current framework provides access to continua
of solutions for some period intervals only, see Equation (1.31). We can also exhibit coexisting
continuum of solutions for ω ∈ [5ω1/4, 4ω1/3]. These solutions coexist with the same energy and
same frequency. Moreover, no continuum can be spotted within the frequency range [2ω1, 3ω1].
However, numerical suggest that other continua exist. They could be found by solving the
simplified problem in Section 1.3.1. The main backbone curve of the first NSM is already
known [5, 1]. Interestingly, we can satisfy admissibility for φ in the case g0 = 0 if we take the
convention that α0 = +∞.

13



0 L
c

2L
c

L
c

4L
3c

2L
c

8L
3c

3L
c

4L
c

Time of contact tc

Pe
ri

od
of

m
ot

io
n

T

Figure 1.4: T versus tdc: ( ) first NSM, ( ) first NSM internal resonances, ( ) second NSM

1.3 Possible developments

1.3.1 Towards exhaustive continuum of solutions
It appears that other continua can be exhibited by solving Equation (1.52). It is possible to write
this problem in the following simplified format: Find A(x) such that

A(x) = −1 ∀x ∈ [a, b] ∪ [w, d] (1.52a)
A(x) = A(x+ d) ∀x ∈ [0, a] (1.52b)
A(x) = −A(x− b) ∀x ∈ [b, b+ w] (1.52c)
A(x) = ±1 ∀x ∈ [0, b+ w] (1.52d)
a+ d = b+ w (1.52e)
qd = p(b+ d)− (b− a) (q, p) ∈ N∗ × N∗ (1.52f)

where (a, b, w, d) = (2L − cT − ctdc, 2L − cT, cT − ctdc, cT ). The reader may enjoy an
illustration of this problem in Figure 1.5. A similar formulation arises for Equation (1.44) with

0 w d a b b C w

0 �1 �1

AŒ0;a�

AŒ0;a�

�AŒ0;w�

AŒ0;w�

x

Figure 1.5: Functional equation visualization

different values for (a, b, w, d) and a slight change in Equation (1.52).

1.3.2 Framework for n boundary switches per period
We can extend this formalism to the case where the bar sticks n times per period. We denote by
tdc,i (respectively tf,i), the duration of the ith contact phase (respectively the duration of the ith
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free-flight phase). Then, Equation (1.11) can be extended to the n boundary-switch case

∀(x, n) ∈ R× N∗, φ0(x) = βnφ0

(
x+

n−1∑
k=1

(ctdc,n−k + ctf,n−k)
)

(1.53)

with

βn =
n−1∏
i=0

ε
(
x+

i∑
k=1

(ctdc,n−k + ctf,n−k)
)
ε
(
x+

i∑
k=1

(ctdc,n−k + ctf,n−k) + tdc,n−i−1

)
.

We take the convention that if i = 0 then
∑i

k=1 = 0. This formulation shows how difficult
the problem can be with many boundary switches. However, we still can see that looking for
continuum in T̃ =

∑n−1
k=1(ctdc,n−k + ctf,n−k) leads to φ = ±α̃0. Then the displacement stays

piecewise linear and stress and velocity stay piecewise constant. The argument used is the same
as earlier Section 1.2.2. This formalism for two sticking phases per period, ie n = 2, yields

∀x ∈ R, φ0(x) = β2φ0

(
x+ tdc,1 + tf,1 + tdc,0 + tf,0

)
(1.54)

with β2 = ε(x)ε(x+ tdc,1)ε(x+ tdc,1 + tf,1)ε(x+ tdc,1 + tf,1 + tdc,0).

1.3.3 Checking periodicity for inferred solutions
General case

A candidate solution of the problem for one boundary switching per period is assumed to be
known, together with the stress profile σ(x) = h(x) at t = tf/2 and v(x) = 0. Through Equa-
tions (1.8) and (1.9), we can compute the 2L-antiperiodic φtf/2 function associated to half of the
free-phase duration:

2Eφtf/2(x) =

{
h(x) x ∈ [0, L],

h(−x) x ∈ [−L, 0].
(1.55)

Then we can compute a function φ0 associated to the motion at the release time which is

∀x ∈ R, φ0(x) = φtf/2(x− ctf/2). (1.56)

Equation (1.56) implies that if D(φtf/2) is known, then D(φ0) is uniquely determined as

D(φ0) = D(φtf/2) + {ctf/2}. (1.57)

Roughly speaking, if x∗ is a discontinuity of φtf/2, then x∗ + ctf/2 is a discontinuity of φ0.
This discontinuity shifting is illustrated in Figure 1.6 for an internal resonance NSM located at
ω5/7. We can now check the periodicity of this candidate solution via Equation (2.16) and the
admissibility conditions from Equation (1.31) can be checked with φ0.

Illustration with the First NSM

For the first NSM, the function h is defined as h(x) = −σ0, ∀x ∈ [0, L] with σ ∈]|g0E/L|; 0[.
Accordingly, the 2L-antiperiodic φtf/2(x) is

φtf/2(x) = −σ0, x ∈ [−L,L]. (1.58)
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Figure 1.6: Discontinuity shift of an internal resonance NSM located at ω5/7: ( ) φtf/2 and ( ) φ0

Previous works have shown that ctf/2 = L− g0E/σ0. Using the methodology in Section 1.3.3,
we have to consider every right shift ctf/2 ∈ [0, 2L] of the function φtf/2(x). Using previous
results, ctf/2 = 2L− ctdc and we can write the 2L-antiperiodic function φ0 as

φ0(x) =

{
− σ0 x ∈ [L− ctdc, L],

+ σ0 x ∈ [−L,L− ctdc].
(1.59)

Then admissibility holds because

∫ ct−L

−L
φ0(s) ds =

{
σ0ct t ∈ [0, 2L/c− tdc]

σ0(2L− ctdc)− σ0(ct− 2L+ ctdc) t ∈ [2L/c− tdc, 4L/c− 2tdc].

When t = tf = 4L/c − 2tdc, the closure happens because
∫ ctf−L
−L φ0(s) ds = 0. Moreover,

the compression condition (1.31c) is satisfied as seen in Equation (1.59). Considering that
T = 4L/c− tdc, we can now compute φ0(x+ cT ) using the 2L-antiperiodicity of φ0:

φ0(x+ cT ) = +σ0, x ∈ [−L,L] (1.60)

and φ0(•+ cT ) is 2L-antiperiodic. Then the periodicity condition is satisfied because

ε(x)ε(ctdc + x)φ0(cT + x) = φ0(x) =

{
− σ0 x ∈ [L− ctdc, L]

+ σ0 x ∈ [−L,L− ctdc].
(1.61)

1.3.4 Extension to Robin boundary condition at x = 0

The system of interest, illustrated in Figure 1.7, is almost identical to the previous one. The
bar is now attached to the ground at x = 0 through a spring of stiffness k > 0. The governing
Equation (1.1) still holds as well as the general solution (1.5). However, the Robin boundary
condition ux(0, t) = ku(0, t) implies

∀x ∈ R, f ′(x)− h′(x) = k(f(x) + h(x)). (1.62)
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Figure 1.7: One-dimensional bar with Robin and Signorini boundary conditions

Accordingly, the function h can be written as

∀x ∈ R, h(x) = e−kx
[
h(0) +

∫ x

0

eks(f ′(s)− kf(s)) ds
]

= e−kx
[
h(0)− 2k

∫ x

0

eksf(s) ds+ ekxf(x)− f(0)
]

= f(x) + e−kx
[
h(0)− f(0)− 2k

∫ x

0

eksf(s) ds
]

(1.63)

Then ∀(x, t) ∈ R× R

u(x, t) = f(ct+ x) + f(ct− x) + ek(x−ct)
[
h(0)− f(0)− 2k

∫ ct−x

0

eksf(s) ds
]

(1.64)

Free flight During free flights we have that ∀t ∈ R, ux(L, t) = 0, then ∀x ∈ R

f ′(x+ 2L) = h′(x)⇔ f(x+ 2L) = h(x) + f(2L)− h(0) (1.65)

Using Equation (1.63), the problem reduces to finding f such that ∀x ∈ R

f(x+ 2L)− f(2L) + h(0)− f(x) = e−kx
[
h(0)− f(0)− 2k

∫ x

0

eksf(s) ds
]

(1.66)

Contact phase During contact phases we have that ∀t ∈ R, u(L, t) = g0, then ∀x ∈ R:
f(x+ 2L) + h(x) = g0. Using Equation (1.63), the problem is reduced to finding f such
that ∀x ∈ R

g0 − f(x+ 2L)− f(x) = e−kx
[
h(0)− f(0)− 2k

∫ x

0

eksf(s) ds
]

(1.67)

which implies h(0) = g0 − f(2L) during contact phases.

These equations do not give valuable insight about f . We see here, that analytical solutions
of this problem may be way more difficult to find than in the case where the left extremity is
clamped to the wall. However we can still observe that f can be describe over R if we know it
over an interval of length 2L.
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Chapter 2

On a stability analysis

We are now interested in the stability of the periodic solutions reported in the previous chapter.
Our main purpose is to check if a naive extension of the first return map used in [9] is possible in
this framework.

2.1 A stress-velocity formulation

D’Alembert solution expressed in terms of initial displacement u0(x) and velocity v0(x) reads

2u(x, t) = u0(x+ ct) + u0(x− ct) +
1

c

∫ x+ct

x−ct
v0(s) ds. (2.1)

For sufficiently differentiable u0 and in the framework of linear elasticity, the following holds
via the chain rule for differentiation

2

(
σ(x, t)
v(x, t)

)
=

(
σ0(x+ ct) + σ0(x− ct) + E/c[v0(x+ ct)− v0(x− ct)]
c/E[σ0(x+ ct)− σ0(x− ct)] + v0(x+ ct) + v0(x− ct)

)
. (2.2)

Hence, for a given initial condition in stress and velocity, we can compute the stress and the
velocity for any x ∈ [0, L] and any t ≥ 0. The system of interest and the governing equations are
the same as in Section 1.1.1.

2.1.1 Hyperbolic system of conservation law

The equilibrium equation of the bar Equation (1.1) can be written as a system of two first order
partial differential equations in terms of σ(x, t) and v(x, t):

∂tq + B∂xq = 0 where B =

[
0 −E

−c2/E 0

]
and q =

(
σ
v

)
. (2.3)

The eigenvalues of B are c and −c which correspond to the wave propagation velocity along
the bar. That refers to a hyperbolic system of conservations laws [2]. This local equation of
conservation law has the integral form

∂t

(∫ x2

x1

q(x, t) dx

)
= B (q(x1, t)− q(x2, t)) . (2.4)
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2.1.2 Switching mechanism

Through the expressions of σ and v in terms of φ, we can write the periodic extensions for the
stress and velocity profiles on the whole real axis.

Free flights σ and v are 2L-antiperiodic: ∀x ∈ R, ∀t ∈ R

σ(L+ x, t) = −σ(L− x, t)
σ(x, t) = σ(−x, t)
v(L+ x, t) = v(L− x, t)
v(x, t) = −v(−x, t)

(2.5)

Contact phases σ and v are 2L-periodic: ∀x ∈ R, ∀t ∈ R

σ(L+ x, t) = σ(L− x, t)
σ(x, t) = σ(−x, t)
v(L+ x, t) = −v(L− x, t)
v(x, t) = −v(−x, t)

(2.6)

2.1.3 Mapping for a given initial condition

Free flight operator

We can now write d’Alembert’s solution at the beginning of the free-flight as

2

(
σ(x, t)
v(x, t)

)
=

(
σ∗∗0 (x+ ct) + σ∗∗0 (x− ct) + E/c[v∗0(x+ ct)− v∗0(x− ct)]
c/E[σ∗∗0 (x+ ct)− σ∗∗0 (x− ct)] + v∗0(x+ ct) + v∗0(x− ct)

)
(2.7)

and in a compact manner

q(x, t) = F(q0)(x, t). (2.8)

Here •∗∗ and •∗ are the periodic extensions of stress and velocity for free flights.

Contact phase operator

We can also write the d’Alembert solution regarding to initial conditions σ1 and v1 at the
beginning of the contact phase as following:

2

(
σ(x, t)
v(x, t)

)
=

(
σ̂1(x+ ct) + σ̂1(x− ct) + E/c[ṽ1(x+ ct)− ṽ1(x− ct)]
c/E[σ̂1(x+ ct)− σ̂1(x− ct)] + ṽ1(x+ ct) + ṽ1(x− ct)

)
(2.9)

or

q(x, t) = C(q1)(x, t). (2.10)

Here •̂ and •̃ are the periodic extensions of stress and velocity for contact phases. Both operators
F and C have to be seen as operators which convert an initial wave into its image at time t.
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Standalone properties

A few important properties of F and C are listed below but basic proofs are provided for F only
for conciseness. This relies on Equation (2.2) along with the linearity of function evaluation.

Linearity with respect to q0 The linearity of F stems from the linearity of the governing PDE
(without the boundary conditions).

Characteristics curves relations F satisfies this property:

2F(q)(x, t+ ∆t) = F(q)(x+ c∆t, t) + F(q)(x− c∆t, t)
−B/c[F(q)(x+ c∆t, t)−F(q)(x− c∆t, t)] (2.11)

for an arbitrary q. This expression holds for every ∆t considered and ∀x ∈ R. We can
illustrate this equality in terms of characteristics in Figure 2.1. It is similar to properties
reported in [8].

x

t

q.x; t C�t/

q.x � c�t; t/ q.x; t/ q.x C c�t; t/

x C ct D cstx � ct D cst

Figure 2.1: Characteristics curves around q(x, t)

Spatial periodicity The periodic extensions of free-flight or contact phase yield F(q)(x, t +
4L/c) = F(q)(x, t). Similarly, C(q)(x, t + 2L/c) = C(q)(x, t). Moreover, from Equa-
tion (2.11) and extensions of σ and v with ∆t = 2L/c, F(q)(x, t+ 2L/c) = −F(q)(x, t).

Temporal differentiability of F As a consequence of Equation (2.3), we can compute the
derivative in the sense of distributions of F through

∀ϕ ∈ C∞comp,

∫
R
∂tF(q0)(x, t)ϕ(x) dx =

∫
R
−B∂xF(q0)(x, t)ϕ(x) dx. (2.12)

In the framework of almost everywhere (a.e.) differentiable functions, the following holds
via d’Alembert solution:

∀ϕ ∈ C∞comp,

∫
R
∂tF(q0)(x, t)ϕ(x) dx =

∫
R
−BF(∂xq0)(x, t)ϕ(x) dx. (2.13)

The previous means that for almost every x ∈ R and for almost every t ≥ 0

∂tF(q0)(x, t) = −BF(∂xq0)(x, t). (2.14)

This also works for operator C.
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Mapping

We now use the fact that a switch happens at t = tf makes the link between the two steps of the
motion to write:

q2(x) = C[F(q0)(•, tf)](x, tc). (2.15)

When computed with an initial condition generating a periodic motion of period T = tf + tdc,
we have

∀x ∈ [0, L], C[F(q0)(•, tf)](x, tc) = q0(x). (2.16)

2.2 Stability under small perturbations

2.2.1 Definition
We call a stable solution, every q such that ∀ε ≥ 0, ∀x ∈ [0, L]

∃δ ≥ 0, ‖q0(x)− δψ0(x)‖ ≤ δ ⇒ ∀t ≥ 0, ‖q(x, t)− δψ(x, t)‖ ≤ ε (2.17)

where q0 and δψ0 are respectively the initial condition of a periodic solution and a disturbed
initial condition. Roughly speaking, this definition means that if a motion is sufficiently close
to a periodic motion at t = 0, then the motion will stay close to the periodic motion [6]. If the
solution q does not match this, it will be called an unstable solution. An illustration for this
definition of stability may be seen on Figure 2.2.

t0
t�0

�

ı

(a) Stable periodic motion

t0
t�0

�

ı

(b) Unstable periodic motion

Figure 2.2: Periodic motion ( ), Disturbed motion 1 ( ), Disturbed motion 2 ( )

2.2.2 Assumptions
We now want to exhibit an operator which maps an initial small perturbation δψ0 to the perturba-
tion at the time of first return T denoted as δψT . We will denote this operator as Lq. The index q
reminds us that this operator is a function of the periodic solution q considered. We draw our
focus on particular initial perturbations δψ0 which satisfy the following conditions:

∀x ∈ [0, L], ‖δψ0(x)‖ � ‖q0(x)‖ (2.18a)
q0 + δψ0 satisfies the fixed-free boundary condition (2.18b)
δψ0 is Lipschitz-continous along R (2.18c)
∀t ≥ 0, σ(L, t+r ) < −δσ(L, t) = −E∂xδu(L, t) < σ(L, t−r ) + Jq (2.18d)
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Figure 2.3: Assumption (2.18d): Undisturbed stress ( ), Disturbed stress ( )

Equation (2.18d) is illustrated in Figure 2.3. The reader can see that the initial stress wave front
stays large enough to ensure that the release occurs because of the reflection of the compression
wave at the contacting end. This assumption is crucial to compute the variation of closure time.

2.2.3 Linearized mapping for an initial perturbation
Variation of the duration of free-flight

Without any loss of generality, we assume that the motion starts at a release time with an initial
condition q0 + δψ0 = (σ0 + δσ0, v0 + δv0)>. The duration of free-flight will be changed by the
perturbation. Here, we use u(x, t) and δu(x, t) to refer to the displacement of the bar and the
perturbation in displacement of the bar. By expansion around tf at x = L and using that closure
happens at tf , we get:

δtf = −δu(L, tf)

v(L, tf)
+ o(δ) (2.19)

Linear elasticity yields

δtf ≈ −
∫ tf

0

e>2 δψ(L, τ)

e>2 q(L, tf)
dτ (2.20)

or equivalently

δtf ≈ −
∫ L

0

1

E

e>1 δψ(s, tf)

e>2 q(L, tf)
ds (2.21)

Here the assumptions given by Equations (2.18a) to (2.18c) allow for this current development.
The corresponding output is shown in Figure 2.4. The quantity δtf has to be understood as the
signed variation of free-flight duration due to the perturbation.

Variation of the duration of contact-phase

We now take advantage of assumptions Equations (2.18c) and (2.18d). Here it means that the
magnitude of the stress perturbation is small enough to ensure that (σ + δσ)(L, ·) keeps the
same number of discontinuities and the jump still cross the real axis. Physically, this assumption
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Figure 2.4: Free-flight duration variation: Numericals ( ), δf Linearization ( )

is a translation of Equation (2.18a) in terms of stress. By spotting the discontinuities of the
stress during the motion, we know the position α ∈ [0, L] at the closure time of the discontinuity
in stress which makes the release occur. Thanks to the wave traveling velocity c, we are able
to know the exact contact-phase duration tdc = (L − α)/c. Since we have a perturbation, the
α is translated to α + δα and the release is still a consequence of the jump in stress thanks
to Equation (2.18d). Hence:

ctdc + cδtdc = L− (α + δα) ⇒ δtdc = −δα/c (2.22)

By using the free-flight variation duration δtf and wave velocity c, we can express the variation
of the position δα, that leads to:

cδtdc = −δα = −cδtf (2.23)

The reader can see the relationship (obtained by numerical) between both duration variations
in Figure 2.5. The δtdc has to be understood as the signed contact-phase duration variation due
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Figure 2.5: Contact-phase duration versus free-flight duration: Numericals

to the perturbation.
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2.2.4 Linearized “First Return Map” operator
We are now able to describe the operator which makes the link between an initial small perturba-
tion δψ0 and the due perturbation after one complete free-flight and one complete contact-phase
δψT . In order to do so, we are going to use the previous operators F•,tf and C•,tdc and the duration
variation of both phases of the motion δtf and δtdc. By expansion of the operators evaluated in
q0 + δψ0 and in t = T we get the following:

δψ(x, T ) ≈ C [F(δψ0)(•, tf)] (x, tdc) + γ

∫ tf

0

e>2 F(δψ0)(L, τ)

e>2 F(q0)(L, tf)
dτ (2.24)

where γ = C [BF(∂xq0)(•, tf)] (x, tdc) − BC [∂xF(q0)(•, tf)] (x, tdc). Referring to Equa-
tion (2.21), it can also be written as

δψ(x, T ) ≈ C [F(δψ0)(•, tf)] (x, tdc) +
γ

E

∫ L

0

e>1 F(δψ0)(s, tf)

e>2 F(q0)(L, tf)
ds, (2.25)

or in the compact form

For (a.e) x ∈ [0, L], δψ(x, T ) ≈ L(δψ0)(q0, x, tdc, tf). (2.26)

2.3 Numerical routine for eigenvalues computation
The stability of a given periodic solution q relies on the analysis of the operator Lq0,x,tdc,tf . As it
is challenging to conduct such investigation in the continuous framework, a discretized version
is explored instead.

2.3.1 Discretized mapping for an initial perturbation
Using a space step ∆x = L/N and a time step ∆t = ∆x/c and the WFEM matrices [12], we
can give a matrix expression of a discretized version of L. The details of the discrete formulation
are given in appendix. Two choices arise when we compute this discrete version. We can time
integrate velocity or space integrate stress in order to get the perturbed displacement.

The purpose of the discretization is to exhibit a linear operator whose input belongs to a finite
dimension space. Indeed, the computation of the spectral radius is easier in finite dimension.
Then, we can use the same reasoning than [9] to conclude on the stability of some branches.

Time integration of the perturbation

δψT = Ap
cA

m
f δψ0 +

1

2

∆t

∆x
〈e2N |Fδψ0〉xNSM (2.27)

=
[
Ap

cA
m
f +

1

2c
xNSMe

>
2NF

]
δψ0 = [R

(1)
NSM]δψ0 (2.28)

R
(1)
NSM is the discretized linear operator of first return. We may compute its eigenvalues with

numerical methods. The vector xNSM is a NSM considered dependent vector. We see clearly
here that the operator is linear in δψ0 thanks to the matrix expression of it.

Matrices Ap
c and Am

f are the discretized equivalents of C•,p∆t and F•,m∆t. We denote as δψ0

is the discretized shape function of the initial perturbation along the bar. The F matrix and xNSM

vector are described in appendix. We denote as e2N the 2N th canonical basis vector of R2N .
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Space integration of the perturbation

δψT = Ap
cA

m
f δψ0 +

1

E

N∑
k=1

〈ek|Am
f δψ0〉xNSM (2.29)

=
[
Ap

cA
m
f +

1

E
xNSM

( N∑
k=1

ek
)>

Am
f

]
δψ0 =

[
R

(2)
NSM

]
δψ0 (2.30)

2.3.2 Results and discussions
We focus the results on the main backbone curve of the first NSM. The reader may see the
spectral radius of both first return maps R

(1)
NSM and R

(2)
NSM in Figure 2.6. What we see is that

motions should be unstable. When the frequency converges to linear frequency of the system,
then we are close to neutral stability (ρ = 1). However the results given by both operators are
different in terms of amplitude even if the meaning stays the same. This drawback could be
linked to to huge number of numerical operations necessary to get the eigenvalues of R(1)

NSM.
However, when we compute naively a disturbed motion near a periodic orbit with numerical it
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Figure 2.6: Spectral radius of discretized operators

appears that the motion is stable. Indeed, we can notice that the perturbation appears to behave
as an additional superposition of forward and backward traveling waves as shown in Figures 2.7
and 2.8.

For all these reasons, it appears that we can not extend the first return map tool to continuous
system by this methodology. As suggested by Figure 2.9, the perturbed motions could be seen as
waves superposition.
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Figure 2.7: Residual perturbation of initial amplitude δ: initial perturbation ( ), perturbation at second
release ( )
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Figure 2.8: Residual perturbation of initial amplitude δ: initial perturbation ( ), perturbation at second
release ( )
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(a) Undisturbed motion

(b) Perturbed motion with a 2.5% amplitude size initial perturbation

Figure 2.9: Periodic motion living on the main backbone curve of 1NSM and a disturbed motion
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Appendix A

Notations

Notations are given in order of appearance:
Lower case Scalar quantities and functions
Lower case, bold font Vector quantities and functions
Upper case, bold font Matrix quantities and functions
L Length of the bar
E Young modulus of the bar
S Section of the bar
ρ linear density
g0 Initial gap between the right tip and the wall
x Straight curvilinear abscissa of the bar
u Displacement of the section
∂• Partial differentiation with respect to •
c Elastic waves celerity
u0 Initial displacement field
v Velocity of the section
v0 Initial velocity field
g Current gap between the right tip and the wall
σ Stress applied to the section
f Forward traveling wave
h Backward traveling wave
φ Wave function
R Real numbers set
φ0 Initial wave function
φ1 Wave after the contact
φ2 Wave after the release
ε Function defined in Figure 1.2
tf Duration of the free flight
tdc Duration of the contact
T Period of the motion
Q Rational numbers set
D(•) Set of the discontinuity of function •
N(∗) Natural numbers set (zero excluded)
Z(∗) Relative numbers set (zero excluded)
A(x), B(x) Sequence matching functions
α0 Energy constant for each mode
ω Angular frequency
k Stiffness of the Robin boundary condition
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δψ0 Initial perturbation
δψ Residual perturbation
xNSM Discretized profile of the mode studied starting at t = tf

2

L Operator of first return applying to a discretized profile
R

(1)
NSM Discretized operator of first return in matrix form (first expression)

R
(2)
NSM Discretized operator of first return in matrix form (second expression)

δ• Increment of • due to a small perturbation
∆t, ∆x Time and space segment
e Canonical basis vector of Rd

F Propagation operator for the free-flight phase
C Propagation operator for the contact phase
L First order approximation of the first return map
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Appendix B

Computation of the linearized First
Return Map L

By expansion of the operators evaluated at q0 + δψ0 and t = T , we get the following ∀x ∈ [0, L]:

(q + δψ)(x, T ) = C[F(q0 + δψ0)(•, tf + δtf)](x, tdc + δtdc) (B.1)
q(x, T ) + δψ(x, T ) = C[F(q0)(•, tf + δtf) + F(δψ0)(•, tf + δtf)](x, tdc + δtdc)

= C[F(q0)(•, tf) + δtf∂tF(q0)(•, tf) + F(δψ0)(•, tf)](x, tdc + δtdc) + ◦(δ)
= C(q̃1)(x, tdc + δtdc)

= C(q̃1)(x, tdc) + δtdc∂tC(q̃1)(x, t) + ◦(δ) (B.2)

From the linearity of the operator C, we get ∀x ∈ [0, L]:

q(x, T ) + δψ(x, T ) = C(F(q0)(•, tf))(x, tdc)

+ δtfC [∂tF(q0)(•, tf)] (x, tdc) + C [F(δψ0)(•, tf)] (x, tdc)

+ δtdc∂tC [F(q0)(•, tf)] (x, t) + ◦(δ) (B.3)

The previous closure conditions along with Equations (2.20) and (2.23) yields

δψ(x, T ) = C [F(δψ0)(•, tf)] (x, tdc)−
[∫ tf

0

e>2 δψ(L, τ)

e>2 q(L, tf)
dτ

]
a + ◦(δ) (B.4)

with a = C [∂tF(q0)(•, tf)] (x, tdc) − ∂tC [F(q0)(•, tf)] (x, tdc). Now we use the fact that F
relates δψ0 to δψ(L, tf) (the same result holds for q(L, tf)). This quantity has to be understood
as the modified position of the contacting end due to the perturbation at t = tf , which gives:

δψ(x, T ) = C [F(δψ0)(•, tf)] (x, tdc)−
[∫ tf

0

e>2 F(δψ0)(L, τ)

e>2 F(q0)(L, tf)
dτ

]
a (B.5)

where terms of order greater than one are discarded and T = tf + tdc. Using the derivatives
properties of F and C shown in Equation (2.13) we have

δψ(x, T ) = C [F(δψ0)(•, tf)] (x, tdc)−
[∫ tf

0

e>2 F(δψ0)(L, τ)

e>2 F(q0)(L, tf)
dτ

]
b (B.6)

with b = C [BF(∂xq0)(•, tf)] (x, tdc) −BC [∂xF(q0)(•, tf)] (x, tdc). From Equation (2.21), it
can also be written as

δψ(x, T ) = C [F(δψ0)(•, tf)] (x, tdc)−
1

E

[∫ tf

0

e>1 F(δψ0)(s, τ)

e>2 F(q0)(L, tf)
ds

]
b. (B.7)
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Appendix C

Discretization of the linearized First
Return Map L

C.1 Discretized first return map

C.1.1 Space discretization
Considering the space discretization of the WFEM, we consider a constant space step ∆x along
the bar of length L, ie ∃N ∈ N such that ∆x = L/N and assume ∆t = ∆x/c. An initial vector
shape is seen as (σ>,v>)> = (σ1 . . . σN v1 . . . vN).

C.1.2 Discretized equivalents of C and F
Regarding the meaning of these operators, the discretized equivalent would be an iteration of
the WFEM matrices. Indeed, if we consider tdc = p∆t and tf = m∆t, the following holds:
C ≈ Ap

c and F ≈ Am
f where these matrices are the same than those described in Appendix

of [12]. We are going to explain how we can find the discretized formulation with an other way
than in previous works.

Proof for F ≈ Am
f

It is shown in Equation (2.11) that the time and space evolutions are linked explicitly. This
property allows to show that using F leads to the discrete formulation introduced by the WFEM
for wave propagation along an elastic bar as described in [12] by considering an infinitesimal ∆t
and taking ∆x = c∆t [3]:

2

(
σ

(n+1)
i

v
(n+1)
i

)
=

(
σ

(n)
i+1 + σ

(n)
i−1 + E/c(v

(n)
i+1 − v(n)

i−1)

c/E(σ
(n)
i+1 − σ(n)

i−1) + v
(n)
i+1 + v

(n)
i−1

)
(C.1)

where •(n)
i holds for the value of • in the ith cell of the bar at time step (n). From the parity

properties of σ and v, we can also find the state of the ghost cells:

2

(
σ

(n+1)
1

v
(n+1)
1

)
=

(
σ

(n)
2 + σ

(n)
1 + E/c(v

(n)
2 + v

(n)
1 )

c/E(σ
(n)
2 − σ(n)

1 ) + v
(n)
2 − v(n)

1

)
(C.2)

and

2

(
σ

(n+1)
N

v
(n+1)
N

)
=

(
−σ(n)

N + σ
(n)
N−1 + E/c(v

(n)
N − v

(n)
N−1)

c/E(−σ(n)
N − σ

(n)
N−1) + v

(n)
N + v

(n)
N−1

)
. (C.3)
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WFEM free-flight matrix

From previous developments, it is known that(
σ(n+1)

v(n+1)

)
=

1

2

[
A1 A2

A3 A4

](
σ(n)

v(n)

)
⇔ qn+1 = Afq

n (C.4)

where A1 = Ag(1, 1, 1,−1), A2 = E/cAg(1, 1,−1, 1), A3 = c/EAg(−1, 1,−1,−1) and
A4 = Ag(−1, 1, 1, 1) with

Ag(a, b, c, d) =



a b 0 · · · 0 0 0
c 0 b 0 0 0
0 c 0 0 0 0
... . . . . . . . . .
0 0 0 0 b 0
0 0 0 c 0 b
0 0 0 · · · 0 c d


. (C.5)

We can perform a similar computation to show that Cx,tdcleads to Ap
c with

Ac =
1

2

[
A5 A6

A7 A8

]
(C.6)

and A5 = Ag(1, 1, 1, 1), A6 = E/cAg(1, 1,−1,−1), A7 = c/EAg(−1, 1,−1, 1) and A8 =
Ag(−1, 1, 1,−1).

C.1.3 Expression of the B matrix
With regards to the hyperbolic system of conservation laws we got B. We can write an discretized
equivalent for B which is

B̂ = −
[

0 EIN
c2/EIN 0

]
. (C.7)

C.1.4 Discrete Derivation
Regarding the periodic extension of the functions, we have to consider different kind of discrete
derivations (as done usually in finite different schemes) to differentiate stress and velocity at the
N th component. Indeed,

f ∈ F ([0, L],R), ∀n ∈ [|1, N − 1|], f ′(xn) ≈ 1

∆x
(f(xn+1)− f(xn)) (C.8)

But for the N th values of f , we have to use the periodic extensions.

Free-flight

If we consider the free-flight and the corresponding periodic extensions for σ and v, we can write

q′ff =
1

∆x

[
DFF1 0

0 DFF2

](
σ
v

)
=

1

∆x
Dffqff (C.9)
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where Dff is a 2N × 2N matrix such that

DFF1 =


−1 1 0 · · ·
0

. . . . . . ...
... · · · −1 1
0 · · · −1 −1

 and DFF2 =


−1 1 0 · · ·
0

. . . . . . ...
... · · · −1 1
0 · · · 1 −1

 . (C.10)

The last row of DFF1 and DFF2 are explained by the fact that during free-flight σ(L − x) =
−σ(L+ x) and v(L− x) = v(L+ x).

Contact phase

If we consider the contact phase and the corresponding periodic extensions for σ and v, we can
write the following:

q′c =
1

∆x

[
DFF2 0

0 DFF1

](
σ
v

)
=

1

∆x
Dcqc (C.11)

where Dc is also a 2N × 2N and the use of DFF2 and DFF1 are explained by the fact that during
contact σ(L− x) = σ(L+ x) and v(L+ x) = −v(L− x).

C.1.5 Discretization of integral parts of the operator
First, notice that the following holds:∫ tf

0

e>2 F(δψ0)(L, τ)

e>2 F(q0)(L, tf)
dτ =

e>2
e>2 F(q0)(L, tf)

∫ tf

0

F(δψ0)(L, τ) dτ (C.12)

Discretization of
∫ tf

0
F(δψ0)(L, τ) dτ

Using the property of integration and the fact that tf = m∆t, we can write∫ tf

0

F(δψ0)(L, τ) dτ =
m−1∑
k=0

∫ (k+1)∆t

k∆t

F(δψ0)(L, τ) dτ (C.13)

∆t

2
≈

m−1∑
k=0

F(δψ0)(•, k∆t) + F(δψ0)(•, (k + 1)∆t) (C.14)

≈ ∆t

2
[
m−1∑
k=0

Ak
f + Ak+1

f ]δψ0 =
∆t

2
Fδψ0 (C.15)

where δψ0 should be discretized along the interval [0, L]. Here we use trapezoidal rule in Equa-
tion (C.14) (illustration in Figure C.1) for the integral in order to keep as much information about
the motion as possible. Indeed, this method allows to keep informations given by A0

f and Am
f .

It is well-known that this type of integration rule converges for Lipschitz continuous functions,
which is the case here for δσ, see Equation (2.18c).

Discrete projections on state vector components

Let us remind that e>2 F selects the component v. In the discretized framework, the equivalent
will be the projection on the 2N th coordinate of the discretized state vectors δψT or qt. We
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Figure C.1: Trapezoidal quadrature rule function: ( ) f and ( ) approximation of f .

will denote e>2N the projection in the discretized framework. ei is the ith canonical basis vector
of R2N . Using the previous results, we can write∫ tf

0

e>2 F(δψ0)(L, τ)

e>2 F(q0)(L, tf)
dτ ≈ ∆t

2

〈e2N |Fδψ0〉
〈e2N |Am

f q0〉
(C.16)

where 〈·|·〉 holds for canonical inner-product of R2N . We could also use the known result for the
mode considered : 〈e2N |Am

f q0〉 = vNSM(L, tf) to fasten computation.

Discretization of
∫ L

0
F(δψ0)(s, tf) ds

We saw in Equation (2.21) that two possible expressions of u(L, tf) exist. Here it is depicted
how to discretize the second expression. The faster computation will be considered:∫ L

0

F(δψ0)(s, tf) ds =
N∑
k=1

∫ k∆x

(k−1)∆x

F(δψ0)(s, tf) ds ≈ ∆x
N∑
k=1

F(δψ0)(k∆x, tf) (C.17)

≈ ∆x
N∑
k=1

(Am
f δψ0)k = ∆x

N∑
k=1

〈ek|Am
f δψ0〉 . (C.18)

Previous results yield∫ L

0

1

E

e>1 Fs,tf (δψ0)

e>2 FL,tf (q0)
ds ≈ ∆x

E

N∑
k=1

〈ek|Am
f δψ0)〉

〈e2N |Am
f q0〉

. (C.19)

C.1.6 Discretized operator
A first version of the discretized operator

Using all the previous subsections we can write

δψT = Ap
cA

m
f δψ0 +

∆t

2∆x

〈e2N |Fδψ0〉
〈e2N |Am

f q0〉
(Ap

cB̂Am
f Dffq0 − B̂Ap

cDcA
m
f q0)

= Ap
cA

m
f δψ0 +

∆t

2∆x

〈e2N |Fδψ0〉
〈e2N |Am

f q0〉
(Ap

cB̂Am
f Dffq0 − B̂Ap

cDcA
m
f q0)

= Ap
cA

m
f δψ0 +

1

2

∆t

∆x
〈e2N |Fδψ0〉

(Ap
cB̂Am

f Dff − B̂Ap
cDcA

m
f )

〈e2N |Am
f q0〉

q0. (C.20)
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In order to write it shorter and more clearly, we define

xNSM =
(Ap

cB̂Am
f Dff − B̂Ap

cDcA
m
f )

〈e2N |Am
f q0〉

q0 (C.21)

which is a vector of R2N . This vector carries all the information about the mode considered (free
phase, closure time but also switching time), and

δψT = Ap
cA

m
f δψ0 +

1

2

∆t

∆x
〈e2N |Fδψ0〉xNSM

= Ap
cA

m
f δψ0 +

1

2c
〈e2N |Fδψ0〉xNSM = L(δψ0) (C.22)

where L is a notation which embed the discretized linear operator of first return map. We may
compute its eigenvalues with numerical methods as soon as we can express a matrix expression
of it which will be used to derive a stability analysis.

Using the fact that 〈x|y〉 = x>y and that left and right scalar multiplication are the same,
we get:

δψT = Ap
cA

m
f δψ0 +

1

2c
〈e2N |Fδψ0〉xNSM = Ap

cA
m
f δψ0 +

1

2c
xNSM 〈e2N |Fδψ0〉

= Ap
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m
f δψ0 +

1

2c
xNSM(e>2NFδψ0) = Ap

cA
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2c
(xNSMe
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2NF)δψ0

=
(
Ap

cA
m
f +

1

2c
xNSMe

>
2NF

)
δψ0 = R1(m, p,q0)δψ0. (C.23)

A second version of the discretized operator

Using Equation (C.19) instead of Equation (C.16) we can have an other way to write the
discretized operator

δψT = Ap
cA

m
f δψ0 +

1

E

N∑
k=1

〈ek|Am
f δψ0〉xNSM = L(δψ0) (C.24)

Moreover, having two different expressions of this operator could be helpful to check results.
Via the property of the inner product, we can show that

δψT = Ap
cA

m
f δψ0 +

1

E

N∑
k=1

〈ek|Am
f δψ0〉xNSM

=
(
Ap

cA
m
f +

1

E
xNSM(

N∑
k=1

ek)
>Am

f

)
δψ0 = R2(m, p,q0)δψ0. (C.25)

C.2 Convergence of the discretized operator
Since the quadrature rule for integration of Lipschitz continuous functions and discrete derivation
are usual tools in finite difference methods, the convergence of this discretized operator towards
the explicit time/space one only relies on the convergence of the WFEM ’s solutions towards
the exact solutions of the problem introduced earlier in Section 1.2.4. So we need the WFEM
scheme to be proven stable and consistent. For any further proofs or deeper explanation, we refer
to [3]. Moreover, we use the known CFL condition (c∆t ≤ ∆x) about time step and space step
in order to avoid numerical dispersion as explain in [10].
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C.2.1 Consistency of WFEM
We consider a hyperbolic system of conservative laws of the form

∀t ≥ 0, ∀x ∈ [0, L], ∂tq + ∂xf(q) = 0 (C.26)

From [3], the WFEM is consistent if the numerical flux f̃ is consistent with Equation (C.26) and
the flux f is Lipschitz continuous.

• We call numerical flux f̃ the function of R2 such that the WFEM numerical scheme can be
written ∀i ∈ [|1, N |], ∀n ∈ N:

q
(n+1)
i − q

(n)
i +

∆t

∆x

(
f̃(q

(n)
i ,q

(n+1)
i )− f̃(q

(n−1)
i ,q

(n)
i )
)

= 0. (C.27)

• We say that a function h of R2 is Lipschitz continuous if

∃K ∈ R+, ∀(x,y) ∈ R2 × R2, ‖h(x)− h(y)‖R2 ≤ K‖x− y‖R2 . (C.28)

• We say that a numerical flux f̃ is consistent with Equation (C.26) if

∀q ∈ R2, f̃(q,q) = f(q). (C.29)

Numerical flux f̃ of WFEM

If we refer to Equation (C.1) the following holds ∀i ∈ [|1, N |], ∀n ∈ N

q
(n+1)
i − q

(n)
i +

∆t

∆x
[f̃(q

(n)
i+1,q

(n)
i )− f̃(q

(n)
i ,q

(n)
i−1)] = 0 (C.30)

where

f̃ : (x1,x2)→− 1

2

[
c E

c2/E c

]
x1 −

1

2

[
−c E
c2/E −c

]
x2 = F1x1 + F2x2. (C.31)

Since we have just shown the shape of f̃ , we can now show that the WFEM scheme is consistent.

Consistency of the WFEM

We consider a given q ∈ R2 such that

f̃(q,q) = −1

2

[
c E

c2/E c

]
q− 1

2

[
−c E
c2/E −c

]
q

= −
[

0 E
c2/E 0

]
q = Bq = f(q). (C.32)

We have shown that the numerical flux is consistent with Equation (2.3) because in our case the
function f is the matrix product of q by matrix B.

We consider a given (q1,q2) ∈ R2 × R2. If we consider a sub multiplicative matrix norm
(such as ||M||M2,2 = sup(i,j)|Mi,j|), it is easy to check that the flux f is Lipschitz continuous:

||f(q1)− f(q2)||R2 = ||Bq1 −Bq2||R2

≤ ||B||M2,2||q1 − q2||R2 ≤ sup
E,c2/E

||q1 − q2||R2 . (C.33)

With the previous development we proved that the WFEM is consistent. Although we have a
switching at the boundary, it does not matter since the consistency only relies on Equation (C.26).
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C.2.2 Stability of WFEM
Definitions

We call the total variation of a grid function q

TV(q(n)) =
+∞∑
i=−∞

|q(n)
i − q

(n)
i−1| =

+∞∑
i=−∞

|v(n)
i |. (C.34)

We call total variation diminishing (TVD), a two-level method which satisfy for any set of data

TV(q(n+1)) ≤ TV(q(n)). (C.35)

According to [10], a TVD method which is consistent with a Lipschitz continuous flux f is
convergent.

Sufficient condition for TVD method

Here we are going to prove that the flux allow the variation across the ith cell to be conserved
during time

v
(n)
i = q

(n)
i − q

(n)
i−1 (C.36)
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= v
(n+1)
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= v
(n+1)
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∆x
[F1(v
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⇔ v
(n+1)
i − v

(n)
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[f̃(v
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i )− f̃(v
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Using Equation (C.40) and the fact that F2 − F1 = cI we can write

∀(i, n) ∈ Z× N, v
(n+1)
i =

∆t

∆x
F2v

(n)
i−1 −

∆t

∆x
F1v

(n)
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which implies

|v(n+1)
i | ≤ ∆t

2∆x
sup(E, c2/E, c)(|v(n)

i−1|+ |v(n)
i+1|). (C.42)

By summing this inequality and rearranging the right side we obtain∑
i∈I

|v(n+1)
i | ≤ ∆t

∆x
sup(E, c2/E, c)

∑
i∈I

|v(n)
i | (C.43)

where I is the finite set of Z where v
(•)
i is non zero.

If the quantity denoted by ∆t
∆x

sup(E, c2/E, c) is less or equal to unity, then the scheme is a
TVD method, so the WFEM is convergent in the weak sense [3]. This can be understood by the
fact that the total variation of each cell is consequently bounded by its initial value.
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