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Meta-analysis for milk fat and protein 
percentage using imputed sequence variant 
genotypes in 94,321 cattle from eight cattle 
breeds
Irene van den Berg1* , Ruidong Xiang1,2, Janez Jenko3, Hubert Pausch4, Mekki Boussaha5, Chris Schrooten6, 
Thierry Tribout5, Arne B. Gjuvsland3, Didier Boichard5, Øyvind Nordbø3, Marie‑Pierre Sanchez5 
and Mike E. Goddard1,2

Abstract 

Background: Sequence‑based genome‑wide association studies (GWAS) provide high statistical power to identify 
candidate causal mutations when a large number of individuals with both sequence variant genotypes and phe‑
notypes is available. A meta‑analysis combines summary statistics from multiple GWAS and increases the power to 
detect trait‑associated variants without requiring access to data at the individual level of the GWAS mapping cohorts. 
Because linkage disequilibrium between adjacent markers is conserved only over short distances across breeds, a 
multi‑breed meta‑analysis can improve mapping precision.

Results: To maximise the power to identify quantitative trait loci (QTL), we combined the results of nine within‑popu‑
lation GWAS that used imputed sequence variant genotypes of 94,321 cattle from eight breeds, to perform a large‑
scale meta‑analysis for fat and protein percentage in cattle. The meta‑analysis detected (p ≤ 10−8) 138 QTL for fat per‑
centage and 176 QTL for protein percentage. This was more than the number of QTL detected in all within‑population 
GWAS together (124 QTL for fat percentage and 104 QTL for protein percentage). Among all the lead variants, 100 
QTL for fat percentage and 114 QTL for protein percentage had the same direction of effect in all within‑population 
GWAS. This indicates either persistence of the linkage phase between the causal variant and the lead variant across 
breeds or that some of the lead variants might indeed be causal or tightly linked with causal variants. The percentage 
of intergenic variants was substantially lower for significant variants than for non‑significant variants, and significant 
variants had mostly moderate to high minor allele frequencies. Significant variants were also clustered in genes that 
are known to be relevant for fat and protein percentages in milk.

Conclusions: Our study identified a large number of QTL associated with fat and protein percentage in dairy cattle. 
We demonstrated that large‑scale multi‑breed meta‑analysis reveals more QTL at the nucleotide resolution than 
within‑population GWAS. Significant variants were more often located in genic regions than non‑significant variants 
and a large part of them was located in potentially regulatory regions.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco 
mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
The identification of causal mutations is important to 
take full advantage of sequence data to improve the 
accuracy of genomic prediction [1, 2]. Furthermore, it 
contributes to a better understanding of the biological 
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mechanisms that underlie variation in quantitative traits 
and diseases. Since an increasing amount of sequence 
data is becoming available, it is possible to perform 
sequence-based genome-wide association studies 
(GWAS) to identify candidate causal mutations or mark-
ers in high linkage disequilibrium (LD) with them. How-
ever, due to the stringent thresholds that are necessary 
to avoid false positive associations, very large cohorts 
with both sequence variant genotypes and phenotypes 
are required to identify quantitative trait loci (QTL) with 
small to moderate effects.

Increasing the statistical power to identify candidate 
causal variants is possible by combining multiple data-
sets. However, in practice, the sharing of data at the 
individual level is not always possible, and prevents the 
compilation of large mapping cohorts. An alternative 
approach to compiling large mapping cohorts without 
exchanging data at the individual level is to perform a 
meta-analysis that uses GWAS summary statistics to 
approximate a GWAS using the full, combined dataset [3, 
4]. For stature, an international collaboration has shown 
that a large-scale, across-population meta-analysis pro-
vides high power to detect trait-associated variants [5]. 
Recently, several other meta-analyses have been carried 
out in cattle for multiple traits including fat and protein 
percentages in milk [6–9]. To date, the largest meta-
analysis for fat and protein percentage included the sin-
gle nucleotide polymorphism (SNP) chip genotypes of 
78,772 cows from three dairy cattle breeds in France [9]. 
Performing a meta-analysis of summary statistics gen-
erated from multiple breeds across multiple countries 
also facilitates the combination of data from mapping 
cohorts that do not contain the same set of variants or 
that were prepared using different imputation or associa-
tion methods.

In addition to achieving sufficient power to identify 
trait-associated variants, high precision is important in 
GWAS in order to prioritize a small number of variants 
as candidate causal mutations. Because of the long-range 
LD that is present in most cattle breeds [10], many vari-
ants in high LD tag the same QTL, which makes the iden-
tification of causal variants a difficult task. Because LD 
is conserved over shorter distances across breeds than 
within a breed, a multi-breed GWAS or across-breed 
meta-analysis can improve mapping precision [6].

Although direct selection on milk composition in 
dairy cattle has been more limited than selection on milk 
yield, a correlated response would be expected due to 
the genetic correlation between milk yield and composi-
tion. While all dairy breeds have been selected for milk 
yield and hence composition, slight differences in selec-
tion pressures may have occurred in different breeds. 
Pausch et al. [7] reported higher  FST values for QTL than 

non-QTL, suggesting differences in selection pressures in 
the breeds used in their study.

To maximise both power and precision of a GWAS 
for fat and protein percentages in milk, we carried out 
meta-analyses of the summary statistics of nine within-
population GWAS that used imputed sequence variant 
genotypes of 94,321 individuals representing eight cattle 
breeds. Besides identifying QTL for each trait, significant 
and non-significant variants were compared in terms of 
minor allele frequency (MAF), functional annotations 
and  FST.

Methods
As input for the meta-analyses, summary statistics of 
nine within-population GWAS were used. In total, the 
GWAS included imputed sequence variant genotypes 
of 94,321 individuals. The within-population GWAS are 
summarized in Table 1.

Phenotypes used for within‑population GWAS
Phenotypes were either yield deviations (YD) of cows, 
i.e. own mean performances adjusted for environmen-
tal effects, or daughter yield deviations (DYD) of bulls, 
i.e. average daughter performance adjusted for environ-
mental effects and for breeding value of the mates, or a 
combination of those. Two studies simply used estimated 
breeding values (EBV) of bulls, which were not der-
egressed. However, considering the high relatability of 
the traits (0.89 in BSW and 0.95 in HOL [7]), the contri-
bution of information from relatives to the EBV is very 
small and should not have any major consequences on 
the GWAS [11].

The GWAS for the Australian dataset were performed 
across breeds, but separately for bulls (AUSB) and cows 
(AUSC). The Australian animals and the GWAS model 
are described in a previous report [12]. Briefly, the AUSB 
dataset contained 9739 Holstein, 2059 Jersey and 125 
Australian Red bulls, and the AUSC dataset consisted 
of 22,899 Holstein, 6174 Jersey, 424 Australian Red and 
2850 crossbred cows. Phenotype data included 6569 CRV 
bulls (https ://www.crv4a ll-inter natio nal.com/) with phe-
notypes derived from their Interbull MACE breeding 
values (https ://inter bull.org/ib/inter bulla ctivi ties), dere-
gressed to the Australian scale, and converted to the scale 
of the daughter trait deviation. The remaining 5354 bulls 
and all 32,347 cows were from DataGene (https ://datag 
ene.com.au/). The GWAS for the Norwegian population 
(Norwegian Red cattle, NR) was performed using data on 
21,540 and 21,550 bulls and cows, for fat and protein per-
centage, respectively. All other GWAS were performed 
within breed and sex. More details on the HOLG, BRAU 
and FLCK GWAS can be found in [7].

https://www.crv4all-international.com/
https://interbull.org/ib/interbullactivities
https://datagene.com.au/
https://datagene.com.au/
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Genotypes used for within‑population GWAS
Only variants with a MAF lower than 0.002 or a minor 
allele count (MAC) higher than 4 and, if available, an 
imputation  r2 (as provided by the imputation pro-
gram) ≥ 0.4 was considered for the within-population 
GWAS. In total, 25,702,992 (25,702,995) distinct vari-
ants were analysed for fat (protein) percentage, with the 
number of variants per within-population GWAS rang-
ing from 12,985,160 to 17,042,717. In total, 7,520,048 
(7,520,050) variants were common to all GWAS for fat 
(protein) percentage.

Most GWAS populations were imputed using multi 
breed reference populations that comprised 1147, 1557 
or 2333 individuals from Run 4, 5 or 6 of the 1000 bulls 
genomes project, respectively [13], except for the Nor-
wegian Red population, that was imputed using a within-
breed reference population of 378 Norwegian Red bulls. 
Imputation was done using Minimac3 [14], Minimac4 
[14] and FImpute [15].

Within‑population GWAS
GWAS were carried out by single SNP regressions using 
best-guess genotypes and the mixed linear model asso-
ciation (MLMA) analysis as implemented in the GCTA 
software [16], or using imputed allele dosages and the 
MLMA approach as implemented in the EMMAX soft-
ware [17].

Meta‑analysis
All 25,702,992 variants that were present in at least one of 
the within-population GWAS were included in the meta-
analysis. The meta-analysis was based on the weighted 
Z-scores model as implemented in the METAL software 

[18] that considers the p-value, direction of effect and 
number of individuals included in each within-population 
GWAS. Because the scaling of the phenotypes used for the 
within-population GWAS differed between the popula-
tions, we used the weighted Z-scores model that uses the 
significance and direction of marker effects as input, rather 
than alternative models that use allele substitution effects 
and corresponding standard errors. Van den Berg et al. [6] 
found that, when combining GWAS with summary statis-
tics from multiple GWAS with difference in scaling of the 
phenotypes, the weighted Z-scores model yielded results 
that were very similar to those obtained by a full analysis 
combining all data used for the GWAS. For each variant 
and each within-population GWAS, Z-scores were com-
puted as:

where Zk is the Z-score for GWAS k , pk the p-value esti-
mated in GWAS k , �k the direction of effect in GWAS 
k , and Φ and Φ−1 are the standard normal cumulative 
distribution function and its inverse, respectively. Subse-
quently, overall Z-scores were computed as:

 where wk is the square root of the number of individuals 
used in GWAS k . An overall p-value was then computed 
as:
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2
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p = 2Φ(−|Z|).

Table 1 Description of GWAS used in the meta-analysis

Pheno: phenotypes used i.e. daughter yield deviations (DYD, bulls), yield deviations (YD, cows), estimated breeding values (EBV), GWAS: software used for GWAS, 
impRef: imputation reference, impSoft: imputation software; nIds: number of individuals; nVar: number of variants; nIds and nVar were the same except in Norwegian 
Red (21,550 individuals and 12,985,177 variants for protein content)

Acronym Country Breeds Sex Pheno GWAS impRef impSoft nIds nVar

AUSB Australia, New 
Zealand, the 
Netherlands

Holstein, Jersey, Australian Red Bulls DYD GCTA 1000_Run6 Minimac3 11,923 15,474,359

AUSC Australia Holstein, Jersey, Australian Red Cows YD GCTA 1000_Run6 Minimac3 32,347 15,400,322

HOLF France Holstein Bulls DYD GCTA 1000_Run4 FImpute 6375 13,885,363

MON France Montbéliarde Bulls DYD GCTA 1000_Run4 FImpute 2588 14,409,070

NOR France Normande Bulls DYD GCTA 1000_Run4 FImpute 2319 13,937,693

NR Norway Norwegian Red Bulls, cows (D)YD GCTA within breed Minimac4 21,540 12,985,160

HOLG Germany Holstein Bulls EBV EMMAX 1000_Run4 Minimac3 8805 14,804,061

BRAU Switzerland Braunvieh Bulls EBV EMMAX 1000_Run5 Minimac3 1646 15,813,995

FLCK Germany/Austria Fleckvieh Bulls DYD EMMAX 1000_Run5 Minimac3 6778 17,042,717

Total 94,321 25,702,992
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QTL detection
All variants with a p-value lower than  10−8 were 
declared significant. To account for multiple testing, 
the false discovery rate (FDR) was calculated for each 
within-population GWAS and the meta-analysis as 
FDR =

(

nVariants × 10−8
)

/nSign , where nVariants is 
the number of variants included in the GWAS and nSign 
is the number of variants with a p-value lower than  10−8. 
QTL were selected by first ordering the significant vari-
ants based on their p-values, and subsequently select-
ing the most significant variants first, with at least 1 Mb 
between adjacent QTL. Variants within 1 Mb of a more 
significant variant were assumed to be part of the more 
significant QTL and not selected as additional QTL.

COJO
Because LD may be conserved along longer distances 
than 1 Mb, we performed a conditional and joint analy-
sis (COJO) as implemented in GCTA [19] to test how 
many of the QTL detected in the meta-analysis appeared 
to be independent. As a reference sample to estimate the 
LD structure, we used sequence data of 53 Fleckvieh, 
451 Holstein, 90 Jersey, 55 Montbéliarde, 45 Normande 
and 25 Norwegian Red individuals that were included 
in Run 6 of the 1000 Bulls genome project [13]. We only 
included the top variants selected as QTL in the COJO 
analysis and set the window size to 100 Mb.

Validation meta‑analysis
To validate the QTL detected in the meta-analysis, 
we performed a second meta-analysis using data on 
34,860 cows not included in the original meta-analysis. 
These cows originated from two countries, Australia 
and France, and four breeds, Holstein, Jersey, Mont-
béliarde and Normande. The French populations used 
in the validation study are described in more detail by 
Sanchez et al. [20]. Table 2 summarizes the four within-
population GWAS that were used as input for the vali-
dation meta-analysis. The validation meta-analysis was 
performed only for the QTL that were detected in the 
first meta-analysis and that segregated in at least one of 
the four validation populations. These within-population 

GWAS and the validation meta-analysis were performed 
in the same manner as described above for the original 
analysis. To validate QTL, we compared the direction of 
the Z-score and p-value in the meta-analyses. Our previ-
ous study showed that the comparison of the direction of 
the effect of variants across different GWAS results can 
be more powerful in detecting consistent signals than the 
sole comparison of p-values between different GWAS 
[12].

Minor allele frequencies
To compare the MAF of significant variants with the 
MAF of all variants, we estimated the allele frequencies 
of the total population used for the meta-analyses. First, 
the allele counts at each position were computed using 
the allele frequency in each population. Then, the allele 
counts were combined and used to estimate the MAF 
of each variant in the whole population used for the 
meta-analyses.

Functional annotations
Functional annotations were compared between signifi-
cant and all other variants in order to determine if certain 
functional categories were enriched for trait-associated 
variants. Genomic coordinates and functional annota-
tions were obtained according to the UMD3.1 assembly 
of the bovine genome and Ensembl’s Variant Effect Pre-
dictor [21, 22]. We used LiftOver (https ://genom e.ucsc.
edu/cgi-bin/hgLif tOver ) to convert the positions of the 
detected QTL from UMD3.1 to their positions on the 
new ARS-UCD1.2 genome.

eQTL analysis
Results of the meta-analyses were compared with those 
of a previous eQTL study [23, 24] to identify potential 
overlap between QTL and eQTL. The eQTL study con-
tained data of 105 Holstein and 26 Jersey cows. In total, 
9,191,239 and 8,587,100 variants were included in both 
the eQTL study using white blood cells and cells col-
lected from milk samples, respectively, and the meta-
analysis. The cells collected from milk samples included 
immune cells and mammary gland epithelial cells. The 

Table 2 Description of the GWAS used in the validation meta-analysis

Pheno: phenotypes used were yield deviations (YD, cows); GWAS: software used for GWAS; impRef: imputation reference; impSoft: imputation software; nIds: number 
of individuals

Acronym Country Breeds Sex Pheno GWAS impRef impSoft nIds

VAUSC Australia Holstein, Jersey Cows YD GCTA 1000_Run6 Minimac3 26,953

VHOLF France Holstein Cows YD GCTA 1000_Run4 FImpute 2216

VMON France Montbéliarde Cows YD GCTA 1000_Run4 FImpute 3032

VNOR France Normande Cows YD GCTA 1000_Run4 FImpute 2659

Total 34,860

https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/cgi-bin/hgLiftOver
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transcriptome of cells collected from milk samples 
shared a high similarity with that of the mammary gland 
tissue. A detailed description of the RNA sequence data 
generation for each tissue is reported in [25]. The associ-
ation between the variants and gene expression was esti-
mated using a linear model. A variant was declared as an 
eQTL if its genotype was significantly associated with the 
expression of a gene located within 1 Mb of the variant 
with a p-value ≤ 10−6.

FST
To investigate whether significant SNPs are associated 
with higher  FST values and investigate the potential pres-
ence of different selection pressures between breeds, we 
calculated  FST values for 16,626,224 sequence SNPs using 
allele frequencies in 53 Fleckvieh, 451 Holstein, 90 Jersey, 
55 Montbéliarde, 45 Normande and 25 Norwegian Red 
individuals that were included in Run 6 of the 1000 Bulls 
genome project [13].  FST values were computed for all 
breeds combined according to Weir and Cockerham [26], 
as implemented in GCTA [16], to measure the divergence 
between the breeds in the meta-analysis.

DAVID analysis
We used the Database for Annotation, Visualization and 
Integrated Discovery (DAVID) functional annotation 

tool [27, 28] to investigate if gene ontology terms were 
enriched for genes located within the QTL. Genes with 
variants that were significant in the meta-analysis and 
located in or near the gene, according to previously 
described annotation, were used as input for DAVID. In 
the DAVID analysis, we included the following terms: 
COG_ONTOLOGY, UP_KEYWORDS, UP_SEQ_FEA-
TURE, GOTERM_BP_DIRECT, GOTRM_CC_DIRECT, 
GOTERM_MF_DIRECT, KEGG_PATHWAY and 
UP_TISSUE.

Results
Number of QTL detected
Figures  1 and 2 show Manhattan plots of the meta-
analysis for fat and protein percentage, respectively. 
Manhattan plots of the within-population GWAS are in 
Additional file 1: Figure S1. Table 3 compares the number 
of significant variants and QTL in the within-population 
GWAS and the meta-analysis. The number of signifi-
cant variants detected in the within-population GWAS 
ranged from 2117 for protein percentage in BRAU to 
13,955 for fat percentage in AUSB. For protein percent-
age, the meta-analysis detected more variants than all the 
GWAS combined together, while for fat percentage, all 
the GWAS combined together detected more significant 
variants than the meta-analysis.

Fig. 1 Manhattan plot of the meta‑analysis for fat percentage. Red line indicates p = 10−8

Fig. 2 Manhattan plot of the meta‑analysis for protein percentage. Red line indicates p = 10−8
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For both fat and protein percentage, more QTL were 
detected in the meta-analysis than with the within-popu-
lation GWAS. The lists of the QTL detected in the meta-
analysis are in Additional file 2: Tables S1 and Additional 
file 3: Table S2.

Several of the QTL detected in the meta-analysis were 
not significant in any of the within-population GWAS. 
For example, the meta-analysis detected a QTL for pro-
tein percentage located at 7,924,949 bp on chromosome 
3, that had a p-value of 9.4 × 10−14 in the meta-analysis. 
In the within-population GWAS, the highest significance 
for this variant was for the NR breed with a p-value of 
8.4 × 10−4.

Multiple variants were significant in the within-pop-
ulation GWAS, but not in the meta-analysis. Most of 
these variants had inconsistencies in direction of effect 
between populations in the within-population GWAS. 
For example, a QTL for protein percentage was detected 
in the NR breed (p-value of 2.7 × 10−10) at 35,509,237 bp 
on chromosome 25 (see Additional file 4: Figure S2). The 
alternate allele of the lead variant had a positive effect in 
the AUSB, AUSC, HOLF, MON, NOR, and FLCK breeds, 
but a negative effect in the NR, HOLG and BRAU breeds, 
and was not significant in any GWAS except in the 
GWAS for NR. The meta-analysis revealed a QTL nearby 
at 36,527,270 bp that was only included in the GWAS for 
NR and had a p-value of 3.7 × 10−25. Visual inspection of 
this region on chromosome 25 indicated that a possible 
peak visible in the GWAS for NR and the meta-analysis, 
that encompasses both the QTL at 35.5 Mb and 36.5 Mb, 
with fewer significant variants associated with the peak 
in the meta-analysis than the GWAS (see Additional 
file 4: Figure S2)

COJO
Out of the 138 and 176 QTL detected for fat and pro-
tein percentage, 132 and 159 were present in the data-
set that was used to estimate the LD structure for 
COJO. The COJO analyses retained 74 QTL for fat 
percentage and 84 QTL for protein percentage with a 
p-value ≤ 10−8. In most cases, the discarded variant 
was close to another variant that was retained. This 
implies that the two variants mark only a single QTL 
and not two independent QTL. Nevertheless, four vari-
ants were retained between the start of chromosome 
14 and 5 Mb, which implies that there are at least three 
other QTL for fat percentage in this region as well as 
DGAT1. For each QTL, Additional file 2: Tables S1 and 
Additional file 3: Table S2 indicate whether QTL were 
retained by COJO or not, and the p-value in the COJO 
analysis.

Validation meta‑analysis
Of the 138 QTL detected for fat percentage, 123 were 
present in the validation analysis, of which 107 (87%) 
had the same direction of Z-score in the original meta-
analysis and the validation analysis. Fifteen of these QTL 
(12.2%) were significant (p ≤ 10−8) in the validation anal-
ysis. For protein percentage, 158 of the 176 QTL detected 
in the meta-analysis were present in the validation analy-
sis. One hundred % of the QTL had the same direction of 
Z-score and 28 (17.7%) were significant in both analyses. 
Additional file 2: Table S1 and Additional file 3: Table S2 
show for each QTL if they were present in the validation 
analysis, if they had the same direction of Z-score, and 
the p-value in the validation analysis.

Table 3 Number of variants and QTL detected in the GWAS and meta-analysis for fat and protein percentage

fat %: fat percentage; prot %: protein percentage; nS: number of significant variants; FDR: false discovery rate; nQ: number of QTL; nS/nQ: number of significant 
variants per QTL; AUSB: Australian bull dataset; AUSC: Australian cow dataset; HOLF: French Holstein; MON: Montbéliarde; NOR: Normande; NR: Norwegian Red; HOLG: 
German Holstein; BRAU: Braunvieh; FLCK: Fleckvieh; GWAS: non-overlapping significant variants select in any of the 9 GWAS; META: meta-analysis

Analysis Fat % prot %

nS FDR nQ nS/nQ nS FDR nQ nS/nQ

AUSB 8871 1.7 × 10−5 56 158 13,955 1.1 × 10−5 52 268

AUSC 9502 1.6 × 10−5 74 128 13,475 1.1 × 10−5 49 275

HOLF 10,124 1.4 × 10−5 22 460 11,033 1.3 × 10−5 35 315

MON 3971 3.6 × 10−5 13 305 5383 2.7 × 10−5 19 283

NOR 2981 4.7 × 10−5 11 271 3379 4.1 × 10−5 16 211

NR 4304 3.0 × 10−5 30 143 6231 2.1 × 10−5 37 168

HOLG 9244 1.6 × 10−5 20 462 10,102 1.5 × 10−5 38 266

BRAU 2483 6.4 × 10−5 13 191 2117 7.5 × 10−5 9 235

FLCK 9492 1.8 × 10−5 20 475 5654 3.0 × 10−5 33 171

GWAS 31,559 – 124 255 42,518 – 104 409

META 27,820 9.2 × 10−6 138 202 44,095 5.8 × 10−6 176 251
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Minor allele frequency
The sequence variants were enriched for low-fre-
quency MAF classes. However, variants that were 
significant in the meta-analyses were only slightly 
enriched for low MAF classes (Fig.  3). For example, 
46% of all variants had a MAF between 0.1 and 0.5, 
whereas this was the case for 72% of the significant 
variants detected for fat percentage, and 75% of the 
significant variants detected for protein percentage. A 
similar pattern was found when comparing the allele 
frequencies of significant and all variants within a 
population (see Additional file 5: Figure S3 and Addi-
tional file 6: Figure S4). Especially in the Holstein pop-
ulations, most of the significant QTL had moderate to 
large MAF.

Functional annotations
Significant variants in the meta-analysis were more often 
located in or near genes than all variants (Table 4). Nearly 
two-thirds (65.85%) of all variants tested were intergenic. 
For the significant variants, the percentage of intergenic 
variants was substantially lower, i.e. ~ 50%. All other 
annotation classes were more frequent for significant 
than for all variants. For example, the percentage of splice 
variants was more than twice as high for significant than 
for all variants (0.14 vs. 0.06%).

eQTL
Table  5 shows the overlap between eQTL and signifi-
cant variants in the meta-analysis. When blood cells 
were used in the eQTL analysis, 0.61% of all variants 
present in both the meta-analysis and eQTL study were 
eQTL. There were relatively more eQTL detected in the 

Fig. 3 Distribution of minor allele frequencies (MAF) of all variants and significant variants. Significant variants had a p‑value ≤ 10−8 in the 
meta‑analysis
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within-population GWAS, with 2.30% of QTL detected 
for fat percentage, and 3.89% of QTL detected for pro-
tein percentage. The percentage of significant variants 
that were eQTL was higher for the meta-analysis than the 
GWAS, with 3.38% of variants with a p-value lower than 
 10−8 in the meta-analysis for fat percentage, and 4.60% 
for protein percentage. The number of eQTL detected 
using cells collected from milk samples was much lower 
than that obtained by using blood cells, and only a few 
(between 0.01% and 0.04%) were among the variants 
detected in either the GWAS or meta-analysis. All over-
laps between eQTL and significant variants were larger 
than expected by chance. For example, there were 22,152 
variants with a p-value ≤ 10−8 in the meta-analysis for fat 
yield, of which nine were eQTL detected from cells col-
lected from milk samples. By chance, the expected num-
ber would be only 22,152 ×  10−6 = 0.02 eQTL.

Correlations between within‑population GWAS
When all variants were used, the effects estimated in the 
within-populations GWAS were only weakly correlated 
between populations (see Additional file 7: Tables S3 and 

S4). Correlations were stronger between GWAS of the 
same breed. For example, the correlation for effects esti-
mated for protein percentage was 0.15 between HOLF 
and HOLG, and 0.25 between AUSB and AUSC. Between 
different breeds, correlations were close to zero. Much 
higher correlations were observed for significant variants. 
For example, for fat percentage, the correlation between 
MON and NOR was 0.03 for all variants, whereas the 
effects of significant variants had a correlation of 0.72.

Direction of effect
For both fat and protein percentage, significant variants 
had the same direction of effect in more GWAS than all 
variants (Fig.  4). For fat percentage, 14, 19, 41 and 26% 
of significant variants had the same direction of effect in 
less than four GWAS, four or five GWAS, six or seven 
GWAS or eight or nine GWAS, respectively, substantially 
more than the 37, 38, 22 and 2% of all variants. A similar 
pattern was observed for protein percentage.

The majority of QTL had the same direction of effect 
in all within-population GWAS that detected them. Of 
the 138 and 176 lead variants for the QTL detected for fat 

Table 4 Percentage of variants in functional classes of annotation

p_fat % ≤ 10−8 and p_prot % ≤ 10−8 = variants with a p-value ≤ 10−8 in the meta-analysis for fat and protein percentage, respectively

Annotation All variants p_fat % ≤ 10−8 p_prot % ≤ 10−8

Intergenic 65.85 51.45 50.07

Intron 26.54 35.12 35.84

Upstream_gene 3.49 5.91 5.89

Downstream_gene 3.04 4.24 4.83

Synonymous 0.36 0.99 0.91

Missense 0.32 0.54 0.54

3_prime_UTR 0.22 0.32 0.44

Splice_region 0.06 0.14 0.14

5_prime_UTR 0.05 0.12 0.11

Non_coding_transcript_exon 0.03 0.15 0.12

Other 0.02 0.01 0.02

Not annotated 0.02 1.01 1.09

Table 5 Overlap between eQTL and significant variants

All: all variants present in both meta-analysis and eQTL study;  pgwas_fat % ≤ 10−8,  pgwas_prot % ≤ 10−8,  pmeta_fat % ≤ 10−8 and  pmeta_prot % ≤ 10−8: variants with a 
p-value ≤ 10−8 in at least one of the within population GWAS and meta-analysis for fat and protein percentage, respectively; total: total number of variants in a set of 
variants, eQTL: number of variants in a set that were eQTL,  %: eQTL total*100%

Set Cells collected from milk samples Blood cells

Total eQTL % Total eQTL %

All 9,191,239 6678 0.07 8,587,100 52,802 0.61

pgwas_fat % ≤ 10−8 22,152 9 0.04 20,702 476 2.30

pmeta_fat % ≤ 10−8 20,087 3 0.01 18,735 633 3.38

pgwas_prot % ≤ 10−8 28,967 5 0.02 27,781 1081 3.89

pmeta_prot % ≤ 10−8 33,911 13 0.04 32,505 1496 4.60
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and protein percentage, respectively 100 and 114 had the 
same direction of effect in all GWAS in which they were 
included. Only two variants had significant effects in 
opposite directions in two populations. Inconsistencies 
in direction of effect between within-population GWAS 
that contained Holstein individuals (AUSB, AUSC, HOLF 
and HOLG) were only observed for four QTL that were 
detected for fat percentage and two for protein percent-
age. One of these QTL was a highly significant QTL for 
both traits, and located at 93,945,991 bp on chromosome 
5, in the MGST1 gene. This QTL had a positive effect on 
both traits in all GWAS except that for HOLF.

FST
While significant common variants (MAF 0.10–0.50) 
had slightly larger  FST values than all common vari-
ants (Figs.  5 and 6), the opposite was observed for rare 
variants (MAF 0.002–0.01). Significant rare variants had 
lower  FST values compared to all rare variants. For vari-
ants with a MAF between 0.01 and 0.05, no clear dif-
ference in  FST values was observed between significant 
variants and all variants.

DAVID analysis
The DAVID functional annotation tool clustered 80 of 
391 genes associated with fat percentage in the meta-
analysis and present in the databases used by DAVID 
in 28 clusters. The enrichment scores of the annotation 

clusters ranged from 1.98 for the top cluster, to 0.03 for 
the bottom cluster. Figure  7 shows the fold enrichment 
and significance (p-value after Benjamini–Hochberg cor-
rection for multiple testing [29]) of the keywords in the 
top three clusters. More details on the clusters are in 
Additional file 8: Table S5 and Additional file 9: Table S6. 
The only significant (p ≤ 0.05) keyword associated with 
fat percentage was the UP_KEYWORD “lipid biosynthe-
sis” in annotation cluster 2, with a p-value of 0.02. The 
genes associated with this keyword were MECR, FDPS, 
PMVK, ST8SIA1, PTDSS1, HSD17B12, PCYT2, FASN, 
SCD and GPAT4.

Of the 761 genes associated with protein percentage 
and present in the database used by DAVID, 118 were 
clustered in 38 clusters with enrichment scores rang-
ing from 5.18 to 0. The first cluster includes several sol-
ute carrier (SLC) genes, significantly (p-value ≤ 0.05 
after Benjamini–Hochberg correction for multiple test-
ing [29]) associated with GOTERM “inorganic anion 
exchanger activity”. The second cluster contained several 
genes that are significantly associated with GOTERM_
MF_DIRECT “glucuronosyltransferase activity”, 
GOTERM_BP_DIRECT “flavonoid biosynthetic process” 
and “flavonoid glucuronidation” and KEGG_PATHWAYs 
“pentose and glucuronate interconversions” and “ascor-
bate and aldarate metabolism”. The third cluster con-
tained several genes that encode milk proteins, including 
LALBA on chromosome 5, and CSN2, CSN1S2, CSN1S1 

Fig. 4 Distribution of the proportion of GWAS with the same direction of effect. From left to right: all variants (all variants), variants with p ≤ 10−8 
in the meta‑analysis (p ≤ 10−8), variants included in all GWAS (variants in all GWAS), and variants included in all GWAS and p ≤ 10−8 in the 
meta‑analysis (p ≤ 10−8 & in all GWAS). Top = fat percentage (fat %), bottom = protein percentage (prot %)
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and CSN3 on chromosome 6, and are significantly asso-
ciated with GOTERM_BP_DIRECT “response to oestra-
diol”, “response to 11-deoxycorticosterone” and “response 
to “dehydroepiandrosterone” and UP_KEYWORD “milk 
protein”.

Discussion
Our meta-analyses detected more QTL with fewer sig-
nificant variants per QTL and at lower FDR than the 
within-population GWAS, which suggests that across-
population meta-analysis of summary statistics both 
increases power and mapping precision compared to 
within-population GWAS. A multi breed meta-analysis 
can increase both power and precision because on the 
one hand, the sample size and thus power increase, and 
on the other hand, including data from multiple breeds 
breaks down LD, which can reduce the number of vari-
ants associated with a QTL and thereby increase mapping 

precision [6]. The number of QTL detected in our meta-
analysis was substantially larger than that detected by 
Pausch et  al. [7], while similar detection criteria were 
used, which indicates that the more than five-fold larger 
sample in our study enabled us to detect more QTL.

By setting a distance of at least 1 Mb between adjacent 
QTL, our aim was to reduce the number of detected QTL 
that were associated with the same true QTL. However, 
LD may be conserved over more than 1 Mb, and conse-
quently, very significant QTL such as DGAT1 on chro-
mosome 14 can have variants that are associated with 
them over a longer distance. Therefore, we performed 
a COJO analysis to test how many of the detected QTL 
were independent of each other. Because we were not 
able to combine the original datasets used for the meta-
analysis, we used an alternative dataset that contained 
sequences representing most of the populations included 
in the meta-analysis to estimate the LD structure in the 

Fig. 5 FST of all sequence variants and significant variants for fat percentage. Empirical cumulative distribution (ECDF) of  FST values of all variants 
(black) and significant variants (red), for variants with a minor allele frequency between 0.002 and 0.01 (top left), 0.01 and 0.05 (top right), 0.05 and 
0.10 (bottom left), and 0.10 and 0.50 (bottom right)
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COJO analysis. While the small size of this dataset may 
have reduced the accuracy of the COJO analysis, this 
dataset was more representative of the LD structure 
across the populations used in the meta-analysis than 
a larger within-population dataset. The COJO analysis 
reduced the number of QTL, which indicates that the 
numbers of QTL reported are inflated. The number of 
independent QTL retained by COJO (74 for fat percent-
age and 84 for protein percentage) remained more than 
double the number of QTL detected by Pausch et al. [7].

Not all of the QTL detected in the within-population 
GWAS were detected in the meta-analysis. Because of 
the smaller data size of the within-population GWAS, the 
number of false positives detected by the within-popula-
tion GWAS may be larger than in the meta-analysis, and 
some of the QTL detected within-population but not in 
the meta-analysis may be false positives. However, there 
can be several reasons why a true QTL is significant in a 

within-population GWAS but not significant in a meta-
analysis. One reason could be that a SNP is significantly 
associated with a trait in one population because it is in 
LD with the causal variant in that population. However, 
the LD between this SNP and the causal variant might 
differ in other populations and thus results in a weakened 
association between SNP and trait. Ideally, the causal var-
iant would be detected as the most significant local vari-
ant, but this does not always occur due to sampling error 
and, in some cases, the causal variant is not included in 
the data, at least not for all populations. Furthermore, a 
variant in high LD with the causal variant could be more 
significant than the causal variant if it has a higher impu-
tation accuracy than the causal variant. Another rea-
son why a QTL may be detected in a within-population 
GWAS but not in the meta-analysis could be that mul-
tiple causal variants with opposing effects are present 
in the same region. Different breeds may have different 

Fig. 6 FST of all sequence variants and significant variants for protein percentage. Empirical cumulative distribution (ECDF) of  FST values of all 
variants (black) and significant variants (red), for variants with a minor allele frequency between 0.002 and 0.01 (top left), 0.01 and 0.05 (top right), 
0.05 and 0.10 (bottom left), and 0.10 and 0.50 (bottom right)
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causal mutations segregating in the same region, which 
can reduce significance in the meta-analysis. Epistasis 
may be another factor why a within-breed QTL is not 
detected in the meta-analysis, since it can cause some 
QTL to have opposing effects in different breeds [30]. 
We suggest that this reversal of effect of causal variants is 
rare because we only observed two variants with an effect 
that was significant in two populations but opposite in 
sign.

To validate the QTL that were detected in the meta-
analysis, we performed a validation meta-analysis. All 
QTL detected for protein percentage and 87% of the 
QTL detected for fat percentage had the same direction 
of effect in the validation as in the original meta-analy-
sis, whereas by chance alone, only 50% would have the 
same direction. Most QTL were not significant in the 
validation meta-analysis, which is not surprising, given 
the much smaller size of the validation dataset and the 
fact that it included only cows, which have a less accu-
rate “phenotype” than bulls. This is also consistent with 
our previous observation, i.e. that the comparison of the 
directions of variant effects across GWAS results is more 
powerful than the comparison of p-values across GWAS 

[12]. As previously stated, different LD structures in dif-
ferent GWAS populations can lead to different selections 
of top variants using the same p-value threshold. Nev-
ertheless, we still found that more than 12% of the QTL 
detected for fat and protein percentage from the discov-
ery analysis were significant in the validation analysis. 
This amount of overlap is more than that expected by 
chance.

Comparison with known QTL and causal mutations
We detected QTL that encompass genes that are well 
known for their effect on production traits in dairy cat-
tle, such as MGST1 on chromosome 5 [31], ABCG2 on 
chromosome 6 [32], PAEP on chromosome 11 [33], 
DGAT1 on chromosome 14 [34], and GHR on chromo-
some 20 [35]. For a few of these QTL, the underlying 
causal mutations are known. While we detected QTL 
near the causal variants, the most significant variant in 
our study was not always the causal variant. For example, 
the causal variant for DGAT1 [34] is located at 1,802,265-
1,802,266  bp on chromosome 14. In the meta-analysis, 
the variant at 1,802,266  bp was highly significant with 
a p-value of 1.3 × 10−996 for fat percentage. However, it 
was not the most significant variant in the meta-analysis, 
most likely because it was filtered out from the HOLG 
data because of low imputation accuracy. Similarly, for 
the QTL located near ABCG2 on chromosome 6, the 
most significant variant with a p-value of 3.4 × 10−106 
for protein percentage was located at 38,031,954  bp 
and was more significant than the causal variant [32] at 
38,027,010 bp (p = 5.6 × 10−92) because the causal variant 
was not included in the AUSB dataset. These examples 
demonstrate that the most significant variant in GWAS 
or meta-analysis is not necessarily the known causal vari-
ant. In contrast, the causal variant for GHR [35] was the 
most significant variant in the meta-analysis for both 
fat and protein percentage. While the absence of the 
causal variant in some GWAS may explain why another 
variant is more significant in the meta-analysis than the 
causal variant, it is also possible that there are multiple 
causal variants present in the same region. However, LD 
of a segregating variant with multiple causal variants can 
result in the highest significance.

Jiang et  al. [36] reported a GWAS on USA Holstein 
cattle based on sequence variants in or near genes. Our 
meta-analysis detected a QTL within 1  Mb of the can-
didate variants reported for the 12 QTL detected for fat 
percentage and 23 QTL detected for protein percentage 
in US Holstein bulls by Jiang et al. [36]. The lead variant 
was the same for eight of these QTL (for fat percentage: 
93,945,738  bp on chromosome 5 and 38,027,010  bp on 
chromosome 6, and for protein percentage: 31,349,638 bp 
on chromosome 5, 38,027,010  bp and 87,154,594  bp 
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on chromosome 6, 1,801,116 on chromosome 14 and 
9,563,396 on chromosome 29). Almost all the candidate 
variants listed by Jiang et al. [36] were significant in the 
meta-analysis. Exceptions were one QTL for fat percent-
age located at 74,829,183 bp on chromosome 15, that had 
a p-value of 1.5 × 10−5 in the meta-analysis, and three 
QTL for protein percentage located on chromosome 1, 
14 and 21 that had p-values of 6.6 × 10−8, 3.8 × 10−7 and 
2.7 × 10−8, respectively, in the meta-analysis. Because 
Jiang et  al. [36] preselected sequence variants and, in 
that process, excluded intronic and intergenic variants, 
the majority of the QTL detected in the meta-analysis 
were not included in their study. Their GWAS did con-
tain multiple variants within 1 Mb of each of our QTL, 
and there was at least one variant with a p-value ≤ 10−8 in 
the GWAS by Jiang et al. [36] for 27 of the QTL detected 
in the meta-analysis for fat percentage and 59 for protein 
percentage. For 21 of the QTL detected for fat percentage 
and 50 of the QTL for protein percentage, the top variant 
in the meta-analysis was included in the GWAS of Jiang 
et al. [36]. Among these, eight QTL for fat percentage and 
10 QTL for protein percentage were significant in their 
study. In the GWAS of Jiang et al. [36], the lack of signifi-
cance of most of the QTL detected in the meta-analysis 
may be attributed to the larger sample size and inclu-
sion of multiple breeds in our analysis. In another study, 
Marete et al. [9] reported QTL detected for fat and pro-
tein percentage in a large meta-analysis using data from 
French Holstein, Montbéliarde and Normande cattle. The 
overlap with QTL detected by Marete et al. [9] and our 
meta-analysis was smaller than that with Jiang et al. [36], 
with only 20 of 48 and 6 of 29 QTL detected by for fat 
yield and percentage and protein yield and percentage, 
respectively. While the SNP genotypes used by Marete 
et  al. [9] contained several candidate causal mutations, 
it was not a sequence-based GWAS, which may explain 
the small overlap between their results and this study. 
The dataset used in the meta-analysis by Pausch et al. [7] 
was used in our analyses, and all QTL detected by Pausch 
et  al. [7] were confirmed in our analyses, except one 
QTL detected for protein percentage at 56,528,040  bp 
on chromosome 4, that had a p-value of 2.3 × 10−7 in our 
meta-analysis.

Minor allele frequency
While, in agreement with previous studies in cattle [37], 
sequence variants were enriched for low-frequency MAF 
classes, the majority of QTL that we detected had mod-
erate to high MAF. This is in line with Pausch et al. [7], 
who detected only few QTL with a MAF lower than 0.05. 
The lack of rare QTL does not mean that most QTL in 
dairy cattle are common variants, but more likely it indi-
cates that, in spite of the large sample size, our study had 

a relatively low statistical power to detect QTL with low 
MAF and a lower imputation accuracy for low MAF QTL 
than for more common QTL.

If the effect of a QTL is independent of the MAF (p), 
then the power to detect the QTL is proportional to 
p(1−p). However, the number of variants with MAF = p 
is proportional to 1/[p(1−p)]. Thus, one might expect 
the number of significant variants to be independent of 
MAF. Alternatively, if the variance explained by a QTL is 
independent of MAF, the number of significant variants 
should increase sharply at low MAF just as the number of 
all variants does. In fact, our results are in between these 
two alternatives, which suggests that the size of the effect 
of QTL increases as MAF declines but not sufficiently to 
prevent the explained variance (and the power to detect) 
from decreasing. This is the same conclusion as Zeng 
et al. [38].

The meta-analysis appeared to favour variants with 
a high MAF in Holstein (see Additional file 5: Figure S3 
and Additional file 6: Figure S4), which was the breed ori-
gin of most of the animals included in the meta-analysis. 
Using the same MAF threshold in the meta-analysis and 
the within-population GWAS may have influenced the 
number of QTL detected in each analysis. The applied 
MAF filter corresponds with a minor allele count (MAC) 
of 377 for the meta-analysis, but to a much lower MAC 
within-population (between 6.5 and 129). This has likely 
contributed to the smaller number of QTL detected in 
the within-population GWAS and illustrates the advan-
tage of a meta-analysis over within-population GWAS.

FST
We observed slightly higher  FST values for significant 
common variants compared to all variants, but lower  FST 
values for significant rare variants. Pausch et al. [7] also 
observed higher  FST values for QTL than for non-QTL. 
The slightly higher  FST values for significant variants 
compared to all variants may indicate different selection 
pressures in different breeds. For instance, mutations that 
increase fat percentage by decreasing milk volume might 
be selected for in some breeds, but selected against in 
other breeds. While selection on milk composition has 
been much more limited than on milk yield, a correlated 
response is still expected due to the correlation between 
milk yield and composition. In our study, high  FST values 
at some variants may indicate differences in selection 
pressure between the breeds. Kemper et al. [39] found no 
convincing evidence of selection for several major QTL 
detected for production traits in dairy cattle, and Xiang 
et  al. [40] showed only a small contribution of variants 
under selection to various quantitative traits in dairy cat-
tle. Further research is required to identify potential links 
between  FST value, allele frequency and significance.
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Functional annotations
The proportion of genic variants, located in a gene or in 
the upstream or downstream region of a gene, was higher 
among the significant variants of the meta-analysis than 
among all variants. This is in agreement with the deple-
tion of intergenic effects and enrichment of genic classes 
for variants associated with various traits in dairy cattle 
reported in other studies [41, 42]. Interestingly, a large 
part of the variants with significant effects was located in 
non-coding regions that may have a regulatory function, 
such as intronic, upstream and downstream regions.

The DAVID analysis identified several clusters enriched 
for certain functional annotations. Some of the clusters 
could be described as milk protein genes (e.g. LALBA), 
or anion exchanges and solute carrier genes (e.g. SLC). 
Whereas some of the genes in these classes, LALBA [43] 
on chromosome 5 and the casein genes on chromosome 
6 [44] are genes known to be associated with major QTL 
in dairy cattle, other genes were not and these clusters 
may provide novel candidate genes for milk and fat per-
centage. For example, the second cluster for fat percent-
age contained 10 genes associated with lipid biosynthesis: 
MECR on chromosome 2, FDPS and PMVK on chromo-
some 3, ST8SIA1 on chromosome 5, PTDSS1 on chro-
mosome 14, HSD17B12 on chromosome 15, PCYT2 and 
FASN on chromosome 19, SCD on chromosome 26 and 
GPAT4 on chromosome 27. Some of these genes, includ-
ing MECR [45], FASN [46], SCD [47] and GPAT4 [48], 
have previously been identified as candidate genes for 
milk traits in dairy cattle.

Our data and analysis were based on the previous 
UMD3.1 bovine reference genome because the more 
recent ARS-UCD1.2 reference was not available at the 
time the within-population GWAS were performed. The 
same meta-analysis, carried out using the ARS-UCD1.2 
reference, may lead to a better targeting of causative 
mutations [49]. Except for one top variant associated 
with a QTL detected for protein percentage, all top QTL 
variants were present on the ARS-UCD1.2 reference.

Overlap between significant variants and eQTL
The depletion or enrichment of significant variants for 
eQTL was not consistent across tissues. While signifi-
cant variants were enriched for eQTL when blood cells 
were used to detect eQTL, using cells collected from milk 
samples resulted in significant variants being depleted 
for eQTL. This is in line with the eQTL study, in which 
the power to detect significant variants was higher using 
blood cells than using cells collected from milk sam-
ples [23]. Interestingly, whereas the original eQTL study 
found only little overlap between eQTL and QTL, even 
with blood cells, we found some enrichment of QTL 
for blood eQTL, which is potentially due to the higher 

power of the meta-analysis compared to the data used in 
the original study [21]. Other studies have shown some 
evidence of overlap between QTL and eQTL. Littlejohn 
et  al. [31] used mammary tissue to detect an eQTL at 
the MGST1 gene that is also a well-known QTL for milk 
traits in dairy cattle, and Xiang et al. [25] showed overlap 
between eQTL and QTL for several traits in dairy cattle 
in milk and blood cells.

Conclusions
Our study identified a large number of QTL that are 
associated with fat and protein percentage in dairy cattle. 
We confirmed the efficiency of a large-scale multi-breed 
meta-analysis and studied the properties of significant 
variants compared to all variants. Significant variants are 
more often common variants, which indicates that either 
most QTL have a high MAF, or that even with the large 
sample size used in our study, we still have insufficient 
power to identify and fine map rare QTL. The percent-
age of intergenic variants was substantially lower for 
significant variants than for non-significant variants. A 
large part of the significant variants was located in non-
coding, potentially regulatory regions. In some cases, the 
genes near the QTL shared a common function such as 
genes involved in lipid synthesis affecting fat percentage. 
Except for rare variants, significant variants tend to have 
higher  FST than all variants.
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Additional file 1: Figure S1. Manhattan plots of within‑population GWAS 
for fat and protein percentage. The red line indicates p = 10−8.

Additional file 2: Table S1. QTL detected for fat percentage in the 
meta‑analysis. chr = chromosome, pos = position in base pair on UMD3.1 
assembly, ARS‑UCD2.1 = position in base pair on ASR‑UCD2.1 assembly, 
p = p‑value in the meta‑analysis, dir = direction of effect in each of the 
GWAS (from left to right: Braunvieh, Fleckvieh, German Holstein, Norwe‑
gian Red, Australian bull dataset, Australian cow dataset, Montbéliarde, 
Normande, French Holstein), start = pos – 250 kb, end = pos + 250 kb, 
nSig = number of variants with a p‑value ≤ 10−8 in the interval, 
nGenic = nSig associated with a gene, genes = genes in the interval with 
significant variants, cojo = p‑value in COJO analysis for retained variants, 
or discarded/not present to indicate variants that were discarded or not 
included in COJO analysis), sameDirVal = indicates whether a variant had 
the same direction of Z‑score in the meta‑analysis and the validation 
analysis (‑ = not included in validation analysis, 0 = opposite direction, 
1 = same direction), pVal = p‑value in the validation analysis.

Additional file 3: Table S2. QTL detected for protein percentage in the 
meta‑analysis. chr = chromosome, pos = position in base pair on UMD3.1 
assembly, ARS‑UCD2.1 = position in base pair on ASR‑UCD2.1 assembly, 
p = p‑value in the meta‑analysis, dir = direction of effect in each of the 
GWAS (from left to right: Braunvieh, Fleckvieh, German Holstein, Norwe‑
gian Red, Australian bull dataset, Australian cow dataset, Montbéliarde, 
Normande, French Holstein), start = pos – 250 Kb, end = pos + 250 Kb, 
nSig = number of variants with a p‑value ≤ 10−8 in the interval, 
nGenic = nSig associated with a gene, genes = genes in the interval with 
significant variants, cojo = p‑value in COJO analysis for retained variants, 
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or discarded/not present to indicate variants that were discarded or not 
included in COJO analysis), sameDirVal = indicates whether a variant had 
the same direction of Z‑score in the meta‑analysis and the validation 
analysis (‑ = not included in validation analysis, 0 = opposite direction, 
1 = same direction), pVal = p‑value in the validation analysis.

Additional file 4: Figure S2. QTL detected on chromosome 25. Associa‑
tion of variants around 36 Mb on chromosome 25 with protein percent‑
age in the meta‑analysis (top) and GWAS for Norwegian Red (bottom).

Additional file 5: Figure S3. Distribution of within‑population minor 
allele frequencies (MAF) of all variants and significant variants. Significant 
variants had a p‑value ≤ 10−8 in the meta‑analysis.

Additional file 6: Figure S4. Distribution of minor allele frequencies 
within‑population (MAF) of all variants and significant variants. Significant 
variants had a p‑value ≤ 10−8 in the meta‑analysis.

Additional file 7: Table S3 and Table S4. Correlations between effects 
estimated in within population GWAS. Tables S3 and S4 show the 
results for fat percentage and protein percentage, respectively; above 
the diagonal = all variants, below the diagonal = significant variants 
(p ≤ 10−8). AUSB = Australian bull dataset, AUSC = Australian cow dataset, 
HOLF = French Holstein, MON = Montbéliarde, NOR = Normande, 
NR = Norwegian Red, HOLG = German Holstein, BRAU = Braunvieh, 
FLCK = Fleckvieh.

Additional file 8: Table S5. DAVID analysis for fat percentage. Three clus‑
ters with the highest enrichment scores according to DAVID functional 
annotation clustering for genes associated with significant variants in the 
meta‑analysis for fat percentage.

Additional file 9: Table S6. DAVID analysis for protein percentage. Three 
clusters with the highest enrichment scores according to DAVID func‑
tional annotation clustering for genes associated with significant variants 
in the meta‑analysis for protein percentage.
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