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Extreme value mixture model under random censoring over the threshold
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In this paper, we propose in this study a likelihood maximization method to estimate the extreme value mixture model parameters under random censoring. The idea is a combination of two maximization steps. We consider a mixture model with two components: A Weibull distribution below the threshold u (above which the data are considered extreme) and a Generalized Pareto Distribution under random censoring above the threshold. We present our estimation method in two steps: (1) first, likelihood maximization for a given threshold, (2) secondly, likelihood maximization under different thresholds. We start by presenting the model and the estimation method. Finite-sample behavior of the estimator is assessed via simulations.

Introduction

Extreme value theory (EVT) is a vast theory whose purpose is to study rare events which has a low probability of occurrence, e.g. bad weather, floods, natural disasters, . . . . One of the challenges for extreme value models is to determine a sufficiently high threshold, above which the data can be considered extreme [START_REF] Coles | An introduction to Statistical Modeling of Extreme Values[END_REF]. In this case, the model can be considered as a mixture of two sub-models: (1) a sub-model below the threshold, named "bulk" model and (2) a sub-model above the threshold named "tail" model. The resulting model is called the extreme value mixture model (as presented in Figure 1). In the past, threshold choice was done using graphical tools but the recent challenge is to consider the threshold as a parameter of the model to be estimated.

This consideration becomes more and more popular these last years. Thus, many different types of models and estimation methods were used recently. Frigessi et al. [START_REF] Frigessi | A dynamic mixture model for unsupervised tail estimation without threshold selection[END_REF] considered a weighted dynamic model by combining a Weibull distribution for the bulk model with a Generalized Pareto Distribution (GPD) for the tail model. They considered the weights of the mixture as a function of the distribution function of a Cauchy distribution, which increases the number of parameters to be estimated. Hu [START_REF] Hu | Extreme Value Mixture Modelling with Simulation Study and Applications in Finance and Insurance[END_REF] showed in his thesis that if the scale parameter of Cauchy's distribution is close to 0, the quality of the estimate decreases. Other authors have tried to use the distribution below the threshold to define the weights of the mixture. This is the case of Behrens et al. [START_REF] Cible | Bayesian analysis of extreme events with threshold estimation[END_REF] and Mendes and Lopes [START_REF] Vaz De | Data driven estimates for mixtures[END_REF] (who used two bulk models at the same time, that is, two thresholds u 1 and u 2 to define two extreme models). In 2006, Trancedi et al. [START_REF] Tancredi | Accounting for threshold uncertainty in extreme value estimation[END_REF] tried to build the model by considering that the weights of the mixture depend only on the probability of exceeding the threshold. But they used a non-parametric method below the threshold to estimate the parameters. Subsequently, several authors have tried to go in the same direction using a Bayesian method to estimate the parameters (MacDonald et al., [START_REF] Macdonald | A flexible extreme value mixture model[END_REF], Zhao et al. [START_REF] Zhao | Extreme value modelling for forecasting market crisis impacts[END_REF], Zhao et al. [START_REF] Zhao | Garch dependence in extreme value models with bayesian inference[END_REF]). In 2012, Lee et al. [START_REF] Lee | Modeling insurance claims via a mixture exponential model combined with peaks-over-threshold approach[END_REF] use an exponential model below the threshold with a GPD for the tail model by using a method called "Peaks-over threshold" to estimate the extreme parameters. A little earlier, in 2011, Nascimento et al. [START_REF] Nascimento | A semiparametric bayesian approach to extreme value estimation[END_REF] combined a semi-parametric method with the Bayesian method by using a mixture of gamma distributions below the threshold. One of the issues of the extreme mixture model is the regularity at the point u. Carreau and Bengio [START_REF] Carreau | A hybrid pareto mixture for conditional asymmetric fat-tailed distributions[END_REF][START_REF] Carreau | A hybrid pareto model for asymmetric fat-tailed data: the univariate case[END_REF] started by adding continuity constraints in the density and its derivative at u. As stated in MacDonald et al. [START_REF] Macdonald | A flexible extreme value mixture model[END_REF], the parametric form is the simplest of the extreme mixture models (Frigessi et al. (2002, [9]), Behrens et al. (2004, [START_REF] Cible | Bayesian analysis of extreme events with threshold estimation[END_REF]) and Zhao et al (2010, [START_REF] Zhao | Extreme value modelling for forecasting market crisis impacts[END_REF])). However, it should be noted that the likelihood of this model can not fully benefit from the EM algorithm, which is commonly used in the study of mixture models. Indeed, the threshold u is a parameter common to both components and the weight of the mixture. Therefore, parametric and non-parametric Bayesian methods are often used to study this type of model (Coles et al. [START_REF] Stuart | Bayesian methods in extreme value modelling: A review and new developments[END_REF][START_REF] Stuart | A bayesian analysis of extreme rainfall data[END_REF]).

To stabilize the maximum likelihood estimation, we propose here a two-step estimation method: (1) we first estimate the model parameters using maximum likelihood by setting the threshold value u. Next (2) repeat the procedure (1) for several values of u to select the value with corresponds to the highest likelihood. With this estimation method, we show using a simulation study that the increase of the censoring decreases the quality of the estimation of the parameters above the threshold. Thus, in the case of strong censorship, more data is needed to properly estimate the parameters.

The paper is organized as follows. Sections 2 and 3 present the proposed model and the parameter estimation method respectively. We provide in Section 4 simulation results that illustrate the estimation of the parameters. A discussion is given in Section 5.

The proposed model

Let X 1 • • • , X n be independent and identically distributed random variables with distribution function F X , as in [START_REF] Macdonald | A flexible extreme value mixture model[END_REF] by:

F X (x) =    (1 -φ u ) H(x|β,λ) H(u|β,λ) if x ≤ u (1 -φ u ) + φ u G(x|u, σ, ξ) if x > u (1)
where φ u = P(X > u) and G(•|u, σ u , ξ) defined as:

G(z|u, σ u , ξ) =          1 -1 + ξ z-u σ -1 ξ + if ξ = 0 1 -exp -z-u σ + if ξ = 0. (2) 
The distribution function of X is represented below the threshold, as a Weibull distribution function H(.|β, λ) which depends on β (shape parameter), λ (scale parameter) and defined as

H(z|β, λ) = 1 -e -( z λ ) β , β, λ > 0, x ∈ R + . (3) 
The density function is defined as

h(x|β, λ) = β λ x λ β-1 e -( x λ ) β , β, λ > 0, x ∈ R + . (4) 
Above the threshold, the distribution is assumed to be a Generalized Pareto Distribution (GPD (u, σ u , ξ)) which depends on the threshold u and the extremes values parameters (σ u , ξ). As presented in [START_REF] Macdonald | A flexible extreme value mixture model[END_REF], the density function of X can be viewed as a mixture with two components:

f X (x) = (1 -φ u )f 1 (x) + φ u f 2 (x) (5) 
f 1 (x) = h(x|β, λ) H(u|β, λ) 1 {x≤u} f 2 (x) = g(x|u, σ u , ξ)1 {x>u}
with g the density function of GPD defined as

g(z|u, σ u , ξ) =          1 σu 1 + ξ z-u σu -ξ+1 ξ + if ξ = 0 1 σu exp -z-u σu + if ξ = 0 (6) 
and

1 {x>u} =    1 if x > u 0 if x ≤ 0.
We assume that the variable of interest X does not completely observed over the threshold u. A way to model this situation is to introduce a variable C, independent of X, such that only Z = X ∧ C and δ = 1 {X≤C} are observed. Let us assume that the variable C has a Generalized Pareto Distribution (GPD(u, σ u , ξ )) which depends on the threshold u and the extremes values parameters (σ u , ξ ). So the distribution function of C is defined as:

F C (x) =    0 if x ≤ u G(x|u, σ u , ξ ) if x > u (7) 

Parameters estimation

Let (Z, δ) = ((Z 1 , δ 1 ), . . . , (Z n , δ n )) independent and identically distributed observations with same law as (Z, δ).

Likelihood below the threshold u

Below the threshold, the data are completely observed with density function given by

(1 -φ u ) H(u|β, λ) h(x|β, λ)1 {x≤u} ,
where h is defined by equation (4)

The distribution function H(.|β, λ) is given in this by

H(z|β, λ) = 1 -e -( z λ ) β . (8) 
Let us define A(u) = {j : 0 ≤ z j ≤ u}, the likelihood is given, in this case, by

L W (Z|β, λ, u) = (1 -φ u ) H(u|β, λ) |A(u)| i∈A h(z i |β, λ) (9) 

Likelihood above the threshold u

Recall that the variable of interest is X and we observe, over the threshold u, Z i = X i ∧ C i and δ i = 1 {Xi≤Ci} , i = 1, . . . , n. Recall also that the variables X and C are independent with density f X and f C respectively. The associated distribution functions are F X for X and F C for C. Here f X is equal to the GPD density function which depends on (u, σ u , ξ) and f C is equal to the GPD density function which depends on (u, σ u , ξ ). Recall that θ = (u, β, λ, σ u , ξ). So the contribution in the likelihood for an individual i is given by

f Zi,δi (z i , δ i |θ) = P Z i ∈ [z i , z i + dz], δ i = 1|θ δi × P Z i ∈ [z i , z i + dz], δ i = 0|θ 1-δi dz .( 10 
)
Let us set

L i = P Z i ∈ [z i , z i + dz], δ i = 1|θ δi × P Z i ∈ [z i , z i + dz], δ i = 0|θ 1-δi
.

with

δ i =    1 si X i ≤ C i X i (is fully observed) 0 si X i > C i (X i is censored)
We have

L i = P X i ∈ [z i , z i + dz], z i ≤ C i |θ δi × P C i ∈ [z i , z i + dz], X i > z i |θ 1-δi . (11) 
Using independence between X and C, we have

L i = f X (z i |θ)dz.S (z i ) δi × f C (z i )dz.S(z i |θ) 1-δi (12) 
with S and S the survival function of C and X respectively. Replacing in equation ( 10), we have

f Z,δ (z i , δ i |θ) = f X (z i |θ).S (z i ) δi × f C (z i ).S(z i |θ) 1-δi ∝ f X (z i |θ) δi × S(z i |θ) 1-δi ∝ g(z i |u, σ u , ξ) δi × S(z i |u, σ u , ξ) 1-δi . ( 13 
)
Defining B(u) = {j : z j > u}, the likelihood is given by

L GP D (z|u, σ, ξ) ∝ j∈B(u) g(z j |u, σ u , ξ) δj × S(z j |u, σ u , ξ) 1-δj (14) 

Estimation

In this section, we proposed to estimate the model parameters defined in Section 2. First, we assume that the threshold u, above which the data are considered extreme, is known. Secondly, we assume that u is an unknown parameter to estimate. The usual method of maximum likelihood is to maximize under θ = (β, λ, u, σ u , ξ) the product of the equations ( 9) and ( 14). But as stated in [START_REF] Macdonald | A flexible extreme value mixture model[END_REF], the maximization of this likelihood does not work well. Indeed, the support of the density of the model depends on the parameter u which is unknown. In this case, we propose a likelihood maximization in two steps:

Estimation for a given threshold u

Since the threshold u is known, the parameter vector to be estimated is the Weibull's parameters (β, λ) and the extreme parameters (σ u , ξ). So the parameter vector to be estimated is θ = (β, λ, σ u , ξ) . In this case, the likelihood is given below the threshold u by

L W (Z|β, λ, u) = (1 -φ u ) H(u|β, λ) |A(u)| i∈A(u) β λ z i λ β-1 e -( z i λ ) β , (15) 
and above u by

L GP D (z|u, σ u , ξ) ∝ j∈B(u) g(z j |u, σ u , ξ) δj × S(z j |u, σ u , ξ) 1-δj . (16) 
Using [START_REF] Stuart | A bayesian analysis of extreme rainfall data[END_REF] and

S(z j |u, σ u , ξ) = 1 -G(z j |u, σ u , ξ) =          1 + ξ z-u σu -1 ξ + si ξ = 0 exp -z-u σu + si ξ = 0 ( 17 
)
the likelihood above the threshold is given by

L GP D (z|u, σ u , ξ) ∝ φ |B| u j∈B 1 σ u δj 1 + ξ z j -u σ u - (1+ξδ j ) ξ + 1 {ξ =0} + exp - z j -u σ u + 1 {ξ=0} . ( 18 
)
The complete likelihood of the model is given, using the product of these two equations ( 18) and ( 15), by

L(Z|θ) ∝ (1 -φ u ) 1 -e -( u λ ) β |A| i∈A β λ z i λ β-1 e -( z i λ ) β × φ |B| u j∈B 1 σ u δj 1 + ξ z j -u σ u - (1+ξδ j ) ξ + 1 {ξ =0} + exp - z j -u σ u + 1 {ξ=0} . ( 19 
)
To estimate the parameters, we use the maximum likelihood method. Given the sample (Z, δ), we want to find the estimator θn which maximizes equation ( 19) or its logarithm

θn = argmax θ log (L(Z|θ)) . ( 20 
)
Since the threshold u fixed, we can maximize this likelihood stably. But in practice, the threshold u is a parameter of the model to be estimated. So we propose a second step allowing us to take into account the estimation of u based on the likelihood given by equation ( 19). The likelihood of model ( 1) is given by equations ( 9) and ( 14) as

L(Z|β, λ, u, σ u , ξ) = L W (Z|β, λ, u)L GP D (z|u, σ, ξ) ∝ (1 -φ u ) H(u|β, λ) |A| i∈A h(z i |β, λ) × φ |B| u j∈B g(z j |u, σ u , ξ) δj × S(z j |u, σ u , ξ) 1-δj
with h(z i |β, λ) given in equation ( 4), S(z j |u, σ u , ξ) given by

S(z j |u, σ u , ξ) = 1 -G(z j |u, σ u , ξ) =          1 + ξ z-u σ -1 ξ + if ξ = 0 exp -z-u σ + if ξ = 0
and the GPD density function given by

g(z|u, σ u , ξ) =      1 σ 1 + ξ z-u σ -1 ξ -1 + if ξ = 0 1 σ exp -z-u σ + if ξ = 0
So the likelihood is given by

L(Z|β, λ, u, σ u , ξ) ∝ (1 -φ u ) 1 -e -( u λ ) β |A| i∈A β λ z i λ β-1 e -( z i λ ) β × φ |B| u j∈B 1 σ u δj 1 + ξ z j -u σ u -1 ξ -δj + 1 {ξ =0} + exp - z j -u σ u + 1 {ξ=0} .

Estimation for an unknown threshold u

Let us suppose in this section that the threshold u is unknown and is a parameter to be estimated. In this case, the parameters vector θ is given as θ = (β, λ, u, σ u , ξ) .

As explained in Section 1, the likelihood of the model, in this case presents, regularity issues at the point u. This makes it impossible to directly maximize the likelihood given by equation ( 19). Recall also that for each u l , l = 1, . . . , L, A(u l ) and B(u l ) are given by:

A(u l ) = {j : 0 ≤ z j ≤ u l } and B(u l ) = {j : z j > u l }.
In practice, for each u l , we can estimate the associate A(u l ), B(u l ) and their cardinal. To estimate θ in this case, let us give a grid of L values of u. Then we can get the maximum likelihood associated with each value. Let u 1 , u 2 , . . . , u L , be the L choosen threshold values (in practice, we can choose two empirical extreme quantiles (q 1 et q 2 ) then discretise the interval [q 1 , q 2 ]). Let us suppose for l = 1, . . . , L, that θl n is maximum likelihood estimator associate to u l : 

θl n = ( βl , λl , σul , ξl ) = argmax β,λ,σu,ξ log (L(Z|β, λ, σ u , ξ)) (21) 

Simulation study

In this section, we present simulations results based on the given model. We first present results in case of a given threshold of u and secondly present results for the general case. We arbitrarily choose the following parameters θ for the simulations:

                         β = 2.5 λ = 1.2 u = 1.45 σ u = 1 ξ = 0.3
where u is chosen as the 0.8 quantile of Weibull law for a given β and λ. Let n be the sample size and N the number of iterations or replications (here fixed as N = 1000).

For different values of sample size n (n = 100, 500, 1000, 1500) and differents censoring percentage 0%, 10%, 30%, 50%, 70%, and 90%, we can estimate the model parameters to provide the censoring effect on the quality of the estimators. For all tables, the parameter estimates are given, the root mean square error (RM SE), the absolute mean error [M AE] and the standard deviation {SD}. All simulations are done used the R packages evmix ( [START_REF] Hu | evmix: An R package for extreme value mixture modeling, threshold estimation and boundary corrected kernel density estimation[END_REF]) for generating data and maxLik ([10]) for maximization procedure.

For a given threshold u

As explained in Section 3.3.1, we assume in this section that u is fixed and known. In this case, the parameter vector θ to be estimated is given by θ = (β, λ, σ u , ξ). Tables 1 and2 present simulations results for the parameters below the threshold (β and λ). These tables show that random censoring has no specific effect on estimator quality. Indeed, increasing or decreasing the censoring percentage does not increase or decrease the bias or the standard deviation of parameter estimators. This is expected since the censorship concerns only the model above the threshold namely the parameters σ u and ξ. However, the increase of the sample size n improves the estimation results in terms of RM SE, M AE and SD. Tables 3 and4 provides the parameter estimation results above the threshold u (σ u and ξ). Figure 2 presents the corresponding density based on these results for n = 100 and n = 1500. It can be seen that the quality of estimates decreased with the increase in the percentage of censorship. Increasing the sample size n improves these results. This means that we need enough data to properly estimate the parameters by maximum likelihood in case of strong censorship. 

For unknown threshold u

Let us assume here that the threshold u is unknown and is considered as a parameter to be estimated. So the parameter vector here is θ = (β, λ, u, σ u , ξ). Tables 5 and6 presents the results for model parameters estimation below the threshold u (β and λ). From these tables, it can be seen that there is no specific behavior of the estimators as a function of the censorship percentage. Indeed, by increasing or decreasing the censoring percentage, there is no decrease or increase in the mean absolute error, standard deviation, or mean squared error of the estimators. But increasing the sample size n also greatly improves the estimation results in terms of squared error and standard deviation.

Table 7 presents results for the threshold estimation. From this table, it can be seen that the estimator of u improves concerning the censorship percentage. In fact, by increasing the censorship percentage, there is a decrease in the standard deviation and Tables 8 and9 show the parameter estimation results above the threshold u (σ u and ξ). Figure 3 presents the corresponding density based on these results for n = 100 and n = 1500. It can be seen that the results deteriorate as the censoring percentage increases. This can be measured in terms of squared error, mean absolute error, and standard deviation. Increasing the sample size n improves these results. This means that enough data is needed to properly estimate the parameters by maximum likelihood in case of strong censorship.

Overall, we find that the estimate is better when the threshold u is known. Moreover, censorship has no specific effect on the estimation of parameters below the threshold. The effect of censorship is highlighted in the estimation of parameters above the threshold. This is expected insofar as censorship is observed only above the threshold. Note also that the sample size seems to have more influence than the censoring percentage on the estimation results.

Discussion

For the reasons given in Section 1, the usual maximum likelihood method is not very robust for estimating parameters in the case of a mixture model of extreme values with unknown threshold values u.

The objective of this study was to show that even if the extreme data are censored, we can correctly recover the model's parameters and quantiles. To do this, we have proposed an estimation method based on maximum likelihood in two steps. With this estimation method, we showed that we can estimate the model parameters in the case where the data are censored but also in the case where there is no censorship. If the threshold u is known, the method remains effective but presents a bias issue in the case where the sample size is small. If u is unknown, the parameters are well estimated but the quality of the estimate remains better in the case where u is known. In both cases, the estimate can be improved by increasing the sample size even if the censorship is strong. Recall that the method is quite expensive in computing time because of the search for the optimal value of u in the second step.

In the case where the censorship is strong and the sample size is small, one can think of using a Bayesian method as suggested by MacDonald et al. (case without censorship, [START_REF] Macdonald | A flexible extreme value mixture model[END_REF]). In a future study, we will try to use the Bayesian method to improve the results in this case but also the estimation of the extreme quantile.
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 1 Figure 1. An extreme value mixture model example. The threshold u is represented by the dotted line.

Figure 2 .

 2 Figure 2. Density plot based on the simulations results given a threshold u. The left plot corresponds to results for n = 100 whereas the right plot corresponds to results for n = 1500. In each plot, the true density and the estimated density for different censoring percentage are represented.

Figure 3 .

 3 Figure 3. Density plot based on the simulations results for unknown threshold u. The left plot corresponds to results for n = 100 whereas the right plot corresponds to results for n = 1500. In each plot, the true density and the estimated density for different censoring percentages are represented.

  So, for each u l , θl n = ( βl , λl , σul , ξl ) and LL( θl n ) the associated likelihood logarithm. The estimator θn of θ is given by maximizing LL( θl

	1,...,L	LL( θl n ).	(22)

with L(Z|β, λ, σ u , ξ) given by equation (19).

Let us set LL( θl n ) the logarithm of the likelihood (19) at θl n with u = u l , l = 1, . . . , L. n ), l = 1, . . . , L. So θn is given by θn = ( β, λ, û, σu , ξl ) = argmax

Table 1 .

 1 Simulations

				Censoring percentage		
	n	0%	10%	30%	50%	70%	90%
		2.559	2.541	2.540	2.564	2.568	2.529
	100	(0.390) (0.365) (0.374) [0.308] [0.288] [0.295]	(0.399) (0.387) (0.382) [0.308] [0.303] [0.306]
		{0.386} {0.362} {0.372}	{0.394} {0.381} {0.381}
		2.507	2.506	2.509	2.511	2.520	2.515
	500	(0.164) (0.169) (0.159) [0.130] [0.135] [0.126]	(0.162) (0.168) (0.164) [0.129] [0.136] [0.129]
		{0.164} {0.169} {0.159}	{0.161} {0.167} {0.163}
		2.505	2.504	2.509	2.507	2.508	2.507
	1000	(0.120) (0.115) (0.113) [0.096] [0.093] [0.090]	(0.114) (0.113) (0.115) [0.091] [0.090] [0.091]
		{0.120} {0.115} {0.113}	{0.114} {0.113} {0.114}
		2.500	2.507	2.504	2.504	2.502	2.509
	1500	(0.095) (0.094) (0.095) [0.077] [0.075] [0.075]	(0.090) (0.095) (0.095) [0.072] [0.076] [0.076]
		{0.095} {0.094} {0.094}	{0.090} {0.095} {0.095}

results for β estimator with N = 1000 replications and a known threshold u. For each censoring percentage, the β estimator, the Root Mean Square Error (RMSE), the Mean Absolute Error [MAE] and the Standard Deviation {SD} are given.

Table 2 .

 2 Simulations results for λ estimator with N = 1000 replications and a known threshold u. For each censoring percentage, the λ estimator, the Root Mean Square Error (RMSE), the Mean Absolute Error [MAE] and the Standard Deviation {SD} are given.

Table 3 .

 3 Simulations results for σu estimator with N = 1000 replications and a known threshold u. For each censoring percentage, the σu estimator, the Root Mean Square Error (RMSE), the Mean Absolute Error [MAE] and the Standard Deviation {SD} are given.

Table 4 .

 4 Simulations results for ξ estimator with N = 1000 replications and a known threshold u. For each censoring percentage, the ξ estimator, the Root Mean Square Error (RMSE), the Mean Absolute Error [MAE] and the Standard Deviation {SD} are given.

	n	0%	10%	30%	50%	70%	90%
		2.863	2.794	2.720	2.716	2.730	2.664
	100	(0.568) (0.543) (0.482) [0.451] [0.420] [0.375]	(0.492) (0.481) (0.386) [0.375] [0.368] [0.305]
		{0.437} {0.457} {0.430}	{0.442} {0.423} {0.305}
		2.868	2.719	2.612	2.602	2.561	2.666
	500	(0.485) (0.405) (0.318) [0.404] [0.312] [0.243]	(0.327) (0.295) (0.311) [0.249] [0.221] [0.247]
		{0.316} {0.341} {0.298}	{0.310} {0.289} {0.263}
		2.842	2.716	2.603	2.587	2.558	2.670
	1000	(0.430) (0.339) (0.239) [0.358] [0.254] [0.163]	(0.231) (0.188) (0.281) [0.151] [0.128] [0.206]
		{0.260} {0.261} {0.215}	{0.214} {0.179} {0.224}
		2.866	2.755	2.669	2.672	2.638	2.705
	1500	(0.431) (0.335) (0.231) [0.373] [0.266] [0.178]	(0.235) (0.190) (0.290) [0.176] [0.144] [0.219]
		{0.228} {0.218} {0.157}	{0.161} {0.130} {0.205}

Table 5 .

 5 Simulations results for β with N = 1000 replications and an unknown threshold u.. For each censoring percentage, the estimates of β, the Root Mean Square Error (RMSE), the Mean Absolute Error [MAE] and the Standard Deviation {SD} are given.

	n	0%	10%	30%	50%	70%	90%
		9.493	11.384	10.249	8.371	11.291	11.772
	100	(16.573) (18.457) (16.839) [8.539] [10.395] [9.236]	(14.804) (18.264) (21.023) [7.363] [10.282] [10.711]
		{14.356} {15.401} {14.208}	{12.958} {15.231} {18.181}
		1.255	1.575	1.788	1.827	1.890	1.516
	500	(0.577) [0.377]	(0.866) [0.619]	(1.015) [0.778]	(1.045) [0.806]	(1.084) [0.852]	(0.755) [0.480]
		{0.575}	{0.782}	{0.828}	{0.837}	{0.836}	{0.686}
		1.119	1.267	1.423	1.465	1.491	1.267
	1000	(0.262) [0.242]	(0.330) [0.300]	(0.389) [0.361]	(0.404) [0.378]	(0.413) [0.387]	(0.268) [0.211]
		{0.249}	{0.323}	{0.319}	{0.305}	{0.293}	{0.259}
		1.071	1.155	1.267	1.293	1.311	1.184
	1500	(0.195) [0.194]	(0.190) [0.189]	(0.187) [0.186]	(0.185) [0.184]	(0.185) [0.184]	(0.144) [0.134]
		{0.146}	{0.184}	{0.174}	{0.160}	{0.148}	{0.143}

Table 6 .

 6 Simulations results for λ estimator with N = 1000 replications and an unknown threshold u.. For each censoring percentage, the estimates of λ, the Root Mean Square Error (RMSE), the Mean Absolute Error [MAE] and the Standard Deviation {SD} are given.the mean squared error of the estimators. Likewise, the increase in the sample size n improves the estimation results in the sense of the squared error but also in terms of standard deviation.

				Censoring percentage		
	n	0%	10%	30%	50%	70%	90%
		0.752	0.988	1.319	1.487	2.028	25.074
	100	(1.172) (1.534) (1.968) [0.948] [1.083] [1.342]	(2.368) (11.745) (71.488) [1.555] [2.217] [25.342]
		{1.147} {1.535} {1.942}	{2.318} {11.706} {67.346}
		0.386	0.61	0.809	0.934	1.223	1.101
	500	(0.727) (0.736) (0.757) [0.675] [0.704] [0.722]	(0.850) [0.823]	(1.160) [1.081]	(2.155) [1.548]
		{0.460} {0.636} {0.733}	{0.848} {1.139}	{2.153}
		0.41	0.634	0.947	1.146	1.509	1.024
	1000	(0.674) (0.682) (0.688) [0.719] [0.734] [0.792]	(0.727) [0.799]	(1.086) [1.016]	(1.848) [1.442]
		{0.447} {0.575} {0.636}	{0.713} {0.959}	{1.848}
		0.409	0.627	0.978	1.186	1.645	0.98
	1500	(0.614) (0.625) (0.637) [0.611] [0.626] [0.633]	(0.680) [0.647]	(1.006) [0.928]	(1.683) [1.387]
		{0.336} {0.533} {0.587}	{0.631} {0.898}	{1.684}

Table 8 .

 8 Simulations results for σu with N = 1000 replications and an unknown threshold u. For each censoring percentage, the estimates of σu, the Root Mean Square Error (RMSE), the Mean Absolute Error [MAE] and the Standard Deviation {SD} are given.