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Abstract
In recent years, deep learning has been connected with optimal control as a way to define
a notion of a continuous underlying learning problem. In this view, neural networks can be
interpreted as a discretization of a parametric Ordinary Differential Equation which, in the
limit, defines a continuous-depth neural network. The learning task then consists in finding
the best ODE parameters for the problem under consideration, and their number increases
with the accuracy of the time discretization. Although important steps have been taken to
realize the advantages of such continuous formulations, most current learning techniques
fix a discretization (i.e. the number of layers is fixed). In this work, we propose an iterative
adaptive algorithm where we progressively refine the time discretization (i.e. we increase the
number of layers). Provided that certain tolerances are met across the iterations, we prove
that the strategy converges to the underlying continuous problem. One salient advantage
of such a shallow-to-deep approach is that it helps to benefit in practice from the higher
approximation properties of deep networks by mitigating over-parametrization issues. The
performance of the approach is illustrated in several numerical examples.

Keywords: Deep Learning; Neural Networks; Continuous-Depth Neural Networks; Optimal
Control

1. Introduction

1.1 Context

Neural networks produce structured parametric families of functions that have been studied
for at least 70 years (see Hebb (1949); Rosenblatt (1958)). It is however only in the last
decade that their popularity has surged. Thanks to the increase of computing power, and
the development of easy-to-use computing tools for optimization and automatic differentia-
tion, statistical learning of neural networks has produced state-of-the-art performance in a
large variety of machine learning problems, from computer vision Krizhevsky et al. (2012)
(e.g. self-driving cars, X-rays diagnosis,...) to natural language processing Wu et al. (2016)
(e.g. Google translate, DeepL Translator,...) and reinforcement learning (e.g. superhuman
performance at Go Silver et al. (2016)). Despite this great empirical success, neural networks
are not entirely well-understood and there is a pressing need to provide:
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• solid mathematical foundations to understand their approximation power and why
they may outperform other classes of functions,

• algorithms to find systematically an appropriate architecture for each problem and
to train the network in order to deliver in practice the approximation capabilities
predicted by the theory, and to guarantee robustness over generalization errors.

On the first point, significant advances have been made recently on the approximation power
of neural networks (see, e.g., Yarotsky (2017); Daubechies et al. (2019); Grohs et al. (2019);
Gühring et al. (2019) for a selection of rigorous results). In particular, a few recent works
have given theoretical evidence on the advantages of using deep versus shallow architectures
for the approximation of certain relevant families of functions (see, e.g., Telgarsky (2015);
Daubechies et al. (2019)). However, so far the obtained results do not seem to be informative
on how to address the second point above, that is, how to build algorithms that discover
automatically the right architecture for each problem, and that may allow to benefit from
the theoretically high approximation properties of (deep) neural networks. As a result, their
training remains a key open issue subject to very active research. The present work is a con-
tribution in this direction, with special focus on understanding the underlying mechanisms
of training efficiently deep architectures.

The most commonly applied training methods are based on the stochastic gradient de-
scent (Robbins and Monro (1951); Bottou (2010)) and its variants (see, e.g., Duchi et al.
(2011); Zeiler (2012)). It has the advantage of being easily implementable but it is difficult to
tune properly in practice, especially in problems involving large data sets and using deep neu-
ral networks with many layers and coefficients which are very prone to over-parametrization
issues. The difficulty in training deep networks raises the question regarding the benefits
of applying a shallow-to-deep adaptive strategy in the network architecture (and a hence
coarse-to-fine adaptive strategy in the number of coefficients) in order perform the train-
ing in a more robust and rapid manner. The underlying intuition is that shallow networks
give poor approximation properties but converge faster than deeper networks which, on the
contrary, have higher approximation power.

There is a large body of emerging works which explore numerically the potential of
training deep neural networks with shallow-to-deep strategies (see, e.g., Chen et al. (2015);
Wei et al. (2016); Li and Hoiem (2017); Cortes et al. (2017); Elsken et al. (2018)). In this
work, we present an abstract setting and convergence results which are a first theoretical
justification of this type of algorithmic approach. In order to understand the potential gain,
it is necessary to define a notion of the continuous underlying objects that are approximated.
This is the reason why we have chosen to work from a perspective which connects the task
of learning with neural networks with optimal control and dynamical ODE systems. In
this view, there is a notion of a continuous-depth neural network which is described by
a continuous time-dependent ODE system. Its discretization fixes its architecture. For
instance, ResNet He et al. (2016) can be regarded as an Explicit Euler scheme for the
solution of certain dynamics. The weights involved in the ODE are seen as controls and
correspond to the parameters of the network which have to be optimized. The process
of learning these parameters can then be recast as an optimal control problem over the
admissible controls where the cost function is the empirical risk (sometimes with an extra
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regularization term). Necessary optimality conditions are then easily formulated through
the Pontryagin Maximum Principle (PMP, Boltyanskii et al. (1960); Pontryagin (2018)).

1.2 Contribution of the present work

The optimal control point of view is appealing since it gives access to a fully continuous de-
scription of neural networks and of the underlying statistical learning process. The practical
implementation involves two discretization errors:

1. Sampling error: The cost function of the fully continuous optimal control problem
is the average of a loss function, sometimes also called risk. However, in practice, the
average loss is replaced by an empirical mean which is built from N samples. So it is
necessary to assess by how much the minimum the sampled mean deviates from the
continuous underlying problem. We analyze this point in Theorem 6.

2. Time-integration error: To solve the optimal control problem on the empirical
mean of the loss, one solves the resulting PMP with Newton-type iterations involving
the solution of forward and backward dynamical systems with certain time integration
schemes (which fix the neural network architecture). The usual approach is to first
fix a discretization and then solve the discrete version of the PMP. However, the
discretization errors accumulate at each iteration and make us deviate from the time-
continuous version. It is thus necessary to examine how much the final output deviates
from the time-continuous one.

In this context, the main contributions of the present work are:

1. Derivation of a full error analysis:

• Wemake a theoretical analysis on the interplay between the above two errors. The
impact of the sampling error is analyzed in Theorem 6 and the discretization error
in Theorem 4. From these results, it follows that to approximate the minimum
of the underlying fully continuous problem at a certain accuracy, we not only
need a minimal number of training samples, but we also need to solve the control
problem on the empirical risk with some minimal accuracy. This requires, in
turn, to use time-adaptive techniques. In our analysis, both errors are additive
and can actually be optimally balanced. The final result is given in Corollary 7
and it is formulated in probability.

• To solve the control problem on the empirical risk at a given target accuracy, we
show that we have to compute the forward and backward propagations at each
step of the Newton-type algorithms at increasing accuracy. As our theoretical
proof of Theorem 4 will illustrate, tightening the accuracy of the time integration
is necessary to guarantee convergence to the exact continuous problem and justi-
fies the coarse-to-fine, resp. shallow-to-deep, strategy. This yields neural networks
with depths that are automatically adapted.

2. Practical coarse-to-fine adaptive algorithm:
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• We next use the theory to derive actionable criteria to build time-integration
schemes that are adaptively refined across the iterations. This has the advantage
of reducing computational cost since early iterations use looser tolerances, thus
avoiding unnecessary work due to oversolving, while later iterations use tighter
tolerances to deliver accuracy. The coarse-to-fine strategy could also be under-
stood as a dynamic regularization which helps to prevent over-parametrization.
• We illustrate the behavior of the algorithm in several benchmark examples.

1.3 Potential impact, limitations and extensions

We believe the results of this article can contribute to the following key topics in deep
learning:

• Automate the selection of neural network architecture during the training,

• Enhance the interpretability of the generalization errors by connecting them with
sampling and discretization errors,

• Provide a first theoretical justification of the works adopting the principle of shallow-
to-deep training of deep neural networks.

Some limitations and natural questions that arise for future works are the following:

• Our theoretical results involve numerous bounds and some of them might be subopti-
mal. Certain constants involved are also difficult to estimate in practice. As a result,
the theoretical convergence result cannot be used to derive fully explicit adaptive
strategies for implementation. However it gives hints on how to proceed in practice,
and we propose practical guidelines to perform adaptivity. In future works, it would be
desirable to find a sharper analysis with constants that are easier to compute in order
to obtain a fully closed pipeline. This may however require very different arguments
as our current ones.

• As we will explain in the next section, the optimal control point of view only describes
certain classes of neural networks since it introduces certain restrictions in the archi-
tecture. As a result, our adaptive setting cannot automate the training of all existing
classes of neural networks. So a natural question is how to extend the current ideas
to other training techniques that are not based on optimal control.

• One important question is whether the flow map of a given dynamical system can
represent the data at hand. The same issue also arises in the classical approach of deep
learning in terms of the optimality of the choice of the network. From the optimal
control perspective, this representability problem can be viewed as a controllability
problem. It would be interesting to transfer controllability results to the current deep
learning framework to address this question.

1.4 Outline of the paper

In section 2, we define precisely what we understand by deep learning and we recall its
connection with optimal control. Section 3 gives the optimal control setting which we use
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in our subsequent developments. In particular, we formulate the fully continuous optimal
control problem over the expectation of the loss and its sampled version involving an empir-
ical mean of the loss. Section 4 recalls the Pontryagin’s Maximum Principle for the sampled
problem. We also recall in this section the Extended Method of Successive Approximations
(E-MSA), originally introduced in Li et al. (2018), to solve the sampled problem. The algo-
rithm is iterative, and it requires to compute at each iteration a forward and a backward time
propagation followed by a certain maximization over the control variables. In its original
formulation, it is assumed that these steps are performed exactly. In Section 5, we formu-
late our main algorithm, which is an inexact version of the E-MSA that we call Adaptive
MSA (A-MSA). It is based on approximately realizing each propagation and maximization
within a certain accuracy. To ensure convergence to the exact solution, the accuracy needs
to be tightened across the iterations. In section 6, we prove that A-MSA converges to a
time-continuous solution of the sampled PMP. In section 7, we connect the solution of the
sampled problem with the continuous one involving the exact average of the loss function.
For this, we use results obtained in E et al. (2019). This last step allows to connect how
much the solution of A-MSA deviates from the fully continuous one in terms of the number
of samples and the accuracy of the discretization. In section 8, we give guidelines to im-
plement A-MSA in practice, and section 9 illustrates the performance of the algorithm in
numerical examples. We conclude the paper in Section 10.

2. From deep learning to optimal control

2.1 Statistical Learning Problems

We consider the following statistical learning problem: Assume that we are given a domain
set X ⊆ Rn and a label set Y ⊆ Rk, with n, k ∈ N. Further assume that there exists an
unknown probability distribution µ on X × Y . Given a loss function L : Y × Y → R+, the
goal of the statistical learning problem is to find a function v : X → Y , which we will call
prediction rule, from a hypothesis class V ⊂ {v : X → Y } such that the expected loss

J (v) := E(x,y)∼µL(v(x), y)

is minimized over V. In other words, the task is to find

v∗ ∈ arg min
v∈V

J (v).

In general, the probability distribution µ is unknown and we are only given a set SN of
N ∈ N training samples

SN := {(xi, yi)}Ni=1.

The most common choice is then to consider the uniform distribution µN : X × Y → R+,

µN (x, y) =
1

N

N∑
i=1

δ(xi,yi)(x, y)

which yields the so-called empirical loss

JN (v) := E(x,y)∼µNL(v(x), y) =
1

N

N∑
i=1

L(v(xi), yi)
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and one finds vN , an approximation of v, by minimizing over it,

vN ∈ arg min
v∈V

JN (v). (1)

In the following, the above optimization step will be called the learning procedure.

2.2 Neural Network Architectures and Deep Learning

While there exists numerous different architectures, we could simplify the discussion and
say that neural networks are a class of functions with the basic general form

v : Rn → Rk, x 7→WLσ(WL−1σ(. . . (σ(W1(x)))), (2)

where:

• L ∈ N is the depth, i.e., the number of layers of the neural network,

• W` : RN`−1 → RN` are affine maps for ` = 1, . . . , L. For consistency, we must set
N0 = n and NL = k but the rest of the dimensions N` ∈ N can be freely chosen. We
have for all x ∈ RN`−1 , W`(x) = A`(x) + b` for a matrix A` ∈ RN`×N`−1 and a vector
b` ∈ RN` .

• σ : R → R is a nonlinear activation function which is applied coordinate-wise in (2).
Some popular choices are the ReLU function, σ(x) = max(0, x), or the hyperbolic
tangent, σ(x) = tanh(x).

Deep learning describes the range of learning procedures to solve statistical learning problems
where the hypothesis class V is taken to be a set of neural networks. One usually works with
the class of neural networks with given depth L, activation function σ and fixed dimensions
N1, . . . , NL−1 for the affine mappings,

NN (L, σ,N1, . . . , NL−1) := {v : X → Y : v(x) = WLσ(WL−1σ(. . . (σ(W1(x))))}.

For this class, the task is to solve the empirical risk problem (1) associated to it.

2.3 Continuous Formulation as an Optimal Control Problem

Functions of the type (2) can be built by repeated composition of parametrizable functions

φ` : RN`−1 → RN` , x 7→ φ`(x) = σ(W`(x)), i = 1, . . . , L− 1,

followed by an affine step, that is,

v = WL ◦ φL−1 ◦ · · · ◦ φ1, ∀v ∈ NN (L, σ,N1, . . . , NL−1).

This simple observation yields to numerous other possible architectures. The most relevant
instance triggering the connection with optimal control are the so-called Residual Neural
Networks (ResNet, He et al. (2016)). They correspond to the choice

φ` : RN`−1 → RN` , x 7→ φ`(x) = x+ hσ(W`(x)), i = 1, . . . , L− 1,
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Network Architecture Associated ODE discretization
ResNet He et al. (2016), RevNet Gomez et al. (2017) Forward Euler
Polynet Zhang et al. (2017) Approximation of Backward Euler
FractalNet Larsson et al. (2016) Runge-Kutta order 2

Table 1: Some neural network classes and their associated ODE discretization.

for a certain parameter1 h > 0.
If we now set NL−1 = · · · = N1 = N0 = n, the application of φ` can be interpreted as

an Explicit Euler step from time t`−1 = (`− 1)h to time t` = t`−1 + h of the dynamics

ẋt = f(xt, θt), with x0 = x,

where
f(xt, θt) = σ(Wt(xt)), with Wt(x) = Atx+ bt,

and θt gathers the parameters upon which the dynamics depend. In our case,

θt = (At, bt).

Note that the matrices A and b are now time-dependent, hence the t-subscript.
In this view, ResNet functions can be interpreted as the output of performing L−1 time

steps of size h of the above dynamics, followed by an affine operation WL : Rn → Rk. This
last operation is important since it maps the final output from the domain set in Rn to the
label set in Rk. In fact, it can be replaced by any linear or nonlinear mapping g : Rn → Rk.
Note also that h can be included as a parameter of the model class and that one can optimize
over it as in Benning et al. (2019).

Following similar lines, one can view certain classes of neural networks as discretizations
of an underlying continuous dynamical system. Table 1 lists some popular classes and the
associated numerical scheme (see, e.g., Lu et al. (2018) for more details on these connections).
We emphasize however that the connection with optimal control comes at the price of
imposing that the input and intra-layer dimensions are equal (NL−1 = · · · = N1 = N0), thus
it cannot be made for all classes of neural networks.

2.4 Related works

To the best of our knowledge, the connection between deep learning, dynamical systems
and optimal control has been known since at least the 1980’s, going back to the works of
LeCun and Pineda in which the idea of back-propagation is connected to the adjoint variable
arising in optimal control (see LeCun et al. (1988); Pineda (1988)). The approach has gained
increasing attention in recent years. We refer to Weinan (2017); Haber and Ruthotto (2018);
Li et al. (2018); Benning et al. (2019); Vialard et al. (2020) for some selected references. The
E-MSA deep learning algorithm based on the optimal control framework has been introduced
in Li et al. (2018) and is the main starting point for our developments on an adaptivity.

1. In fact, ResNets were originally defined for h = 1. The “augmented” definition with the paramater h was
introduced in Haber and Ruthotto (2018).
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A recent development on the topic of adaptivity has been made in Benning et al. (2019)
where the idea is to fix a time-scheme with a fixed number of time steps, and include the
time step as an additional parameter to be optimized. Note that this type of adaptivity lies
in the time step sizes, and it is different than the one proposed here since we understand
adaptivity as refining the time-discretization, thus increasing progressively the number of
time steps.

3. Optimal control setting

We next define the notation for the optimal control setting which we will use in the rest of
the paper. The notation is kept as consistent as possible with section 2 in order to further
enhance the similarity between the usual deep learning approach and the present one.

Like in section 2, we assume that we are given a domain set X ⊂ Rn and a label set
Y ⊂ Rk, with n, k ∈ N, and that there exists an unknown probability distribution µ on
X × Y representing the distribution of the input-target pairs (x, y). Consider now a set of
admissible controls or training weights Θ ⊆ Rm. Usually, we set Θ = Rm in deep learning but
the present methodology allows to consider constraints we will denote Θ ⊆ [Umin, Umax]m.
Fix T > 0 and let f (feed-forward dynamics), Φ (terminal loss function) and R (regularizer)
be functions

f : Rn ×Θ→ Rn, Φ : Rn × Rk → R, R : Θ→ R.

Let L∞([0, T ],Θ) be the set of essentially bounded measurable controls. In the following,
we use bold-faced letters for path-time quantities. For example, θ := {θt : 0 ≤ t ≤ T} for
any θ ∈ L∞([0, T ],Θ). For every control θ ∈ L∞([0, T ],Θ) and every value of the random
variable x ∈ X, we define the state dynamics uθ,x := {uθ,xt : 0 ≤ t ≤ T} as the solution to
the ordinary differential equation (ODE),{

u̇θ,xt = f(uθ,xt , θt), ∀t ∈ (0, T )

uθ,x0 = x
(3)

The ODE is stochastic and its only source of randomness is the initial condition x.
With this notation, the deep learning optimization problem can be posed as the optimal

control problem of finding

J∗ = inf
θ∈L∞([0,T ],Θ)

J (θ), subject to (3), (4)

where
J (θ) := E(x,y)∼µ [Loss(x, y,θ)] ,

and for any input-target pair (x, y) ∈ Rn × Rk, the loss function is defined as

Loss(x, y,θ) := Φ(uθ,xT , y) +

∫ T

0
R(θt)dt

Note that the regularizer R could in general also depend on the state u and Φ is the actual
loss function upon which we want to act. It plays the same role as the loss function L of
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section 2.1. We can relate them by introducing the mapping g : Rn → Rk from section 2.3,
and setting

Φ(uθ,xT , y) = L(g(uθ,xT ), y).

Like in the setting of section 2.1, we are only given a set of N samples SN = {(xi, yi)}Ni=1

and the probability distribution µ is not exactly known. For a given control θ ∈ L∞([0, T ],Θ),
each sample follows the dynamics{

u̇θ,it = f(uθ,it , θt), ∀t ∈ (0, T )

uθ,i0 = xi
(5)

for i = 1, . . . , N . We then perform empirical risk minimization taking, e.g., the uniform
distribution µN = 1

N

∑N
i=1 δ(xi,yi). The optimal control problem becomes

J∗SN = inf
θ∈L∞([0,T ],Θ)

JSN (θ), subject to (5), (6)

where

JSN (θ) := E(x,y)∼µNLoss(x, y,θ) =
1

N

N∑
i=1

Φ(uθ,iT , yi) +

∫ T

0
R(θt)dt

Note that the solutions of the sampled optimal control problem (6) depend on the sample
set SN and are therefore random variables. However, for SN fixed, problem (6) is determin-
istic and can thus be solved with deterministic optimal control techniques. In what follows,
we adopt this viewpoint first to solve problem (6) at any target accuracy. By this we mean
the following: for any given target accuracy ε > 0, we prove in Theorem 4 that it is possible
to numerically compute a control θε such that

JSN (θε)− J∗SN ≤ ε.

We then come back to the probabilistic point of view and prove in Corollary 7 that, provided
that the number N of samples is sufficiently large, there exists a constant C > 0 such that

JSN (θε)− J∗ ≤ Cε.

with high probabillity. The derivation of the latter bound relies on the results of E et al.
(2019).

4. Pontryagin’s Maximum Principle and Method of Successive
Approximations

In this section, we focus on the sampled optimal control problem (6). We first recall the
necessary optimality conditions, usually known as the Pontryangin’s Maximum Principle.
We next introduce the main algorithm to solve the PMP which will be the starting point for
our subsequent developments. In the following, the Euclidean norm of any vector a ∈ Rn is
denoted by ‖a‖ and the scalar product with any other vector b ∈ Rn is a · b.
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4.1 Pontryangin’s Maximum Principle

We define the Hamiltoninan H : [0, T ]× Rn × Rn ×Θ→ R as

H(t, u, p, θ) := p · f(u, θ)−R(θ). (7)

The following classical Pontryagin’s Maximum Principle (PMP) gives necessary optimality
conditions to problem (6).

Theorem 1 Let θ∗ ∈ L∞([0, T ],Θ) be an optimal control to (6). For i = 1, . . . , N , let
uθ
∗,i be the associated state process with initial condition xi. There exists a co-state process

pθ
∗,i ∈ L∞([0, T ],Rn) such that

u̇θ
∗,i
t = f(uθ

∗,i
t , θ∗t ), uθ

∗,i
0 = xi,

ṗθ
∗,i
t = −∇uH(t, uθ

∗,i
t , pθ

∗,i
t , θ∗t ), pθ

∗,i
T = −∇uΦ(uθ

∗,i
T , yi),

and, for each t ∈ [0, T ],

1

N

N∑
i=1

H(t, uθ
∗,i
t , pθ

∗,i
t , θ∗t ) ≥

1

N

N∑
i=1

H(t, uθ
∗,i
t , pθ

∗,i
t , θ), ∀θ ∈ Θ. (8)

The proof of this theorem and its variants can be found in any optimal control theory
reference (see, e.g., Bertsekas (1995); Clarke (2005); Athans and Falb (2013)). We omitted
the case of an abnormal multiplier, which will not be considered in the following.

We emphasize that the PMP is only a necessary condition, so there can be cases where
the solutions to the PMP are not global optima for (6). Nevertheless, in practice the PMP
often gives good solution candidates, and when certain convexity assumptions are satisfied
the PMP becomes sufficient (see Bressan and Piccoli (2007)). In the next section, we discuss
the numerical methods that we take as a starting point to solve the PMP.

4.2 MSA and Extended-MSA

A classical algorithm to find θ∗ and the corresponding forward and co-state dynamics uθ∗,i

and pθ∗,i is the Method of Successive Approximations (see Chernousko and Lyubushin
(1982)). It is a fixed-point method based on the following steps. Starting from an ini-
tial guess of the optimal control θ0, for each k ≥ 0 we first solve for i = 1, . . . , N the forward
dynamics

u̇θ
k,i
t = ∇pH(t, uθ

k,i
t , pθ

k,i
t , θkt ) = f(uθ

k,i
t , θkt ), uθ

k,i
0 = xi. (9)

The dynamics uθk,i allows us to compute the backward dynamics

ṗθ
k,i
t = −∇uH(t, uθ

k,i
t , pθ

k,i
t , θkt ), pθ

k,i
T = −∇uΦ(uθ

k,i
T , yi). (10)

Finally, we update the control by using the maximization condition (8),

θk+1
t ∈ arg max

θ∈Θ

1

N

N∑
i=1

H(t, uθ
k,i
t , pθ

k,i
t , θ), ∀t ∈ [0, T ]. (11)
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In this form, MSA converges only locally when it is initialized with a starting control
guess that is sufficiently close to an optimal control θ∗. To overcome this limitation, an
Extended MSA algorithm (E-MSA) based on an augmented Lagrangian strategy has been
introduced in Li et al. (2018). This algorithm is the starting point for our subsequent
developments. It works as follows: fix some ρ > 0 and define the augmented Halmitonian

H̃(t, u, p, θ, v, q) := H(t, u, p, θ)− ρ

2
‖v − f(u, θ)‖2 − ρ

2
‖q +∇uH(t, u, p, θ)‖2. (12)

We can now formulate an extended PMP based on H̃.

Proposition 2 (Extended PMP, see Li et al. (2018)) Let θ∗ ∈ L∞([0, T ],Θ) be an
optimal control to (6). For i = 1, . . . , N , let uθ∗,i be the associated state process with initial
condition xi. There exists a co-state process pθ∗,i ∈ L∞([0, T ],Rn) such that

u̇θ
∗,i
t = ∇pH̃(t, uθ

∗,i
t , pθ

∗,i
t , θ∗t ), uθ

∗,i
0 = xi,

ṗθ
∗,i
t = −∇uH̃(t, uθ

∗,i
t , pθ

∗,i
t , θ∗t ), pθ

∗,i
T = −∇uΦ(uθ

∗,i
T , yi),

and, for each t ∈ [0, T ],

1

N

N∑
i=1

H̃(t, uθ
∗,i
t , pθ

∗,i
t , θ∗t ) ≥

1

N

N∑
i=1

H̃(t, uθ
∗,i
t , pθ

∗,i
t , θ), ∀θ ∈ Θ.

The E-MSA algorithm consists in applying the MSA algorithm with the augmented Hamil-
tonian H̃ instead of with H. Since ∇pH̃ = ∇pH = f and ∇uH̃ = ∇uH, steps (9) and (10)
remain the same as in MSA and the maximation step (11) is replaced by

θk+1
t ∈ arg max

θ∈Θ

1

N

N∑
i=1

H̃(t, uθ
k,i
t , pθ

k,i
t , θ), ∀t ∈ [0, T ]. (13)

It has been proven in Li et al. (2018) that if the parameter ρ is taken sufficiently large, the
E-MSA algorithm converges to the set of solution of the extended PMP for any initial guess
of the control θ0. However, this scheme cannot be realized in practice without discretizing.
This introduces a perturbation of the time-continuous formulation of the algorithm since
the resulting trajectories will be approximations of the continuous one. To guarantee con-
vergence to the exact continuous solution, it is necessary to identify suitable approximation
error tolerances that still guarantee convergence to the exact solution. This motivates to
introduce an Adaptive MSA scheme that we describe in the next section. We prove that if
the forward and backward propagations are solved with increasing accuracy at each step,
then the algorithm converges towards a continuous solution of the Extended PMP.

5. A-MSA: Adaptive Method of Successive Approximations

The algorithm requires defining forward and backward time-integration schemes, which we
introduce in section 5.1. We next present the algorithm and how predictions are made in
sections 5.2 and 5.3. We end up by proving convergence in section 6.
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5.1 Routines solve_fwd and solve_bwd

In the following, we work with time-integration routines solve_fwd and solve_bwd which
can be cast in the abstract framework that we next describe. Relevant particular instances
of it will be continuous Galerkin (cG) or Runge-Kutta collocation (RK-C) methods.

Setting: We describe the framework in the case of the forward dynamics{
u̇t = f(ut), ∀t ∈ (0, T )

u0 = x
(14)

for a generic Lipschitz continuous function f : Rn → Rn. The backward dynamics can be
deduced similarly.

Let 0 = t0 < t1 < · · · < tL = T be a partition of [0, T ] and let T` := (t`−1, t`], and
h` := t` − t`−1. For q ∈ N, let VTq be the space of continuous functions that are piecewise
polynomials of degree q in the time mesh T = ∪L`=1T`, i.e.,

VTq := {v ∈ C0([0, T ];Rn) : v|T` ∈ P(q)(T`), ` = 1, . . . , L},

where

P(q)(T`) := {v ∈ C0(T`;Rn) : ∀ t ∈ T`, v(t) =

q∑
j=0

tjvj , vj ∈ Rn}

is the space of polynomials of degree q in the interval T`.
Introducing a projection operator

Π(q) : C0([0, T ];Rn) 7→ VTq

the time discrete approximation U to the solution u is defined as follows: we seek U ∈ VTq
satisfying the initial condition U(0) = x as well as

U ′t = Π(q−1)f(Ut), ∀t ∈ T`, (15)

for ` = 1, . . . , L. Note that since both terms belong to P(q−1)(T`), (15) admits a Galerkin
formulation ∫

T`
v · U ′t dt =

∫
T`
v ·Π(q−1)f(Ut) dt, ∀v ∈ P(q)(T`). (16)

In the following, we use mainly (15) but (16) is of interest since it connects (RK-C) methods
with (cG) methods. It is proven in Akrivis et al. (2009), that the continuous Galerkin
method corresponds to the choice Π(q−1) := P (q−1), with P (q−1) denoting the (local) L2

orthogonal projection onto P(q−1)(T`) for each `. Runge-Kutta collocation methods with
pairwise distinct nodes in T` can be obtained by choosing Π(q−1) := I(q−1) with I(q−1)

denoting the interpolation operator by elements of P(q)(T`) at the nodes t`−1 +αi(t`− t`−1),
i = 1, . . . , q, ` = 1, . . . , L, with appropriate weights 0 ≤ α1 < · · · < αq ≤ 1. All RK-
C methods with pairwise distinct nodes in [0, 1] can be obtained by applying appropriate
numerical quadrature to continuous Galerkin methods.
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L2 error estimation: One simple way of estimating the error between u and U is via the
following Grönwall inequality. Denoting et = ut − Ut, we have

ėt = f(ut)−Π(q−1)f(Ut) = (f(ut)− f(Ut)) +
(
f(Ut)−Π(q−1)f(Ut)

)
Multiplying by et, we get

1

2

d

dt
e2
t = et (f(ut)− f(Ut)) + et

(
f(Ut)−Π(q−1)f(Ut)

)
≤ Le2

t + |et||f(Ut)−Π(q−1)f(Ut)|

≤ (L+ 1/2)e2
t +

1

2
|f(Ut)−Π(q−1)f(Ut)|2,

where L is the Lipschitz constant on the second variable of g. By the Grönwall inequality,
since e(0) = 0,

e2
t ≤

∫ t

0
|f(Us)−Π(q−1)f(Us)|2e(2L+1)(t−s)ds

which yields an L2 estimate of the error

‖u− U‖2L2([0,T ],Rn) ≤
∫ T

0

∫ t

0
|f(Us)−Π(q)f(Us)|2e(2L+1)(t−s)dsdt

≤ e(2L+1)T

2L+ 1
‖f −Π(q−1)f‖2L2([0,T ],Rn) (17)

In the following, we denote Πζ a projector delivering an accuracy η ≥ 0 for the involved
dynamics

‖f −Π(q−1)f‖L2([0,T ],Rn) ≤ η.

From inequality (17), such a projector gives an accuracy in the solution U which is bounded
by

‖u− U‖L2([0,T ],Rn) ≤
e(2L+1)T/2

(2L+ 1)1/2
η

The routines: In the following, the routine

uη = solve_fwd(η; f, x)

yields an evolution
uη = {uηt : t ∈ [0, T ]}

that approximates the exact solution u of the forward dynamics (14) with a projector Πη.
The routine

pη = solve_bwd(η; f, x)

works similarly for the backward dynamics ṗt = f(pt) with pT = x.

13



5.2 The learning phase of the algorithm

The A-MSA algorithm consists in performing steps (9) and (10) of the original MSA but
with a numerical time-integrators which give inexact trajectories. We carry the discussion
assuming that we use the routines solve_fwd and solve_bwd introduced above. At every
iteration k, both routines involves projectors Πk that deliver an accuracy εk which is yet to
be determined. The accuracy will be tightened as k increases in a way that still guarantees
convergence to the exact, continuous solution (6) of the sampled PMP problem. We deduce
its value later on from the convergence analysis of section 6.

Starting from an initial guess of the optimal control θ0, for each k ≥ 0 we first solve at
accuracy εk the forward dynamics

uθ
k,i,εk = solve_fwd

(
εk; (t, u) 7→ f(u, θkt ), xi

)
, ∀i = 1, . . . , N.

Satisfying this accuracy may require to adapt the time discretization mesh and/or the nu-
merical scheme as discussed in the previous section.

We then use the final state uθ
k,i,εk
T to compute an approximation of the backward dy-

namics at the same accuracy εk

pθ
k,i,εk = solve_bwd

(
εk; (t, p) 7→ −∇uH(t, uθ

k,i,εk
t , p, θkt ),−∇uΦ(uθ

k,i,εk
T , yi)

)
, ∀i = 1, . . . , N.

This step may, again, require adaptivity to satisfy the target tolerance. To update the
control, instead of finding the exact maximum like in (13), it is in fact sufficient to find
controls that are away by a factor 0 < γk ≤ 1 of the maximum and for which γk → 1 as
k →∞. In other words, it suffices to find for all t ∈ [0, T ], a control θk+1

t ∈ Θ such that

1

N

N∑
i=1

H̃(t, uθ
k,i,εk
t , pθ

k,i,εk
t , θk+1

t ) ≥ γk max
θ∈Θ

1

N

N∑
i=1

H̃(t, uθ
k,i,εk
t , pθ

k,i,εk
t , θ), ∀t ∈ [0, T ].

(18)
Note that when γk = 1, we fall back to the case where we look for the exact maximum.
Algorithm 1 summarizes the whole procedure by describing a routine A-MSA[S, τ ] which
computes a control dynamics θ̂ that solves the extended PMP problem until the difference
between two successive iterates is smaller than τ > 0. The algorithm also yields a numerical
scheme associated to the parameter ε̂ which is the accuracy of the forward and backward
solvers used in the last iteration. These elements are then used for prediction as explained
in the next section.

The practical implementation of the algorithm requires to specify the tolerances εk. They
can be theoretically derived from the convergence analysis of section 6. However, since the
bounds of the analysis may not be sharp and that it involves quantities which are difficult
to estimate in practice, devote section 8 to give indications on how to implement A-MSA in
practice.

5.3 Predictions

The routine A-MSA[S, τ ] gives a discrete control θ̂ and an accuracy ε̂. We also have a
certain numerical scheme for the forward propagator, which can be interpreted as the final

14



Algorithm 1 Learning Algorithm: A-MSA[SN , τ ]→ [θ̂, ε̂]

1: Input: SN = {xi, yi}Ni=1, target tolerance τ
2: Set of internal parameters: θ0, ρ, maximum number of iterations kmax.
3: k ← 0
4: J, Jold ← J(θ0)
5: ∆← τ + 1
6: while ∆ > τ or k ≤ kmax do
7: Update εk and γk
8: for i in {1, . . . , N} do // parallel
9: uθ

k,i,εk = solve_fwd
(
εk; (t, u) 7→ f(u, θkt ), xi

)
10: pθ

k,i,εk = solve_bwd
(
εk; (t, p) 7→ −∇xH(t, uθ

k,i,εk
t , p, θkt ),−∇uΦ(uθ

k,i,εk
T , yi)

)
11: end for
12: for all t ∈ [0, T ] do // parallel
13: Find θk+1

t s.t.

1

N

N∑
i=1

H̃(t, uθ
k,i,εk
t , pθ

k,i,εk
t , θk+1

t ) ≥ γk max
θ∈Θ

1

N

N∑
i=1

H̃(t, uθ
k,i,εk
t , pθ

k,i,εk
t , θ)

14: end for
15: Jold ← J ; J ← J(θk+1); ∆← Jold − J
16: end while
17: θ̂ ← θk+1; ε̂← εk
18: Output: [θ̂, ε̂]
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network architecture. As a result, for a given input data x, we can predict the output by
first computing

û = solve_fwd
(
ε̂; (t, u) 7→ f(u, θ̂), x

)
,

and then taking
ŷ := g(ûT )

as the approximation of the true y. In other words, our neural network is the mapping

NN : Rn → Rk

x→ NN (x) := g(ûT ) = g
(
solve_fwd

(
ε̂; (t, u) 7→ f(u, θ̂), x

)
(t = T )

)
We summarize the prediction pipeline in Algorithm 2.

Algorithm 2 Prediction algorithm: NN (x)→ ŷ

1: Input: Observation x ∈ Rn, Neural network architecture [θ̂, ε̂] (from A-MSA[SN , τ ]).
2: û← solve_fwd

(
ε̂; (t, u) 7→ f(u, θ̂), x

)
3: Output: g(ûT )

6. A priori convergence of A-MSA

In this section, we prove that, for suitably chosen tolerances (εk)k, the sequence of controls
(θk)k≥0 computed with A-MSA is a minimizing sequence for problem (6), that is,

JSN (θk)
k→∞−−−→ J∗SN .

Our analysis is built upon the one presented in Li et al. (2018) for the exact E-MSA to
which it is necessary to add perturbative arguments due to the inexact propagations.

We work with the same continuity assumptions as in Li et al. (2018) for the ideal case
of exact propagations:

(A1) Φ is twice continuously differentiable. Φ and ∇Φ satisfy the following Lipschitz con-
dition: there exists K > 0 such that

|Φ(u)− Φ(u′)|+ ‖∇Φ(u)−∇Φ(u′)‖ ≤ K‖u− u′‖, ∀(u, u′) ∈ Rn.

(A2) For all t ∈ [0, T ] and θ ∈ Θ, u → f(u, θ) is twice continuously differentiable and
satisfying the following Lipschitz condition: there exists K ′ > 0 such that

‖f(u, θ)− f(u′, θ)‖+ ‖∇uf(u, θ)−∇uf(u′, θ)‖2 ≤ K‖u− u′‖, ∀(u, u′) ∈ Rn,

where ‖ · ‖2 denotes the induced 2-norm.
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Intermediate problem: We first study the following intermediate problem. Consider a
fixed input-output pair (x, y). For a given control θ ∈ L∞([0, T ],Θ), let uθ,x and pθ,x be
the exact solutions of the forward and backward propagations using x and y in the initial
and final conditions,{

u̇θ,xt = f(uθ,xt , θt), uθ,x0 = x,

ṗθ,xt = −∇uH(t, uθ,xt , pθ,xt , θt), pθ,xT = −∇uΦ(uθ,xT , y),

Let uθ,x,ζ and pθ,x,ζ be the outputs of the same propagation but with accuracy ζ > 0,{
uθ,x,ζ = solve_fwd (ζ; (t, u) 7→ f(u,θ), x)

pθ,x,ζ = solve_bwd
(
ζ; (t, p) 7→ −∇uH(t, uθ,x,ζt , p, θt),−∇uΦ(uθ,x,ζT , y)

)
.

(19)

Similarly, uϕ,x,η and pϕ,x,η denote the η-accurate solutions but for another control ϕ ∈
L∞([0, T ],Θ).

The loss function associated to uθ,x,ζ is denoted

Loss(x, y,θ, ζ) := Φ(uθ,x,ζT , y) +

∫ T

0
R(θt)dt,

and similarly for uϕ,x,η. In addition, we define the quantity

∆Hx,ζ
ϕ,θ(t) := H(t, uθ,ζt , pθ,ζt , ϕt)−H(t, uθ,ζt , pθ,ζt , θt), (20)

which will play an essential role in what follows.
Lemma 3 is an important building-block in the proof of convergence of A-MSA. To not

interrupt the flow of reading, we have deferred its proof to Appendix A.

Lemma 3 Let θ, ϕ ∈ L∞([0, T ],Θ) be two controls and let (x, y) ∈ Rn × Rk be an input-
output pair. Let (uθ,x,ζ ,pθ,x,ζ) and (uϕ,x,η,pϕ,x,η) be solutions of the forward and backward
associated problems with accuracy ζ and η like in (19). Then, there exist a constant C > 0
independent of θ, ϕ but dependent on T , ‖Πζ‖ and ‖Πη‖ such that, if η ≤ 1,

Loss(x, y,ϕ, η)− Loss(x, y,θ, ζ) (21)

≤ −
∫ T

0
∆Hx,ζ

ϕ,θ(t)dt+ C
(

(η + ζ)2 + ‖∇w(∆Hx,ζ
ϕ,θ)‖2L2([0,T ])

)
Convergence of A-MSA: We can use Lemma 3 to prove our main convergence result
which we give in the following theorem. It involves the quantity

λ2
k :=

1

N

N∑
i=1

‖∇w(∆H i,εk
θk+1,θk

)‖2L2([0,T ])

=
1

N

N∑
i=1

(∫ T

0
‖f(uθ

k,i,εk
t , θk+1

t )− f(uθ
k,i,εk
t , θkt )‖2dt

+

∫ T

0
‖∇uH(t, uθ

k,i,εk
t , pθ

k,i,εk
t , θk+1

t )−∇uH(t, uθ
k,i,εk
t , pθ

k,i,εk
t , θkt )‖2dt

)
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Theorem 4 Let δ > 0 be a fixed constant and suppose that we run the A-MSA algorithm
with the following accuracies:

• (εk) is a positive and decreasing sequence such that

0 ≤ εk ≤ min

(
εk−1,

δλ2
k

4C + ρN−1/2λk

)
, ∀k ≥ 1.

• The maximization step (18) is performed with the parameter

γk ≥
∣∣∑N

i=1 H̃(t, uθ
k,i,εk
t , pθ

k,i,εk
t , θk+1

t )/N
∣∣

δλ2
k +

∣∣∑N
i=1 H̃(t, uθ

k,i,εk
t , pθ

k,i,εk
t , θk+1

t )/N
∣∣ , ∀k ∈ N.

Then, if ρ > 2(C + 2δ + ε0), where C is the constant of Lemma 3, the sequence of controls
(θk) of A-MSA is a minimizing sequence for problem (6), that is,

JSN (θk)→k→∞ J∗SN .

Furthermore, λ2
k → 0 as k →∞ and we have

JSN (θk+1)− JSN (θk) ≤ −κλ2
k, κ := |C + 2δ − ρ

2
| > 0, ∀k ∈ N.

Proof We start by applying inequality (21) from Lemma 3 to the controls ϕ = θk+1 and
θ = θk of the A-MSA algorithm, with accuracies η = εk+1 and ζ = εk and for the samples
(x, y) = (xi, yi). We then take the average over i and obtain

JSN (θk+1)− JSN (θk) =
1

N

N∑
i=1

Loss(xi, yi,θk+1, εk+1)− Loss(xi, yi,θk, εk)

≤ − 1

N

N∑
i=1

∫ T

0
∆H i,εk

θk+1,θk
(t)dt+ C

(
(εk + εk+1)2 + λ2

k

)
(22)

We first do the proof when γk = 1, ∀k ≥ 1. In this case, from the maximization step (18) in
A-MSA,

1

N

N∑
i=1

H̃(t, uθ
k,i,εk
t , pθ

k,i,εk
t , θk+1

t , u̇θ
k,i,εk
t , ṗθ

k,i,εk
t ) ≥ 1

N

N∑
i=1

H̃(t, uθ
k,i,εk
t , pθ

k,i,εk
t , θkt , u̇

θk,i,εk
t , ṗθ

k,i,εk
t ).

Recalling definition (12) for H̃, we reassemble the terms in the above inequality to derive

− 1

N

N∑
i=1

∫ T

0
∆H i,εk

θk+1,θk
(t)dt

≤ − ρ

2N

N∑
i=1

∫ T

0

(
‖u̇θ

k,i,εk
t − f(uθ

k,i,εk
t , θk+1

t )‖2 + ‖ṗθ
k,i,εk
t −∇uH(t, uθ

k,i,εk
t , pθ

k,i,εk
t , θk+1

t )|2
)

dt

+
ρ

2N

N∑
i=1

∫ T

0

(
‖u̇θ

k,i,εk
t − f(uθ

k,i,εk
t , θkt )‖2 + ‖ṗθ

k,i,εk
t −∇uH(t, uθ

k,i,εk
t , pθ

k,i,εk
t , θkt )‖2

)
dt(23)
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Since by construction
u̇θ

k,i,εk
t = Πεkf(uθ

k,i,εk
t , θkt )

and
‖f(uθ

k,i,εk
t , θkt )−Πεkf(uθ

k,i,εk
t , θkt )‖L2([0,T ],Rn) ≤ εk,

we have by Cauchy-Schwartz inequality∫ T

0
‖u̇θ

k,i,εk
t − f(uθ

k,i,εk
t , θk+1

t )‖2dt

=

∫ T

0
‖f(uθ

k,i,εk
t , θkt )−Πf(uθ

k,i,εk
t , θkt )‖2 + ‖f(uθ

k,i,εk
t , θkt )− f(uθ

k,i,εk
t , θk+1

t )‖2

− 2
〈
f(uθ

k,i,εk
t , θkt )−Πf(uθ

k,i,εk
t , θkt ), f(uθ

k,i,εk
t , θkt )− f(uθ

k,i,εk
t , θk+1

t )
〉

dt

≥
∫ T

0
‖f(uθ

k,i,εk
t , θkt )−Πf(uθ

k,i,εk
t , θkt )‖2 + ‖f(uθ

k,i,εk
t , θkt )− f(uθ

k,i,εk
t , θk+1

t )‖2 dt

− 2εk

(∫ T

0
‖f(uθ

k,i,εk
t , θkt )− f(uθ

k,i,εk
t , θk+1

t )‖2dt

)1/2

Since a similar bound holds for
∫ T

0 ‖ṗ
θk,i,εk
t − ∇uH(t, uθ

k,i,εk
t , pθ

k,i,εk
t , θk+1

t )‖2dt, we derive
that

− 1

N

N∑
i=1

∫ T

0
∆H i,εk

θk+1,θk
(t)dt ≤ −ρ

2
λ2
k + ρN−1/2εkλk (24)

Using (24), we can further bound (22) to obtain

JSN (θk+1)− JSN (θk) ≤ −ρ
2
λ2
k + ρN−1/2εkλk + C

(
(εk + εk+1)2 + λ2

k

)
≤
(
C − ρ

2

)
λ2
k + εk(4C + ρN−1/2λk) (25)

where we have used that (εk) is a decreasing sequence.
Since, for a fixed δ > 0, we have chosen εk such that εk ≤ δλ2

k/(4C + ρN−1/2λk), we
infer that

JSN (θk+1)− JSN (θk) ≤
(
C + δ − ρ

2

)
λ2
k.

As a result, fixing ρ > 2(C + δ),

JSN (θk+1)− JSN (θk) ≤ −κ̃λ2
k, κ̃ :=

∣∣C + δ − ρ

2

∣∣ > 0.

Moreover, we can rearrange and sum over k = 0 to K the above expression to get

K∑
k=0

λ2
k ≤ κ̃−1

(
JSN (θ0)− JSN (θK+1)

)
≤ κ̃−1

(
JSN (θ0)− inf

θ∈L∞([0,T ],Θ)
JSN (θ)

)
.

Therefore
∑K

k=0 λ
2
k < +∞ which implies that λ2

k →k→∞ 0. Therefore, the A-MSA converges
to a solution of the extended PMP.
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Let us consider now the general case 0 < γk ≤ 1. From the maximization step (18),

1

N

N∑
i=1

H̃(t, uθ
k,i,εk
t , pθ

k,i,εk
t , θk+1

t ) ≥ γk max
θ∈Θ

1

N

N∑
i=1

H̃(t, uθ
k,i,εk
t , pθ

k,i,εk
t , θ), ∀t ∈ [0, T ].

As a result, bound (23) receives an additional term and becomes,

− 1

N

N∑
i=1

∫ T

0
∆H i,εk

θk+1,θk
(t)dt

≤ − ρ

2N

N∑
i=1

∫ T

0

(
‖u̇θ

k,i,εk
t − f(uθ

k,i,εk
t , θk+1

t )‖2 + ‖ṗθ
k,i,εk
t −∇uH(t, uθ

k,i,εk
t , pθ

k,i,εk
t , θk+1

t )‖2
)

dt

+
ρ

2N

N∑
i=1

∫ T

0

(
‖u̇θ

k,i,εk
t − f(uθ

k,i,εk
t , θkt )‖2 + ‖ṗθ

k,i,εk
t −∇uH(t, uθ

k,i,εk
t , pθ

k,i,εk
t , θkt )‖2

)
dt

+
γ−1
k − 1

N

∣∣ N∑
i=1

H̃(t, uθ
k,i,εk
t , pθ

k,i,εk
t , θk+1

t )
∣∣.

It follows that bound (24) receives the same additional term

− 1

N

N∑
i=1

∫ T

0
∆H i,εk

θk+1,θk
(t)dt ≤ −ρ

2
λ2
k + ρN−1/2εkλk +

γ−1
k − 1

N

∣∣ N∑
i=1

H̃(t, uθ
k,i,εk
t , pθ

k,i,εk
t , θk+1

t )
∣∣.

Therefore (25) becomes

JSN (θk+1)− JSN (θk) ≤
(
C − ρ

2

)
λ2
k + εk(4C + ρN−1/2λk) +

γ−1
k − 1

N

∣∣ N∑
i=1

H̃(t, uθ
k,i,εk
t , pθ

k,i,εk
t , θk+1

t )
∣∣.

Choosing εk like before and setting

γk ≥
∣∣∑N

i=1 H̃(t, uθ
k,i,εk
t , pθ

k,i,εk
t , θk+1

t )/N
∣∣

δλ2
k +

∣∣∑N
i=1 H̃(t, uθ

k,i,εk
t , pθ

k,i,εk
t , θk+1

t )/N
∣∣

yields
JSN (θk+1)− JSN (θk) ≤

(
C + 2δ − ρ

2

)
λ2
k.

We conclude along the same lines as before by fixing now ρ > 2(C + 2δ), and inferring that

JSN (θk+1)− JSN (θk) ≤ −κλ2
k, κ :=

∣∣C + 2δ − ρ

2

∣∣ > 0.

Before going to the next section, a few remarks on Theorem 4 are in order:
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• Note that since the sequence of controls (θk) built by A-MSA is a minimizing sequence,
it need not convergence in L∞([0, T ],Θ) norm, nor does it necessarily contain a con-
vergent subsequence. To guarantee that the minimizing sequence converges in norm,
it is necessary to additional convexity and/or compactness properties.

• The convergence result is a priori in the sense that it cannot be directly implemented
for the following reasons:

– The bounds for (εk) and (γk) involve a constant C which is difficult to estimate
in practice.

– The bounds may be suboptimal due to the construction of the proof.
– In practice, it is difficult to guarantee that the maximization step is performed

within a certain fraction γk of the actual maximum.

• The main interest of the result lies in the fact that it reveals the necessity to tighten
the accuracy in the time integration schemes and the maximization algorithms across
the iterations in order to approach the continuous sampled optimal control problem
(6).

7. Generalization error and convergence towards the fully continuous
problem

The goal of this section is to connect the controls (θk) of the A-MSA Algorithm 1 with the
PMP solutions of the fully continuous problem (4). For this, we rely on recent results from
E et al. (2019) connecting the sampled PMP with the fully continuous PMP which we next
briefly recall.

We assume in the following that θ∗ and ϑ∗SN are solutions of (4) and (6) such that the
Hamiltonian step attains a maximum in the interior of Θ. Consequently, the continuous
PMP solution θ∗ satisfies

F (θ∗)t := Eµ∇θH(t, uθ
∗
t , p

θ∗
t , θ

∗
t ) = 0

for a.e. t ∈ [0, T ] and where F : L∞([0, T ],Θ) → L∞([0, T ],Rm). Similarly, an interior
solution ϑ∗SN of the sampled PMP is a random variable which satisfies

FSN (ϑ∗SN )t :=
1

N

N∑
i=1

∇θH(t, u
ϑ∗SN

,i

t , p
ϑ∗SN

,i

t , ϑN,t) = 0.

Under these assumptions, the theorem below, proven in E et al. (2019), describes the
convergence of an interior solution ϑ∗SN of the first order condition of the sampled PMP
to an interior solution θ∗ of the continuous PMP. The additional local strong concavity
assumption on the Hessian allows to guarantee that ϑ∗SN is a global/local maximum of the
sampled PMP. The result also guarantees convergence of loss function values.

Definition 5 For ρ > 0 and x ∈ L∞([0, T ],Θ), define Sρ(x) := {y ∈ L∞([0, T ],Θ) :
‖x− y‖ ≤ ρ}. The mapping F is said to be stable on Sρ(x) if there exists a constant Kρ > 0
such that for all y, z ∈ Sρ(x),

‖y − z‖L∞([0,T ],Θ) ≤ Kρ‖F (x)− F (y)‖L∞([0,T ],Rm).
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Theorem 6 (Theorem 6, Corollary 1 and 2 from E et al. (2019)) Let F be a map-
ping which is stable on Sρ(θ∗) for some ρ > 0 and θ∗ a solution of F = 0. Then there exists
positive constants s0, C,K1,K2 and ρ1 < ρ and a random variable ϑ∗SN ∈ Sρ1(θ∗) such that

P[‖θ∗ − ϑ∗SN ‖ ≥ Cs] ≤ 4 exp

(
− Ns2

K1 +K2s

)
, s ∈ (0, s0]

and ϑ∗SN → θ∗ as N →∞ in probability. Moreover, there exists constants K ′1,K
′
2 such that

P[
∣∣J (θ∗)− J (ϑ∗SN )

∣∣ ≥ s] ≤ 4 exp

(
− Ns2

K ′1 +K ′2s

)
, s ∈ (0, s0] (26)

In addition, if for all t ∈ [0, T ], the Hessian Eµ∇2
θ,θH(uθ

∗
t , p

θ∗
t , θ

∗
t )+λ0I is negative definite,

then ϑ∗SN is also a strict local maximum of the sampled Hamiltonian ϑ 7→ 1
N

∑N
i=1H(u

ϑ∗SN
,i

t , p
ϑ∗SN

,i

t , ϑ).
In particular, if the sampled Hamiltonian has a unique maximizer, then ϑ∗SN is a solution
of the sampled PMP (8) with the same high probability.

Corollary 7 If the sampled Hamiltonian has a unique maximizer ϑ∗SN , then there exists
constants K̃1 and K̃2 such that for any ε > 0, there exists k(ε) ∈ N such that for k ≥ k(ε),
the control θk at iteration k of A-MSA satisfies

P[|JSN (θk)− J (θ∗)| ≥ 3ε] ≤ 4 exp

(
− Nε2

K̃1 + K̃2ε

)
Proof We use that

P[|JSN (θk)− J (θ∗)| ≥ 3ε] ≤ P[|JSN (θk)− JSN (ϑ∗SN )| ≥ ε] + P[|JSN (ϑ∗SN )− J (ϑ∗SN )| ≥ ε]

+ P[|J (ϑ∗SN )− J (θ∗)| ≥ ε],

and then bound each term as explained next. Let ε > 0 be fixed. With high probability,
ϑ∗SN is a solution to the sampled PMP (6), that is JSN (ϑ∗SN ) = J∗SN . By Theorem 4, there
exists k(ε) ∈ N such that for k ≥ k(ε), the control θk at iteration k of A-MSA satisfies
|JSN (θk) − JSN (ϑ∗SN )| ≤ ε, which bounds the first term. For the second term, by the in-
finite dimensional Hoeffding’s inequality (see (Pinelis and Sakhanenko, 1986, Corollary 2)),
|JSN (ϑ∗SN )− J (ϑ∗SN )| ≤ ε with probability 1− exp(−Nε2/(K̃ ′1 + K̃ ′2ε)). The third term is

also bounded by ε with probability 4 exp
(
− Nε2

K′1+K′2ε

)
thanks to (26).

8. Guidelines for numerical implementation

Algorithm 1 should in principle be implemented with tolerances εk and γk given in Theorem
6 to ensure convergence. These tolerances are in practice hard to guarantee, and the con-
vergence analysis that leads to these quantities may be suboptimal. A trade-off between the
theory and numerical implementation consists simply in replacing the forward and backward
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propagations at prescribed accuracies by propagations where the time steps are progressively
refined across the iterations. It is therefore necessary to prescribe a refinement strategy. For
the Hamiltonian maximization step (line 13 of Algorithm 1), the best that one can do is to
use an efficient optimizer of nonconvex problems.

In addition to these considerations, note that Algorithm 1 can be parallelized at several
parts: for each sample i, the forward and backward propagations can be performed in parallel
(see the for loop of line 8). Each propagation can additionally be parallelized by means of
parallel in time algorithms as in Günther et al. (2020) (see Lions et al. (2001); Maday
and Mula (2020) for some selected references on the topic). In addition, the Hamiltonian
maximization step can also be parallelized (see for loop of line 12 of Algorithm 1). For our
concern, we have chosen to parallelize the Maximization step, since it is way more expensive
in terms of computational time than the propagation step.

9. Numerical experiments

In this section, we present some numerical experiments, aiming primarily at illustrating the
behavior of the A-MSA algorithm. We give special focus on studying the performance in
the learning phase in terms of the value of the loss function. We also discuss computing
times and examine expressivity in terms of generalization errors. Note that the final qual-
ity of approximation depends on the number of samples, on the network depth, and on
the optimizers and their starting guesses. We proceed by increasing levels of difficulty in
the numerical examples in order to disentangle the effect of each of the different aspects
(note however that their effects are usually mixed in non-trivial applications). The code to
reproduce the results can be found at

https://github.com/jaghili/amsa.

The implementation has been done with Python 3 and NumPy. Particular attention has
been paid to vectorize most of the operations in order to delegate as much as possible
the looping to internal, highly optimized C and Fortran functions. We have observed that
the time to perform the ODE propagations is negligible with respect to the Hamiltonian
maximization (line 12 of Algorithm 1). We have thus parallelized this step with MPI.

9.1 Approximation of the sine function

In this example, inspired from (Li et al., 2018, Section 6), the task is to approximate the
graph of the sine function,

y : X = [−π, π]→ Y = [−1, 1], x 7→ y(x) = sin(x).

Note that here the dimensions n and k of the domain and label sets are n = k = 1. The
continuous learning problem (see (4)) is to minimize the L2(X) approximation error over
the controls θ ∈ L∞([0, T ],Θ), namely

inf
θ∈L∞([0,T ],Θ)

1

2

∫
X
|y(x)− g(uθ,xT )|2 dx.
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For every point x ∈ X, uθ,xT is the final time state of the ODE{
u̇θ,xt = tanh(At · uθ,xt + bt), ∀t ∈ (0, T ]

uθ,x0 = x(1, . . . , 1)T ∈ Rd.

Here, θt = (At, bt) ∈ Rd×d × Rd ∼ Rd2+d are the parameters to optimize. We constraint
them to lie in [αmin, αmax] = [−1, 1] so Θ = [−1, 1]d

2+d. The function g is defined as

g : Rd → R, z = (z1, . . . , zd) 7→ g(z) :=
1

d

d∑
i=1

zi,

and note that we have chosen µ = dx as the Lebesgue measure, f = tanh as the activation
function, Φ(uθ,xT , y) = 1

2 |y(x)− g(uθ,xT )|2 and we do not have any regularization (R = 0).
In the sampled version which we consider in our experiments, we work with a set SN =

{(xi, yi)}Ni=1 of pairs generated with equidistant data points

xi = −π + 2π
i− 1

N − 1
, yi = sin(xi), i ∈ {1, . . . , N},

and perform empirical risk minimization taking the uniform distribution µN = 1
N

∑N
i=1 δ(xi,yi)

(see (6)). We solve this problem with the above described A-MSA algorithm where the final
time is set to T = 5, the penalization parameter is set to ρ = 5, and the number of neurons
per layer to d = 3. We use a basic explicit Euler scheme as a time integrator, which induces
a ResNet architecture. We progressively refine the time discretization from L = 3 to L = 32
time steps (in other words, we increase the network depth from 3 to 32 layers) using three
different strategies:

(A1) Abrupt refinement : We refine from shallow (L = 3) to deep (L = 32) at iteration
k = 250.

(A2) Fast refinement : We add 10 layers every 50 iterations.

(A3) Slow refinement : We add 10 layers every 100 iterations.

Our goal is to compare the behavior of these refinement strategies with the non-adaptive
training of a shallow and a deep network having L = 3 and L = 32 layers respectively.

At each iteration k ≥ 0 of A-MSA, the maximization step is performed with NumPy’s
L-BFGS-B optimizer, which is an iterative algorithm suited for non-convex optimization
problems. The optimizer is initialized by picking the best candidate among a list Θ0 of
vectors, including the last best control θkbest = arg min0≤i<k JSN (θi) among all previous
iterations before k and random perturbations of it, precisely

Θ0 :=

5⋃
q=0

25⋃
i=1

{
θkbest + 10−2qrand(αmin, αmax), 10−2qrand(αmin, αmax)

}
where rand(αmin, αmax) is a uniform real distribution function in the interval [αmin, αmax].
As a result, the final output of the algorithm is random due to the choice of the initial
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guess. For this reason, we make r̄ = 20 runs of A-MSA, each one consisting in kmax = 800
iterations.

In Figure 1, we first fix N = 20 samples and we plot the convergence history of the
train loss J (run=r)

SN (θk) (see red colors). We also plot the generalization error via the test
loss across the iterations k (see blue colors). The test loss is the quantity JS̃N (θk), defined
in (6), where we use a test set S̃N different from the training set SN . S̃N is taken uniformly
random at each iteration 1 ≤ k ≤ kmax. Since the history depends on each run r, the figure
shows some statistics related to the repetitions. The continuous red curve shows the average
value J (av)

SN ,k := (1/r̄)
∑r̄

r=1 J
(run=r)
SN (θk) over the runs and the red diffuse color shows its

distribution around the average. The same presentation is given in blue for the generalization
errors. We can first observe that the convergence history is, in average, relatively similar
for all architectures. The average value of the loss function does not go below 10−2 for
the shallow network (figure 1a), and the value reached by the deep network is only slightly
better (figure 1b): at the end of the iterations, the cost function is in average below 7.10−2.
Similar values are reached by any of our three adaptive strategies (see figures 1d, 1e and
1f). As a consequence, if we take this average value as the performance indicator, we may
conclude that the approximation power of the deep network is only marginally better than
the shallow one. We may also conclude that the adaptive training strategy reduces to some
extend the computational time for training (as we illustrate further on in section 9.4) but it
does not bring extra approximation power. However, note that this indicator is not entirely
appropriate because it does not correspond to any realized convergence history and, more
importantly, because it does not inform about the best performance that we have at hand.
It is crucial to remark that the variance around the average convergence value is significantly
larger in the adaptive strategies compared to the non adaptive ones. This is particularly
true for (A2) and (A3). Figure 1c shows that the minimal value min1≤k≤kmax J

(run=r)
SN (θk)

reached during the kmax = 800 iterations of each run is, in average, one order of magnitude
lower than the one of the non-adaptive coarse and the non-adaptive deep network. This
result illustrates that the adaptive strategy significantly contributes to reach better minima,
thus allowing to benefit better from the higher approximation power of the deeper neural
network.

Figure 2 shows the reconstruction of the sine function with the controls performing best
in each training run, namely, realizing min1≤k≤kmax J

(run=r)
SN (θk) for every r. We see that

the best over all realizations yields a very satisfactory approximation. Statistics on the
generalization errors of these best controls are given in Figure 2c

We can next examine in Figure 3 the impact of the number N of data samples in the
generalization errors of the best controls. As one can expect, the generalization errors
decreases when the number N of samples increases. For N ≥ 20, the errors with the shallow
network stagnate before reaching 10−3 in average regardless of the number of samples. This
illustrates the limitations in the approximation power of the shallow network in the current
example. The non-adaptive deep network (L = 32) presents a behavior which is only better
for a reduced number of samples N ≤ 8 but overall its performance is relatively similar to
the coarse neural network. This comes from the difficulty in finding good quality optimizers
in networks involving many coefficients. If we now adaptively train the deep network with
strategy (A2), the generalization errors are in general lower than the ones reached by the
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(a) Shallow (b) Deep (c) min1≤k≤kmax
J (run=r)
SN (θk).

(d) A1 (e) A2 (f) A3

Figure 1: Sine function. Training loss J (run=r)
SN (θk) (red) and test loss J (run=r)

S̃N
(θk) (blue).

Here N = 20 and r̄ = 20 runs.

(a) Shallow (b) Deep (c) min1≤k≤kmax J
(run=r)
S̃N

(θk).

(d) A1 (e) A2 (f) A3

Figure 2: Sine function: Predictions of r̄ = 20 runs and average prediction.
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(a) Shallow: 3 layers (b) A2: 3→ 32 layers. (c) Deep: 32 layers

Figure 3: Sine case – Generalization errors vs N for coarse, adaptive (A2) and thin networks

non-adaptive strategies, especially when N ≥ 15. The result illustrates that the adaptive
strategy gives in average a better performance in terms of approximation. This is obtained
at a reduced computing time as we show further on.

9.2 Noisy step function

We next examine the robustness of the method against noise.We consider the graph of the
step function,

y : X = [−1, 1]→ Y = [−0.5, 0.5], x 7→ y(x) =

{
0.5 if x ≤ 0

−0.5 if x > 0

and we seek to approximate it when the given data are noisy. For each sample i, we get the
pair (xi, yi) with

yi = y(xi) + εi, i = 1, . . . , N,

and the εi follow a uniform distribution in [−0.2, 0.2].
We consider the same setting as before (T = 5, ρ = 5, d = 3) and fix N = 800. Figure

4 shows the convergence history of the training with the shallow, deep and adaptively deep
neural networks. We consider the same adaptive strategies as before. All approaches reach
more or less the same minimal value in the training (see Figure 4c. However, we observe that
(A2) and (A3) give better generalization errors than the non-adaptive deep architecture (see
Figure 5c). Note however that this superiority is not very large and all methods produce
excellent reconstruction results as Figure 5 illustrates. We think that this is due to the fact
that in this case all methods find configurations that are very close the global optimum,
which is here given by the approximation error of the mapping x 7→ y(x).

9.3 Classification

As a last example, we consider a simple 2D classification problem where the function to
approximate is

y : X = [−1, 1]2 → Y = {0, 1}, (x1, x2) 7→ y(x1, x2) =

{
1 if x2

1 + x2
2 ≤ (0.5)2,

0 otherwise.
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(a) Shallow (b) Deep (c) min1≤k≤kmax
J (run=r)
SN (θk).

(d) A1 (e) A2 (f) A3

Figure 4: Noisy step: Loss J (run=r)
N (θk) for N = 800 and r̄ = 20 runs.

(a) Shallow (b) Deep (c) min1≤k≤kmax
J (run=r)
SN (θk).

(d) A1 (e) A2 (f) A3

Figure 5: Noisy step: Predictions of some runs.
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The setting is the same as in the above examples but with slight changes. Each layer has now
d = 2×3 = 6 neurons per layers, the constraint on the controls is set to [αmin, αmax] = [−2, 2]
and the output function g is defined as

g : Rd → R, z = (z1, . . . , zd) 7→ g(z) := H

(
1

d

d∑
i=1

zi

)
where H is the usual Heaviside step function. The figure layout of the results is the same
as in the other examples. Figures 6 and 7 show statistics on the loss function and examples
of reconstruction. The blue-to-red scalar field in Fig 5 is the output of the trained network
composed with a treshold filter F : x 7→ H(x − 0.5) from 1024 inputs points. The black
crosses (×) and white dots (◦) are the N = 800 training points used for each case, the first
refers to points with z = 0, the second to z = 1. Essentially, we observe that A-MSA yields
the same quality of approximation as the non-adaptive deep neural network.

(a) Shallow (b) Deep (c) min1≤k≤kmax
J (run=r)
SN (θk).

(d) A1 (e) A2 (f) A3

Figure 6: Classification: Loss J (run=r)
N (θk) for N = 800 and 20 runs.

9.4 Computational times

We finish the section on numerical tests by examining the computational time in the learning
approach. We present runtimes only for the noisy step example for the sake of brevity
(similar results are obtained for the other tests). We consider three different criteria:

• Complexity index (see Figure 8a): we estimate the number of operations by
measuring the runtime of a sequential run.
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(a) Shallow (b) Deep (c) min1≤k≤kmax
J (run=r)
SN (θk).

(d) A1 (e) A2 (f) A3

Figure 7: Classification: Predictions of r̄ = 20 runs and average prediction. Data labels:
× : 0 , ◦ : 1 .

• Parallel runtime index (see Figure 8b): we measure the runtime of running
in parallel the Hamiltonian maximization step of the learning algorithm. We place
ourselves in a scenario with no constraints in the computing ressources and allocate
one processor per layer. Note that the number of layers is increased in the adaptive
approach so we use more and more ressources as the algorithm makes refinements.

• Energy consumption index (see Figure 8a): we estimate the total energy con-
sumption of a parallel run as follows. For each iteration of the algorithm, we add the
corresponding computing times of all the processors involved in that iteration. This
gives an estimate in cpu·seconds of the energy consumption for each iteration. By
summing over all iterations, we obtain the final estimate. This quantity is in fact equal
to the cumulative sequential runtime which is given on Figure 8a.

Our runtimes have been measured on a cluster and we have observed that its occupation
greatly impacts on the runtime results. To illustrate this issue, we show runtimes for the
training of the shallow neural network in an empty node and a busy node, i.e. a node where
others jobs are running in parallel. We have run the rest of the examples on empty nodes.

If we first consider Figure 8a, we see that the adaptive training strategy performs better
than the non-adaptive one regarding the sequential runtimes and the energy consumption.
This is comes as no surprise since the adaptive strategy performs less operations at the
beginning of the iterations since they involve less layers. When computations are run in
parallel, Figure 8b) shows that the run times are all very similar for all strategies. This
is due to the fact that the tasks are well-balanced between processors since each of them
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(a) Complexity and energy consumption. (b) Parallel runtime.

Figure 8: Computational times for the noisy step example.

does computations for one layer. We also observe that runtimes are greatly affected by the
occupation of the cluster.

10. Conclusion

We have proven that the A-MSA algorithm converges to an underlying continuous learning
problem in the limit of the time discretization and of the the number of samples. The
convergence analysis requires that the time propagations and Hamiltonian maximizations are
performed at each step with increasingly tight accuracy tolerances. Since a sharp estimation
of these tolerances is difficult to obtain, we have implemented A-MSA with certain refinement
strategies in order to examine its potential. The numerical experiments reveal that the
adaptive strategy helps to benefit in practice from the higher approximation properties of
deep networks by mitigating over-parametrization issues: our results show that adaptivity
increases the chances to find better quality minimizers compared to the non-adaptive training
of deep neural networks. In addition, it appears that the adaptive strategy is clearly more
performant in terms of complexity and energy consumption compared to the non-adaptive
training of a deep neural network.
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Appendix A. Proof of Lemma 3

The proof of Lemma 3 makes use of certain bounds which we gather in the following Propo-
sition 8. They are derived by an immediate extension of the proofs given in Li et al. (2018)
so we just sketch the proof for self-completness of the current work.
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Proposition 8 We have the following bounds for all t ∈ [0, T ],

‖pθ,ζt ‖ ≤ K ′ := Ke‖Πζ‖KT (27)

‖δut‖ ≤ Kδu :=

(√
T (η + ζ) +

∫ T

0
‖f(s, uθ,ζs , ϕs)− f(s, uθ,ζs , θs)‖ds

)
eKT (28)

‖δpt‖ ≤ Kδp :=
√
Te2KT (1 +K(1 +K ′T ))(η + ζ)

+ e2KTK(1 +K ′T )

∫ T

0
‖f(s, uθ,ζs , ϕs)− f(s, uθ,ζs , θs)‖ds

+ eKT
∫ T

0
‖∇uH(s, uθ,ζs , pθ,ζs , ϕs)−∇uH(s, uθ,ηs , pθ,ηs , θs)‖ds (29)

Proof [Proof of Proposition 8] Inequality (27) follows from the fact that

ṗθ,ζt = Πζ

(
−pθ,ζt · ∇uf(uθ,ζt , θt)

)
thus taking the scalar product with pθ,ζt and using the Cauchy-Schwarz inequality, we derive
the evolution

1

2

d

dt
‖pθ,ζt ‖2 ≤ ‖Πζ‖‖∇uf(uθ,ζt , θt)‖2‖pθ,ζt ‖2, ‖pθ,ζT ‖

2 = ‖∇uΦ(uθ,ζT , y)‖2

and the result follows by applying the Grönwall’s inequality and the fact that ‖∇uΦ(uθ,ζT , y)‖ ≤
K and ‖∇uf(uθ,ζt , θt)‖2 ≤ K by hypothesis (A1) and (A2).

To derive inequality (28), we start from

δu̇t = u̇ϕ,ηt − u̇θ,ζt = Πηf(uϕ,ηt , ϕt)−Πζf(uθ,ζt , θt).

Integrating between 0 and t ≤ T ,

δut =

∫ t

0
Πηf(s, uϕ,ηs , ϕs)−Πζf(s, uθ,ζs , θs)ds

Taking norms,

‖δut‖ ≤
∫ t

0
‖f(s, uϕ,ηs , ϕs)−Πηf(s, uϕ,ηs , ϕs)‖ds+

∫ t

0
‖f(s, uθ,ζs , θs)−Πζf(s, uθ,ζs , θs)‖ds

+

∫ t

0
‖f(s, uϕ,ηs , ϕs)− f(s, uθ,ζs , θs)‖ds

≤
√
T (η + ζ) +

∫ t

0
‖f(s, uϕ,ηs , ϕs)− f(s, uθ,ζs , ϕs)‖ds+

∫ T

0
‖f(s, uθ,ζs , ϕs)− f(s, uθ,ζs , θs)‖ds

≤
√
T (η + ζ) +K

∫ t

0
‖δus‖ds+

∫ T

0
‖f(s, uθ,ζs , ϕs)− f(s, uθ,ζs , θs)‖ds
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Thus by Grönwall’s inequality and t ≤ T ,

‖δut‖ ≤ Kδu :=

(√
T (η + ζ) +

∫ T

0
‖f(s, uθ,ζs , ϕs)− f(s, uθ,ζs , θs)‖ds

)
eKT

Proceeding in a similar manner with δṗt, by integrating between T and t, we derive∫ t

T
δṗsds = δpt − δpT =

∫ t

T
Πη∇uH(s, uϕ,ηs , pϕ,ηs , ϕs)−Πζ∇uH(s, uθ,ζs , pθ,ζs , θs)ds

and similarly as before, we infer that

‖δpt‖ ≤
√
T (η + ζ) +K‖δuT ‖+KK ′

∫ T

0
‖δus‖+K

∫ t

0
‖δps‖ds

+

∫ T

0
‖∇uH(s, uθ,ζs , pθ,ζs , ϕs)−∇uH(s, uθ,ζs , pθ,ζs , θs)‖ds

Using bounds (28) and (29), and applying the Gronwall inequality and t ≤ T , we derive the
announced estimate

‖δpt‖ ≤ Kδp

with

Kδp = eKT
(√

T (η + ζ) +KKδu(1 +K ′T ) +

∫ T

0
‖∇uH(s, uθ,ζs , pθ,ζs , ϕs)−∇uH(s, uθ,ζs , pθ,ζs , θs)‖ds

)

=
√
Te2KT (1 +K(1 +K ′T ))(η + ζ) + e2KTK(1 +K ′T )

∫ T

0
‖f(s, uθ,ζs , ϕs)− f(s, uθ,ζs , θs)‖ds

+ eKT
∫ T

0
‖∇uH(s, uθ,ζs , pθ,ζs , ϕs)−∇uH(s, uθ,ζs , pθ,ζs , θs)‖ds

We can now prove Lemma 3.
Proof [Proof of Lemma 3] By definition (7) of the Hamiltonian, for any θ ∈ L∞([0, T ],Θ),

I(uθ,pθ,θ) :=

∫ T

0

(
pθt · f(uθt , θt)−H(t, uθt , p

θ
t , θt)− L(θt)

)
dt = 0.

Thus

0 = I(uϕ,η,pϕ,η,ϕ)− I(uθ,ζ ,pθ,ζ ,θ) (30)

=

∫ T

0
pϕ,ηt · f(uϕ,ηt , ϕt)− pθ,ζt · f(uθ,ζt , θt)dt︸ ︷︷ ︸

:=I1

−
∫ T

0
H(t, uϕ,ηt , pϕ,ηt , ϕt)−H(t, uθ,ζt , pθ,ζt , θt)dt︸ ︷︷ ︸

:=I2

−
∫ T

0
R(ϕt)−R(θt)dt︸ ︷︷ ︸

:=I3

36



Denoting
ef,ϕ,ηt := f(uϕ,ηt , ϕt)−Πηf(uϕ,ηt , ϕt)

and similarly for ef,θ,ζt , we have

I1 =

∫ T

0
pϕ,ηt ·Πηf(uϕ,ηt , ϕt)− pθ,ζt ·Πζf(uθ,ζt , θt)dt︸ ︷︷ ︸

:=I1,1

+

∫ T

0
pϕ,ηt · ef,ϕ,ηt − pθ,ζt · e

f,θ,ζ
t dt︸ ︷︷ ︸

:=I1,2

In addition, since u̇ϕ,ηt = Πηf(uϕ,ηt , ϕt) and similarly for θ, it follows that

I1,1 =

∫ T

0
pϕ,ηt · u̇ϕ,ηt − pθ,ζt · u̇

θ,ζ
t dt =

∫ T

0
pθ,ζt · δu̇t + δpt · u̇θ,ζt dt︸ ︷︷ ︸

:=I1,1,1

+

∫ T

0
δpt · δu̇tdt︸ ︷︷ ︸
:=I1,1,2

where
δut := uϕ,ηt − uθ,ζt , and δpt := pϕ,ηt − pθ,ζt .

By integration by parts, and the fact that ṗθ,ζt = −Πζ∇uH(t, uθ,ζt , pθ,ζt , θt), we have

I1,1,1 = pθ,ζt · δut
∣∣∣T
0

+

∫ T

0
δpt · u̇θ,ζt − ṗ

θ,ζ
t · δutdt

= pθ,ζt · δut
∣∣∣T
0

+

∫ T

0
δut ·Πζ∇uH(t, uθ,ζt , pθ,ζt , θt) + δpt ·Πζ∇pH(t, uθ,ζt , pθ,ζt , θt)dt

= pθ,ζt · δut
∣∣∣T
0

+

∫ T

0
Πζ∇wH(t, wθ,ζt , θt) · δwtdt,

where we have used the shorthand notation w = (u, p) in the last line. This notation will
also be used in what follows.

We next address the integral I1,1,2. By integration by parts,

I1,1,2 =
1

2

∫ T

0
δpt · δu̇tdt+

1

2

∫ T

0
δpt · δu̇tdt

=
1

2
δpt · δut

∣∣∣T
0
− 1

2

∫ T

0
δṗt · δutdt+

1

2

∫ T

0
δpt · δu̇tdt

=
1

2
δpt · δut

∣∣∣T
0

+
1

2

∫ T

0

(
Πη∇wH(t, wϕ,ηt , ϕt)−Πζ∇wH(t, wθ,ζt , θt)

)
· δwtdt

Adding and subtracting ∇wH(t, wϕ,ηt , ϕt) and ∇wH(t, wθ,ζt , θt) to the last formula,

I1,1,2 =
1

2
δpt · δut

∣∣∣T
0

+
1

2

∫ T

0

(
Πη∇wH(t, wϕ,ηt , ϕt)−∇wH(t, wϕ,ηt , ϕt)

)
· δwtdt

+
1

2

∫ T

0

(
∇wH(t, wθ,ζt , θt)−Πζ∇wH(t, wθ,ζt , θt)

)
· δwtdt

+
1

2

∫ T

0

(
∇wH(t, wϕ,ηt , ϕt)−∇wH(t, wθ,ζt , θt)

)
· δwtdt
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By applying Taylor’s theorem around w = wθ,ζ = (uθ,ζt , pθ,ζt ) to the function w → ∇wH(t, w, ϕt),
there exists r1(t) ∈ [0, 1] such that

∇wH(t, wϕ,ηt , ϕt) = ∇wH(t, wθ,ζt , ϕt) + δwt · ∇2
wH(t, wθ,ζt + r1(t)δwt, ϕt)

Thus

I1,1,2 =
1

2
δpt · δut

∣∣∣T
0

+
1

2

∫ T

0

(
Πη∇wH(t, wϕ,ηt , ϕt)−∇wH(t, wϕ,ηt , ϕt)

)
· δwtdt

+
1

2

∫ T

0

(
∇wH(t, wθ,ζt , θt)−Πζ∇wH(t, wθ,ζt , θt)

)
· δwtdt

+
1

2

∫ T

0

(
∇wH(t, wθ,ζt , ϕt)−∇wH(t, wθ,ζt , θt)

)
· δwtdt

+
1

2

∫ T

0
δwt · ∇2

wH(t, wθ,ζt + r1(t)δwt, ϕt) · δwtdt

Since δu0 = 0, the boundary terms from I1,1,1 and I1,1,2 are(
pθ,ζt +

1

2
δpt

)
· δut

∣∣∣T
0

=

(
pθ,ζT +

1

2
δpT

)
· δuT

= −∇Φ(uθ,ζT ) · δuT −
1

2

(
∇Φ(uϕ,ηT )−∇Φ(uθ,ζT )

)
· δuT

By applying Taylor’s theorem around z = uθ,ζt to the function z → ∇Φ(z), there exists
r2 ∈ [0, 1] such that

∇Φ(uϕ,ηT ) = ∇Φ(uθ,ζT ) + δut · ∇2Φ(uθ,ζT + r2δuT ).

Therefore(
pθ,ζt +

1

2
δpt

)
· δut

∣∣∣T
0

= −∇Φ(uθ,ζT ) · δuT −
1

2
δuT · ∇2Φ(uθ,ζT + r2δuT ) · δuT

Since, again by Taylor’s theorem, there exists r3 ∈ [0, 1] such that

Φ(pϕ,ηT ) = Φ(pθ,ζT ) + δut · ∇Φ(uθ,ζT ) +
1

2
δut · ∇2Φ(uθ,ζT + r3δut) · δuT ,

we finally get the expression for the the boundary terms from I1,1,1 and I1,1,2(
pθ,ζt +

1

2
δpt

)
·δut

∣∣∣T
0

= Φ(uθ,ζT )−Φ(uϕ,ηT )−1

2
δuT ·

(
∇2Φ(uθ,ζT + r2δuT )−∇2Φ(uθ,ζT + r3δu

η
T )
)
·δuT

We now turn to I2. By Taylor’s theorem, there exists r4(t) ∈ [0, 1] such that

I2 =

∫ T

0
H(t, wϕ,ηt , ϕt)−H(t, wθ,ζt , θt)dt

=

∫ T

0
∆Hx,ζ

ϕ,θ(t)dt+

∫ T

0
∇wH(t, wθ,ζt , ϕt) · δwtdt

+
1

2

∫ T

0
δwt · ∇2

wH(t, wθ,ζt + r4(t)δwt, ϕt) · δwtdt,
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where we remind that, as defined in equation (20), ∆Hx,ζ
ϕ,θ(t) := H(t, wθ,ζt , ϕt)−H(t, wθ,ζt , θt).

Injecting the above expressions for the terms of I1 and I2 into equation (30), passing the
terms corresponding to the loss function to the left hand side, and adding and subtracting∫ T

0 Πζ∇wH(t, wθ,ζt , ϕt) · δwtdt,

Loss(x, y,ϕ)− Loss(x, y,θ) (Diff-Loss)

= Φ(uϕ,ηT )− Φ(uθ,ζT ) +

∫ T

0
(R(ϕt)−R(θt)) dt

=

∫ T

0

(
Πζ∇wH(t, wθ,ζt , θt)−Πζ∇wH(t, wθ,ζt , ϕt)

)
· δwtdt (T1)

+

∫ T

0
pϕ,ηt · ef,ϕ,ηt − pθ,ζt · e

f,θ,ζ
t dt (T2)

+
1

2

∫ T

0

(
Πη∇wH(t, wϕ,ηt , ϕt)−∇wH(t, wϕ,ηt , ϕt)

)
· δwtdt (T3)

+
1

2

∫ T

0

(
∇wH(t, wθ,ζt , θt)−Πζ∇wH(t, wθ,ζt , θt)

)
· δwtdt (T4)

+
1

2

∫ T

0

(
∇wH(t, wθ,ζt , ϕt)−∇wH(t, wθ,ζt , θt)

)
· δwtdt (T5)

+
1

2

∫ T

0
δwt · ∇2

wH(t, wθ,ζt + r1(t)δwt, ϕt) · δwtdt (T6)

−
∫ T

0
∆Hx,ζ

ϕ,θ(t)dt (T7)

+

∫ T

0

(
Πζ∇wH(t, wθ,ζt , ϕt)−∇wH(t, wθ,ζt , ϕt)

)
· δwtdt (T8)

− 1

2

∫ T

0
δwt · ∇2

wH(t, wθ,ζt + r4(t)δwt, ϕt) · δwtdt (T9)

− 1

2
δuT ·

(
∇2Φ(uθ,ζT + r2δuT )−∇2Φ(uθ,ζT + r3δu

η
T )
)

We next derive a bound for the difference Loss(x, y,ϕ)−Loss(x, y,θ). We proceed to bound
all the terms by order of appearance in the above formula. We will sometimes use that by
(28), (29) and Jensen’s inequality,

‖δwt‖2 = ‖δut‖2 + ‖δpt‖2 . (η + ζ)2 +

∫ T

0
‖∇wH(s, wθ,ζs , ϕs)−∇wH(s, wθ,ζs , θs)‖2ds

which yields

‖δwt‖L2([0,T ]) . (η + ζ) + ‖∇w(∆Hx,ζ
ϕ,θ)‖L2([0,T ],Rn×Rn). (32)
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Term (T1)+(T5): By the Cauchy-Schwartz inequality and (32), we can bound term (T1)
by ∫ T

0

(
Πζ∇wH(t, wθ,ζt , θt)−Πζ∇wH(t, wθ,ζt , ϕt)

)
· δwtdt

≤ ‖Πζ‖‖∇wH(t, wθ,ζt , θt)−∇wH(t, wθ,ζt , ϕt)‖L2([0,T ])‖δwt‖L2([0,T ])

. (η + ζ)‖∇w(∆Hx,ζ
ϕ,θ)‖L2([0,T ]) + ‖∇w(∆Hx,ζ

ϕ,θ)‖2L2([0,T ],Rn×Rn)

Thus

(T1) + (T5) . (η + ζ) + (η + ζ)‖∇w(∆Hx,ζ
ϕ,θ)‖L2([0,T ]) + ‖∇w(∆Hx,ζ

ϕ,θ)‖2L2([0,T ])

Term (T2): Using (27) and the fact that ‖ef,θ,ζt ‖L2([0,T ],Rn) ≤ ζ∫ T

0
pϕ,ηt · ef,ϕ,ηt − pθ,ζt · e

f,θ,ζ
t dt . η + ζ

Terms (T3) and (T8): By the Cauchy-Schwarz inequality, we can bound term (T3)

|
∫ T

0

(
Πη∇wH(t, wϕ,ηt , ϕt)−∇wH(t, wϕ,ηt , ϕt)

)
· δwtdt|

≤ ‖Πη∇wH(t, wϕ,ηt , ϕt)−∇wH(t, wϕ,ηt , ϕt)‖L2([0,T ],Rn×Rn)‖δwt‖L2([0,T ],Rn×Rn)

. η‖∇w(∆Hx,ζ
ϕ,θ)‖L2([0,T ],Rn×Rn)

where we have used that the propagator Πη guarantees

‖Πη∇wH(t, wϕ,ηt , ϕt)−∇wH(t, wϕ,ηt , ϕt)‖L2([0,T ],Rn×Rn) . η

and finally

|
∫ T

0

(
Πη∇wH(t, wϕ,ηt , ϕt)−∇wH(t, wϕ,ηt , ϕt)

)
· δwtdt| . η(η + ζ) + η‖∇w(∆Hx,ζ

ϕ,θ)‖L2([0,T ],Rn×Rn)

Term (T4): Using (27) and the fact that ‖ef,θ,ζt ‖L2([0,T ],Rn) ≤ ζ, we have
∫ T

0 pϕ,ηt ·ef,ϕ,ηt −
pθ,ζt · e

f,θ,ζ
t dt . η + ζ.

Term (T6), (T9) and (T10): By assumptions (A1), (A2), all second derivative terms
are bounded element-wise by some constant K. Hence, we have |δwt ·A · δwt| . ‖δwt‖2 for
A being a second derivative matrix.

Summary: By using the above inequalities, in formula (Diff-Loss), we deduce that there
exists a constant C > 0 depending on T , ‖Πζ‖ and ‖Πη‖ such that, if η ≤ 1,

Loss(x, y,ϕ)− Loss(x, y,θ) ≤ −
∫ T

0
∆Hx,ζ

ϕ,θ(t)dt+ C
(

(η + ζ)2 + ‖∇w(∆Hx,ζ
ϕ,θ)‖2L2([0,T ])

)
Note that the term (η + ζ)2 accounts for the fact that we are not solving exactly the dy-
namics.
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