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ON THE UNIVERSAL REGULAR HOMOMORPHISM
IN CODIMENSION 2

BRUNO KAHN

Abstract. We point out a gap in Murre’s proof of the existence
of a universal regular homomorphism for codimension 2 cycles on a
smooth projective variety, and offer two arguments to fill this gap.

In [11], Jacob Murre shows the existence of a universal regular homo-
morphism for algebraically trivial cycles of codimension 2 on a smooth
projective variety over an algebraically closed field. This theorem has
been largely used in the literature, most lately in [1], [7] and [2]; for ex-
ample, it is essential in [2] for descending the method of Clemens and
Griffiths [6] to non-algebraically closed fields, thus allowing Benoist
and Wittenberg to obtain new examples of geometrically rational non-
rational 3-folds.

Unfortunately its proof contains a gap, but fortunately this gap can
be filled, actually by two different methods. This is the purpose of this
note, which is a slight modification of a letter to Murre on December
5, 2018.

Recall the set-up, with the notation of [11]: V is a smooth projective
variety over an algebraically closed field k and An(V ) denotes the group
of codimension n cycles algebraically equivalent to 0 on V , modulo
rational equivalence. Following Samuel, given an abelian k-variety A,
a homomorphism

φ : An(V ) → A(k)

is said to be regular if, for any pointed smooth projective k-variety
(T, t0) and any correspondence Z ∈ CHn(T × V ), the composition

(1) T (k)
wZ−→ An(V )

φ
−→ A(k)

is induced by a morphism f : T → A; here wZ is the composition

(2) T (k) → A0(T )
Z∗−→ An(V )
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where the first map sends t to [t] − [t0]. (Note that f is then unique,
by Zariski density of the rational points in T .)

Using fancy language, regular homomorphisms from An(V ) form a
category and a universal regular homomorphism is an initial object of
this category, if it exists. This initial object is well-known to exist
when n = 0, n = 1 (the Picard variety) and n = dimX (the Albanese
variety). Murre’s theorem is:

Theorem 1 ([11, Th. 1.9]). A universal regular homomorphism φ0

exists when n = 2 for any V (of dimension ≥ 2).

Recall the main steps of his proof. First, given a regular homomor-
phism φ, its image in A(k) is given by the points of some sub-abelian
variety A′ ⊆ A [11, Lemma 1.6.2 i)]. From this, one deduces [11,
Prop. 2.1] that φ0 exists if and only if dimA is bounded when φ runs
through the surjective regular homomorphisms. Now, Murre’s key idea
is to bound dimA by the torsion of A2(V ), which is controlled by the
Merkurjev-Suslin theorem (Bloch’s observation).

Let us elaborate a little on this point, to avoid the l-adic argument
of loc. cit.: it suffices to prove that φ induces a surjection

(3) A2(V ){l} −→→ A(k){l}

for some prime l 6= char k, where M{l} denotes the l-primary torsion
of an abelian group M : indeed, corankA(k){l} = 2dimA. Mainly by
Merkurjev-Suslin (Diagram in [11, Prop. 6.1])1,

corankCH2(V ){l} ≤ corankH3
ét(V,Ql/Zl(2))(= b3(V ))

so the same holds a fortiori for corankA2(V ){l}.
Now, in [11, Lemma 1.6.2 ii)], Murre constructs an abelian variety

B (pointed at 0) and a correspondence Z ∈ CH2(B×V ) such that (1)
is surjective for T = B. Since this map is induced by a morphism of
abelian varieties sending 0 to 0 (hence a homomorphism), it restricts
to a surjection

(4) B{l} →→ A{l}.

This allows me to explain

the gap:

A priori (4) does not imply (3), because wZ is in general only a
set-theoretic map, not a group homomorphism (see e.g. [4, Th. (3.1)
a)]).

We now fix a surjective regular homomorphism φ as above. We shall
give two ways to fill this gap:

1One could replace this diagram by the injection CH2(V ) →֒ H4

ét
(V,Γ(2)) of [9,

Th. 2.13 (c)], together with the surjection H3

ét
(V,Ql/Zl(2)) →→ H4

ét
(V,Γ(2)){l}, cf.

loc. cit., proof of Th. 2.15; here, Γ(2) is Lichtenbaum’s complex.
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(A) construct (B,Z) such that wZ is a homomorphism;
(B) prove that wZ always sends torsion to torsion.

(A) was my initial idea, and (B) was inspired by a discussion with
Murre.

Explanation of (A). We have

Lemma 1. Take (T, t0, z) with T of dimension 1 and z ∈ CH2(T×V ).
Let J = J(T ) be the jacobian of T . Then the homomorphism z∗ :
A0(T ) = J(k) → A2(V ) is of the form wα for some correspondence
α ∈ CH2(J × V ) (using 0 ∈ J(k) as base point).

Proof. Let g be the genus of T . Recall from [10, Ex. 3.12] the uni-
versal relative Cartier divisor Dcan on T × T (g)/T (g), parametrising
the effective divisors of degree g on T . It defines a correspondence
Dcan : T (g) → T . Composing with the graph of the birational map
J 99K T (g) inverse to (t1, . . . , tg) 7→

∑
ti − gt0, we find a (Chow) cor-

respondence D : J → T . I claim that α = z ◦D answers the question.
Indeed, one checks immediately that the homomorphism

D∗ : A0(J) → A0(T )

is the Albanese morphism for J ; hence the composition

J(k) → A0(J)
D∗−→ A0(T )

is the identity. �

Remark 1. On the other hand, the morphism T → A given by the
regularity of φ factors through a homomorphism

(5) J(T ) → A.

This homomorphism coincides with the one underlying φ ◦ z∗ in view
of Lemma 1. Indeed, by uniqueness, it suffices to see that (5) induces
φ ◦ z∗ on k-points; this is clear since T (k) generates J(T )(k) as an
abelian group.

Consider all triples (T, t0, z) with dimT = 1. The homomorphism
⊕

A0(T )
(z∗)
−−→ A2(V ) is surjective, hence so is

⊕
A0(T )

(z∗)
−−→ A2(V )→→A(k).

As in Remark 1, each summand of this homomorphism is induced by
a homomorphism ρT,t0,z : J(T ) → A, so

B :=
∏

(T,t0,z)∈S

J(T )
(ρT,t0,z

)
−−−−→ A

is surjective (faithfully flat) for a suitable finite set S. For each (T, t0, z),
let α = αz be a correspondence given by Lemma 1. Write πT,t0,z : B →
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J(T ) for the canonical projection, viewed as an algebraic correspon-
dence. The pair given by B and Z =

∑
(T,t0,z)

αz ◦ πT,t0,z yields (A).

Explanation of (B). It suffices to show that the map

f : B(k) → A0(B)

sends l-primary torsion to l-primary torsion. Let d = dimB. By
Bloch’s theorem [4, Th. (0.1)], we have A0(B)∗(d+1) = 0, where ∗
denotes Pontrjagin product. In other words, f has “degree ≤ d” in the
sense that its (d+ 1)-st deviation [8, §8] is identically 0. It remains to
show:

Lemma 2. Let f : M → N be a map of degree ≤ d between two
abelian groups, such that f(0) = 0. Let m0 ∈ M be an element such
that am0 = 0 for some integer a > 0. Then

a(
d+1

2 )f(m0) = 0.

Proof. Induction on d. The case d = 1 is trivial. Assume d > 1. By
hypothesis, the d-th deviation of f is multilinear, which implies that
the map

ga(m) = f(am)− adf(m)

is of degree ≤ d − 1. By induction, a(
d

2)ga(m0) = 0, hence the conclu-
sion. �

Remark 2. Of course, either argument proves more generally the fol-
lowing: the map φ : An(V ){l} → A(k){l} is surjective for any integer
n, any surjective regular homomorphism φ : An(V ) → A(k) and any
prime l 6= char k.

Remark 3. In [3, §6, Lemma and Prop. 11], Beauville gives a differ-
ent proof that f sends torsion to torsion. Moreover, he observes that
Rǒıtman’s theorem [13] then implies that the restriction of f to torsion
is actually an isomorphism, hence a homomorphism.

If we apply Rǒıtman’s theorem together with Lemma 2, we obtain
the following stronger result: if m,m0 ∈ B(k) and m0 is torsion, then
f(m + m0) = f(m) + f(m0). (Fixing m, the map fm : m′ 7→ f(m +

m′)− f(m)− f(m′) is of degree < d, hence a(
d

2)fm(m0) = 0 if am0 = 0
by Lemma 2, and therefore fm(m0) = 0 by Rǒıtman’s theorem.)

Some expectation. The landmark work of Bloch and Esnault [5]
yields the existence of 4-folds V over fields k of characteristic 0 such
that the l-torsion of A3(V ) is infinite (hence its l-primary torsion has
infinite corank). One example, used by Rosenschon-Srinivas [14] and
Totaro [16] and relying on Nori’s theorem [12] and Schoen’s results [15],
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is the following: start from the generic abelian 3-fold A, whose field
of constants k0 is finitely generated over Q; choose an elliptic curve
E/k0(t), not isotrivial with respect to k0, and take V = Ak0(t)×E, k =
algebraic closure of k0(t).

Conjecture 1. For this V , a universal regular homomorphism on
A3(V ) does not exist.

Ackowledgements. I am indebted to Jacob Murre for discussions
around this problem, and for his encouragement to publish this note.
I am also indebted to the referee for a careful reading, pointing out an
incorrect earlier formulation of Lemma 1, as well as the referece to [3].
(The referee credits in turn Charles Vial for this reference.)
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