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91190 Gif-sur-Yvette, France

E-mails: {first name.last name}@l2s.centralesupelec.fr
†Institut Polytechnique des Sciences Avancées (IPSA)

63 boulevard de Brandebourg, 94200 Ivry-sur-Seine, France
E-mails: {first name.last name}@ipsa.fr

‡Cyb’Air Association, 94200 Ivry-sur-Seine, France

Abstract—This paper presents a new Python software for
the parametric design of stabilizing feedback laws with time
delays, called Partial Pole Placement via Delay Action (P3δδδ).
After an introduction recalling recent theoretical results on
the multiplicity-induced-dominancy (MID) and coexisting real
roots-induced-dominancy (CRRID) properties and their use for
the feedback stabilization of control systems operating under
time delays, the paper presents the current version of P3δδδ,
which relies on the MID property to compute delayed stabilizing
feedback laws for scalar differential equations with a single
delay. We detail in particular its graphical user interface (GUI),
which allows the user to input the necessary information and
obtain the results of the analysis done by the software. These
results include the parameters stabilizing the closed-loop system,
graphical representations of the spectrum of the closed-loop
system, simulations of solutions in the time domain, and a
sensitivity analysis with respect to uncertain delays.

Index Terms—Time-delay systems, Controller design, Stabil-
ity, Stabilization, Python toolbox, GUI

I. INTRODUCTION

Time delays often occur in control systems, mainly due to
the time required for acquiring, propagating, or processing
information. For this reason, systems with time delays are
a frequent topic in the control theory literature, with many
works, such as [1]–[3], highlighting the effects of delays on
the behavior of control systems, in particular on their stability.

Commonly, time delays lead to desynchronizing or desta-
bilizing effects on the dynamics of the system they ap-
pear. However, some works have emphasized that the de-
lay may also have a stabilizing effect in control design.
For instance, in [4], a delayed controller is used in order
to improve the stability of systems with oscillatory be-
havior and small damping. The stabilization properties of
delayed controllers has also been considered in [5], which
uses a proportional-delayed controller, replacing the classi-
cal proportional-derivative controller thanks to the “average
derivative action” obtained via the time delay, a technique
also used in [6]. Further discussion of the stabilizing effects of
time delays can be found in [7], which highlights in particular
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the fact that closed-loop stability may be guaranteed for some
control systems precisely by the existence of the delay. A
growing literature exhibits the design of delayed controllers
in a wide range of applications, such as, for instance, the
control of flexible mechanical structures or the regulation of
networks (see, e.g., [8], [9]).

In this paper, we consider linear time-invariant differential
equations with a single time delay under the form

y(n)(t) + an−1y
(n−1)(t) + · · ·+ a0y(t)

+ bmy
(m)(t− τ) + · · ·+ b0y(t− τ) = 0, (1)

where τ > 0 is the positive delay, y is the real-valued
unknown function, n and m are nonnegative integers with
n > m, and a0, . . . , an−1, b0, . . . , bm are real coefficients.

The stability analysis of a linear time-invariant time-
delay system can be addressed using spectral methods by
considering the corresponding characteristic function, whose
complex roots determine the asymptotic behavior of solutions
of the system, as presented, e.g., in [2], [3]. The characteristic
function corresponding to (1) is

∆(s) = sn +

n−1∑
k=0

aks
k + e−sτ

m∑
k=0

bks
k, (2)

and (1) is exponentially stable if and only if the spectral
abscissa γ = sup{Re s | ∆(s) = 0} satisfies γ < 0. Equation
(1) is said to be of retarded type, since the highest-order
derivative only appears in the non-delayed term y(n)(t).

Equations under the form (1) may arise from linear time-
invariant controlled differential equations, such as y(n) +
an−1y

(n−1)(t)+· · ·+a0y(t) = u(t), when applying a delayed
feedback control under the form u(t) = −bmy(m)(t − τ) −
· · · − b0y(t − τ). In this case, the behavior of the closed-
loop system is the influenced by the choices of the free
parameters b0, . . . , bm in the feedback control, which are thus
free coefficients in the characteristic function (2).

The characteristic function (2) is a particular case of a
quasipolynomial, i.e., a polynomial in the variables s and
e−sτ . Quasipolynomials have been considered in several
works, such as [2], [10]–[12], often in connection with the
analysis of time-delay systems. A major difficulty in the study



of quasipolynomials for the feedback stabilization of time-
delay systems is that quasipolynomials have infinitely many
roots, but one only disposes of finitely many parameters in
the feedback law to choose the location of these roots and
place them in order to guarantee a negative spectral abscissa,
and hence exponential stability of the closed-loop system.

Recent works such as [8], [13]–[19] have been interested in
the design of pole placement techniques for quasipolynomials
with the aim of selecting the free parameters of the system
in order to choose the location of finitely many roots in
the complex plane and guarantee that the dominant root,
i.e., the rightmost root on the complex plane, is among
the chosen ones. Unlike methods based on finite spectrum
assignment such as those from [20], the controllers designed
using these techniques do not render the closed-loop system
finite dimensional, but control instead its rightmost spectral
value.

The works [8], [13]–[19] usually proceed either by as-
signing a real root of maximal multiplicity and proving that
this root is necessarily the rightmost root of the charac-
teristic quasipolynomial (a property known as multiplicity-
induced-dominancy, or MID for short) or by assigning a
certain amount of real roots (typically equally spaced for
simplicity) and proving that the rightmost root among the
assigned roots is also the rightmost root of the characteristic
quasipolynomial (a property known as coexisting real roots-
induced-dominancy, or CRRID for short).

The MID property for (1) is shown, for instance, in [8] in
the case n = 2 and m = 0, in [16] in the case n = 2 and
m = 1 (see also [15]), and in [17] in the case of any positive
integer n and m = n−1 (see also [18]). The CRRID property
is shown, for instance, in [13] in the cases (n,m) = (2, 0) and
(n,m) = (1, 0), and in [14] in the case of any positive integer
n and m = 0. In all these cases, the maximal multiplicity of
a real root or, equivalently, the maximal number of coexisting
simple real roots is the integer n+m+ 1.

This paper presents the Partial Pole Placement via Delay
Action software (P3δ for short), a Python software based on
the results from [8], [13]–[19] for the parametric design of
stabilizing feedback laws with time delays. The first version
of P3δ, presented in the current paper, allows for the design of
feedback laws for linear time-invariant differential equations
with a single time delay under the form (1) using MID
techniques.

Several other softwares have been recently developed for
the analysis of time-delay systems from various perspectives,
such as stability, robustness, or bifurcation aspects. This is
the case, for instance, of the Matlab packages YALTA [21],
dedicated to the H∞ stability analysis of time-delay systems
with commensurate delays, TRACE-DDE [22], devoted to
the computation of characteristic roots and stability charts of
linear autonomous time-delay systems, DDE-BIFTOOL [23],
interested in the computation, continuation, and stability anal-
ysis of steady-state solutions of time-delay systems and their
bifurcations, and QPmR [24], specialized in the computation
of roots of quasipolynomials. One of the major novelties of
P3δ lies in addressing the stabilization of control systems
with time-delays by using of the MID property to design
stabilizing feedback laws. For that purpose, P3δ makes use
of both symbolic and numeric computations.

II. DESCRIPTION OF P3δ

P3δ is freely available for download on https://cutt.
ly/p3delta, where installation instructions, video demon-
strations, and the user guide are also available. Interested
readers may also contact directly any of the authors of the
paper.

In the current version of P3δ, only the MID property is
exploited for the stabilization of (1). This can be done in two
different ways, named “Classic MID” and “Control-oriented
MID”, according to which coefficients of (1) are assumed to
be fixed and which are assumed to be free.

A. Classic MID mode

The “Classic MID” mode corresponds to considering that
all coefficients of the quasipolynomial ∆ from (2) are
free. The user inputs the values of the delay τ and of
the desired real root s0 and P3δ computes all coefficients
a0, . . . , an−1, b0, . . . , bm ensuring that the value s0 is a
dominant root of ∆ of maximal multiplicity n+m+1. To use
the “Classic MID” mode, the user should proceed as follows:
1. Enter the values of the integers n and m appearing in the

differential equation (1).
2. Select the “Classic MID” option in the drop-down menu

“— Choose MID type —”.
After this selection, the window of the program is filled with
the places for the other inputs and the outputs of P3δ.
3. Enter the values of the desired real root of maximal

multiplicity s0 and of the delay τ in the corresponding
fields that appear below the drop-down menu.

4. Enter the bounds xmin, xmax, ymin, ymax of the rectangle
[xmin, xmax] × [ymin, ymax] ⊂ C in which P3δ will look
for roots of (2) and press the “Confirm” button.

Once the “Confirm” button is pressed, P3δ will compute the
values of the coefficients a0, . . . , an−1, b0, . . . , bm ensuring
that s0 is a root of maximal multiplicity of the quasipolyno-
mial ∆ from (2) and show their values. P3δ will also numer-
ically compute all roots of ∆ within the selected rectangle
using the computed values of a0, . . . , an−1, b0, . . . , bm and
plot these roots in the plot “Roots” at the lower left corner of
the window. This numerical computation is carried out using
Python’s cxroots module, which implements numerical
methods described in [25].

Optionally, after the previous computations are completed,
the user may also simulate some trajectories of the system in
the time domain. This can be done, after completing step 4
above, by the following steps:
5. Choose the type of the initial condition from the drop-

down menu “— Initial Solution —”.
The currently supported types are “Constant”, “Polynomial”,
“Exponential”, and “Trigonometric”, which corresponds to
initial conditions of the forms x(t) = c, x(t) =

∑r
k=0 ckt

k,
x(t) = Aeγt, and x(t) = A sin(ωt+ ϕ), respectively, where
c, r, c0, . . . , cr, A, γ, ω, ϕ are constants to be chosen by the
user and the initial condition is defined in the time interval
[−τ, 0].
6. Enter the simulation time in the corresponding box.
7. Enter the values of the constants appearing in the expres-

sion of the initial condition in the corresponding input
boxes.



8. After entering all the constants, press “Enter” on the
keyboard or click on the “Confirm” button appearing in
the same frame as the constants.

After these steps, the numerical solution corresponding to the
chosen initial condition will be computed using an explicit
Euler scheme in the time interval [−τ, T ], where T is the
value entered in step 6. The corresponding solution will be
plotted in the graph on the “Solutions” part of the screen.

Figure 1 shows a screen capture of the “Classic MID”
mode of P3δ. In this figure, we have chosen n = 2, m = 1,
the “Classic MID” mode, and the values s0 = −5 and τ = 1.
After entering xmin = −50, xmax = 50, ymin = −100, and
ymax = 100 and having clicked on “Confirm”, P3δ shows
the values of the coefficients of the quasipolynomial, a1 =
6, a0 = 11, b1 ≈ −0.1078, and b0 ≈ −0.0135, ensuring
that s0 = −5 is a root of maximal multiplicity n + m +
1 = 4 in this case. P3δ also plots the numerical roots of
the quasipolynomial in the selected rectangle in the graph on
the lower left corner. After choosing the “Constant” initial
condition, selecting the simulation time T = 5 and the value
1 for the constant, the corresponding numerical solution of
the system appears in the graph in the lower right corner of
the screen.

B. Control-oriented MID mode
The “Control-oriented MID” mode corresponds to consid-

ering that the coefficients a0, . . . , an−1 corresponding to the
non-delayed terms of (1) are given and that the coefficients
b0, . . . , bm corresponding to the delayed terms are free. The
user may choose to input either the value of τ or that of s0
(but not both) and P3δ computes all coefficients b0, . . . , bm
ensuring the existence of a dominant root of the quasipoly-
nomial ∆ from (2) of multiplicity m+ 2. P3δ also computes
the value of the parameter among τ or s0 that has not been
fixed by the user.
Remark 1. In the “Control-oriented MID” mode, it may hap-
pen to be impossible to choose a real root s0 of multiplicity
m + 2. In this case, P3δ warns the user of this fact and
provides an equation relating s0 and τ . The user should either
enter a value of s0 such that this equation admits a positive
root τ or a positive value of τ such that this equation admits
a real root s0 in order to proceed with the computations.

To use the “Control-oriented MID” mode, the user should
proceed as follows:
1. Enter the values of the integers n and m appearing in the

differential equation (1).
2. Select the “Control-oriented MID” option in the drop-

down menu “— Choose MID type —”.
After this selection, the window of the program is filled with
the places for the other inputs and the outputs of P3δ.
3. Select from the drop-down menu “— Choose s0 or tau

—” whether to input the value of the multiple root s0 or
the value of the delay τ .

4. Enter the value of s0 or τ , according to the choice of the
previous step.

5. Enter the values of the known coefficients a0, . . . , an−1
and press the “Confirm” button located in the same frame.

6. Enter the bounds xmin, xmax, ymin, ymax of the rectangle
[xmin, xmax] × [ymin, ymax] ⊂ C in which P3δ will look
for roots of (2).

7. Press the “Confirm” button.
Once the “Confirm” button is pressed, P3δ will compute the
values of the coefficients b0, . . . , bm ensuring that s0 is a root
of multiplicity m+2 of the quasipolynomial ∆ from (2) and
show their values. Similarly to the “Classic MID” option,
P3δ will also numerically compute all roots of ∆ within the
selected rectangle by using Python’s cxroots module and
output the result in the plot “Roots”.

As in the “Classic MID” case, the user may plot solutions
in the time domain. After completing step 7 above, this can
be done by following the same steps 5–8 from Section II-A.

Figure 2 shows a screen capture of the “Control-oriented
MID” mode of P3δ. In this figure, we have chosen n = 2,
m = 1, the “Control-oriented MID” mode, the input of τ , the
value τ = 1, and the coefficients a0 = −3 and a1 = 2. After
entering xmin = −50, xmax = 50, ymin = −100, and ymax =
100 and having clicked on “Confirm”, P3δ shows the values
of the coefficients of the quasipolynomial, b1 ≈ 1.6717 and
b0 ≈ 3.1104, recalls the value τ = 1.0, and also shows the
value of the root of multiplicity m+2 = 3, s0 ≈ −0.550510.
P3δ also plots the numerical roots of the quasipolynomial in
the selected rectangle in the graph on the lower left corner.
After choosing the “Constant” initial condition, selecting the
simulation time T = 20 and the value 1 for the constant, the
corresponding numerical solution of the system appears in
the graph in the lower right corner of the screen.

In addition to these outputs, which are similar to the
“Classic MID” case, the “Control-oriented MID” option can
also perform a numerical sensitivity analysis of the computed
roots with respect to variations in the delay τ . To do so, the
user should follow the above steps up to step 7, selecting
to enter the value of τ in step 3. Then, the steps to get the
sensitivity plot are the following:
1. Select the “Sensitivity” tab in the “Roots” plot.
2. Select “tau sensitivity” in the drop-down menu “— Sen-

sitivity —” above the “Roots” plot.
3. Enter the value of the step ε and the number of iterations
K in the corresponding boxes.

4. Enter the bounds xmin, xmax, ymin, ymax of the rectangle
[xmin, xmax] × [ymin, ymax] ⊂ C in which P3δ will look
for roots of (2).

Since the sensitivity computation may take quite some time,
it is highly recommended to choose a smaller rectangle
containing few roots of ∆, including the dominant multiple
root.
5. Press the “Confirm” button in the frame of the bounds of

the rectangle.
Once these steps are completed, the sensitivity plot appears
in the “Roots” plot. This plot contains the roots of ∆ in
the selected rectangle for the values of delays τ + kε for
k ∈ {−K,−K + 1, . . . ,K − 1,K}. Roots computed with
negative values of k, corresponding to values of the delay
smaller than τ , are represented in shades of blue, with darker
blue representing k = −K and lighter tones representing
increasing values of k. Roots computed with positive values
of k, corresponding to values of the delay larger than τ ,
are represented in shades of orange to red, with darker red
representing k = K and lighter tones moving to orange
representing decreasing values of k. The roots computed with



Fig. 1. “Classic MID” mode of P3δ.

k = 0, corresponding to the nominal value of τ selected by
the user, are represented by black diamonds.

Figure 3 represents the part of P3δ screen corresponding to
the sensitivity computation. After having completed the steps
that led to the screen shown in Figure 2, we have chosen the
step ε = 0.005 and the number of steps K = 4 and selected
the default rectangle [−5, 5] × [−10, 10] ⊂ C. Clicking on
“Confirm”, P3δ outputs the graph shown in Figure 3. We
observe that, when the delay τ is perturbed, the root s0 ≈
−0.550510 of multiplicity 3 splits into three simple roots.

III. ILLUSTRATIVE EXAMPLES

As illustrations of the use of P3δ, this section revisits two
examples from [16].

A. A first order equation
We consider here the delay-differential equation

ẏ(t) + a0y(t) + b0y(t− τ) = 0, (3)

whose characteristic quasipolynomial is ∆(s) = s + a0 +
b0e
−sτ . We then have n = 1 and m = 0. According to [16],

the maximal multiplicity of a real root of ∆ is 2, and it is
attained if and only if a0 = −s0 − 1

τ and b0 = es0τ

τ .
Inputting n = 1, m = 0, selecting “Classic MID”, and

choosing s0 = −2 and τ = 1 in P3δ, we obtain a0 = 1
and b0 ≈ 0.1353, which is in accordance with the above
expressions for a0 and b0. We also obtain the roots of ∆ in a
given rectangle, represented in Figure 4(a) for the rectangle
[−50, 50] × [−100, 100], and time simulations of solutions,
for instance the one from Figure 4(b), obtained with initial
condition x(t) = sin(10t).

B. Stabilization of the double integrator

Let us consider a double integrator ÿ(t) = u(t) with the
delayed feedback control u(t) = −b1ẏ(t − τ) − b0y(t − τ),
which yields the delay-differential equation

ÿ(t) + b1ẏ(t− τ) + b0y(t− τ) = 0, (4)

whose characteristic quasipolynomial is ∆(s) = s2 + (b1s+
b0)e−sτ . This corresponds to n = 2, m = 1, and a0 = a1 =
0. According to [16], the maximal achievable multiplicity for
a root s0 of ∆ is 3, which is attained if and only if

b1 = 2

(√
2− 1

)
e−2+

√
2

τ
, b0 = 2

(
5
√

2− 7
)
e−2+

√
2

τ2
,

s0 = −2−
√

2

τ
.

(5)
Inputting n = 2, m = 1, selecting “Control-oriented MID”,

and choosing τ = 1, a0 = 0, and a1 = 0 in P3δ, we obtain
b1 ≈ 0.4612, b0 ≈ 0.0791, and s0 ≈ −0.585786, which is
in accordance with (5). We also obtain the roots of ∆ in a
given rectangle, represented in Figure 4(c) for the rectangle
[−50, 50] × [−100, 100], and time simulations of solutions,
for instance the one from Figure 4(d), obtained with initial
condition x(t) = sin(10t).

IV. CONCLUSION AND PLANNED DEVELOPMENTS

By using the recent theoretical results on the MID prop-
erty for linear delay-differential equations under the form
(1), P3δ computes the system parameters ensuring that a
given real root s0 attains its maximal multiplicity and is



Fig. 2. “Control-oriented MID” mode of P3δ.

Fig. 3. Detail of the P3δ screen for computing sensitivity with respect to
the delay.

thus dominant. P3δ currently works in two modes, “Classic
MID” and “Control-oriented MID”, which differ on which
coefficients of (1) are assumed to be free. In all modes,
P3δ computes the values of the free coefficients ensuring
maximal multiplicity, performs a numerical computation of
the roots of the characteristic quasipolynomial, and is able
to perform time-domain simulations. The “Control-oriented
MID” option also offers the possibility of a numerical study
of the sensitivity of the roots with respect to variations in the

delay.
There are currently several plans for future development

of P3δ in its future versions, including sensitivity analysis
with respect to the known parameters a0, . . . , an−1 in the
“Control-oriented MID” option, the inclusion of new options
allowing for a more flexible choice of which coefficients are
assumed to be fixed and which are assumed to be free, and
the use of CRRID-based results to place coexisting real roots.
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