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Abstract: We employed a global high-resolution inverse model to optimize the CH4 emission
using Greenhouse gas Observing Satellite (GOSAT) and surface observation data for a period from
2011–2017 for the two main source categories of anthropogenic and natural emissions. We used the
Emission Database for Global Atmospheric Research (EDGAR v4.3.2) for anthropogenic methane
emission and scaled them by country to match the national inventories reported to the United
Nations Framework Convention on Climate Change (UNFCCC). Wetland and soil sink prior fluxes
were simulated using the Vegetation Integrative Simulator of Trace gases (VISIT) model. Biomass
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burning prior fluxes were provided by the Global Fire Assimilation System (GFAS). We estimated a
global total anthropogenic and natural methane emissions of 340.9 Tg CH4 yr−1 and 232.5 Tg CH4

yr−1, respectively. Country-scale analysis of the estimated anthropogenic emissions showed that
all the top-emitting countries showed differences with their respective inventories to be within the
uncertainty range of the inventories, confirming that the posterior anthropogenic emissions did not
deviate from nationally reported values. Large countries, such as China, Russia, and the United States,
had the mean estimated emission of 45.7 ± 8.6, 31.9 ± 7.8, and 29.8 ± 7.8 Tg CH4 yr−1, respectively.
For natural wetland emissions, we estimated large emissions for Brazil (39.8 ± 12.4 Tg CH4 yr−1), the
United States (25.9 ± 8.3 Tg CH4 yr−1), Russia (13.2 ± 9.3 Tg CH4 yr−1), India (12.3 ± 6.4 Tg CH4 yr−1),
and Canada (12.2 ± 5.1 Tg CH4 yr−1). In both emission categories, the major emitting countries all had
the model corrections to emissions within the uncertainty range of inventories. The advantages of the
approach used in this study were: (1) use of high-resolution transport, useful for simulations near
emission hotspots, (2) prior anthropogenic emissions adjusted to the UNFCCC reports, (3) combining
surface and satellite observations, which improves the estimation of both natural and anthropogenic
methane emissions over spatial scale of countries.

Keywords: inverse model; GOSAT; methane emission; anthropogenic; UNFCCC; wetland

1. Introduction

Climate change, a matter of global concern, is driven by the increasing anthropogenic emissions
of greenhouse gases (GHGs), currently, in particular, from developing countries. Methane (CH4), a
major greenhouse gas, has the global warming potential of about 28 times (over a time span of 100
years) higher than carbon dioxide (CO2) [1] and a tropospheric lifetime of about 8–11 years. The
anthropogenic sources of CH4 are almost 50% larger than the natural sources and are estimated
to be around 360 (334–375) Tg yr−1 during 2008–2017 [2]. Methane is oxidized by photochemical
reactions to carbon monoxide (CO), carbon dioxide (CO2), water (H2O), and formaldehyde (CH2O).
These reactions consume the hydroxyl radical (•OH) and are the biggest sink of methane in the
atmosphere. The reaction involves a set of several other trace gases, including ozone (O3) (see, for
example, Dzyuba et al. 2012 [3]). Atmospheric methane affects the earth’s radiative balance in several
ways. Its oxidation produces other important greenhouse gases (such as CO2 and H2O), it contributes
to global warming through its infrared absorption spectrum, and it controls the lifetime of many
other climate-relevant gases, such as ozone. Methane is also a precursor of tropospheric ozone,
which itself is a short-lived greenhouse gas and a pollutant having adverse impacts on human health
(e.g., [4]) and ecosystem productivity [5]. Therefore, reducing methane emissions brings, besides
supporting climate change mitigation, added safety and health and energy-related benefits (e.g., [4]).
For constituting an effective strategy for mitigation, it is essential to independently verify the national
emission reports, the accuracy of which has been widely debated [6]. One way of accomplishing this is
by analyzing the variations in atmospheric concentrations of methane and link them to emissions. Due
to a heterogeneous network of surface observations, missing in some key regions, satellite observations
have been widely used in such studies (e.g., [7,8]), owing to the advantage of the global coverage
high-frequency observation.

On the country level, the CH4 budget depends on the ecosystem types and socio-economic
development of a country. Methane is emitted into the atmosphere from a variety of individual sources,
whose intensity varies largely with space and time (e.g., rice fields, enteric fermentation of livestock,
manure, wetlands, crop residue burning, coal production, waste disposal, etc.). Methane is mainly
emitted by anthropogenic activities and natural biogenic processes, followed by minor contributions
from other natural sources—biomass burning, oceans, inland water bodies, and geological reservoirs.
The prime anthropogenic sources are fugitive emission from solid fuels, leaks from gas extraction
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and distribution facilities, agriculture, and waste management. During the period 2000–2007, the
atmospheric growth rate of CH4 was nearly stalled, implying a balance between the sources and sinks.
However, since 2007, the growth rate has become positive again ([9–11]). Methane has been growing
after 2014 at an unprecedented rate (e.g., 12.7 ± 0.5 ppb yr−1) since the 1980s ([12]). The reasons for the
observed atmospheric CH4 trend are highly debated (e.g., [13]).

Recently, significant developments of inverse modeling methods have improved our
understanding of the spatial and temporal distributions of CH4 sources and sinks (e.g., [14–17]).
Inverse models are able to reproduce the observed atmospheric CH4 trends and variability within
the uncertainty of the processes involved (e.g., [18–20]). However, further reduction in the posterior
emission uncertainty of inverse modeling results depends on a better quantification of the errors in the
prior emissions and sinks and on error reductions in forward modeled atmospheric transport.

Bottom-up inventories, which are often used as a priori information on emission in inverse
modeling, also have several uncertainties. The statistical data on activities, causing emissions, emission
factors, and emission measurements, all have associated uncertainties. Thus, the uncertainty of an
emission inventory varies as a function of the uncertainties in each of these factors. It is preferable,
as far as possible, to distinguish between uncertainties in activity data and emission factors in
order to obtain an assessment as accurate as possible, and at a later stage be able to seek specific
inventory improvements. The verification of national GHG emission inventories is necessary for
building confidence in the emission estimates and trends. Verification techniques include quality
checks, inter-comparison of inventories and their error estimates, comparison with activity data,
comparison with concentration/source measurements, and transport modeling studies. Currently,
efforts to compare the national inventories to inverse model estimates are relying upon inverse
models using regional high-resolution Lagrangian transport models ([21,22]). The major reason to use
high-resolution transport models for analyzing anthropogenic methane emissions is the need to resolve
high concentration events associated with emission plumes, which lower resolution models resolve
less well and thus underestimate. Here, we reported the results of our analysis using a high-resolution
global Eulerian–Lagrangian coupled inverse model of methane using national reports of anthropogenic
methane emissions to the United Nations Framework Convention on Climate Change (UNFCCC)
([23]) as prior anthropogenic fluxes and evaluated the posterior emissions optimized in two emission
categories of natural and anthropogenic on a country scale. This study is an extension to one by
Wang et al. (2019) [24], where they compared methane emissions for 2010–2012 for large regions
with UNFCCC reports using either Emission Database for Global Atmospheric Research (EDGAR)
or UNFCCC reported values as prior, whereas, in this study, we reported results for country-scale
analysis of methane emissions for 2011–2017, with more detailed discussion and use of independent
validation for India using optimized forward simulations of aircraft CH4 observations.

2. Materials and Methods

2.1. Data

In this analysis, we used methane observations from the surface observation network and satellite.
The details are described in the following sections.

2.1.1. Greenhouse Gas Observing Satellite (GOSAT) Observations

The Greenhouse gases Observing Satellite (GOSAT) is a sun-synchronous satellite that observes
column-averaged dry-air mole fractions of methane in the shortwave infrared band (SWIR) ([25,26]).
Observations are made around 13:00 local time with a surface footprint diameter of about 10 km. In
the default observation mode, it has a repeat cycle of every three days, and in the target mode, special
observations are made over regions of interest. GOSAT is providing observations since June 2009
with no significant degradation of data quality ([27]). In this study, we used XCH4 retrieved from the
GOSAT at the National Institute for Environmental Studies, Japan (NIES Level 2 product, v.02.72; [28])
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for the period 2011–2017 to constrain methane emissions. Data uncertainty for the GOSAT retrievals
were set to 60 ppb, with the rejection threshold of 30 ppb. Such a large data uncertainty was applied
to the GOSAT retrievals due to the volume of GOSAT observations being much larger than that of
ground-based observations. Using a smaller uncertainty could result in an over-fit to the GOSAT data,
although measurement precision is higher for the ground-based observations. The averaging kernel of
GOSAT retrievals was not applied in this study because it did not affect the results in sensitivity tests.

2.1.2. Surface, Aircraft, and Ship Observations

Along with the GOSAT XCH4 observations, ground-based weekly or continuous atmospheric
CH4 observations from a global network of stationary stations (Figure 1), aircraft and ship tracks
were used in the inversions. In order to increase the representativeness of the measurements by using
observations during well-mixed atmospheric conditions, the continuous observations were averaged
to daily values using 12:00–16:00 local time. For mountain sites, 00:00–04:00 local time was instead
used for the effects of upslope transport of local emissions due to daytime heating. For the observations
from surface sites, data uncertainties were defined based on the root mean squared error (RMSE) with
its prior forward simulations. A minimum threshold value of 6 ppb was set in order to allow more
freedom for the inversion in the Southern Hemisphere. The rejection criteria for the surface, aircraft,
and ship observations were decided based on the variance in the data (double its magnitude). Details
of the data used are given in Table A1.
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Figure 1. Locations of the methane observations used in the inversion. Greenhouse gas Observing
Satellite (GOSAT) (green), surface station (red), aircraft (purple), and ship observations (blue) are
shown. The top row and right columns are regionally zoomed from the bottom left panel.

2.1.3. Aircraft Observations over India for Validation

Airborne CH4 measurements were performed during Cloud Aerosol Interaction and Precipitation
Enhancement Experiment (CAIPEEX) airplane campaigns around two urban areas in India ([29,30]).
The measurements were done by deploying in an airplane an online in-situ cavity ring-down
spectroscopy (CRDS) technique-based analyzer (G2401-m; Picarro Inc., USA). For calibration of the
measurements against the World Meteorological Organization (WMO) (X2004A) scale, we measured
prior to take-off three working secondary standard gasses (provided by National Oceanic and
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Atmospheric Administration (NOAA), Boulder, CO, USA) for 20 min each. The analyzer was
monitored for pressure stability during vertical sounding. Details of the analyzer are similar to the
ones reported in Chen et al. (2010) [31]. More details of observation methods could be found in
Tiwari et al. 2019 [32].

2.1.4. Prior Fluxes

Prior methane fluxes used in the model included anthropogenic emissions, natural emissions
from wetlands, soil sink, emissions from biomass burning, and other natural sources from the ocean,
geological reservoirs, and termites. Annual anthropogenic emission was from the Emissions Database
for Global Atmospheric Research (EDGAR v4.3.2) at a spatial resolution of 0.1◦×0.1◦ ([33]) scaled
to match the country reports to the UNFCCC. The scaling was applied on each grid cell based on
the fractional difference in country total emissions between EDGAR and UNFCCC. The top fifteen
emitting countries based on EDGAR v4.3.2 estimate for 2012 and other four countries Germany, France,
United Kingdom, and Japan were selected to adjust the inventory according to UNFCCC reports (see
Table A2). These nineteen countries emit 66% of the global total methane for the year 2012 ([24]). The
new gridded prior emission based on the UNFCCC reports was produced by scaling the annual total
to EDGAR v4.3.2 values. Beyond 2012, we used the EDGAR values for 2012. More details on the
data preparation could be found in [24]. Monthly variability was incorporated using the emission
seasonality data available for one year for 2010 from EDGAR. Emissions from rice cultivation were
taken from EDGAR.

Emission from wetland and soil sink were estimated by Vegetation Integrative Simulator of
Trace gases (VISIT, [34]) terrestrial ecosystem model simulation at 0.5◦, which uses Global Lakes
and Wetlands Database (GLWD; [35]) wetland area with corrections to the inundated area based on
analyzed rainfall and temperature. These data were remapped from 0.5◦ to the model grid of 0.1◦ using
GLWD globally, and for India using PROBA-V 100 m wetland area map from Copernicus Global Land
Service ([36]), since we found several wetlands with small areal extent were missing in GLWD wetland
fraction when comparing to the Indian Space Research Organization wetland atlas ([37]). Soil sink
data were remapped to 0.1◦ resolution using the gross primary productivity (GPP) maps by MODIS
MOD17 GPP product ([38]).

Emission from biomass burning was taken from Copernicus Atmosphere Monitoring Service
(CAMS) Global Fire Assimilation System (GFASv1.2, [39]) daily data at 0.1◦ resolution. GFAS
assimilates fire radiative power (FRP) observations from satellite-based sensors to produce daily
estimates of biomass burning emissions. It has been extended to include information about injection
heights derived from fire observations and meteorological information from the operational weather
forecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF). FRP observations
currently assimilated in GFAS are the National Aeronautics and Space Administration (NASA)
Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) active fire products
(http://modis-fire.umd.edu/). Data are available globally on a regular latitude-longitude grid with a
horizontal resolution of 0.1 degrees.

Other emissions included annual oceanic, geological, and termite emissions. The emission from
termites was from Fung et al. (1991) [40]. The emissions due to oceanic exchange were distributed over
the coastal region ([41]), and mud volcano emissions were based upon Etiope and Milkov (2004) [42].

The meteorological data used for the transport model, which is described in Section 2.2.1,
were obtained from the Japanese Meteorological Agency (JMA) Climate Data Assimilation System
(JCDAS; [43,44]), which provides the required parameters, such as three-dimensional wind fields,
temperature and humidity at 1.25◦ × 1.25◦ spatial resolution, 40 vertical hybrid sigma-pressure levels,
and a temporal resolution of 6 h.

http://modis-fire.umd.edu/
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2.2. Methods

2.2.1. NIES-TM-FLEXPART-VAR (NTFVAR) Inverse Modeling System

This study utilized a global Eulerian–Lagrangian coupled model NTFVAR that consists of
the National Institute for Environmental Studies (NIES) model as a Eulerian three-dimensional
transport model, and FLEXPART (FLEXible PARTicle dispersion model) [45] as the Lagrangian particle
dispersion model (LPDM). The forward transport model and model development were reported by
Ganshin et al. (2012) [46] and Belikov et al. (2016) [47]. Our transport model was a modified version
of the one described in [47]. The coupled model combines NIES-TM v08.1i with a horizontal resolution
of 2.5◦ and 32 hybrid-isentropic vertical levels described by Belikov et al. (2013) [48], and FLEXPART
model v.8.0 ([45]) run in backward mode with surface flux resolution of 0.1◦ (resolution of available
surface fluxes limits resolution of the Lagrangian model). The changes in the current version with
respect to the study by [47] include revision in the transport matrix, indexing and sorting algorithms to
allow efficient memory usage for handling large matrixes of Lagrangian responses to surface fluxes
required when using GOSAT data in the inversion. More details could be found in [24].

2.2.2. The Inverse Modeling Scheme

We used a high-resolution version of the transport model and its adjoint described
by Belikov et al. (2016) [47], which was combined with the optimization scheme proposed by
Meirink et al. (2008) [49] and Basu et al. (2013) [50]. Following the approach by [49], flux corrections
were estimated independently for two categories of emissions viz. anthropogenic and natural.
Variational optimization was applied to obtain flux corrections as two sets of scaling factors to monthly
varying prior uncertainty fields at 0.1◦×0.1◦ resolution separately for anthropogenic and natural
wetland emissions with a bi-weekly time step. Corrections to the anthropogenic emission were
according to the monthly climatology of emissions provided by EDGAR, and wetland emissions were
proportional to the monthly climatology of wetland emissions by the VISIT model, both given as prior
uncertainty fields. The grid-scale flux uncertainty was defined as 30% of EDGAR climatology for
the anthropogenic flux category and 50% of VISIT climatological emissions for the wetland emission
category. No optimization was applied to other natural flux categories, such as emissions from biomass
burning, geological sources, termites, and soil sink, as their amplitude is an order of magnitude
less than that of wetlands. A spatial correlation length of 500 km and a temporal correlation of two
weeks were used to provide smoothness on the scaling factors. The inverse modeling problem was
formulated ([49,51]) as the solution for the optimal value of x – vectors of corrections to prior fluxes at
the minimum of a cost function J(x):

J(x) =
1
2
(H·x− r)T

·R−1
·(H·x− r) +

1
2

xT
·B−1
·x (1)

where H is the atmospheric transport operator, r is the difference between observed concentration
and forward simulation made with prior fluxes without correction, R is the covariance matrix of
observations, and B is the covariance matrix of fluxes. In the B matrix design, we followed [49] in
representing B matrix as multiple of non-dimensional covariance matrix C and the diagonal flux
uncertainty D as

B = DT
·C·D (2)

C matrix is commonly implemented as a band matrix with non-diagonal elements declining
as ∼ exp

(
−l2/d2

)
with distance l between the grid cells and d the correlation distance. The

optimal solution, as the minimum of the cost function J, was calculated iteratively with an efficient
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, as implemented by [52]. More details on the
implementation could be found in [24,53].
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2.2.3. Posterior Uncertainties

Posterior flux uncertainties were calculated from a set of five simulations by randomly perturbing
the observations and the prior fluxes, as in the method described by [54]. Pseudo-observations were
prepared by perturbing the observations with its uncertainty at each site. Also, prior monthly EDGAR
and VISIT fluxes were prepared, applying random scaling factors separately for each global carbon
project (GCP) region and month. Inversions were carried out using the perturbed pseudo-observations
and the perturbed fluxes (perturbed EDGAR and VISIT combined with non-perturbed soil sink,
biomass burning, and other natural emissions from the ocean, geological sources, and termites) as the
prior fluxes and calculating the standard deviation of the inversion results.

3. Results

3.1. Posterior Fluxes and Flux Corrections

In this study, two categories of fluxes, viz. natural and anthropogenic, were optimized by the
inverse model. The annual mean (for the entire study period) global total natural prior was 209.15
Tg CH4 yr−1, and the posterior estimated was 232.49 Tg CH4 yr−1. This was in close agreement with
top-down estimates reported in Saunois et al. (2016) [55] (234 Tg), but higher than Saunois et al.
(2019) [2] (215 Tg). In the case of anthropogenic emissions, the prior was 342.57 Tg CH4 yr−1, and
the posterior was 340.92 Tg CH4 yr−1

, which was between 319 and 357 Tg estimated by [55] and [2],
respectively. The global total methane emission prior and posterior were 551.73 and 573.40 Tg CH4

yr−1, respectively; the total posterior emission was close to the estimate of 572 Tg by [2]. Figure 2
presents the comparison of surface methane observations, prior forward simulation and optimized
forward for six surface measurement sites, including Fraserdale (Canada), Sinhagad (India), Hateruma
(Japan), Mauna Loa (United States), Le Puy (France), and Ryori (Japan). Fraserdale is a continental
site with large CH4 variability due to local wetland emissions. Sinhagad is a mountain site, whose
CH4 concentration is influenced by maritime air in summer and inland emissions during winter due
to seasonal reversal of wind patterns. Mauna Loa is considered as a global background station, and
Hateruma and Ryori are influenced by emissions from East Asia. The inversion optimized fluxes
brought down the RMSE and bias compared to the prior forward simulations.

On a regional scale, anthropogenic emissions were found to increase in posterior compared to the
prior over North America, tropical South America, Western Europe, tropical Africa, and Southeast
Asia. Reductions were observed mainly over eastern Europe, China, Middle East countries, Japan,
temperate South America, and southern parts of Southern Africa. These were in conformity with some
studies, for example, the overestimation of Chinese coal emissions and the oil and gas sector in the
Middle East in EDGAR ([56]), although we did not attribute these differences to any source sectors. The
posterior fluxes in the natural emission category increased over tropical South America, contiguous and
central North America, Southern Africa, parts of India, China, and Southeast Asia, and eastern parts of
Russia. Amazonia is the largest natural tropical source of methane, still have large uncertainty in the
emission ([57]), and some studies have reported upward revision in the inverse analysis (e.g., [58]).
Tropical Africa is also a natural methane emitter (12% of global wetland emission, [59]) where the
sources are wetlands, flood plain, riverine ecosystems, etc. Due to the seasonal migration of the
intertropical convergence zone (ITCZ), the inundation extent is highly variable in these water bodies,
and thus there is significant variability in the estimates of methane emission in this region ([60]) and
difficulty in models to capture the wetland emissions. Significant reductions were observed over boreal
North America and Russia (Figure 3). It should be noted that the administrative boundaries shown
in Figures 3 and 4 are approximate and might deviate from areas for which national emissions are
reported or the national boundaries defined by the countries. Detailed analysis on the country scale is
described in the following section.
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Figure 2. The observed (grey impulses), prior forward (red), and optimized (blue) CH4 concentrations
at six sites, (a) Fraserdale, (b) Sinhagad, (c) Hateruma, (d) Maunaloa, (e) Le Puy, and (f) Ryori. The root
mean squared error (RMSE, in ppb) and the bias (BIAS, in ppb) for the prior and posterior are shown
(red and blue, respectively).

Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 24 

 

root mean squared error (RMSE, in ppb) and the bias (BIAS, in ppb) for the prior and posterior are 

shown (red and blue, respectively). 

On a regional scale, anthropogenic emissions were found to increase in posterior compared to 

the prior over North America, tropical South America, Western Europe, tropical Africa, and 

Southeast Asia. Reductions were observed mainly over eastern Europe, China, Middle East countries, 

Japan, temperate South America, and southern parts of Southern Africa. These were in conformity 

with some studies, for example, the overestimation of Chinese coal emissions and the oil and gas 

sector in the Middle East in EDGAR ([56]), although we did not attribute these differences to any 

source sectors. The posterior fluxes in the natural emission category increased over tropical South 

America, contiguous and central North America, Southern Africa, parts of India, China, and 

Southeast Asia, and eastern parts of Russia. Amazonia is the largest natural tropical source of 

methane, still have large uncertainty in the emission ([57]), and some studies have reported upward 

revision in the inverse analysis (e.g., [58]). Tropical Africa is also a natural methane emitter (12% of 

global wetland emission, [59]) where the sources are wetlands, flood plain, riverine ecosystems, etc. 

Due to the seasonal migration of the intertropical convergence zone (ITCZ), the inundation extent is 

highly variable in these water bodies, and thus there is significant variability in the estimates of 

methane emission in this region ([60]) and difficulty in models to capture the wetland emissions. 

Significant reductions were observed over boreal North America and Russia (Figure 3). It should be 

noted that the administrative boundaries shown in Figures 3 and 4 are approximate and might 

deviate from areas for which national emissions are reported or the national boundaries defined by 

the countries. Detailed analysis on the country scale is described in the following section. 

 

Figure 3. Posterior fluxes (a and c) and the corresponding flux corrections (b and d) by inverse model, 

averaged for 2011–2017, for natural (bottom panel) and anthropogenic (upper panel) categories. The 

units are in g CH4 m−2 d−1. Note that the administrative boundaries depicted in the figure may not 

reflect the actual political boundaries. 

3.2. Country Total Emissions 

3.2.1. Emission from Anthropogenic Sources 

We analyzed the prior and posterior emissions for anthropogenic and natural categories and 

their flux corrections by the inverse model on a country scale (Figure 4). For the anthropogenic 

Figure 3. Posterior fluxes (a and c) and the corresponding flux corrections (b and d) by inverse model,
averaged for 2011–2017, for natural (bottom panel) and anthropogenic (upper panel) categories. The
units are in g CH4 m−2 d−1. Note that the administrative boundaries depicted in the figure may not
reflect the actual political boundaries.



Remote Sens. 2020, 12, 375 9 of 24

Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 24 

 

category, emission totals calculated from EDGAR prior were highest for China (54.3 Tg CH4 yr−1), 

Russia (34.2 Tg CH4 yr−1), United States (27.8 Tg CH4 yr−1), India (20.1 Tg CH4 yr−1), and Brazil (16.4 

Tg CH4 yr−1). The inverse model corrected the prior emission upward for India 24.18 ± 5.3 Tg CH4 yr−1 

(difference: 4.1 Tg; 20.4%) and United States 29.76 ± 7.8 Tg CH4 yr−1 (2 Tg; 7.2%), while reduction in 

posterior emissions found over China 45.73 ± 8.6 Tg CH4 yr−1 (8.6 Tg; 15.8%), Russia 31.91 ± 7.8 Tg CH4 

yr−1 (2.25 Tg; 6.6%). Among countries having large anthropogenic emissions, emission from Brazil 

was having the least correction (0.1 Tg CH4 yr−1; 0.61%). Anthropogenic prior total emission in 

Indonesia was 11.17 Tg CH4 yr−1, which was found to have a 5.8% upward correction of 0.65 Tg so 

that the posterior emission was 11.82 ± 2.5 Tg. The prior, posterior, and percentage difference in 

posterior for natural, anthropogenic, and total emissions for selected countries is shown in Table 1. 

Considering the posterior uncertainty for each country, most of the large emitting countries were 

found to have the inverse model corrections within the model uncertainty range, which was 

calculated, as mentioned in Section 2.2.3. Though in the case of India, the optimized emission was 

higher than the anthropogenic prior, the difference was within the inverse model uncertainty (4.1 Tg 

against 5.3 Tg uncertainty). 

 

Figure 4. The mean annual total emissions aggregated (2011–2017) for each country for anthropogenic 

(left panels) and natural (right panels) categories. (a) and (d) (upper panel) Prior, (b) and (e) (middle 

panel) posterior, and (c) and (f) (bottom panel) correction fluxes in Tg CH4 yr−1 units are given. 

3.2.2. Emission from Natural Sources 

In our study, though we optimized only for wetland emissions, the discussions were on total 

natural emissions, including other natural sources. In the case of emissions from natural sources, the 

largest upward corrections were for northern South American countries, such as Venezuela (2.22 Tg 

CH4 yr−1; 36.27%), Colombia (0.78 Tg CH4 yr−1; 32.77%), and Brazil (10.5 Tg CH4 yr−1; 36%) and a lower 

posterior emissions in Argentina (0.14 Tg CH4 yr−1; 3.5%) in South America. Other South American 

Figure 4. The mean annual total emissions aggregated (2011–2017) for each country for anthropogenic
(left panels) and natural (right panels) categories. (a) and (d) (upper panel) Prior, (b) and (e) (middle
panel) posterior, and (c) and (f) (bottom panel) correction fluxes in Tg CH4 yr−1 units are given.

3.2. Country Total Emissions

3.2.1. Emission from Anthropogenic Sources

We analyzed the prior and posterior emissions for anthropogenic and natural categories and their
flux corrections by the inverse model on a country scale (Figure 4). For the anthropogenic category,
emission totals calculated from EDGAR prior were highest for China (54.3 Tg CH4 yr−1), Russia (34.2
Tg CH4 yr−1), United States (27.8 Tg CH4 yr−1), India (20.1 Tg CH4 yr−1), and Brazil (16.4 Tg CH4 yr−1).
The inverse model corrected the prior emission upward for India 24.18 ± 5.3 Tg CH4 yr−1 (difference:
4.1 Tg; 20.4%) and United States 29.76 ± 7.8 Tg CH4 yr−1 (2 Tg; 7.2%), while reduction in posterior
emissions found over China 45.73 ± 8.6 Tg CH4 yr−1 (8.6 Tg; 15.8%), Russia 31.91 ± 7.8 Tg CH4 yr−1

(2.25 Tg; 6.6%). Among countries having large anthropogenic emissions, emission from Brazil was
having the least correction (0.1 Tg CH4 yr−1; 0.61%). Anthropogenic prior total emission in Indonesia
was 11.17 Tg CH4 yr−1, which was found to have a 5.8% upward correction of 0.65 Tg so that the
posterior emission was 11.82 ± 2.5 Tg. The prior, posterior, and percentage difference in posterior for
natural, anthropogenic, and total emissions for selected countries is shown in Table 1. Considering the
posterior uncertainty for each country, most of the large emitting countries were found to have the
inverse model corrections within the model uncertainty range, which was calculated, as mentioned in
Section 2.2.3. Though in the case of India, the optimized emission was higher than the anthropogenic
prior, the difference was within the inverse model uncertainty (4.1 Tg against 5.3 Tg uncertainty).
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Table 1. List of countries with annual emission (natural or anthropogenic) greater than 2.5 Tg CH4.
Annual prior and posterior emission for total, natural, and anthropogenic categories and their percentage
difference after optimization are given. The final row corresponds to global values. Country codes are
listed against country names in the appendix, Table A2.

Country
Code

Total
Prior

Total
Posterior

Percentage
Difference

Natural
Prior

Natural
Posterior

Percentage
Difference

Anthropogenic
Prior

Anthropogenic
Posterior

Percentage
Difference

Posterior-Prior
(Anthropogenic)

Uncertainty
(Tg)

CHN 60.1 52.0 −13.5 5.8 6.3 7.7 54.3 45.7 −15.8 −8.6 8.6

USA 51.6 55.7 7.9 23.8 25.9 8.8 27.8 29.8 7.2 2.0 7.8

RUS 47.8 45.2 −5.5 13.6 13.2 −2.7 34.2 31.9 −6.6 −2.3 7.8

BRA 45.6 56.2 23.3 29.2 39.8 36.1 16.4 16.5 0.6 0.1 10.0

IND 29.9 36.5 21.9 9.9 12.3 25.2 20.1 24.2 20.4 4.1 5.3

CAN 23.4 16.4 −29.8 19.7 12.2 −37.8 3.7 4.2 12.4 0.5 4.5

IDN 19.5 20.6 5.5 8.3 8.7 5.1 11.2 11.8 5.8 0.7 2.5

VEN 9.2 11.6 26.0 6.1 8.3 36.3 3.1 3.2 5.3 0.2 2.0

BGD 8.6 11.1 29.1 4.0 5.9 46.9 4.6 5.2 13.7 0.6 1.7

NGA 8.3 8.5 2.2 2.4 2.4 0.8 5.9 6.1 2.7 0.2 1.5

PAK 7.7 8.0 3.0 0.6 0.6 3.6 7.2 7.4 2.9 0.2 1.0

ARG 7.7 7.0 −9.2 3.9 3.8 −3.6 3.8 3.3 −14.7 −0.6 1.2

SDN 6.7 7.7 14.5 3.8 4.6 20.8 2.9 3.1 5.5 0.2 1.5

IRN 6.4 6.3 −1.6 0.8 0.8 0.0 5.6 5.5 −1.8 −0.1 0.8

VNM 6.2 6.7 8.2 2.1 2.4 14.0 4.1 4.3 5.2 0.2 1.1

COD 6.0 7.2 19.9 5.0 6.2 23.0 1.0 1.0 4.1 0.0 0.9

THA 5.8 6.4 10.0 1.2 1.4 17.1 4.6 5.0 8.1 0.4 1.0

MEX 5.5 5.8 5.3 1.0 1.1 6.1 4.5 4.7 5.4 0.2 0.9

MMR 5.4 6.1 13.3 2.0 2.3 19.5 3.4 3.8 10.0 0.3 0.8

COL 5.1 6.1 18.8 2.4 3.2 32.8 2.7 2.9 6.6 0.2 1.1

ETH 4.5 4.8 7.4 0.9 1.0 16.9 3.6 3.8 5.0 0.2 0.8

PRY 4.5 4.6 3.6 3.6 3.8 5.2 0.8 0.8 −3.7 0.0 0.9

TZA 4.3 5.0 14.8 2.8 3.4 20.3 1.5 1.6 4.6 0.1 0.6

TUR 3.8 3.6 −4.8 0.1 0.1 0.0 3.6 3.4 −5.0 −0.2 0.5

KAZ 3.8 3.6 −6.3 0.5 0.5 0.0 3.3 3.1 −7.2 −0.2 0.6

PER 3.8 4.7 23.0 2.9 3.7 29.5 0.9 0.9 2.2 0.0 0.6

TCD 3.8 4.1 9.5 3.2 3.5 10.6 0.6 0.6 3.5 0.0 0.9

ZMB 3.8 4.7 23.4 3.4 4.3 26.0 0.4 0.4 2.4 0.0 0.6

ZAF 3.4 3.2 −4.7 0.3 0.3 0.0 3.1 2.9 −5.2 −0.2 0.4

IRQ 2.9 2.9 −1.4 0.1 0.1 0.0 2.9 2.8 −1.4 0.0 0.4

DZA 2.9 3.0 2.4 0.1 0.1 8.3 2.8 2.9 2.5 0.1 0.4

KEN 2.9 3.2 11.8 1.1 1.4 22.3 1.8 1.9 5.7 0.1 0.4

PNG 2.9 3.4 14.3 2.8 3.3 14.8 0.1 0.1 0.0 0.0 0.7

SAU 2.8 2.9 1.8 0.0 0.0 0.0 2.8 2.8 1.8 0.1 0.4

UKR 2.8 2.4 −14.5 0.2 0.2 −4.4 2.6 2.2 −15.8 −0.4 0.4

PHL 2.8 2.8 1.5 0.2 0.2 4.6 2.5 2.6 1.2 0.0 0.4

POL 2.7 2.5 −5.3 0.0 0.0 0.0 2.6 2.5 −5.3 −0.1 0.4

AGO 2.7 3.1 12.9 2.1 2.5 16.0 0.6 0.6 1.7 0.0 0.3

FRA 2.5 2.8 11.2 0.1 0.1 0.0 2.4 2.7 11.2 0.3 0.4

Global 551.7 573.4 3.9 209.2 232.5 11.2 342.6 340.9 −0.5 −1.7 22.6

3.2.2. Emission from Natural Sources

In our study, though we optimized only for wetland emissions, the discussions were on total
natural emissions, including other natural sources. In the case of emissions from natural sources,
the largest upward corrections were for northern South American countries, such as Venezuela
(2.22 Tg CH4 yr−1; 36.27%), Colombia (0.78 Tg CH4 yr−1; 32.77%), and Brazil (10.5 Tg CH4 yr−1; 36%)
and a lower posterior emissions in Argentina (0.14 Tg CH4 yr−1; 3.5%) in South America. Other South
American countries, such as Peru and Bolivia, also had a more than 20% increase in the posterior
emissions compared to prior. Thus, there is a general tendency that the northern South American
countries have lower emissions from natural sources in the prior. While the United States had
2.1 Tg CH4 yr−1 increase, which was 8.8% of the natural prior, posterior emissions in Canada was
7.4 Tg CH4 yr−1 (37.8%) less than prior, which was still within the uncertainty range of the prior
emissions. In Asia, for India and Bangladesh, there are large positive corrections to emissions (2.48 Tg
CH4 yr−1; 25% and 1.89 Tg CH4 yr−1; 46.9%, respectively), followed by a less but positive correction in
China mainland (0.45 Tg CH4 yr−1; 7.7%). The inverse model suggested an overall underestimation in
the prior for equatorial African countries (Figure 4f), such as Uganda, Tanzania, Sudan, and Kenya,
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though the annual emissions were lower for these countries. A recent study ([60]) using GOSAT
XCH4 observations in their inversion reported overall larger emissions compared to prior over Africa
with strong exceptions in the Congo basin. However, in our analysis, we found a slight increase in
our posterior emissions over the Democratic Republic of Congo. They attributed the increase in the
CH4 emissions during 2010–2015 to increase the wetland extent during this period in some regions of
Sudan (Sudd wetland). Tootchi et al. (2019) [61] presented the details of the disparity in the spatial
extent among different wetland datasets over this region (Figure 10 therein). In their study, the Baroste
floodplain in southern tropical Africa had a wetland extent ten times that during the dry season
minimum. Thus, there was potentially an underestimation in our prior wetland model over this area.
More details of emission from these countries could be found in Table 1.

4. Discussion

4.1. Case of India

As far as the methane emission from India is concerned, there are large differences in the total
wetland area in different wetland area databases. For example, Adam et al. (2010) [62] addressed the
issue of disparity between GLWD wetland areas and satellite-based estimation of naturally inundated
areas (NIA). Their study showed that the difference between GLWD and NIA in India and Southeast
Asia (among other regions in their study) covered a significant area. Though satellite-based inundation
extent might be overestimated in areas where wet soils could be interpreted as inundated, in the
Indian subcontinent, they showed that GLWD might be missing some waterbodies. Therefore, there
is a possibility that the wetland methane emissions in India may be underestimated in the prior (as
suggested by increasing the wetland emissions by optimization), and this may influence the posterior
estimate of anthropogenic emissions due to the lack of freedom to increase wetland emissions because
of underestimated wetland area fraction in the region. In our analysis, we found that in India, some
wetlands with small areal extent were not captured in GLWD dataset, and we merged it with the
PROBA-V 100 m wetland area fraction to redistribute spatially the 0.5◦ wetland methane emissions
from VISIT model, keeping the total India wetland emissions unchanged.

Moreover, the anthropogenic emissions for India in EDGAR v4.3.2 is around 65% higher than
the UNFCCC reported data (for example, in 2010, the EDGAR estimate is 32.6 Tg, while the emission
reported to UNFCCC is 19.7 Tg in first Biennial Update Report to the UNFCCC by the Government of
India ([63]) and 21 Tg in 2008 by [64]). Some of the recent studies, focusing on the region, covering
some of the years in this analysis, found emission estimates between UNFCCC reports and the recent
EDGAR updates. For example, Miller et al., (2019) [7] estimated lower anthropogenic emission for
India than EDGAR 4.3.2 but higher annual emissions than Ganesan et al., (2017) [65]. Both the studies
used GOSAT observations, and [65] also included surface and aircraft observations of methane in India
in their inversion. Here, in our analysis, to constrain the emissions in the region, observations from
four surface stations (Sinhagad; SNG [66], Cape Rama; CRI [67], Port Blair; PBL, and Pondicherry;
PON [68]) in the Indian subcontinent were included in the inversion. The RMSE and bias for all four
stations were reduced after the optimization by the inverse model. The RMSE for SNG was reduced to
57.4 in optimized simulation from 62.5 of prior forward and the bias from −17.9 to −4.6. Similarly, for
CRI station (RMSE from 50.9 to 37.9 and bias from −23.4 to −9.4), PBL (RMSE from 40.9 to 34.8 and
bias from −14.6 to −5.5), and PON (RMSE from 50.4 to 39.4 and bias from −32 to −16.7).

As a validation to the inverse model estimates, we prepared an independent check with aircraft
observations of methane during few months for 2014 (September to November) and 2015 (July). This
aircraft observation campaign was conducted by the Indian Institute of Tropical Meteorology, India
(Section 2.1.3). These observations were not included in our inversion itself, but prior forward and
optimized forward simulations were carried out for one-minute averaged CH4 observations. Figure 5a
shows the tracks of aircraft observations centered around the Indian city of Varanasi and the difference
between the observations and simulation with fluxes optimized by the inverse model. Flight tracks of
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the observations around the city of Pune, which were also used in the profile averaging presented in
Figure 5b, were not shown here. The vertical profiles of the aircraft CH4 observations averaged for
300 m altitude is shown in Figure 5b. The total methane emission, both anthropogenic and natural, in
India, was corrected upwards by the optimization. It could be seen in Figure 5b that the prior forward
simulation showed low mixing ratios at all mean vertical levels, and the simulations with posterior
emissions agreed well in the boundary layer and to a less degree above it. Overall, the validation with
the surface stations was used in the inversion and the aircraft observations used for validation only,
and the posterior simulations showed a better fit to the observations than the prior forward model.
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Figure 5. (a) Track of aircraft observation of methane over the Indian domain, where the colors show the
difference between optimized forward and observations. To facilitate visual clarity, not all observations
are shown. The black stars represent cities around the region. Names of the cities are labeled in
black. Observations at different altitudes are shown with different symbols, as shown in the legend.
(b) The vertical profile of 300 m averaged aircraft observations against prior forward and optimized
forward simulations.

4.2. Seasonal Variability in Emission

Besides the annual country’s total emissions, we analyzed the monthly variation of the fluxes for
selected countries (having total emission greater than 5 Tg yr−1), as presented in Figure 6. In the case
of China, the peak anthropogenic emission during the spring season was reduced, and the posterior
emissions peaked during the summer months. The relatively lower natural methane emissions had not
been altered by the inverse model. Anthropogenic prior for India showed a very weak seasonal cycle
(similar to the analysis by [65]), while the inverse model brought out the more significant seasonal cycle
with peaks during the southwest monsoon season (June to September). This was due to the fact that
agricultural practices are dependent on rainy season (e.g., ~40% of rice production in low-lying rainfed
land, [69]), and a slight phase shift with natural sources was found with the emission from natural
sources (Figure 6), which indicates sources other than in natural emission category. Waterlogged areas
increased nearly threefold during the southwest monsoon season, resulting in increased wetland CH4

emissions ([70]). During this season, the natural emission also increased in the posterior (e.g., [71]), both
contributing to the summer peak in the total methane emission in India. Bangladesh had a very clear
seasonal cycle (further enhanced by the optimization), which was mainly modulated by the methane
emission from the natural sources. Pakistan had a peculiar scenario, having very small emission from
natural sources with the total methane emission having distinct double peaks, a dominant one in
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spring and another one in summer. Most of the methane emission in Pakistan was from the agricultural
sector (4 Tg in 2012, [72]). Iran also showed large influence from anthropogenic sources, and the
inverse model offset the emission peak to summer months from spring. The natural methane emission
in Russia was almost half of the total anthropogenic emissions, but the amplitude of the monthly
variation was large compared to anthropogenic emissions, and thus the seasonality in total methane
emission was modulated by natural emissions.Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 24 
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In the Southeast Asian countries, emission from natural sources is mainly influenced by water
availability due to summer monsoon (e.g., [73]). Although the anthropogenic emission is larger than the
emission from natural sources in Indonesia, there are strong signals of natural emissions due to major
fire events in Indonesia (e.g., anomalous peak in 2015). Total methane emission in Myanmar has two
peaks in monthly emissions, one in spring and another prominent peak in summer monsoon season.
Myanmar is a country influenced by southwest monsoon rainfall and is a land of rice production
both irrigated and rainfed ([74]), of which the majority of CH4 emission (65%) is from irrigated or
deep-water rice fields. Thus, the seasonality in CH4 emissions is mainly modulated by wetland
emissions. Variability in total emission follows mainly the variability in natural emissions. Methane
emission in Thailand is, on the other hand, influenced mainly by anthropogenic emissions. So is the
case with Vietnam, the optimization embeds a stronger annual peak during the monsoon season.

For the United States, these two categories are nearly equal in magnitude, but peaks at different
seasons in the year-−natural emissions in summer and anthropogenic in winter. The main anthropogenic
source of methane in the United States is from livestock and manure management. The seasonality in
methane emission in Canada is driven mainly by natural emissions, which has a larger magnitude
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than the anthropogenic emissions [75]. The seasonal cycle in the total methane emission in Mexico
is mainly contributed by the anthropogenic emissions, with more than four times the emission from
natural sources. In Brazil, the seasonality in the total methane emission is mainly driven by variability
in methane emissions from natural sources, and in the posterior, we found substantial upward
correction in the natural emission category and thereby total methane emissions. Besides Brazil,
Venezuela also is mainly contributed by emission from natural sources with a distinct peak during
summer months. While seasonality in the methane emission in Colombia is influenced mainly by
natural sources, the seasonal cycle in total emission in Argentina is equally modulated by natural and
anthropogenic categories.

In the African continent, Nigeria, Sudan, and the Democratic Republic of Congo are the main
methane emitters. Though anthropogenic emission is the major category of emission and has clear
seasonality in Nigeria, the total emissions do not have a discernible seasonal pattern in emission.
On the contrary, Sudan and Congo have a clear seasonal cycle due to the greater contribution from
natural sources.

4.3. Desirable Future Improvements

The deficiencies of the inversion system, with respect to the application for comparison of estimated
emissions with national emission reports, to be addressed in future studies include the following. The
inverse model optimizes the emissions on a coarser spatial resolution than the transport defined on
0.1◦ because of smoothing in the flux corrections applied to the prior emissions, which is dependent on
both the smoothness constraint and the number of iterations. Thus, more research is needed to find an
optimal balance between the smoothness of the solution and the amount of detail in retrieved fluxes. It
would potentially improve the estimated emissions for countries and regions with lower emissions.
Another improvement should be the use of high-resolution meteorological fields for transport, in
place of currently used data at 1.25◦ spatial resolution and 6 h temporal intervals ([76,77]). Improved
mapping of natural (and anthropogenic) emissions is necessary as we have identified deficiencies
in the spatial distribution of wetland emissions, for example, over India, as discussed in Section 4.1.
Some of the transport model biases, such as reduced vertical mixing and higher inter-hemispheric
transport rate in the Eulerian transport model, used in this study were discussed in a multi-model
intercomparison study by Krol et al. (2018) [78]. Currently, there is less evidence on the size of the
biases and their impact on inversion results; more details would emerge after analysis of the data of
GCP methane intercomparison ([2]), where multiple models could be compared to each other, including
the one used in this study, and the correlations between transport model properties and reconstructed
emissions could be established. Unaccounted biases in the satellite observations, especially over
regions where ground-based observations are missing, also might influence the results. Incorporating
more ground-based observations in the inversion might help reducing biases over regions with a
sparse observation network.

5. Conclusions

We carried out inversion of methane fluxes for seven years using GOSAT satellite observations
and surface observations using a high-resolution inverse model NIES-TM-FLEXPART-VAR (NTFVAR)
that couples a Lagrangian particle dispersion model FLEXPART with a global Eulerian model NIES-TM.
Optimization was applied to natural (wetland only) and anthropogenic emissions on a bi-weekly
time step, and the results were analyzed on a global country scale. In order to evaluate the inverse
model estimates of methane emissions on a country scale, we used EDGAR anthropogenic methane
emission inventory scaled to match the national reports to the UNFCCC. Our results showed that
largest correction to the wetland emissions were for Bangladesh having an upward revision of around
46.9% (1.89 Tg CH4 yr−1) of its prior, followed by Venezuela (2.2 Tg CH4 yr−1; 36.3%), Brazil (10.5
Tg CH4 yr−1; 36.1%), and India (2.4 Tg CH4 yr−1; 25.2%), while there was 37.8% (7.5 Tg CH4 yr−1)
reduction for Canada. On the other hand, anthropogenic emission was found to differ from national
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reports for the United States by 2 Tg CH4 yr−1 (7.2%), China (8.6 Tg CH4 yr−1; 15.8%), India (4.1 Tg
CH4 yr−1; 20.4%), Russia (2.3 Tg CH4 yr−1; 6.6%), Canada (0.5 Tg CH4 yr−1; 12.4%), Bangladesh (0.6 Tg
CH4 yr−1; 13.7%, and Argentina (0.6 Tg CH4 yr−1; 14.7%), with all differences being within emission
uncertainty range. The inversion results for India were validated against aircraft data over two north
Indian urban regions, and the posterior fit to the observations showed a clear improvement, especially
in the boundary layer. The application of an inversion system based on high-resolution transport
using prior anthropogenic emission field adjusted to the UNFCCC emission reports, and with the
combination of surface and satellite observations, enabled us to study the natural and anthropogenic
methane emissions over a spatial scale of countries and to compare with the national methane emission
reports. However, improvements in the resolution of the model and meteorological fields, fixing source
allocations in emission sources used as priors, refinements to reduce model and observation biases,
and inclusion of more observations are desirable targets for future improvement.
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Appendix A

Table A1. List of observations used in this inversion. The details are Station (country), site ID, institute
conducting observations, observation type, and sampling method.

Station Observation ID Lab Observation Type Sampling Type

Abbotsford (Canada) abb006 ECCC Station Continuous

Arembepe (Brazil) abp001 NOAA Station Discrete

Alert (Canada) alt006 ECCC Station Continuous

Alert (Canada) alt001 NOAA Station Discrete

Amsterdam Island (France) ams011 LSCE Station Discrete/Continuous

Argyle (US) amt001 NOAA Station Discrete

Anmyeon-do (Republic of Korea) amy061 KMA Station Continuous

Aircraft (Western North Pacific)
(Japan) aoa019 JMA Aircraft Discrete (aircraft)

Arrival Heights (New Zealand) arh015 NIWA Station Discrete

Ascension Island (United Kingdom) asc001 NOAA Station Discrete

Assekrem (Algeria) ask001 NOAA Station Discrete

Amazon Tall Tower Observatory
(Brazil) ato045 MPI-BGC Station Continuous

Serreta (Portugal) azr001 NOAA Station Discrete

Azovo (Russia) azv NIES Station Continuous

Baltic Sea (Poland) bal001 NOAA Station Discrete



Remote Sens. 2020, 12, 375 16 of 24

Table A1. Cont.

Station Observation ID Lab Observation Type Sampling Type

Boulder (US) bao001 NOAA Station Discrete

Behchoko (Canada) beh006 ECCC Station Continuous

Begur (Spain) bgu011 LSCE Station Discrete

Baring Head (New Zealand) bhd001 NOAA Station Discrete

Biscarrosse (France) bis011 LSCE Station Continuous

Bukit Kototabang (Indonesia) bkt105 EMPA Station Continuous

Bukit Kototabang (Indonesia) bkt001 NOAA Station Discrete

St. David’s Head (United Kingdom) bme001 NOAA Station Discrete

Tudor Hill (Bermuda)
(United Kingdom) bmw001 NOAA Station Discrete

Bratt’s Lake (Canada) brl006 ECCC Station Continuous

Barrow (US) brw001 NOAA Station Discrete

Berezorechka (Russia) brz NIES Station Continuous

Constanta (Black Sea)
(Romania) bsc001 NOAA Station Discrete

Pacific Ocean (New Zealand) bsl015 NIWA Ship Discrete

Cambridge Bay (Canada) cab006 ECCC Station Continuous

Cold Bay (US) cba001 NOAA Station Discrete

Cabauw (Netherlands) cbw196 RUG Station Continuous

Cape Ferguson (Australia) cfa002 CSIRO Station Discrete

Cape Grim (Australia) cgo001 NOAA Station Discrete

Cape Grim (Australia) cgo043 AGAGE Station Continuous

Chapais (Canada) cha006 ECCC Station Continuous

Chibougamau (Canada) chi006 ECCC Station Continuous

Christmas Island (Kiribati) chr001 NOAA Station Discrete

Cherskii (Russia) chs001 NOAA Station Discrete

Churchill (Canada) chu006 ECCC Station Continuous

Valladolid (Spain) cib001 NOAA Station Discrete

Monte Cimone (Italy) cmn106 UNIURB/ISAC Station Discrete

Cape Ochiishi (Japan) coi020 NIES Station Continuous

Cape Point (South Africa) cpt036 SAWS Station Continuous

Cape Point (South Africa) cpt001 NOAA Station Discrete

Cape Rama (India) cri002 CSIRO Station Discrete

Crozet (France) crz001 NOAA Station Discrete

Casey (Australia) cya002 CSIRO Station Discrete

Demyanskoe (Russia) dem020 NIES Station Continuous

Downsview (Canada) dow006 ECCC Station Continuous

Drake Passage (US) drp001 NOAA Ship Discrete

Dongsha Island (Taiwan) dsi001 NOAA Station Discrete

Egbert (Canada) egb006 ECCC Station Continuous

Easter Island (Chile) eic001 NOAA Station Discrete

CONTRAIL (Japan) eom010 MRI Aircraft Discrete (aircraft)

Estevan Point (Canada) esp006 ECCC Station Continuous

Esther (Canada) est006 ECCC Station Continuous

East Trout Lake (Canada) etl006 ECCC Station Continuous

Finokalia (Greece) fik011 LSCE Station Discrete

Fraserdale (Canada) fsd006 ECCC Station Continuous

Gif-sur-Yvette (France) gif011 LSCE Station Continuous

Giordan Lighthouse (Malta) glh209 UMIT Station Continuous

Guam (US) gmi001 NOAA Station Discrete

Gunn Point (Australia) gpa002 CSIRO Station Discrete

Gosan (Republic of Korea) gsn NIER Station Continuous

Hateruma Island (Japan) hat020 NIES Station Continuous
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Table A1. Cont.

Station Observation ID Lab Observation Type Sampling Type

Halley (United Kingdom) hba001 NOAA Station Discrete

Hanle (India) hle011 LSCE Station Discrete

Hohenpeissenberg (Germany) hpb001 NOAA Station Discrete

Hegyhatsal (Hungary) hun001 NOAA Station Discrete

Storhofdi (Iceland) ice001 NOAA Station Discrete

Igrim (Russia) igr020 NIES Station Continuous

Inuvik (Canada) inu006 ECCC Station Continuous

Izaña (Spain) izo001 NOAA Station Discrete

Izaña (Spain) izo027 AEMET Station Continuous

Jungfraujoch (Switzerland) jfj005 EMPA Station Continuous

Key Biscane (US) key001 NOAA Station Discrete

Kollumerwaard (Netherlands) kmw196 RIVM Station Continuous

Karasevoe (Russia) krs020 NIES Station Continuous

Cape Kumukahi (US) kum001 NOAA Station Discrete

Sary Taukum (Kazakhstan) kzd001 NOAA Station Discrete

Plateau Assy (Kazakhstan) kzm001 NOAA Station Discrete

Lauder (New Zealand) lau015 NIWA Station Discrete/Continuous

Park Falls (US) lef001 NOAA Station Discrete

Lac La Biche (Canada) llb006 ECCC Station Continuous

Lac La Biche (Canada) llb001 NOAA Station Discrete

Lulin (Taiwan) lln001 NOAA Station Discrete

Lampedusa (Italy) lmp001 NOAA Station Discrete

Lampedusa (Italy) lmp028 ENEA Station Discrete

Ile Grande (France) lpo011 LSCE Station Discrete

Lamto (Côte d’Ivoire) lto011 LSCE Station Continuous

Mawson (Australia) maa002 CSIRO Station Discrete

Mex High Altitude Global Climate
Observation Center
(Mexico)

mex001 NOAA Station Discrete

Mace Head (Ireland) mhd001 NOAA Station Discrete

Mace Head (Ireland) mhd043 AGAGE Station Continuous

Sand Island (US) mid001 NOAA Station Discrete

Mt. Kenya (Kenya) mkn001 NOAA Station Discrete

Mauna Loa (US) mlo001 NOAA Station Discrete/Continuous

Minamitorishima (Japan) mnm019 JMA Station Continuous

Macquarie Island (Australia) mqa002 CSIRO Station Discrete

Mt. Wilson Observatory (US) mwo001 NOAA Station Discrete

Natal (Brazil) nat001 NOAA Station Discrete

Neuglobsow (Germany) ngl025 UBA-Germany Station Continuous

Gobabeb (Namibia) nmb001 NOAA Station Discrete

Novosibirsk (Russia) nov004-070 NIES Aircraft Discrete (aircraft)

Noyabrsk (Russia) noy NIES Station Continuous

Niwot Ridge - T-van (US) nwr001 NOAA Station Discrete

Observatoire Pérenne de
l’Environnement (France) ope011 LSCE Station Discrete/Continuous

Otway (Australia) ota002 CSIRO Station Discrete

Ochsenkopf (Germany) oxk001 NOAA Station Discrete
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Table A1. Cont.

Station Observation ID Lab Observation Type Sampling Type

Pallas (Finland) pal001 NOAA Station Discrete

Pallas (Finland) pal030 FMI Station Continuous

Port Blair (India) pbl011 LSCE Station Discrete

Pic du Midi (France) pdm011 LSCE Station Discrete

Off the coast of Sendai Plain (Japan) pip008 TU Aircraft Discrete (aircraft)

Pacific Ocean (US) poc000-s35 NOAA Ship Discrete

Pondicherry (India) pon011 LSCE Station Discrete

Plateau Rosa (Italy) prs021 RSE Station Continuous

Palmer Station (US) psa001 NOAA Station Discrete

Point Arena (US) pta001 NOAA Station Discrete

Puy de Dôme (France) puy011 LSCE Station Discrete

Ragged Point (Barbados) rpb001 NOAA Station Discrete

Ragged Point (Barbados) rpb043 AGAGE Station Continuous

Ryori (Japan) ryo019 JMA Station Continuous

Beech Island (US) sct001 NOAA Station Discrete

Shangdianzi (China) sdz001 NOAA Station Discrete

Mahé (Seychelles) sey001 NOAA Station Discrete

Southern Great Plains (US) sgp001 NOAA Station Discrete

Shemya Island (US) shm001 NOAA Station Discrete

Samoa (US) smo001 NOAA Station Discrete

Samoa (US) smo043 AGAGE Station Continuous

Hyytiala (Finland) smr421 UHELS Station Continuous

Sonnblick (Austria) snb211 EAA Station Continuous

Sinhagad (India) sng IITM Station Discrete

Sodankylä (Finland) sod030 FMI Station Continuous

South Pole (US) spo001 NOAA Station Discrete

Schauinsland (Germany) ssl025 UBA-Germany Station Continuous

Sutro Tower (US) str001 NOAA Station Discrete

Summit (Denmark) sum001 NOAA Station Discrete

Surgut (Russia) sur005-070 NIES Aircraft Discrete (aircraft)

Syowa (Japan) syo001 NOAA Station Discrete

Tae-ahn Peninsula
(Republic of Korea) tap001 NOAA Station Discrete

over Japan between Sendai and
Fukuoka (Japan) tda008 TU Aircraft Discrete (aircraft)

Teriberka (Russia) ter055 MGO Station Discrete

Trinidad Head (US) thd001 NOAA Station Discrete

Trinidad Head (US) thd043 AGAGE Station Continuous

Tiksi (Russia) tik001 MGO Station Discrete

Trainou (France) tr3011 LSCE Station Discrete

Turkey Point (Canada) tup006 ECCC Station Continuous

Ushuaia (Argentina) ush001 NOAA Station Discrete

Wendover (US) uta001 NOAA Station Discrete

Uto (Finland) uto030 FMI Station Continuous

Ulaan Uul (Mongolia) uum001 NOAA Station Discrete

Vaganovo (Russia) vgn NIES Station Continuous

West Branch (US) wbi001 NOAA Station Discrete

Walnut Grove (US) wgc001 NOAA Station Discrete
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Table A1. Cont.

Station Observation ID Lab Observation Type Sampling Type

Sede Boker (Israel) wis001 NOAA Station Discrete

Moody (US) wkt001 NOAA Station Discrete

Mt. Waliguan (China) wlg001 NOAA Station Discrete

Mt. Waliguan (China) wlg033 CMA/NOAA Station Discrete

Western Pacific (US) wpc001 NOAA Ship Discrete

Western Pacific (Japan) wpsEQ0-S35 NIES Ship Discrete

Sable Island (Canada) wsa006 ECCC Station Discrete/Continuous

Yakutsk (Russia) yak010-030 NIES Station/Aircraft Continuous/Discrete

Yonagunijima (Japan) yon019 JMA Station Continuous

Zeppelin Mountain (Norway) zep001 NOAA Station Discrete

Zotino (Russia) zot045 MPI-BGC Station Discrete/Continuous

Zugspitze (Germany) zsf025 UBA-Germany Station Continuous

Table A2. List of country codes used in this paper and their respective names. The nineteen countries
used for scaling the EDGAR using UNFCCC reports are listed in bold letters.

Country Code Country Name

CHN China

USA United States

RUS Russia

BRA Brazil

IND India

CAN Canada

IDN Indonesia

BGD Bangladesh

NGA Nigeria

PAK Pakistan

FRA France

AUS Australia

DEU Germany

GBR United Kingdom

JPN Japan

THA Thailand

MEX Mexico

IRN Iran

ARG Argentina
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Table A2. Cont.

Country Code Country Name

VEN Venezuela

SDN Sudan

VNM Vietnam

COD Democratic Republic of the Congo

MMR Myanmar

COL Colombia

ETH Ethiopia

PRY Paraguay

TZA Tanzania

TUR Turkey

KAZ Kazakhstan

PER Peru

TCD Chad

ZMB Zambia

ZAF South Africa

IRQ Iraq

DZA Algeria

KEN Kenya

PNG Papua New Guinea

SAU Saudi Arabia

UKR Ukraine

PHL Philippines

POL Poland

AGO Angola
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