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Explicit Kronecker-Weyl theorems and
applications to prime number races

Alexandre Bailleul

Abstract

We prove explicit versions of the Kronecker-Weyl theorems, both in a discrete and a
continuous settings, without any linear independence hypothesis. As an application, we
propose an alternative approach to problems concerning asymptotic densities in prime number
races, over number fields and over function fields in one variable over finite fields, in the
language of random variables. Our approach allows us to prove new results on the existence
and positivity of some of those densities, which, in the case of races over function fields, do
not require any linear independence hypothesis.

Introduction
The Kronecker-Weyl theorem is an important result of harmonic analysis, related to ergodic
theory, and which has been used to study many arithmetical problems of statistical nature.
It is both a multidimensional generalization of Weyl’s famous result on the equidistribution
of the fractional parts of nα (n ∈ N), when α is an irrational number, and a generalization
of Kronecker’s density result on the torus. More specifically, let θ1, . . . , θn be real numbers,
then the one-parameter subgroup

Γ :=
{(
eiθ1x, . . . , eiθnx

)
| x ∈ R

}
is equidistributed in a subtorus inside the n-dimensional torus

Tn := {(z1, . . . , zn) ∈ Cn | ∀i ∈ {1, . . . , n}, |zi| = 1}

with respect to its Haar measure dµ. In other words, the topological closure Γ of Γ in Tn is a
closed subgroup of Tn with Haar measure dµ and for every continuous function f : Tn → C,
one has

1
X

∫ X

0
f
(
eiθ1x, . . . , eiθnx

)
dx −→

X→+∞

∫
Γ
f dµ.

Most relevant to the present work is the additional information that Γ is a m-dimensional
torus, where m is the dimension of the Q-vector space spanned by θ1, . . . , θn. In particular, if
θ1, . . . , θn are Q-linearly independent, then Γ = Tn, so we obtain Kronecker’s density result
in a strong form (in the sense that equidistribution holds), and when n = 1, this is exactly
Weyl’s equidistribution result.

There exists a discrete version of the Kronecker-Weyl Theorem, in which we consider the
discretely-parametrized subgroup

Γ :=
{(
eiθ1X , . . . , eiθnX

)
| X ∈ Z

}
.
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In this case, integrals are replaced by sums and we require the real numbers θ1, . . . , θn to
be Q-linearly independent with π. The reason for this is clear, since eiqπX assumes discrete
values in T when X ranges over the integers, and q is a rational number. Usually, both
the continuous and the discrete versions of the Kronecker-Weyl Theorem are proved using
abstract harmonic analysis (see [21, Theorem 2.2.5] or [9, Theorem 4.2] for instance). In
this paper, we give an elementary proof of a general version of Kronecker-Weyl’s result, both
in the discrete and the continuous case, in which we explicitly construct the set in which Γ
equidistributes. We insist on the fact that no hypothesis of linear independance is required in
our result (see Corollary 1.4, Theorem 1.9 and Corollary 1.14). We note that an elementary
and explicit proof of the continuous version of the Kronecker-Weyl theorem was given in the
arXiv version [18] of [19], Appendix B.

The Kronecker-Weyl theorem is at the heart of the modern approach (initiated by Ru-
binstein and Sarnak in [23]) to the study of so-called "prime number races", which consists
in investigating the properties of the set

Pq;a1,...,aD := {x ≥ 2 | π(x; q, a1) > π(x; q, a2) > · · · > π(x; q, aD)},

where π(x; k, c) is the number of primes p ≤ x such that p ≡ c mod k. Here, the invert-
ible classes a1, . . . , aD are called the contestants of the prime number race. Assuming the
Generalized Riemann Hypothesis, Rubinstein and Sarnak proved that functions of the form

Eq;a1,...,aD : y 7→
(
π(ey; q, a1)− Li(ey)

ϕ(q) , . . . , π(ey; q, aD)− Li(ey)
ϕ(q)

)
admit limiting distributions, according to the following definition.

Definition 0.1. Let E : R+ −→ RD. We say E admits a limiting distribution µ when µ is a
Borel probability measure on Rd such that for any bounded continuous function f : RD −→ R,
one has

1
X

∫ X

0
f(E(y)) dy −→

X→+∞

∫
RD

f dµ.

From there, and assuming the linear independence over Q of the non-negative imaginary
parts of non-trivial zeros of Dirichlet L-functions mod q (an hypothesis called the Grand
Simplicity Hypothesis or GSH in [23]), Rubinstein and Sarnak proved that sets of the form

{x ≥ 2 | π(ex; q, a1) > π(ex; q, a2) > · · · > π(ex; q, aD)}

admit natural densities strictly between 0 and 1.
The discrete version of the Kronecker-Weyl theorem has been used initially by Cha [6],

followed by other authors ([8], [7], [11]), to study other kinds of prime number races over
function fields, still assuming some form of linear independence between the zeros of the
corresponding L-functions.

Further works aimed at weakening those linear independence hypotheses. In [19], Mar-
tin and Ng introduced the notions of exhaustivity, weak inclusiveness and inclusiveness of
prime number races, focusing on the unboundedness (resp. the existence of the logarithmic
densities, resp. the positivity of the logarithmic densities) of sets of the form Pq;a1,...,aD .
They introduced the notion of self-sufficient zero ([19, Definition 1.3]), and assuming various
hypotheses on the existence of such zeros, proved the weak inclusivenes or inclusiveness of
the corresponding prime number races. These assumptions were weakened by Devin in [9],
who even studied the regularity of the corresponding limiting distributions in a more general
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setting.

Among the aforementioned properties we will mostly be interested in weak inclusiveness
and inclusiveness. We recall the definition of these notions in the context of general prime
number races.

Definition 0.2. Let a1, . . . , aD be contestants in a prime number race. We say the race
between a1, . . . , aD is weakly inclusive if for every permutation σ of {1, . . . , D}, the set {X ≥
2 | Π(X, aσ(1)) > · · · > Π(X, aσ(D))} admits a natural density, where the Π(·, a) are the
corresponding (rescaled) prime counting functions. We say the prime number race is inclusive
if moreover those densities are positive.

The prime number races referred to in the above definition will be of two types in the
present work. First, a prime number race over a number field denotes the race between
unramified prime ideals in a Galois extension L/K of number fields with given Frobenius
automorphisms in Gal(L/K), as was first suggested in [23, Section 5] and first studied in
[20, Chapter 5]. In that case, the contestants are distinct conjugacy classes C1, . . . , CD of
Gal(L/K), and the rescaled prime counting functions are

Π(X,Ci) := π(eX ;L/K,Ci)
#Ci

= 1
#Ci

#{p prime ideal of K unramified in L | Np ≤ eX ,Frobp = Ci}.

That the variable has to be changed to eX comes from the shape of the explicit formulas
involved (see [20, Chapter 5]).

Second, a prime number race over a function field denotes the race between unramified
prime divisors in a Galois extension L/K of functions fields in one variable over a finite field
with given Frobenius automorphisms in Gal(L/K). In that case, the contestants are distinct
conjugacy classes C1, . . . , CD of Gal(L/K), and the rescaled prime counting functions are

Π(X,Ci) := π(X;L/K,Ci)
#Ci

= 1
#Ci

#{P prime divisor of K unramified in L | degP = X,FrobP = Ci}.

One can also consider functions counting prime divisors of K with a given Frobenius auto-
morphism of degree less than X, instead of equal to X, as was studied in [8]. Of course
we recover the classical case of Rubinstein and Sarnak for primes in arithmetic progressions
[23] in the number field case by considering an appropriate cyclotomic extension of Q. Sim-
ilarly we recover the races between irreducible polynomials in arithmetic progressions of [6]
by considering an appropriate Carlitz extension of Fq(T ).

More general races have been studied in the literature, for instance the race between prime
quadratic residues and prime non-quadratic residues modulo an integer q in [23], the race be-
tween π(x) and Li(x) in [23] and [1], the race between products of k irreducible polynomials
over a finite field in [11], the race between the number of points on the reduction modulo
good primes of elliptic curves in [7] and many more. In any case, it is clear to which category
each of those races should belong, either over number fields or function fields. Our general
results can be applied to those situations as well.

The first step in studying a prime number race over a function field is to write an ex-
plicit formula, i.e. express the corresponding prime counting functions as sums involving
eiθ1X , . . . , eiθrX , where θ1, . . . , θr are the positive arguments (between 0 and π) of the in-
verse zeros of the corresponding rational L-functions. As an application of our version of
the discrete Kronecker-Weyl theorem, we give sufficient conditions for the existence and for
the positivity of the natural densities relevant to those kinds of races. Recently, Devin ([10])
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studied the question of the existence of those densities, and provided sufficient conditions on
the coefficients of the functions involved in the explicit formulas. Our approach is transverse
to hers, as we give conditions on the functions themselves. Our approach is also considerably
more elementary, as Devin relies on multiple tools of harmonic analysis to deduce that "ties
have density zero" in such races. We avoid the use of such techniques thanks to our approach
based on random variables and our key Lemma 1.8.

In the case of prime number races over number fields, the situation is technically more
complicated, since explicit formulas for the (rescaled) prime counting functions involve in-
finite series in eiθ1t, eiθ2t, . . . where θ1, θ2, . . . are the positive imaginary parts of non-trivial
zeros of the corresponding L-functions. Functions of this shape are often called almost peri-
odic functions. There are different classes of almost periodic functions, depending on the way
they can be approximated by trigonometric polynomials. That the remainder in the prime
number theorem is almost-periodic dates back to at least Wintner ([26], see also more recent
works [1] and [16] for more general remainders). The class of functions which is most relevant
to us is the (large) class of Besicovitch almost periodic functions, called B1-almost periodic
functions. The existence of the limiting distributions of such functions is shown for example
in [1, Theorem 2.9]. See also [4, Theorem 4.1] for a similar proof in a slightly larger space than
B1. As an application of our version of the Kronecker-Weyl theorem, we give a more precise
description of this limiting distribution, under various hypotheses on the almost periods θn of
the B1-almost periodic function which is being studied (Corollary 1.21). We also give a new
proof of a recent result of Devin, giving sufficient conditions for the existence of the densities
associated to B1-almost periodic functions. Our approach is again more elementary and does
not require the use of abstract harmonic analysis (see Corollary 1.26), though we appeal to
Lévy’s criterion for weak convergence of measures. We give an application to the existence
of the densities involved in prime number races over number fields in Theorem 1.29.

The paper is organized as follows. In the first part, we prove explicit versions of the
Kronecker-Weyl theorem, in three different cases (two discrete and one continuous) and de-
rive consequences for the study of asymptotic densities of sets defined by strict inequalities
between certain types of functions. The two discrete cases are the degenerate case in which
each θi is a rational multiple of π (Proposition 1.3), and the non-degenerate case (Theorem
1.5). The continuous case is considered in Theorem 1.11. We apply those three theorems
to obtain the existence of asymptotic densities for sets defined by strict inequalities between
certain types of functions (Corollary 1.4, Theorem 1.9 and Theorem 1.14) without any lin-
ear independence hypothesis. In doing so, we prove Lemma 1.8 which allows us to bypass
technical results from harmonic analysis to prove that the limiting distributions we consider
do not admit atoms. We then generalize our methods in the presence of infinitely many real
numbers θ1, θ2, . . . . In this context, we prove that B1-almost periodic functions admit limit-
ing distributions (Theorem 1.17), and then under a weak linear independence assumption, we
give a description of this limiting distribution (Theorem 1.21). We then tackle the problem of
the existence of asymptotic densities for sets defined by strict inequalities between B1-almost
periodic functions, assuming suitable hypotheses (Proposition 1.22 and Theorem 1.26). We
then prove similar results for functions with an extra error term (Theorem 1.27), as those are
the kind of functions appearing in explicit formulas for prime number races.

The second part of the paper is devoted to applications. First, we give criteria for the
positivity of asymptotic densities of certain sets defined by strict inequalities (Propositions
2.1 and 2.2), with inclusiveness of prime number races over function fields in mind. We then
apply the general results of the first section to the concrete problem of studying prime divisor
races in geometric Galois extensions of function fields (in one variable) over finite fields. In
particular, we are able to study an example of prime divisor race in which the usual linear
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independence hypothesis fails to hold. In the last section of the paper, we discuss the first
two moments of the random variables involved in those kinds of races.

It seems a reference to a proof of the discrete version of the Kronecker-Weyl theorem is
hard to find in a published form so we provide a proof in an appendix. We borrowed the
proof to P. Humphries’ Masters thesis [15]. For a proof of the general continuous version, see
[9, Theorem 4.2].

Notations. Some notations are introduced at various places and then used many times
throughout the text and we gather them here for reference. The element νθ always denotes(
eiθ1 , . . . , eiθr

)
. The quantities d and hk,j coming from linear dependence relations are intro-

duced at the beginning of Section 1.1, Section 1.2 and Section 1.3, depending on the context.
The subgroup Hθ ⊂ Tr arising in the non-degenerate case is defined in Theorem 1.5. The
random variables Zθ are introduced, depending on the context, in Corollary 1.4 (degenerate
case), Definition 1.6 (non-degenerate case) or Corollary 1.12 (continuous case).

1 Explicit Kronecker-Weyl theorems
We begin by recalling the definition of equidistribution that we are going to use throughout
the text.

Definition 1.1. Let (zn)n∈N be a sequence of elements of Tr and H a closed subgroup of Tr,
and let µH be the Haar measure of H. We say (zn)n∈N is equidistributed in H with respect
to the measure µH if for every continuous f : Tr → C, one has

1
X

∑
n≤X

f(zn) −→
X→+∞

∫
H
f dµH .

This definition is equivalent to the weak convergence of the measures 1
X

∑
n≤X δzn to the

measure µH , where δzn is the Dirac measure at zn. In what follows, we identify such a
sequence with the set Z := {zn | n ∈ N}. This is a slight abuse of notation since the set Z
itself does not keep track of the numbering of the sequence. Note that if Z is equidistributed
in H, then Z is in particular dense in H, so that Z = H. The following is a weak version
of the discrete Kronecker-Weyl theorem, which will be enough for our purpose of proving an
explicit strong version.

Theorem 1.2. Let θ1, . . . , θr be real numbers such that {θ1, . . . , θr, π} is linearly independent
over Q. Then the set

Γ :=
{(
eiθ1X , . . . , eiθrX

)
| X ∈ Z

}
is equidistributed in Tr (with respect to its Haar measure).

A proof is given in an appendix for reference. Notice the linear independence assumption
with π. The goal of the following sections is to prove a precise version of this result (and of
its continuous analog) with no assumption of linear independence (even with π) and with a
description of the subset of Tr in which Γ is equidistributed. We also do so by elementary
means, while many proofs of the full Kronecker-Weyl theorem use abstract harmonic analysis
(namely Pontryagin duality and Poisson summation formula).
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1.1 The degenerate discrete case
In this section, consider real numbers θ1, . . . , θr which are all rational multiples of π : θi = ciπ

where each ci ∈ Q for 1 ≤ i ≤ r. Let νθ =
(
eiθ1 , . . . , eiθr

)
. Clearly νθ is of finite order d in

Tr. Write θ = (θ1, . . . , θr). We then have the following result.

Proposition 1.3. Let Γθ =
{(
eiθ1X , . . . , eiθrX

)
| X ∈ Z

}
. Then Γθ is equidistributed in the

cyclic subgroup 〈νθ〉 generated by νθ with respect to its uniform measure. In fact for any
function f : Tr −→ C, one has

1
X

∑
n≤X

f
(
eiθ1n, . . . , eiθrn

)
−→

X→+∞

1
d

d−1∑
a=0

f(νaθ ).

Proof. Clearly we have Γθ = {(1, . . . , 1), νθ, ν2
θ , . . . , ν

d−1
θ } = 〈νθ〉. Let f : Tr −→ C be any

function. We then have

1
X

∑
n≤X

f
(
eiθ1n, . . . , eiθrn

)
= 1
X

bXd c∑
q=0

d−1∑
a=0

f(νqd+a
θ ) + o(1)

= 1
X

bXd c∑
q=0

d−1∑
a=0

f(νaθ ) + o(1)

=

⌊
X
d

⌋
X

d−1∑
a=0

f(νaθ ) + o(1) −→
X→+∞

1
d

d−1∑
a=0

f(νaθ ).

�

Corollary 1.4. Let f1, . . . , fD : Tr −→ R and let Fj : t 7→ fj
(
eiθ1t, . . . , eiθrt

)
for 1 ≤ j ≤ D.

Then
1
X

# {n ≤ X | F1(n) > · · · > FD(n)} −→
X→+∞

P(f1(Zθ) > · · · > fD(Zθ))

where Zθ is a (discrete) uniform random variable on 〈νθ〉.

Proof. Apply Theorem 1.3 to the function 1x1>···>xD ◦ (f1, . . . , fD). �

1.2 The non-degenerate discrete case
We now consider real numbers θ1, . . . , θr, at least one of which is not a rational multiple of
π, say θ1. Write again θ = (θ1, . . . , θr).

Up to reindexing, extract a basis {2π, θ1, . . . , θm} of theQ-vector space SpanQ(π, θ1, . . . , θr).
Now, we write the decomposition of θm+1, . . . , θr in this basis :

θj = 2πcj +
m∑
k=1

bk,jθk for m+ 1 ≤ j ≤ r

with cj , bk,j ∈ Q.
Finally, we let d be the least common multiple of the denominators of each cj and each

bk,j , so that lj := dcj ∈ Z, hk,j := dbk,j ∈ Z.
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Theorem 1.5. Let Γθ =
{(
eiθ1X , . . . , eiθrX

)
| X ∈ Z

}
. Then Γθ is equidistributed in Γθ =⋃d−1

a=0 ν
a
θHθ = 〈νθ〉Hθ, where νθ =

(
eiθ1 , . . . , eiθr

)
and

Hθ =
{(

zd1 , . . . , z
d
m,

m∏
k=1

z
hk,m+1
k , . . . ,

m∏
k=1

z
hk,r
k

)
| (z1, . . . , zm) ∈ Tm

}
⊂ Tr

with Haar measure µHθ . The measure µθ with respect to which Γθ is equidistributed is
1
d

∑d−1
a=0 µa, where µa is the pushforward of µHθ to νaθHθ.

Proof. We first show that

Γθ =
d−1⋃
a=0

νaθ H̃

where
H̃ :=

{(
eidθ1q, . . . , eidθmq, . . . ,

m∏
k=1

eihk,jθkq, . . .

)
| q ∈ Z

}
.

To do this, we split Γθ according to its congruence classes modulo d :

Γθ =
d−1⋃
a=0

Γa,

where
Γa :=

{(
eiθ1X , . . . , eiθrX

)
| X ≡ a mod d

}
.

Expressing each θj with m+1 ≤ j ≤ r in the basis {2π, θ1, . . . , θm}, we find for 0 ≤ a ≤ d−1,

Γa =
{(

eiaθ1eidθ1q, . . . , eiaθmeidθmq, . . . , e2iπljqe2iπacj
m∏
k=1

eiabk,jθk
m∏
k=1

eihk,jθkq, . . .

)
| q ∈ Z

}

=
{(

νa1e
idθ1q, . . . , νame

idθmq, . . . , νaj

m∏
k=1

eihk,jθkq, . . .

)
| q ∈ Z

}

where we wrote
νj = eiθj for 1 ≤ j ≤ m

and
νj = e2iπcj

m∏
k=1

eibk,jθk = eiθj for m+ 1 ≤ j ≤ r.

We have thus shown that

Γθ =
d−1⋃
a=0

νaθ H̃

as announced.
Let us show that this union is disjoint : let a, b ∈ {0, . . . , d − 1}. If νa1eidθ1q = νb1e

idθ1q′

then we have θ1(a+ qd− b− q′d) = 2kπ for some k ∈ Z. Since θ1 is not a rational multiple of
π, we find a+ qd = b+ q′d, hence a = b by uniqueness of the remainder in euclidean division.

Now the discrete Kronecker-Weyl theorem 1.2 implies that
{(
eiθ1X , . . . , eiθmX

)
| X ∈ Z

}
is equidistributed in Tm. Lifting by the continuous surjective homomorphism

Tm −→ Hθ

ϕ : (z1, . . . , zm) 7→
(
zd1 , . . . , z

d
m,
∏m
k=1 z

hk,m+1
k , . . . ,

∏m
k=1 z

hk,r
k

)
7



we find that for every continuous f : Tr → C, one has

1
X

∑
q≤X

f

(
eidθ1q, . . . , eidθmq, . . . ,

m∏
k=1

eihk,jθkq, . . .

)
= 1
X

∑
q≤X

f ◦ ϕ
(
eiθ1q, . . . , eiθmq

)
−→

X→+∞

∫
Tm

f ◦ ϕ dµ

=
∫
Hθ

f d(ϕ∗λ).

where ϕ∗λ is the pushforward measure of the Lebesgue measure on Tm by ϕ. This measure
is readily verified to be the Haar measure µHθ on Hθ, since it has mass one and it is invariant
by translations.

We have thus shown that for every continuous f : Tr → C, one has

1
X

X∑
q=1

f

(
eidθ1q, . . . , eidθmq, . . . ,

m∏
k=1

eihk,jθkq, . . .

)
−→

X→+∞

∫
Hθ

f dµHθ ,

i.e. that H̃ is equidistributed in Hθ with respect to its Haar measure. If we take any such
f and sum it over Γθ instead, we now find, using the previous disjoint decomposition of Γθ,
that

1
X

∑
n≤X

f
(
eiθ1n, . . . , eiθrn

)
= 1
X

d−1∑
a=0

bXd c∑
q=0

f

(
νa1e

idθ1q, . . . , νame
idθmq, . . . , νaj

m∏
k=1

eihk,jθkq, . . .

)
+ o(1)

= 1
d

d−1∑
a=0

1⌊
X
d

⌋ bXd c∑
q=1

fa

(
eidθ1q, . . . , eidθmq, . . . ,

m∏
k=1

eihk,jθkq, . . .

)
+ o(1)

where fa : z 7→ f(νaθ z) for 0 ≤ a ≤ d− 1. We finally obtain

1
X

∑
n≤X

f
(
eiθ1n, . . . , eiθrn

)
−→

X→+∞

1
d

d−1∑
a=0

∫
Hθ

fa dµHθ =
∫

Γθ
f dθ.

�

Remark.
i) The element νθ of the above theorem is not of finite order in Tr, since ν1 = eiθ1 has

infinite order in T, but it has finite order dividing d in Tr/Hθ. Therefore the product
of the two subgroups 〈νθ〉 and Hθ is indeed ⋃d−1

a=0 ν
a
θHθ.

ii) If {π, θ1, . . . , θr} is Q-linearly independent, then we have m = r, d = 1 and Γθ = Tr as
in Theorem 1.2.

iii) The subgroup Hθ is a subtorus of Tr of dimension m, and the conclusion of the above
theorem is that Γθ is equidistributed in the union of d translates of this subtorus.
Note that this union is not necessarily disjoint, as it would imply Γθ has exactly d
connected components, but the number d can be modified by choosing a different basis
of SpanQ(π, θ1, . . . , θr) without changing Γθ. In fact, the it can easily be seen that
in general, some of these translates may be equal. The exact number of connected
components was already determined by Weyl ([25, Satz 18]). Let C = {x ∈ Q | ∃b ∈
Zr, 〈θ, b〉 = 2πx} be the set of all 2π coefficients in the rational linear relations between
θ1, . . . , θr and 2π, after clearing denominators in the θi coefficients. Then the number
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of connected components c of Γθ is the lowest common multiple of the denominators
of the elements of C. This could be established also with our method. As finding this
number requires knowing every rational linear relations between θ1, . . . , θr and 2π, or
one such "minimal" relation, which seems unpractical when applying our results, we
prefer working with the unoptimal number d instead of the number c.

Definition 1.6. The random vector associated with θ1, . . . , θr is the Tr-valued random vector

Zθ :=
(
Zd1 , . . . , Z

d
m, . . . ,

m∏
k=1

Z
hk,j
k , . . .

)

where m, d and hk,j are defined at the beginning of Section 1.2, and where Z1, . . . , Zm are
independent uniform random variables on T. We also note νθ =

(
eiθ1 , . . . , eiθr

)
.

Corollary 1.7. For any continuous f : Tr → C, we have

1
X

∑
n≤X

f
(
eiθ1n, . . . , eiθrn

)
−→

X→+∞

1
d

d−1∑
a=0

E (f (νaθZθ)) .

Proof. This is just a reformulation of Theorem 1.5, where we observe that the distribution of
the random vector νaθZθ is simply the measure µa. �

In the context of prime number races over function fields, one approaches prime counting
functions by functions of the form t 7→ c +∑r

j=1 aje
iθjt + aje

−iθjt, with real c and complex
aj . Note that those are in particular polynomials in eiθ1t, e−iθ1t, . . . , eiθrt, e−iθ1t, i.e. Laurent
polynomials in eiθ1t, . . . , eiθ1r, for which we prove the following key elementary lemma.

Lemma 1.8. Let f ∈ C(X1, . . . , Xr) with no pole in Tr. Then for 0 ≤ a ≤ d − 1, one has
P(f(νaθZθ) = 0) = 0 if and only if there exists n ≡ a mod d such that f

(
eiθ1n, . . . , eiθrn

)
6= 0.

Proof. Recall that Γa =
{(
eiθ1X , . . . , eiθrX

)
| X ≡ a mod d

}
is equidistributed in νaθHθ and

that the distribution of Zθ is precisely the Haar measure onHθ. Therefore, if f
(
eiθ1n, . . . , eiθrn

)
=

0 for all n ≡ a mod d, then by continuity of f and density of Γa in νaθHθ, we have P(f(νaθZθ) =
0) = 1.

We prove the converse statement by induction on m. If m = 1, then the equation

f
(
νaθ,1z

d, νaθ,2z
h1,2, . . . , νaθ,rz

h1,r
)

= 0

reduces, by clearing denominators, to a polynomial equation P (z) = 0 with one unknown.
This equation is non-trivial because, writing n = qd+ a with q ∈ Z, we have

f
(
eiθ1n, . . . , eiθrn

)
= f

(
eiaθ1eiqθ1d, ei(qd+a)(2πc2+b1,2θ1), . . . , ei(qd+a)(2πcr+b1,rθ1)

)
= f

(
νaθ,1e

iqθ1d, νaθ2e
iqθ1h1,2 , . . . , νaθre

iqθ1h1,r
)
6= 0

by hypothesis, so that P
(
eiqθ1

)
6= 0. Therefore, this equation has a finite number of solutions

in C, and in particular in T. Since Z1 is uniform on the circle, we certainly have

P(f(νaθZθ) = 0) = P
(
f
(
νaθ,1Z

d
1 , ν

a
θ,2Z

h1,2
1 , . . . , νaθ,rZ

h1,r
1

)
= 0

)
= 0.

9



Now assume the result is true for m − 1 ∈ N. As before, by clearing denominators, the
equation

f

(
νaθ,1z

d
1 , . . . , z

d
m, . . . , ν

a
θ,j

m∏
k=1

z
hk,j
k , . . .

)
= 0

is equivalent to a non-zero polynomial equation P (z1, . . . , zm) = 0 with m unknowns. More-
over, the set F of all zm ∈ T such that P (X1, . . . , Xm−1, zm) = 0 is finite, since it is the zero
set of the P (X1, . . . , Xm−1, Y ) ∈ C[X1, . . . , Xm−1][Y ], which is non-zero because as above we
have P

(
eiqθ1 , . . . , eiqθm

)
6= 0 by hypothesis on n = qd + a. By the Fubini-Tonelli theorem,

we find

P (f (νaθZθ) = 0) = P
(
f

(
νaθ,1Z

d
1 , . . . , ν

a
θ,mZ

d
m, . . . , ν

a
θ,j

m∏
k=1

Z
hk,j
k , . . .

)
= 0

)
= P(P (Z1, . . . , Zm) = 0)

=
∫
Tm

1P−1({0})(z) dz

=
∫
T\F

(∫
Tm−1

1P (·,zm)−1({0})(z1, . . . , zm−1) dz1 . . . dzm−1

)
dzm

The inner integral is zero by the induction hypothesis, so we conclude that P (f (νaθZθ) = 0) =
0. �

We can now prove the following theorem which allows us to pass from continuous functions
to indicator functions of subsets of RD defined by strict inequalities between functions as in
Lemma 1.8.

Theorem 1.9. For 1 ≤ j ≤ D, let fj ∈ C(X1, . . . , Xr) be real-valued and without pole on Tr

and let Fj : t 7→ fj
(
eiθ1t, . . . , eiθrt

)
. Then we have

1
X

# {n ≤ X | F1(n) > · · · > FD(n)} −→
X→+∞

1
d

d−1∑
a=0

P(f1(νaθZθ) > · · · > fD(νaθZθ)).

Proof. We first remark that, by Lemma 1.8 and its proof, if for some 0 ≤ a ≤ d − 1, there
exists 1 ≤ j ≤ D − 1 such that fj

(
einθ1 , . . . , einθr

)
= fj+1

(
einθ1 , . . . , einθr

)
for every n ≡ a

mod d, then P(fj(νaθZθ) = fj+1(νaθZθ)) = 1, so that P(f1(νaθZθ) > · · · > fD(νaθZθ)) = 0, while
we have limX→+∞

1
X# {n ≤ X | n ≡ a mod q, F1(n) > · · · > FD(n)} = 0. Therefore, writing

1
X

# {n ≤ X | F1(n) > · · · > FD(n)} = 1
d

d−1∑
a=0

1
X

# {n ≤ X | n ≡ a mod d, F1(n) > · · · > FD(n)}+o(1),

and using the decomposition Γ = ⋃d−1
a=0 ν

a
θ H̃ as in the proof of Theorem 1.5, we may as-

sume that for every 0 ≤ a ≤ d − 1, 1 ≤ j ≤ D − 1, there exists n ≡ a mod d such that
fj
(
einθ1 , . . . , einθr

)
6= fj+1

(
einθ1 , . . . , einθr

)
. By Lemma 1.8 we then have P(fj(νaθZθ) =

fj+1(νaθZθ)) = 0 for every such a and j.
Now, we need to approximate the indicator function 1x1>···>xD by continuous functions

from above and below. We proceed in the following way : for every integer k ≥ 1 and x, y ∈ R,
let

gk(x, y) :=


0 if x ≤ y − 1

k
k(x− y) + 1 if y − 1

k < x ≤ y
1 if x > y.
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Then for each integer k ≥ 1, gk is continuous on R2 and for all x, y ∈ R,

1x1>x2(x, y) ≤ gk(x, y) ≤ 1x1>x2− 1
k
(x, y).

For k ≥ 1 let Gk : (x1, . . . , xD) 7→ ∏D−1
j=1 gk(xj , xj+1). Then for every k ≥ 1 and n ∈ Z, we

have

1x1>···>xD(F1(n), . . . , FD(n)) =
D−1∏
j=1

1xj>xj+1(Fj(n), Fj+1(n))

≤
D−1∏
j=1

gk(Fj(n), Fj+1(n))

= Gk(F1(n), . . . , FD(n))

≤
D−1∏
j=1

1xj>xj+1− 1
k
(Fj(n), Fj+1(n))

= 1x1>x2− 1
k
>···>xD−D−1

k
(F1(n), . . . , FD(n))

Now, by Corollary 1.7, for every k ≥ 1,

lim sup
X→+∞

1
X

X∑
n=1

1x1>···>xD (F1(n), . . . , FD(n)) ≤ lim sup
X→+∞

1
X

X∑
n=1

Gk(F1(n), . . . , FD(n))

= 1
d

d−1∑
a=0

E(Gk(f1(νaθZθ), . . . , fD(νaθZθ)))

≤ 1
d

d−1∑
a=0

E
(
1x1>x2− 1

k
>···>xD−D−1

k
(f1(νaθZθ), . . . , fD(νaθZθ)

)

= 1
d

d−1∑
a=0

P
(
f1(νaθZθ) > · · · > fD(νaθZθ)−

D − 1
k

)
.

By downward continuity of P, we get, by letting k → +∞,

lim sup
X→+∞

1
X

X∑
n=1

1x1>···>xD (F1(n), . . . , FD(n)) ≤ 1
d

d−1∑
a=0

P (f1(νaθZθ) ≥ · · · ≥ fD(νaθZθ)) .

Similarly, by considering the functions defined by

(x, y) 7→


0 if x < y

k(x− y) if y ≤ x < y + 1
k

1 if x > y + 1
k

,

we find

lim inf
X→+∞

1
X

X∑
n=1

1x1>···>xD (F1(n), . . . , FD(n)) ≥ 1
d

d−1∑
a=0

P (f1(νaθZθ) > · · · > fD(νaθZθ)) .

It remains to observe that the event

{f1(νaθZθ) ≥ · · · ≥ fD(νaθZθ)} \ {f1(νaθZθ) > · · · > fD(νaθZθ)}
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is included in
D−1⋃
j=1
{fj(νaθZθ) = fj+1(νaθZθ)}

which has probability zero, so that

P (f1(νaθZθ) ≥ · · · ≥ fD(νaθZθ)) = P (f1(νaθZθ) > · · · > fD(νaθZθ)) .

�

Proposition 1.4 and Theorem 1.9 yield the following general result.
Theorem 1.10. Let θ1, . . . , θr be real numbers. For any f1, . . . , fD ∈ C(X1, . . . , Xr) real-
valued and without pole on Tr,

lim
X→+∞

1
X

# {n ≤ X | F1(n) > · · · > FD(n)}

exists.
We note that this does not prove that every prime number race over a function field is

weakly inclusive (as defined in Definition 0.2) because the normalized prime counting func-
tions in this context have an extra o(1) term (see Section 2.2). We will deal with such
functions in Section 1.5.

1.3 The continuous case
We now tackle the continuous case of the Kronecker-Weyl theorem.

Let θ1, . . . , θr be real numbers. Extract a basis {θ1, . . . , θm} of SpanQ(θ1, . . . , θr), and
write

θj =
m∑
k=1

bk,jθk for m+ 1 ≤ j ≤ r

with bk,j ∈ Q. Let d be the least common multiple of the denominators of each bk,j so that
hk,j := dbk,j ∈ Z.

The proof of the following theorem is similar to the proof of Theorem 1.5. We simply
mention the necessary changes : discrete sums up to X are replaced by integrals between 0
and X, the splitting according to congruence classes modulo d is replaced by the change of
variable y −→ dy and we appeal to the continuous version of the Kronecker-Weyl theorem
(see [9, Theorem 4.2] or the remark at the end of the appendix). We note that most results
in this section are made easier than in the previous section because linear dependence with
π doesn’t have any effect on the continuous densities being studied.
Theorem 1.11. The one-parameter subgroup

Γθ =
{(
eiθ1y, . . . , eiθry

)
| y ∈ R

}
is equidistributed in

Hθ =
{(

zd1 , . . . , z
d
m, . . . ,

m∏
k=1

z
hk,j
k , . . .

)
| (z1, . . . , zm) ∈ Tm

}
,

that is for every continuous f : Tr −→ C one has
1
X

∫ X

0
f
(
eiθ1y, . . . , eiθry

)
dy −→

X→+∞

∫
Hθ

f dµHθ

where µHθ is the normalized Haar measure on Hθ.
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Interpreting the Haar measure µHθ as the distribution of a random vector Zθ defined as
in Definition 1.6 we obtain the following.

Corollary 1.12. For any continuous f : Tr → C, we have

1
X

∫ X

0
f
(
eiθ1y, . . . , eiθry

)
dy −→

X→+∞
E (f (Zθ))

where Zθ is defined as in Definition 1.6.

Note that the analog of Lemma 1.8 holds with the only hypothesis that f
(
eiθ1y, . . . , eiθry

)
6=

0 for at least one y ∈ R.

Lemma 1.13. Let f ∈ C(X1, . . . , Xr) with no pole in Tr. Then one has P(f(Zθ) = 0) = 0 if
and only if there exists y ∈ R such that f

(
eiθ1y, . . . , eiθry

)
6= 0.

The proof of the continuous analog of Theorem 1.9 then goes similarly.

Theorem 1.14. Let f1, . . . , fD ∈ C(X1, . . . , Xr) be real-valued and without poles on Tr and
let Fj : t 7→ fj

(
eiθ1t, . . . , eiθrt

)
. Then we have

1
X

∫ X

0
1x1>···>xD (F1(y), . . . , FD(y)) dy −→

X→+∞
P (f1(Zθ) > · · · > fD(Zθ)) .

1.4 An infinite-dimensional version
The goal of this section is to prove a result analogous to Theorem 1.14 but with converging
series in an infinite number of eiθnt, as a natural generalization of the above Laurent polyno-
mials. This is the kind of functions we have to deal with in the context of prime number races
over number fields, because the associated L-functions have an infinite number of non-trivial
zeros. Those functions are often called almost periodic functions.

Definition 1.15. The B1 semi-norm of a locally integrable function f is

||f ||B1 := lim sup
X→+∞

1
X

∫ X

0
|f(y)| dy.

A function F : R+ −→ R is said to be B1-almost periodic if there exists a sequence (PN )N≥1
of trigonometric polynomials of the form

PN : t 7→
DN∑
n=1

rn,Ne
iλn,N t

for some integer DN ≥ 1, rn,N ∈ C and λn,N ∈ R, such that

||F − PN ||B1 −→
N→+∞

0.

It turns out that prime counting functions over number fields are B2-almost periodic,
after applying the change of variable x→ ex (see [20, Lemma 5.1.3] or [9, Proposition 4.4] for
a general statement), where B2 semi-norm is defined by ||f ||B2 =

(
||f2||B1

)1/2. The Cauchy-
Schwarz inequality easily implies that such functions are in particular B1-almost periodic.

We simply quote the following important fact about B1-almost periodic functions ([2,
p.104]).
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Proposition 1.16. Let F : R+ −→ R be B1-almost periodic. There exists a countable set
Λ(F ) = {λn | n ≥ 1} ⊂ R called the support of F , such that for every n ≥ 1,

an := lim
X→+∞

1
X

∫ X

0
f(y)e−iλny dy 6= 0.

Moreover we have ||F − PN ||B1 −→
N→+∞

0, where PN (F ) : t 7→∑N
n=1

(
ane
−iλnt + ane

−iλnt
)
.

The upshot of the above Proposition is that there exists a canonical way to approximate
a given B1-almost periodic function by trigonometric polynomials with respect to the B1

semi-norm. We denote this fact by F (t) ∼ ∑N
n=1

(
ane
−iλnt + ane

−iλnt
)
. Note that this does

not necessarily mean that the above series converges pointwise to F .

We begin by proving that B1-almost periodic functions admit limiting distributions. The
argument is essentially the one given in the proof of [1, Theorem 2.9]. We note that the
left-hand side of formula (2.10) in loc. cit. should be replaced by lim supY→+∞

1
Y

∫ Y
0 |φ(y)−

PN (y)| dy, and that Y should be assumed large enough in the last inequality in the proof of
[1, Theorem 2.9].

Theorem 1.17. Let F : R+ −→ R be a B1-almost periodic function. There exists a random
variable S such that for any continuous bounded function g on R we have

1
X

∫ X

0
g(F (y)) dy −→

X→+∞
E(g(S)).

In other words, F admits PS, the distribution of S, as a limiting distribution.

Proof. The goal is to apply Corollary 1.12 to each PN (F ) before passing to the limit in N .
Let g be a bounded Lipschitz function on R, with Lipschitz constant cg. Then for any N ≥ 1,

1
X

∫ X

0
g(F (y)) dy = 1

X

∫ X

0
g(PN (y)) dy + 1

X

∫ X

0
(g(F (y))− g(PN (y))) dy.

By the triangular inequality one has∣∣∣∣∣ 1
X

∫ X

0
(g(F (y))− g(PN (y))) dy

∣∣∣∣∣ ≤ cg
X

∫ X

0
|F (y)− PN (y)|dy

so that lim supX→+∞

∣∣∣ 1
X

∫X
0 (g(F (y))− g(PN (y))) dy

∣∣∣ −→
N→+∞

0. On the other hand, Corollary
1.12 yields

1
X

∫ X

0
g(PN (y)) dy −→

X→+∞
E(g(SN ))

for some random variable SN built from the linear relations over Q between the real numbers
λ1,N , . . . , λDN ,N .

This proves that

lim sup
X→+∞

1
X

∫ X

0
g(F (y)) dy = E(g(SN )) + o(1)

as N tends to infinity, and similarly we have

lim inf
X→+∞

1
X

∫ X

0
g(F (y)) dy = E(g(SN )) + o(1)
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as N tends to infinity. Therefore

lim sup
X→+∞

1
X

∫ X

0
g(F (y))− lim inf

X→+∞

1
X

∫ X

0
g(F (y)) = 0

since it is independent ofN and o(1) with respect toN . We have thus shown that 1
X

∫X
0 g(F (y)) dy

admits a limit as X tends to infinity, and E(g(SN )) converges to this (same) limit as N tends
to infinity.

We now prove that the sequence (SN )N≥1 converges in distribution to some random
variable Z. To do so, we apply Prohorov’s theorem [3, Theorem 5.1] (or Helly’s selection
theorem as it is called in [1, Lemma 2.8]), which in particular states that a tight sequence
of probability measures on R admits a weakly converging subsequence. Recall that a family
(µn)n≥1 of probability measures on R is tight when there is no "escape of mass to infinity"
along the family, i.e. for every ε > 0, one can find a compact K ⊂ R such that µn(K) ≥ 1−ε
for every n ≥ 1. Assuming that (PSN )N≥1 is tight, and denoting by µ the weak limit of one of
its subsequence, (E(g(SN )))N≥1 can only converge to

∫
R g dµ when g is a bounded continuous

function on R. Since this holds for every bounded Lipschitz function on R by the above
computations, the Portmanteau theorem [3, Theorem 2.1] implies that (PSN )n≥1 converges
weakly to µ. Finally, the limit probability measure µ is the distribution of S := F−1(U),
where F is the distribution function of µ, F−1 its generalized inverse and U is uniform on
[0, 1] (see [12, Theorem 2.1]), so that (SN )N≥1 converges in distribution to S.

It only remains to prove that (PSN )N≥1 is tight. Let A > 0. As a straightforward
application of Theorem 1.14, we obtain

P(|SN | > A) = lim
X→+∞

1
X

∫ X

0
1x>A(|PN (y)|) dy.

By Markov’s inequality, we have for every N ≥ 1 and X > 0,

1
X

∫ X

0
1x>A(|PN (y)|) dy ≤ 1

AX

∫ X

0
|PN (y)| dy.

For every N ≥ 1 and y ∈ R+, one has |PN (y)| ≤ |F (y)| + |F (y) − PN (y)|. Now L :=
lim supX→+∞

1
X

∫X
0 |F (y)| dy < +∞ since lim supX→+∞

1
X

∫X
0 |F (y)−Pn(y)| dy < +∞ for at

least one n, and lim supX→+∞
1
X

∫X
0 |Pn(y)| dy < +∞ by Corollary 1.12. Finally we obtain

P(|SN | > A) ≤ 1
A

lim sup
X→+∞

1
X

∫ X

0
|F (y)− PN (y)|dy + L

A
� 1

A

independently of N , which proves the tightness of (PSN )N≥1. �

Remark. The proof goes similarly for vector-valued B1-almost periodic functions, as in [1,
Theorem 2.9].

The key argument in the above proof was Prohorov’s theorem, or Helly’s selection theo-
rem, but this is an indirect argument. Our goal is now to give a more explicit description of
the random variable S in terms of the function F . We can do so thanks to our explicit ver-
sion of the Kronecker-Weyl theorem. Also, moment estimates such as Chebyshev’s inequality
can prove very useful to obtain bounds on limX→+∞

1
X

∫X
0 1x>0(F (y)) dy (when it exists, see

Corollary 1.26 below), so we would like to have at least the first two moments of S at our
disposal. This is possible at the cost of assuming additional hypotheses on the coefficients
an of the function F , and on the linear relations between the almost periods of F , i.e. the
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elements of the support Λ(F ) of F . We give below two distinct hypotheses that allow us to
compute the second moment.

Let θ = (θn)n≥1 be a sequence of pairwise distinct positive real numbers and for any
N ≥ 1 let ΘN = {θn | n ≤ N} and Θ = ⋃

N≥1 ΘN . We are going to do an analysis close
to what we did in the previous sections, but we alter our notations to take into account the
infinite number of θn’s. Define inductively B1 := {θ1} and for N ≥ 2,

BN :=
{
BN−1 if θN ∈ SpanQ(ΘN−1)
BN−1 ∪ {θN} otherwise.

We let B := ⋃
N≥1 BN , so that B is a basis of SpanQ Θ. For any j ≥ 1, write the decomposition

of θj in B as
θj =

∑
θ∈B

cθ,jθ

and let dj be the least common multiple of the denominators of the cθ,k (written in irreducible
form), for θ ∈ Bj and k ≤ j. Since the sequence of sets (Bj)j≥1 is increasing, we see that dj
really only depends on j.

Definition 1.18. Let (Zθ)θ∈B be a sequence of independent random variables, uniform on T.
For any N ≥ 1 and n ≤ N , let

Zn,N =
∏
θ∈B

Z
dN cθ,n
θ .

Notice that, by definition, dNcn,θ ∈ Z for n ≤ N , and that for every n ≥ 1, cθ,n = 0 for
all but finitely many θ ∈ B, so the above product is a finite product.

Lemma 1.19. Let c ∈ C, (an)n≥1 ∈ `2(C) and for every N ≥ 1,

SΘN := c+
∑
n≤N

(
anZn,N + anZn,N

)
.

Assume that no θn is an integer multiple of another, that is for every i, j ≥ 1 with i 6= j, we
have θi 6∈ θjZ. Then (SΘN )N≥1 converges in L2.

Proof. Since L2 is complete, it is enough to prove that (SΘN )N≥1 is Cauchy in L2. Let
m > n ≥ 1, then

E(|SΘm − SΘn |2) = E

∣∣∣∣∣
m∑
k=1

(akZk,m + akZk,m)−
n∑
k=1

(akZk,n + akZk,n)
∣∣∣∣∣
2
 .

Expanding the square, we end up with terms of twelve different kinds : akajE(Zk,pZj,p),
akajE(Zk,pZj,p) for p ∈ {m,n} and 1 ≤ j, k ≤ p, −akajE(Zk,mZj,n),−akajE(Zk,mZj,n) for
1 ≤ k ≤ m, 1 ≤ j ≤ n and their conjugates. Each Zk,p is uniform on T and the product of
two uniform random variables on T is either 1 or uniform on T, in which case it has mean
zero. Thus, it is enough to detect in which of the above cases we end up with 1.

• For p ∈ {m,n} and 1 ≤ j, k ≤ p we have

Zk,pZj,p =
∏
θ∈B

Z
dp(cθ,k+cθ,j)
θ .

Since the Zθ, θ ∈ B are independent, this product is (almost surely) 1 if and only if
dp(cθ,k + cθ,j) = 0 for every θ ∈ B. By definition, this means that θj = −θk which can’t
be because each θn is positive. So those terms contribute 0.
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• Similarly, we have
Zk,pZj,p =

∏
θ∈B

Z
dp(cθ,k−cθ,j)
θ .

This is equal to 1 when j = k, but when j 6= k there is at least one non-zero exponent
since the θn’s are pairwise distinct.

• Now for 1 ≤ k ≤ m, 1 ≤ j ≤ n,

Zk,mZj,n =
∏
θ∈B

Z
dmcθ,k+dncθ,j
θ .

As before, this is 1 if and only if θk = − dn
dm
θj , which can’t be since the θn’s are positive.

• Finally for 1 ≤ k ≤ m, 1 ≤ j ≤ n,

Zk,mZj,n =
∏
θ∈B

Z
dmcθ,k−dncθ,j
θ ,

and this is 1 if and only if θj = dm
dn
θk. But by definition, dn divides dm for m > n, so

by hypothesis on the θn’s the previous equality can only happen if and only if k = j.

Gathering everything, we have

E(|SΘm − SΘn |2) = 2
m∑
k=1
|ak|2 + 2

n∑
k=1
|ak|2 − 4

n∑
k=1
|ak|2 = 2

m∑
k=n+1

|ak|2.

Since (an)n≥1 ∈ `2(C), this proves that (SΘN )N≥1 is Cauchy for the L2 norm. �

If the sequence (dj)j≥1 is bounded, it is stationary since it is non-decreasing. In that case,
we let d be its limit and N0 ≥ 1 be such that dN = d for every N ≥ N0. Then Zn,N = Zn,N0

for any N ≥ max(N0, n), so for any n ≥ 1 we let Zn := Zn,N0 . With these notations, we can
now state the following result.

Lemma 1.20. Let c ∈ C, (an)n≥1 ∈ `2(C) and for every N ≥ 1,

SΘN := c+
∑
n≤N

(
anZn,N + anZn,N

)
.

Assume that (dj)j≥1 is bounded. Then (SΘN )N≥1 converges in L2.

Proof. The proof is made easier in this case by the fact that SΘm − SΘn = ∑m
k=n+1(akZk +

akZk), and the termes of the sum are easily seen to be pairwise orthogonal. We conclude
exactly as in the previous proof. �

Corollary 1.21. Let F ∼ c+∑n≥1

(
ane

iθnt + ane
−iθnt

)
be B1-almost periodic (see Theorem

1.17), where c ∈ C and (an)n≥1 ∈ `2(C). Assume either that no θi is an integer multiple of
another or that (dj)j≥1 is bounded. Then we can choose

SΘ := lim
N→+∞

c+
∑
n≤N

(
anZn,N + anZn,N

)
(the limit being taken in L2 norm) in the conclusion of Theorem 1.17, i.e. for every bounded
continuous function g on R, one has

1
X

∫ X

0
g(F (y)) dy −→

X→+∞
E(g(SΘ)).

Moreover, we have E(SΘ) = c and Var(SΘ) = 2∑n≥1 |an|2.

17



Proof. The first part is an immediate consequence of Theorem 1.17 and the previous two
lemmas. The last two formulas are straightforward. �

Remark.
i) The formula for the variance is classical when F is B2-almost periodic ([2, p.109]), but

a B1-almost periodic function with `2 coefficients is not necessarily B2 (though it is in
the same B1-class as at least one B2-almost periodic function by [2, p.110]).

ii) It is tempting to say that (SΘN )N≥1 converges to SΘ in L1 under no other hypothesis
than F being B1-almost periodic, since lim supX→+∞

1
X

∫X
0 |F (y) − PN (y)|dy goes to

zero as N tends to infinity. However we don’t know if the previous quantity equals
E(|SΘ − SΘN |).

iii) If the θn’s are linearly independent over Q, so that B = Θ, then the Zn’s are pairwise in-
dependent, and one can prove the almost sure convergence of (SΘN )N≥1 by Kolmogorov’s
two series theorem for example (see [13, Theorem 2.5.6]). In general, the almost sure
convergence does not immediatly follow from the assumption that the series for F (t)
converges for every t ∈ R : the set Γ :=

{(
eiθt
)
θ∈B
| t ∈ R

}
is easily seen to be dense

in TB as a consequence of the continuous version of the Kronecker-Weyl theorem, but
it has measure zero. By the Riesz-Fischer theorem, we at least know that (SΘN )N≥1
admits an almost surely converging subsequence.

The next step in our analysis is to pass from bounded Lipschitz functions to indicator
functions of sets defined by strict inequalities. Mimicking the proof of Theorem 1.9, we obtain
the following.

Proposition 1.22. Let F1, . . . , FD : R+ −→ R be B1-almost periodic functions with Λ(Fj) ⊂
Θ for 1 ≤ j ≤ D. Let S1, . . . , SD be the random variables associated to F1, . . . , FD in Theorem
1.17. Then

P(S1 > · · · > SD) ≤ lim inf
X→+∞

1
X

∫ X

0
1x1>···>xD(F1(y), . . . , FD(y)) dy

≤ lim sup
X→+∞

1
X

∫ X

0
1x1>···>xD(F1(y), . . . , FD(y)) dy ≤ P(S1 ≥ · · · ≥ SD).

Remark. We cannot expect an equality without any hypothesis on Θ. For instance, consider
the case D = 2, F2 = 0 and F1 a non-zero continuous function with compact support on R.
For a less trivial example, we can use an everywhere converging Fourier series which has a
non-constant sum, yet its sum is constant on a non-empty interval.

We now look for conditions on Θ to imply equality in the previous Proposition. Such a
condition was found by Devin in [10] : if SpanQ Θ decomposes as a direct sum SpanQ T ⊕
SpanQ(Θ \ T ), where T is a finite subset of Θ, then the random variable associated to a non-
constant B1-almost periodic function S as in Theorem 1.17 does not admit atoms. Note that
this hypothesis on SpanQ Θ is a weakening of the hypothesis of the existence of "self-sufficient
zeros" in [19]. The proof of Devin consists in showing that the characteristic function of S
is decaying sufficiently fast at infinity, by using known bounds on oscillatory integrals, and
then using a lemma of Wiener, relating this decay to the continuity of the distribution of S
(see the proof of Theorem 1.2 and Corollary 1.4 in [10]). Our method allows us to show the
same thing but with a considerably simpler proof thanks to Lemma 1.13.
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Theorem 1.23 (Devin). Assume SpanQ(Θ) = SpanQ(θ1, . . . , θm) ⊕ SpanQ({θn | n > m}).
Let F : R+ −→ R be such that ||F − PN ||B1 −→

N→+∞
0 where

PN : t 7→ c+
∑
n≤N

(
ane

iθnt + ane
−iθnt

)
.

Let µF , µF−Pm and µPm be the limiting distributions of F, F −Pm and Pm respectively. Then
µF = µF−Pm ∗ µPm. In particular, if Pm is not constant, then µF ({x}) = 0 for any x ∈ R.

Proof. The function F and R = F − Pm are B1-almost periodic functions, and therefore
admit limiting distributions µF and µR by Theorem 1.17. On the other hand, Pm also admits
a limiting distribution because of Theorem 1.11, say µPm .

For N > m, let P ′N : t 7→ ∑
m<n≤N ane

iθnt + ane
−iθnt. Just as Pm, those admit limiting

distributions µP ′N and by the proof of Theorem 1.17,
(
µP ′N

)
N>m

converges weakly to µR.
Also, for every N > m, µP ′N+Pm = µP ′N ∗ µPm because, by construction and the hypothesis
on SpanQ Θ, every Zn,N , 1 ≤ n ≤ m is independent of every Zn′,N ,m < n′ ≤ N . As above,(
µP ′N+Pm

)
N>m

converges weakly to µF .
For any Borel probability measure on R, let µ̂ be its characteristic function. Then for

every N > m, ̂µP ′N ∗ µPm = µ̂P ′N µ̂Pm and this converges pointwise to µ̂Rµ̂Pm = ̂µR ∗ µPm . By
Lévy’s continuity theorem ([13, Theorem 3.3.17]), this means that (µP ′N ∗µPm)N>m converges
weakly to µR ∗ µPm . Therefore we have proved that µF = µR ∗ µPm .

Now if Pm is not constant, then by Lemma 1.13, we have µPm({y}) = 0 for every y ∈ R,
and thus for any x ∈ R,

µF ({x}) = (µR ∗ µPm)({x}) =
∫
R
µPm({x− y}) dµR(y) = 0.

�

Combining the previous Theorem with Proposition 1.22 we obtain the following.

Corollary 1.24. Assume SpanQ Θ = SpanQ T ⊕ SpanQ(Θ \ T ) for some non-empty finite
subset T of Θ. Let F1, . . . , FD : R+ −→ R be B1-almost periodic functions such that for
1 ≤ j ≤ D,Fj ∼ cj + ∑

θ∈Θ

(
aθ,je

iθt + aθ,je
−iθt

)
. Let S1, . . . , SD be the random variables

associated to F1, . . . , FD in Theorem 1.17. If for every 1 ≤ j ≤ D − 1, the function t 7→∑
θ∈T (aθ,j − aθ,j+1)eiθy + (aθ,j − aθ,j+1)e−iθy is not constant, then

lim
X→+∞

1
X

∫ X

0
1x1>···>xD(F1(y), . . . , FD(y)) dy = P(S1 > · · · > SD).

The condition that a certain linear combination of eiθt is not constant can be easily
translated by the non-vanishing of its coefficients.

Lemma 1.25. Let T be a finite subset of Θ and for each θ ∈ T , let aθ ∈ C. If the function
t 7→

∑
θ∈T

(
aθe

iθt + aθe
−iθt

)
is constant then aθ = 0 for every θ ∈ T .

Proof. Let P : t 7→∑
θ∈T aθe

iθt+aθe
−iθt and assume it is constant. Then all of its derivatives

are zero. In particular, we have for 1 ≤ k ≤ 2#T ,

P (k)(0) =
∑
θ∈T

(aθ + (−1)kaθ)θk = 0,

which means that (aθ + aθ)θ∈T and (aθ − aθ)θ∈T are both solutions of Vandermonde linear
systems with non-zero determinant since the elements of Θ, and therefore of T , are non-zero
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and pairwise distinct. This implies aθ = aθ and aθ = −aθ for every θ ∈ T , and thus aθ = 0
for every θ ∈ T . �

Remark. This lemma can also be seen as an application of Artin’s lemma on the linear
independence of characters (see [17, VI, Theorem 4.1]).
Corollary 1.26. Assume SpanQ Θ = SpanQ T ⊕ SpanQ(Θ \ T ) for some non-empty finite
subset T of Θ. Let F1, . . . , FD : R+ −→ R be B1-almost periodic functions such that for
1 ≤ j ≤ D,Fj ∼ cj + ∑

θ∈Θ

(
aθ,je

iθt + aθ,je
−iθt

)
. Let S1, . . . , SD be the random variables

associated to F1, . . . , FD in Theorem 1.17. If for every 1 ≤ j ≤ D−1, there exists θ ∈ T such
that aθ,j 6= aθ,j+1 then

lim
X→+∞

1
X

∫ X

0
1x1>···>xD(F1(y), . . . , FD(y)) dy = P(S1 > · · · > SD).

Proof. Simply combine the previous two results. �

1.5 Quantities with an error term
We now investigate to what extent Corollary 1.4, Theorem 1.9, Theorem 1.14 and Corollary
1.26 still hold for functions with an extra error term. To simplify notations, when G1, . . . , GD
are functions and R is a D-ary relation (R will be {(x1, . . . , xD) ∈ RD | x1 > · · · > xD} or
{(x1, . . . , xD) ∈ RD | x1 ≥ · · · ≥ xD} below), we set

δ(R(G1, . . . , GD)) := lim inf
X→+∞

1
X

#{n ∈ {1, . . . , X} | R(G1(n), . . . , GD(n))}

and
δ(R(G1, . . . , GD)) := lim sup

X→+∞

1
X

#{n ∈ {1, . . . , X} | R(G1(n), . . . , GD(n))}

When δ(R(G1, . . . , GD)) = δ(R(G1, . . . , GD)) we denote by δ(R(G1, . . . , GD)) their common
value.

We start with the discrete case.
Theorem 1.27. Let θ1, . . . , θr be real numbers and f1, . . . , fD ∈ C(X1, . . . , Xr) be real-valued
and without pole on Tr. Let G : t 7→ (F1(t), . . . , FD(t))+r(t) where Fj(t) = fj

(
eiθ1t, . . . , eiθrt

)
for 1 ≤ j ≤ D, and r(t) = (r1(t), . . . , rD(t)) = o(1) as t→ +∞.

i) Degenerate case : Assume that θi ∈ πQ for 1 ≤ i ≤ r. Then

P(f1(Zθ) > · · · > fD(Zθ)) ≤ δ(G1 > · · · > GD)
≤ δ(G1 > · · · > GD) ≤ P(f1(Zθ) ≥ · · · ≥ fD(Zθ)).

In particular, if for every 1 ≤ j ≤ D − 1 and every n ∈ Z one has Fj(n) 6= Fj+1(n),
then δ(G1 > · · · > GD) exists and we have

δ(G1 > · · · > GD) = P(f1(Zθ) > · · · > fD(Zθ)).

ii) Non-degenerate case : Assume θi 6∈ πQ for at least one i ∈ {1, . . . , r}. Then

1
d

d−1∑
a=0

P(f1(νaθZθ) > · · · > fD(νaθZθ)) ≤ δ(G1 > · · · > GD)

≤ δ(G1 > · · · > GD) ≤ 1
d

d−1∑
a=0

P(f1(νaθZθ) ≥ · · · ≥ fD(νaθZθ)).
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Moreover, if for every 1 ≤ j ≤ D − 1 and 0 ≤ a ≤ d− 1, there exists n ≡ a mod d such
that Fj(n) 6= Fj+1(n), then δ(G1 > · · · > GD) exists and

δ(G1 > · · · > GD) = 1
d

d−1∑
a=0

P(f1(νaθZθ) > · · · > fD(νaθZθ)).

Proof. Let ε > 0. There exists n0 ≥ 1 such that for every n ≥ n0 and 1 ≤ j ≤ D, we have
|rj(n)| < ε. Now for every n ≥ n0, one has

F1(n) > F2(n) + 2ε > · · · > FD(n) + 2(D − 1)ε⇒ G1(n) > G2(n) > · · · > GD(n)
⇒ F1(n) > F2(n)− 2ε > · · · > FD(n)− 2(D − 1)ε

In the degenerate case, this implies by Proposition 1.4 that

P(f1(Zθ) > · · · > fD(Zθ) + 2(D − 1)ε) ≤ δ(G1 > · · · > GD)
≤ δ(G1 > · · · > GD) ≤ P(f1(Zθ) > · · · > fD(Zθ)− 2(D − 1)ε),

while in the non-degenerate case, this implies by Theorem 1.9

1
d

d−1∑
a=0

P(f1(νaθZθ) > · · · > fD(νaθZθ) + 2(D − 1)ε) ≤ δ(G1 > · · · > GD)

≤ δ(G1 > · · · > GD)

≤ 1
d

d−1∑
a=0

P(f1(νaθZθ) > · · · > fD(νaθZθ)− 2(D − 1)ε).

In both cases, we obtain the announced inequalities on δ(G1 > · · · > GD) and δ(G1 > · · · >
GD) by letting ε tend to 0 as in the proof of Theorem 1.9.

Finally, the last hypotheses imply that P(f1(Zθ) > · · · > fD(Zθ)) = P(f1(Zθ) ≥ · · · ≥
fD(Zθ)) in the degenerate case since Zθ is uniform on 〈νθ〉, while they imply P(f1(νaθZθ) >
· · · > fD(νaθZθ)) = P(f1(νaθZθ) ≥ · · · ≥ fD(νaθZθ)) for every 0 ≤ a ≤ D − 1 in the non-
degenerate case because of Lemma 1.8. �

The proof of the next theorem is completely similar, based on Theorem 1.14 and Corollary
1.26. This time, δ(R(G1, . . . , GD)) means, when it exists,

lim
X→+∞

1
X

∫ X

0
1R(G1(y), . . . , GD(y)) dy,

and δ(R(G1, . . . , GD)) and δ(R(G1, . . . , GD)) the corresponding lim inf and lim sup.

Theorem 1.28. i) Let θ1, . . . , θm be real numbers, f1, . . . , fD ∈ C(X1, . . . , Xr, ) be pair-
wise distinct and real-valued on Tr. Let G : t 7→ (F1(t), . . . , FD(t)) + o(1) as t → +∞,
where Fj(t) = fj

(
eiθ1t, . . . , eiθrt

)
for 1 ≤ j ≤ D. Then

P(f1(Zθ) > · · · > fD(Zθ)) ≤ δ(G1 > · · · > GD)
≤ δ(G1 > · · · > GD) ≤ P(f1(Zθ) ≥ · · · ≥ fD(Zθ)).

Moreover, if for every 1 ≤ j ≤ D − 1, there exists y ∈ R such that Fj(y) 6= Fj+1(y),
then δ(G1 > · · · > GD) exists and we have

δ(G1 > · · · > GD) = P(f1(Zθ) > · · · > fD(Zθ)).
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ii) Let θ = (θn)n≥1 be a sequence of pairwise distinct positive real numbers and Θ = {θn |
n ≥ 1}. Let F1, . . . , FD : R+ −→ R be B1-almost periodic functions such that for
1 ≤ j ≤ D,Fj ∼ cj +∑

θ∈Θ

(
aθ,je

iθt + aθ,je
−iθt

)
and G : t 7→ (F1(t), . . . , FD(t)) + o(1)

as t → +∞. Then, with S1, . . . , SD the random variables associated to F1, . . . , FD in
Theorem 1.17, we have

P(S1 > · · · > SD) ≤ δ(G1 > · · · > GD)
≤ δ(G1 > · · · > GD) ≤ P(S1 ≥ · · · ≥ SD).

Moreover, if SpanQ Θ = SpanQ T ⊕ SpanQ(Θ \ T ) for some non-empty finite subset T
of Θ, and if for every 1 ≤ j ≤ D − 1, there exists θ ∈ T such that aθ,j 6= aθ,j+1, then
δ(G1 > · · · > GD) exists and

δ(G1 > · · · > GD) = P(S1 > · · · > SD).

Let us provide a consequence of the above result for prime number races over number
fields with any number of participants. Using the explicit formula [20, (5.12)] and Theorem
1.28 ii), we obtain the following.

Theorem 1.29. Let L/K be a Galois extension of number fields, with Galois group G.
Assume ζL satisfies the Riemann Hypothesis. Let Θ be the set of positive imaginary parts
of the non-trivial zeros of Artin L-functions attached to irreducible complex characters of G,
and assume that SpanQ Θ = SpanQ T ⊕ SpanQ(Θ \ T ) for some non-empty finite subset T of
Θ. Let C1, . . . , CD be distinct conjugacy classes of G. If for every 1 ≤ j ≤ D− 1, there exists
θ ∈ T such that ∑

χ 6=χ0

ords= 1
2 +iθ L(s, χ) (χ(Cj)− χ(Cj+1)) 6= 0

then the logarithmic density

δ(L/K;C1, . . . , CD) := lim
X→+∞

1
X

∫ X

2
1πC1 (et)>···>πCD (et) dt

exists.

Remark.
i) Using the unconditional explicit formula from [14, Corollary 3.10], we could provide a

similar statement for the existence of the above logarithmic density, under a suitable
hypothesis of non-vanishing coefficient as above and without assuming the Riemann
Hypothesis for ζL.

ii) Because of the special properties of Artin L-functions with respect to induction of
characters, one could state a linear independence hypothesis about the set of zeros of
Artin L-functions attached to irreducible complex characters of G+ instead, where G+

is the Galois group of the Galois closure of L over Q. That this is a more natural set of
zeros to consider was noted by the author, and used for the first time in [14].

2 Applications
2.1 Non-critical densities
We give sufficient conditions for the densities we study to be positive.
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Proposition 2.1. Let θ1, . . . , θr be real numbers. Let f1, . . . , fD, F1, . . . , FD and G1, . . . , GD
be as in Theorem 1.27.

i) Degenerate case : Assume that θi ∈ πQ for 1 ≤ i ≤ r. If there exists n ∈ Z such that
F1(n) > · · · > FD(n), then 0 < δ(G1 > · · · > GD) and if there exists n ∈ Z such that
F1(n) ≥ · · · ≥ FD(n) does not hold, then δ(G1 > · · · > GD) < 1.

ii) Non-degenerate case : Assume θi 6∈ πQ for at least one i ∈ {1, . . . , r}. If there exist a ∈
{0, . . . , d−1} and z ∈ Hθ such that f1(νaθ z) > · · · > fD(νaθ z) then 0 < δ(G1 > · · · > GD).
Also, if there exist a ∈ {0, . . . , d − 1} and z ∈ Hθ such that f1(νaθ z) ≥ · · · ≥ fD(νaθ z)
does not hold, then δ(G1 > · · · > GD) > 1. In particular, if there exists n ∈ Z such that
F1(n) > · · · > FD(n), then 0 < δ(G1 > · · · > GD), and if there exists n ∈ Z such that
F1(n) ≥ · · · ≥ FD(n) does not hold, then δ(G1 > · · · > GD) < 1.

Proof.
i) It is immediate by Corollary 1.4 and Theorem 1.27 i).
ii) Assume that there exist a ∈ {0, . . . , d−1} and z ∈ Hθ such that f1(νaθ z) > · · · > fD(νaθ z).

By continuity of f1, . . . , fD, there exists an open subset U of Hθ such that z ∈ U and
for all z′ ∈ U, f1(νaθ z′) > · · · > fD(νaθ z′). Therefore, we have

P(f1(νaθZθ) > · · · > fD(νaθZθ)) ≥ P(Zθ ∈ U)
= P((Z1, . . . , Zm) ∈ ϕ−1(U))
= λ(ϕ−1(U)) > 0,

where ϕ is the continuous map

Tm −→ Hθ

ϕ : (z1, . . . , zm) 7→
(
zd1 , . . . , z

d
m,
∏m
k=1 z

hk,m+1
k , . . . ,

∏m
k=1 z

hk,r
k

)
and λ is the Lebesgue measure on Tm. By Theorem 1.27 ii), we obtain δ(F1 > · · · >
FD) ≥ P(f1(νaθZθ)>···>fD(νaθZθ))

d > 0. The proof of the second statement is similar since
the negation of f1(νaθ z) ≥ · · · ≥ fD(νaθ z) is also an open condition on z.
The last stament is immediate since, if n ≡ a mod d, then

(
eiθ1n, . . . , eiθrn

)
= νaθ z for

some z ∈ Hθ by construction.
�

Remark.
i) In the degenerate case, we actually have the lower bound 1

d ≤ δ(G1 > · · · > GD)
whenever δ(G1 > · · · > GD) > 0, and the upper bound δ(G1 > · · · > GD) ≤ 1 − 1

d
whenever δ(G1 > · · · > GD) < 1.

ii) The converses of the above statements are false in general. For example it may happen
that f1(z) = · · · = fD(z) for every z ∈ Tr, but δ(G1 > · · · > GD) > 0 because
r1(n) > · · · > rD(n) for a positive proportion of n ∈ N.

The continuous version of the above Proposition is proved in the same way as ii) above.

Proposition 2.2. Let θ1, . . . , θr be real numbers. Let f1, . . . , fD, F1, . . . , FD and G be as in
Theorem 1.28 i). If there exists z ∈ Hθ such that f1(z) > · · · > fD(z) then 0 < δ(G1 >
· · · > GD). Also, if there exists z ∈ Hθ such that f1(z) ≥ · · · ≥ fD(z) does not hold, then
δ(G1 > · · · > GD) > 1. In particular, if there exists y ∈ R such that F1(y) > · · · > FD(y),
then 0 < δ(G1 > · · · > GD), and if there exists n ∈ Z such that F1(n) ≥ · · · ≥ FD(n) does
not hold, then δ(G1 > · · · > GD) < 1.
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Remark. In the infinite-dimensional case, the only known lower bounds on the density are
shown in particular cases by using delicate combinatorial arguments (cf. [23, 2.2] and [9,
Theorem 2.5.1 (1)]).

2.2 Prime divisor races over global function fields
We now give an application of the previous results to the study of prime divisor races over
global function field extensions.

Let L/K be a geometric Galois extension of function fields, with constant field Fq, the
finite field with q elements, i.e. K is a finitely generated extension of Fq, has transcendence
degree 1 over Fq, Fq is algebraically closed in L (and therefore in K) and L/K is Galois. We
let gK and gL denote the genus ([22, Theorem 6.6]) of K and L respectively. Let C1, . . . , CD
be D ≥ 1 distinct conjugacy classes of G := Gal(L/K). Define

πCi(n) := #{P prime divisor of K unramified in L | deg(P ) = n,FrobP = Ci},

where FrobP denotes the Frobenius conjugacy class of P in G. The Chebotarev density
theorem ([22, Theorem 9.13B]) states that

πCi(n) = |Ci|
|G|

qn

n
+O

(
qn/2

n

)
.

This shows that
πCi(n)
|Ci|

∼
n→+∞

πCj (n)
|Cj |

for any two i 6= j, but we want to compare those two quantities beyond this first order
asymptotic. The question is, how often can it happen that

πC1(n)
|C1|

> · · · > πCD(n)
|CD|

?

More precisely, we are interested in the following density, provided it exists,

δ(L/K;C1, . . . , CD) := lim
X→+∞

#
{
n ≤ X πC1 (n)

|C1| > · · · > πCD (n)
|C1|

}
X

.

When studying the densities δ(L/K;Cσ(1), . . . , Cσ(D)) for every permutation σ of {1, . . . , D},
we say we study the prime divisor race between C1, . . . , CD. As usual, we will denote by
δ(L/K;C1, . . . , CD) the corresponding lim inf and lim sup.

To study the above densities, we use the Artin L-functions associated to irreducible char-
acters of G. If χ is such a character, one has the following convenient expression :

logL(s, χ) =
∑
P

∑
n≥1

χ(Pn)q−ndeg(P )s

n

for Re(s) > 1, where χ(Pn) is a short way of writing χ(FrobnP ) when P is unramified, and it
is

1
e(P )

∑
g∈I(P)

χ(g(FrobP )n)

when P is ramified. Here, FrobP is any preimage in G of the corresponding residual Frobenius
automorphism, e(P ) is the ramification index of P in L and I(P) is the inertia subgroup of
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a prime P of L dividing P . Since I(P) and FrobP only depends on P up to conjugacy and
χ is a central function on G, this is indeed independent of any choice.

It is convenient to move from the variable s to the variable u := q−s, and to write
L(u, χ) := L(s, χ). Then one has the following important theorem ([22, Theorems 9.16A and
9.16B]) :

Theorem 2.3 (Weil). The function L(s, χ0), where χ0 is the trivial character of G (which
is also the zeta function ζK of K) is a rational function in u with integer coefficients, which
we factorize as

ζK(s) = L(u, χ0) =
∏2gK
j=1(1− γ(χ0, j)u)
(1− u)(1− qu) .

If χ 6= χ0 is a non-trivial irreducible character of G, then L(u, χ) is a polynomial in u with
integer coefficients which we factorize as

L(u, χ) =
Mχ∏
j=1

(1− γ(χ, j)u)

for some integer Mχ ≥ 0. The γ(χ, j) are called the inverse zeros of L(u, χ) and have
absolute value √q (Riemann Hypothesis for curves over Fq). Moreover, if γ is an inverse
zero of L(u, χ) then q

γ = γ is an inverse zero of L(u, χ).

The last statement of the theorem is a simple consequence of the functional equation sat-
isfied by Artin L-functions, which we do not formulate here (for non-trivial characters, one
has to combine the functional equation of Hecke L-series and Brauer’s induction theorem as
in the case of Artin L-functions over number fields [5, p.81-83]).

We now make some preliminary work to study the prime divisor races in L/K. We let C
be a conjugacy class of G.

On the one hand, by the definition of Artin L-functions, one has

u
d

du logL(u, χ) =
∑
P

∑
n≥1

degPχ(Pn)undegP =
∑
n≥1

 ∑
P

degP |n

degPχ(P
n

degP )

un.
On the other hand, from the above factorizations, we obtain

u
d

du logL(u, χ0) =
∑
n≥1

qn + 1−
2gK∑
j=1

γ(χ, j)n
un

and for χ 6= χ0

u
d

du logL(u, χ) =
∑
n≥1

− Mχ∑
j=1

γ(χ, j)n
un.

Writing
u

d
du logL(u, χ) =

∑
n≥1

cn(χ)un,
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and using the second orthogonality relations on characters, we find from the first formula for
cn(χ) above that ∑

χ

χ(C)cn(χ) =
∑
P

degP |n

degP
∑
χ

χ(P
n

degP )χ(C)

= #G
#C

∑
d|n

d#{P | degP = d,Frob
n
d
P ⊂ C}

= #G
#CnπC(n) +RC(n) +O

(
qn/3

)
,

where
RC(n) =

{
n
2

#G
#C#{P | degP = n

2 ,Frob2
P ⊂ C} if n is even

0 otherwise.

Using now the second formula for cn(χ) above, we obtain

∑
χ

χ(C)cn(χ) = qn + 1−
2gK∑
j=1

γ(χ0, j)n −
∑
χ 6=χ0

χ(C)
Mχ∑
j=1

γ(χ, j)n.

Combining those formulas we obtain

#G
#CπC(n) = qn

n
− RC(n)

n
− 1
n

2gK∑
j=1

γ(χ0, j)n −
1
n

∑
χ 6=χ0

χ(C)
Mχ∑
j=1

γ(χ, j)n +O

(
qn/3

n

)
.

We now introduce C1/2 := {g ∈ G | g2 ∈ C}, and remark it is stable by conjugacy in G, so it is
the disjoint union of conjugacy classes D1, . . . , Dt of G, and #{P | degP = n

2 ,Frob2
P ⊂ C} =∑t

i=1 πDi
(
n
2
)

= ∑t
i=1

#Di
#G

2
nq

n/2 +O(qn/4) = #(C1/2)
#G

2
nq

n/2 +O(qn/4) by the above formula.
This shows that

RC(n) =
{

#(C1/2)
#C qn/2 +O(qn/4) if n is even

0 otherwise,
= #(C1/2)

2#C qn/2 + #(C1/2)
2#C qn/2eiπn +O(qn/4).

Finally, we have

#G
#CπC(n) = qn

n
−#(C1/2)

#C
qn/2

2n −
#(C1/2)

#C
qn/2

2n eiπn− 1
n

2gK∑
j=1

γ(χ0, j)n−
1
n

∑
χ 6=χ0

χ(C)
Mχ∑
j=1

γ(χ, j)n+O
(
qn/3

n

)
.

Similarly, with πK(n) := #{P | degP = n}, one has

πK(n) = qn

n
− qn/2

2n − e
iπn q

n/2

2n −
1
n

2gK∑
j=1

γ(χ0, j)n +O
(
qn/3

)
.

Combining those formulas, we obtain

n

qn/2

(#G
#CπC(n)− πK(n)

)
=

1− #(C1/2)
#C

2 +
1− #(C1/2)

#C
2 eiπn−

∑
χ 6=χ0

χ(C)
Mχ∑
j=1

(
γ(χ, j)
√
q

)n
+o(1)

as n→ +∞.
Grouping pairs of conjugate inverse zeros we have shown :
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Proposition 2.4. Let γ1, . . . , γr be the inverse zeros with positive imaginary part of the
L(u, χ), for χ 6= χ0, counted without multiplicity. For 1 ≤ j ≤ r, write γj = √qeiθj . Then
for any conjugacy class C of G we have

n

qn/2

(#G
#CπC(n)− πK(n)

)
= rC + zC + aπ(C)eiπn −

r∑
j=1

(
aj(C)eiθjn + aj(C)e−iθjn

)
+ o(1)

as n→ +∞, where

rC :=
1− #(C1/2)

#C
2 ,

zC := −
∑
χ 6=χ0

χ(C) ordu=q−1/2 L(u, χ),

aπ(C) = rC −
∑
χ 6=χ0

χ(C) ordu=−q−1/2 L(u, χ),

and for 1 ≤ j ≤ r,
aj(C) :=

∑
χ 6=χ0

χ(C) ordu=γ−1
j
L(u, χ).

We have thus shown that a suitable rescaling of πC(n) is of the form we studied in the
previous sections. The rescaling of πC(n)

#C does not depend on C, so that will allow us to study
prime divisor races between conjugacy classes of G.

Theorem 2.5. Let C1, . . . , CD be conjugacy classes of G. For 1 ≤ j ≤ D, let fj = rCj +

zCj + aπ(Cj)
Xr+1+X−1

r+1
2 −

∑r
k=1

(
ak(Cj)Xj + ak(Cj)X−1

j

)
∈ C(X1, . . . , Xr+1) and Fj : t 7→

fj
(
eiθ1t, . . . , eiθrt, eiπt

)
.

i) Degenerate case : Assume θi ∈ πQ for 1 ≤ i ≤ r, i.e. that each L(u, χ), χ 6= χ0, is a
product of (rescaled) cyclotomic polynomials. If there exists n ∈ Z such that F1(n) >
· · · > FD(n), then 0 < δ(L/K;C1, . . . , CD) and if there exists n ∈ Z such that F1(n) ≥
· · · ≥ FD(n) does not hold, then δ(L/K;C1, . . . , CD) < 1. Moreover, if for 1 ≤ j ≤ D−1,
and for 0 ≤ n ≤ d− 1, one has Fj(n) 6= Fj+1(n), then δ(L/K;C1, . . . , CD) exists.

ii) Non-degenerate case : Assume θi 6∈ πQ for at least one i ∈ {1, . . . , r}. If there ex-
ist a ∈ {0, . . . , d − 1} and z ∈ Hθ such that f1(νaθ z) > · · · > fD(νaθ z) then 0 <
δ(L/K;C1, . . . , CD). Also, if there exist a ∈ {0, . . . , d − 1} and z ∈ Hθ such that
f1(νaθ z) ≥ · · · ≥ fD(νaθ z) does not hold, then δ(L/K;C1, . . . , CD) < 1. In particular,
if there exists n ∈ Z such that F1(n) > · · · > FD(n), then 0 < δ(L/K;C1, . . . , CD), and if
there exists n ∈ Z such that F1(n) ≥ · · · ≥ FD(n) does not hold, then δ(L/K;C1, . . . , CD) <
1. Moreover, if for 0 ≤ a ≤ d − 1 and 1 ≤ j ≤ D − 1, there exists n ≡ a mod d such
that Fj(n) 6= Fj+1(n), then δ(L/K;C1, . . . , CD) exists.

Proof. This is an immediate application of Proposition 2.4, Theorem 1.27 and Proposition
2.1. �

We now treat an example for which there is linear dependence between the θi’s. This
example was featured in [8], but since it did not satisfy the required linear independence
condition under which the authors worked, they weren’t able to study the corresponding
prime divisor race. Take K = F7(t) and L = K(α) where α has minimal polynomial f =
X6 − (t2 + t)X3 − 1 over K. Then as detailed in [8, 4.2], G = Gal(L/K) ' S3. We note
C1 = {id}, C2 = {(1 2), (1 3), (2 3)} and C3 = {(1 2 3), (1 3 2)}, and it is well-known that we
have the following character table for G :
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S3 C1 C2 C3
χ0 1 1 1
χ1 1 −1 1
χ2 2 0 −1

One has
L(u, χ1) = 1 + 4u+ 7u2 = (1− γ1u)(1− γ1u),

L(u, χ2) = 1 + u+ 7u2 = (1− γ2u)(1− γ2u),

with (those two values are inverted in [8])

γ1 = −2 + i
√

3

and
γ2 = −1 + 3i

√
3

2 .

Then we have θ1 = arctan
(
−
√

3
2

)
, θ2 = arctan(−3

√
3) and θ1 + θ2 = 4π

3 . Adding θ3 = π be-
cause of the coefficient aπ(C), we are in the non-degenerate case (because θ2 = − arccos

(
1√
28

)
as one easily verifies, and such a number is known not to be a rational multiple of π, see [24]
for example). With notations from Section 1.2, we have m = 1, d = 6, c2 = 2

3 , b1,2 = −1, c3 =
1
2 , b1,3 = 0.

A quick computation using PARI/GP shows that for i 6= j ∈ {1, 2, 3} and every a ∈
{0, 1, 2, 3, 4, 5}, there exists n ≡ a mod 6 such that Fi(n) 6= Fj(n), so for every permuta-
tion σ ∈ S3, the density δ(L/K;Cσ(1), Cσ(2), Cσ(3)) exists, i.e. the race between C1, C2
and C3 is weakly inclusive (Definition 0.2). Also, for every permutation σ ∈ S3, the in-
equality Fσ(1)(n) > Fσ(2)(n) > Fσ(3)(n) happens for some n ≤ 7 so we may conclude that
0 < δ(L/K;Cσ(1), Cσ(2), Cσ(3)) < 1 and in particular the race between C1, C2 and C3 is inclu-
sive (Definition 0.2).

Remark. If one wants to study races between functions counting prime divisors of degree
less than n, instead of equal to n as above, one can use the following explicit formula ([8,
Theorem 2.1]) :

n

qn/2

(
#G
#C

n∑
k=1

πC(k)− πK(n)
)

= rC
q +√q
q − 1 + rC

q −√q
q − 1 einπ − 2

2gK∑
j=1

γ(χ0, j)
γ(χ0, j)− 1e

inθ(χ0,j)

−
∑
χ 6=χ0

χ(C)
Mχ∑
j=1

γ(χ, j)
γ(χ, j)− 1e

inθ(χ,j) + o(1)

as n→ +∞, and use our method similarly since this has the shape we studied above.

2.3 Moments
To bound the probabilities involved in our results in the case D = 2, moment estimates,
such as Chebyshev’s inequality, can prove very useful. In particular, races where, for each
a, P(f1(νaθZθ) > f2(νaθZθ)) −→

q→+∞
1 or 0 ("extremely biased races") or each P(f(νaθZθ) >

f2(νaθZθ)) −→q→+∞
1
2 ("moderately biased races") can be obtained from sufficiently good esti-

mates on the corresponding means and variances as in [14]. Here the limits are taken with
respect to a parameter q attached to the prime number races considered. To go beyond the
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first two moments, and for example have an explicitly computable characteristic function at
our disposal as in [6, Theorem 3.4] or [8, Theorem 2.4]), we would need to assume extra linear
independence.

In the next Proposition, we give formulas for the first two moments of the random variables
fj(νaθZθ) for some particular types of functions fj .
Proposition 2.6. Let f = c +∑r

k=1 akXk + akX
−1
k ∈ C(X1, . . . , Xr). Let θ1, . . . , θr be real

numbers such that θi 6∈ πQ for i ≤ n, and θi ∈ πQ for n < i ≤ r. Then for 0 ≤ a ≤ d − 1,
one has

E(f(νaθZθ)) = c+
∑

n<k≤r
(akeiaθk + ake

−iaθk)

and

Var(f(νaθZθ)) = 2
∑

1≤k≤n
|ak|2 + 4Re

 ∑
1≤i<j≤n
θi+θj∈πQ

aiaje
ia(θi+θj)

+ 4Re

 ∑
1≤i<j≤n
θi−θj∈πQ

aiaje
ia(θi−θj)

 .
In particular if θi 6∈ πQ for 1 ≤ i ≤ r, then E(f(νaθZθ)) = c does not depend on a, and if no
relation of the form θi ± θj ∈ πQ holds for 1 ≤ i < j ≤ n, then Var(f(νaθZθ) does not depend
on a.
Proof. We note that the n first components of Zθ are products of non-zero integral powers of
independent uniform random variables on T, so they are uniform on T, while the last r − n
components of Zθ are (almost surely) equal to 1. The result for the mean is then straightfor-
ward. For the variance, we expand the squared modulus and remark that Zθ,iZθ,j = 1 (almost
surely) if and only if θi+θj ∈ πQ, and Zθ,iZθ,j = 1 (almost surely) if and only if θ−θj ∈ πQ. �

As a corollary of the above Proposition, we deduce another sufficient condition for ties
between those functions to have density zero.

Corollary 2.7. For 1 ≤ j ≤ D, let fj = cj +∑r
k=1 a

(j)
k Xk + a

(j)
k X−1

k ∈ C(X1, . . . , Xr). Let
θ1, . . . , θr be real numbers such that θi 6∈ πQ for i ≤ n, and θi ∈ πQ for n < i ≤ r. Finally,
let Gj : t 7→ fj

(
eiθ1t, . . . , eiθrt

)
+ o(1) as t→ +∞.

i) If n > 1 (i.e. we are in the non-degenerate case), and if for every a ∈ {0, . . . , d−1}, the

map j 7→
∑

1≤k≤n |a
(j)
k |2+2Re

(∑
1≤i<k≤n
θi+θk∈πQ

a
(j)
i a

(j)
k eia(θi+θk)

)
+2Re

(∑
1≤i<k≤n
θi−θk∈πQ

a
(j)
i a

(j)
k eia(θi−θk)

)
is injective then for every permutation σ of {1, . . . , D}, δ(Gσ(1) > · · · > Gσ(D)) exists.

ii) If for every a ∈ {0, . . . , d−1}, the map j 7→ cj+
∑r
k=n

(
a

(j)
k eiaθk + a

(j)
k e−iaθk

)
is injective

then for every permutation σ of {1, . . . , D}, δ(Gσ(1) > · · · > Gσ(D)) exists.
Proof.

i) The hypothesis implies that Var(fi(νaθZθ)) 6= Var(fj(νaθZθ)) for any a ∈ {0, . . . , d − 1}
and any distinct i, j ∈ {1, . . . , D} by Proposition 2.6, so that the random variable
fi(νaθZθ)−fj(νaθZθ) is almost surely non-zero. By Lemma 1.8, this implies P(fi(νaθZθ) =
fj(νaθZθ)) = 0, and the result follows from Theorem 1.27 ii).

ii) The proof is similar, except that this time E(fi(νaθZθ) − fj(νaθZθ)) 6= 0, which implies
again that P(fi(νaθZθ) = fj(νaθZθ)) = 0.

�
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Appendix : a proof of the discrete Kronecker-Weyl
theorem
Proof of Theorem 1.2. Recall θ1, . . . , θr are real numbers such that {π, θ1, . . . , θr} is linearly
independent over Q,

Γ =
{(
eiθ1X , . . . , eiθrX

)
| X ∈ Z

}
and we want to show that for every continuous f : Tr → C,

1
X

X∑
n=1

f
(
eiθ1n, . . . , eiθrn

)
−→

X→+∞

∫
Tr
f dλ,

where λ is the Lebesgue measure on Tr.
By the Stone-Weierstrass theorem, it is enough to prove the result when f is a trigono-

metric polynomial, that is, a linear combination of monomials in z1, . . . , zr. Indeed, if the
result is true for such functions, then for any ε > 0, we can find a trigonometric polynomial
g such that ||f − g||∞ < ε, and for every X large enough we have∣∣∣∣∣ 1

X

X∑
n=1

g
(
eiθ1n, . . . , eiθrn

)
−
∫
Tr
g dλ

∣∣∣∣∣ < ε.

For such X, we find∣∣∣∣∣ 1
X

X∑
n=1

f
(
eiθ1n, . . . , eiθrn

)
−
∫
Tr
f dλ

∣∣∣∣∣ ≤
∣∣∣∣∣ 1
X

X∑
n=1

(f − g)
(
eiθ1n, . . . , eiθrn

)
−
∫
Tr

(f − g) dλ
∣∣∣∣∣

+
∣∣∣∣∣ 1
X

X∑
n=1

g
(
eiθ1n, . . . , eiθrn

)
−
∫
Tr
g dλ

∣∣∣∣∣ < 3ε

which proves that
1
X

X∑
n=1

f
(
eiθ1n, . . . , eiθrn

)
−→

X→+∞

∫
Tr
f dλ.

By linearity, we now only have to prove the theorem for monomials

Tr −→ C
f : (z1, . . . , zr) 7→ zn1

1 . . . znrr ,

where n1, . . . , nr ∈ Z.
The result is obviously true if (n1, . . . , nr) = (0, . . . , 0), i.e. if f = 1 since both sides are

equal to 1. Now assume at least one ni is non-zero. On the one hand we have∫
Tr
f dλ =

r∏
k=1

∫
T
znk dλ = 0.

On the other hand, since {π, θ1, . . . , θr} is linearly independant over Q, we have that n1θ1 +
· · ·+ nrθr 6∈ 2πZ, so that ei(n1θ1+···+nrθr) 6= 1. Now, summing the geometric progression, we
find

1
X

X∑
n=1

f
(
eiθ1n, . . . , eiθrn

)
= 1
X

X∑
n=1

ein(n1θ1+···+nrθr)

= 1
X

ei(X+1)(n1θ1+···+nrθr) − ei(n1θ1+···+nrθr)

ei(n1θ1+···+nrθr) − 1
−→

X→+∞
0
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since ei(X+1)(n1θ1+···+nrθr)−ei(n1θ1+···+nrθr)

ei(n1θ1+···+nrθr)−1 is bounded. �

Remark. The continuous version of the Kronecker-Weyl theorem states that, assuming
θ1, . . . , θr are linearly independent over Q, for every continuous function f : Tr → C, one has

1
X

∫ X

0
f
(
eiθ1y, . . . , eiθry

)
dy −→

X→+∞

∫
Tr
f dµ.

Its proof is similar as the one given above. The first step reduces to the case of trigonometric
polynomials by using the Stone-Weierstrass theorem, and the last calculation is done with
integrals instead of discrete sums.
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