
HAL Id: hal-02896961
https://hal.science/hal-02896961v1

Preprint submitted on 11 Jul 2020 (v1), last revised 12 Dec 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Monte Carlo Transformer:
Alice Martin, Charles Ollion, Florian Strub, Sylvain Le Corff, Olivier Pietquin

To cite this version:
Alice Martin, Charles Ollion, Florian Strub, Sylvain Le Corff, Olivier Pietquin. The Monte Carlo
Transformer:. 2020. �hal-02896961v1�

https://hal.science/hal-02896961v1
https://hal.archives-ouvertes.fr

The Monte Carlo Transformer: a stochastic self-attention

model for sequence prediction

Alice Martin∗†>, Charles Ollion‡, Florian Strub⊥, Sylvain Le Corff†, and Olivier
Pietquin∓

†Samovar, Télécom SudParis, Département CITI, TIPIC, Institut Polytechnique de Paris, France.
>CMAP, UMR 7641, École Polytechnique, CNRS, Institut Polytechnique de Paris, France.

‡Heuritech, Paris, France.
∓Google Research, Brain Team.

⊥DeepMind.

Abstract

This paper introduces the Sequential Monte Carlo Transformer, an original approach that
naturally captures the observations distribution in a recurrent architecture. The keys, queries,
values and attention vectors of the network are considered as the unobserved stochastic states
of its hidden structure. This generative model is such that at each time step the received
observation is a random function of these past states in a given attention window. In this
general state-space setting, we use Sequential Monte Carlo methods to approximate the poste-
rior distributions of the states given the observations, and then to estimate the gradient of the
log-likelihood. We thus propose a generative model providing a predictive distribution, instead
of a single-point estimate.

1 Introduction

While neural networks excel at predicting a single-point estimate of a given target for complex ma-
chine learning problems, an open research question is the design of neural generative models able to
output a predictive distribution, that can capture the inherent variability of the observations or the
model’s level of confidence in its predictions. The main motivation behind uncertainty quantifica-
tion is the design of AI systems for critical applications that are safe, and are mitigating risks while
automatizing decision-making. On one hand, Bayesian statistics offer a mathematically grounded
framework to reason about uncertainty; however, such models generally require prohibitive com-
putational costs, which make them not widely used in practice. On the other hand, frequentist
methods and metrics have been developed for confidence estimation in neural networks, in particu-
lar in the classification setting [Brosse et al., 2020], [Corbière et al., 2019]. Such works address the

∗This action benefited from the support of the Chair � New Gen RetAIl � led by l’X – École Polytechnique and
the Fondation de l’École Polytechnique, sponsored by CARREFOUR.

1

Alice Martin et al. The Monte Carlo Transformer

issue of neural networks calibration [Guo et al., 2017] and detection of out-of-distribution samples
[Lee et al., 2018]. But few works focus on generative models based on recurrent neural networks.

On another note, the Transformer model introduced in [Vaswani et al., 2017] has achieved im-
pressive results on sequential data problems. In the field of Natural Language Processing (NLP),
Transformers have indeed repeatedly outperformed recurrent neural networks (RNNs), and are
now the go-to network architectures to solve complex tasks such as Machine Translation or Lan-
guage Modeling. The Transformer model is based on a self-attention mechanism, that computes
dot-product attention for every element of a sequence with respect to all others to model their
dependency. By computing in parallel multiple heads of self-attention and by stacking layers of
such multi-head attention, the model learns long-range dependencies better than previous state-of-
the-art models for sequential data.

Since the release of ”Attention is all you need” [Vaswani et al., 2017], the Deep Learning com-
munity have been eager to seize the nuts and bolts of the model to improve its training algorithm or
to adapt its architecture to new use-cases and types of sequential data, see for instance BERT and
its variants ([Devlin et al., 2019], [Radford et al., 2018], [Radford et al., 2019], [Raffel et al., 2019])
and [Chen et al., 2018], [Hao et al., 2019]. Yet, few publications actually focus on the dependency
structure at the heart of the Transformer architecture which provides a promising approach to
model sequential data. We think that designing a recurrent network inspired from the original
Transformer with statistical priors in its architecture could provide a powerful statistical model for
capturing the distribution of the observations for sequence prediction problems.

To that end, we introduce the Sequential Monte Carlo (SMC) recurrent Transformer which
presupposes that the keys, queries, values and self-attention parameters are unobserved latent
states evolving randomly through time. The model relies on a dynamical system inspired from the
Transformer, capturing the uncertainty by replacing deterministic self-attention sequences by latent
trajectories. The combination of self-attention through time with unobserved model noise allows to
generate observations with a complex statistical structure. Self-attention vectors being unobserved
stochastic variables, the log-likelihood of the observations is intractable and needs to be estimated.
In this paper, we propose to use particle filtering and smoothing methods to draw samples from
the distribution of hidden states given observations. The proposed algorithm is based on the auxil-
iary particle filter of [Liu and Chen, 1998, Pitt and Shephard, 1999], the most widely used particle
filtering method and a generalization of previous approaches such as the algorithms proposed in
[Gordon et al., 1993] and [Kitagawa, 1996]. The theoretical properties of such methods to estimate
the unknown distributions of the internal states and observations have been widely studied, usually
in the context of hidden Markov models, see for instance [Del Moral, 2004], [Cappé et al., 2005],
[Del Moral et al., 2010], [Del Moral et al., 2015], [Douc et al., 2011], [Dubarry and Le Corff, 2013],
[Olsson et al., 2017], [Nguyen et al., 2017].

Fitting the Transformer approach to general state space modeling provides a new promising
and interpretable statistical framework for sequential data and recurrent neural networks. From a
statistical point of view, the SMC Transformer provides an efficient way of writing each observation
as a sophisticated mixture of previous data, while the approximated posterior distribution of the
unobserved states captures the states dynamics. We evaluate our model on a series of experiments
that first assess the model’s ability to predict accurately a known distribution of observations
on synthetic datasets, and then apply it to uncertainty quantification in a time-series forecasting
problem. The results show that the SMC Transformer manages to capture efficiently the known
observation models in the synthetic setting. When performing the task of time-series forecasting
on a critical dataset (daily deaths from the Covid-19), the SMC Transformer allows to maintain

2

Alice Martin et al. The Monte Carlo Transformer

accurate mean predictions with satisfactory confidence intervals, that take in account the variability
of the observations found in each test example.

2 Background

2.1 The Transformer model

The Transformer model has been originally developed to propose a new sequence transduction model
without recurrence or convolution, and as an alternative to recurrent neural networks for sequence
modeling, [Vaswani et al., 2017]. This approach relies entirely on the self-attention mechanism
([Lin et al., 2017]) to model global dependencies regardless of their distance in input or output
sequences. Let (Xs)s>1 be a sequence of observations indexed by N. Transformer models are
designed to predict an output Xs, for a given index s, from input data X−s. Each input data Xs

is associated with a query qs and a set of key-value (ks, vs) computed from linear transformations
of the input. From the set of keys and queries, a softmax score function is first computed, which
determines how much focus to place on each input in X−s as Xs is processed. Transformer models
use a scaled dot product attention to compute this score π: πs = softmax(QsK

T
s /
√
r), where each

line of Qs (resp. Ks) contains an input query (resp. keys) and r denotes the dimensionality of keys
and queries. Then, this softmax score is used to compute a weighted sum of the values vectors.
The final attention is written as: Attention(Qs,Ks, Vs) = softmax

(
QsK

T
s /
√
r
)
Vs, where Vs is the

matrix whose rows are the values associated with each input data. The Transformer uses multi-
head self-attention: the data hidden representations are linearly projected in h subspaces where the
attention is computed in parallel, leading to h outputs then concatenated back together.

2.2 Sequential Monte Carlo Methods

In real-world machine learning applications, the auxiliary states (queries, keys, values) as well
as the observations used to train the neural network are prone to be very noisy. The use of a
generative model replacing these deterministic states by random variables evolving according to a
dynamical model allows to take into account the uncertainty in the estimation procedure instead
of choosing fixed deterministic states. However, considering queries, keys and values as unobserved
random variables leads to an intractable likelihood function as the log-likelihood of the observed
data X1:T , where Xu1:u2

stands for (Xu1
, . . . , Xu2

) for u1 6 u2, is obtained by integrating out
all latent variables which cannot be done analytically. The exact computation of the likelihood
function is therefore not possible in general state spaces. Maximum likelihood estimation cannot
be performed directly but a gradient descent algorithm may still be defined using Fisher’s identity,
see for instance [Cappé et al., 2005]:

∇θlog pθ(X1:T)=Eθ[∇θlog pθ(ζ1:T , X1:T)|X1:T] , (1)

where θ denotes the unknown parameters of the model, ζ1:T denotes all the unobserved states,
pθ the joint probability distribution of the observations X1:T and the latent states and Eθ the
expectation under pθ. In this paper, we propose to estimate the gradient of the log-likelihood of
such general state space model using Sequential Monte Carlo methods, i.e. by a set of random
samples associated with non negative importance weights. These particle filters and smoothers
approximations combine sequential importance sampling steps to recursively update conditional
expectations of the form (1) and importance resampling steps to duplicate or discard particles

3

Alice Martin et al. The Monte Carlo Transformer

according to their importance weights. By (1), ∇θ log pθ(X1:T) is then approximated by a weighted
sample mean of the form

SMθ,T =

M∑
m=1

ωmn ∇θ log pθ(ξ
m
1:T , X1:T) , (2)

where (ωmn)16m6M are nonnegative importance weights such that
∑M
m=1 ω

m
T = 1 and where ξm1:T

are trajectories approximately sampled from the posterior distribution of ζ1:T given X1:T when
the parameter is θ. This approximation of the score function can be plugged into any stochastic
gradient algorithm to find local minima of θ 7→ − log pθ(X1:T).

3 The SMC Transformer

3.1 Generative model

In the specific case of sequential data, Transformers-based approaches may be introduced to provide
a model of the conditional distribution of Xt given ∆ past observations Xt−∆:t−1 where 1 6 ∆ 6 t.
In a SMC Transformer with a unique layer, for all 1 6 s 6 t and all 1 6 h 6 nheads, define,

qh(s) = Wh,qXs + Σ
1/2
h,q ε

h
q (s) , κh(s) = Wh,κXs + Σ

1/2
h,κε

h
κ(s) , vh(s) = Wh,vXs + Σ

1/2
h,v ε

h
v (s) ,

where Wh,q, Wh,κ and Wh,v are unknown d× r matrices, (Σh,q,Σh,κ,Σh,v)16h6nheads
are unknown

semi definite-positive matrices and (εhq , ε
h
κ, ε

h
v)16h6nheads

are independent standard Gaussian random

vectors in Rr. Then, define the matrix Kh(t) whose columns are the κh(t− s), 1 6 s 6 ∆, i.e. the
past keys up to time t−∆. Then, the scores used at time t are

scoreh(t) = (qh(t− 1))>Kh(t) and πh(t) = softmax (scoreh(t)/
√
r) .

Finally, self-attention of the input data is computed, for all 1 6 s 6 ∆, as,

zh(t) =

∆∑
s=1

πhs (t)vh(t− s) + Σ
1/2
h,z ε

h
z (t) , (3)

where πhs (t) denotes the s-th component of πh(t) (i.e. the self attention weight of the observation
t−s), (Σh,z)16h6nheads

are unknown semi definite-positive matrices and (εhz)16h6nheads
are independent

standard Gaussian random vectors in Rr. Therefore, zh(t) is a Gaussian random variable with mean

µh(t) =
∑∆
s=1 π

h
s (t)vh(t − s) and covariance matrix Σh,z. The reparametrization trick is used to

write zh(t) as a deterministic function of µh(t) and Σh with εh a random variable that does not
depend on the parameters. Such trick provides a differentiable transition for the optimization
process, see [Kingma and Welling, 2014]. The output rt is then computed with layer normalization
and residual connection steps depending on a parameter ηstate.

In a classification setting, the observation model provides a probability vector Gηobs(rt) on
the finite observation space based on the self-attention vectors. In a regression framework, the
observation model is given by

Xt = Gηobs(rt) + εt ,

where Gηobs is a FFNN with linear ouput layer and εt is a centered noise, for instance a centered
Gaussian random vector with unknown variance Σobs. Let θ be the vector that contains all the
unknown parameters of the model: θ = (ηobs, ηstate,Σobs, {Σh,Wh,q,Wh,κ,Wh,v}16h6nheads

).

4

Alice Martin et al. The Monte Carlo Transformer

3.2 The training algorithm

By Section 3.1, the unobserved state at time t is ζt = {z(t), q(t), κ(t), v(t)} and the complete-data
likelihood may be written

pθ(X1:T , ζ1:T) =

T∏
t=1

pθ(ζt|ζt−∆:t−1, Xt−∆:t−1)pθ(Xt|ζt−∆:t, Xt−∆:t−1) ,

where by convention if t−∆ 6 1 then ut−∆:s = u1:s. The associated probability density functions
are

pθ(Xt|ζt−∆:t, Xt−∆:t−1) = Gηobs (r(t))Xt ,

in a classification setting, and

pθ(Xt|ζt−∆:t, Xt−∆:t−1) = ϕGηobs (r(t)),Σobs
(Xt) ,

in a regression setting, where ϕµ,Σ is the Gaussian probability density function with mean µ
and covariance matrix Σ. By (1) and (2), the sequential Monte Carlo algorithm approximates
∇θ log pθ(X1:T) by a weighted sample mean:

SMθ,T =

M∑
m=1

ωmT

T∑
t=1

[
∇θ log pθ(ξ

m
t |ξmt−∆:t−1, Xt−∆:t−1) +∇θ log pθ(Xt|ξmt−∆:t, Xt−∆:t−1)

]
,

where the importance weights (ωmT)16m6M and the trajectories ξm1:T are sampled according to the
particle filter described below. In this paper, we propose to estimate all the parameters of the
recurrent architecture based on a gradient descent using SMθ,T . All parameters related to the noise
(the covariance matrices) are estimated using an explicit Expectation Maximization (EM) update
[Dempster et al., 1977] each time a batch of observations is processed, see the appendix materials
for all details.

Particle filtering/smoothing algorithm. For all t > 1, once the observation Xt is available,
the weighted particle sample {(ωmt , ξm1:t)}Nm=1 is transformed into a new weighted particle sample.
This update step is carried through in two steps, selection and mutation, using the auxiliary sampler
introduced in [Pitt and Shephard, 1999]. New indices and particles {(Imt+1, ξ

m
t+1)}Nm=1 are simulated

independently as follows:

1. Sample Imt+1 in {1, . . . , N} with probabilities proportional to {ωjt }16j6N .

2. Sample ξmt+1 using the model introduced in Section 3.1 with the resampled trajectories.

For any m ∈ {1, . . . , N}, the ancestral line ξ`1:t+1 is updated as follows ξm1:t+1 = (ξ
Imt+1

1:t , ξmt+1) and is
associated with the importance weight defined by

ωmt+1 ∝ pθ(Xt+1|ξmt+1−∆:t+1, Xt+1−∆:t) .

Therefore, in a classification setting, ωmt+1 ∝ [Gηobs(r
m
t+1)]Xt+1

, and in a regression setting, ωmt+1 ∝
exp{−‖Xt+1 − Gηobs(rmt+1)‖2Σobs

/2}, where for any vector u, ‖u‖2Σobs
= uTΣ−1

obsu. This smoother
introduced in [Kitagawa, 1996] (see also [Del Moral, 2004] for a discussion) approximates the joint

5

Alice Martin et al. The Monte Carlo Transformer

smoothing distributions of the latent states given the observations using the genealogy of the
particles produced by the auxiliary particle filter. The genealogical trajectories are defined re-
cursively and updated at each time step with the particles and indices (ξmk+1, I

m
k+1). As a re-

sult, at each time step, the algorithm selects an ancestral trajectory by choosing its last state
at time k which is extended using the newly sampled particle ξmk+1. As explained for instance
in [Kitagawa, 1996, Kitagawa and Sato, 2001], [Fearnhead et al., 2010] and [Poyiadjis et al., 2011],
this algorithm suffers from the path degeneracy issue. At each time t > 1, the first step to build
a new trajectory is to select an ancestral trajectory chosen among M existing trajectories, as the
number of resampling steps increases, the number of ancestral trajectories which are likely to be
discarded increases. There are many solutions to improve the approximation SMθ,T ; in this paper, we
propose to use the fixed-lag smoother of [Olsson et al., 2008], which means that for each 1 6 t 6 n,
the trajectories ξmt−∆:t−1 involved in SMθ,T are only resampled up to a few time steps after t.

Inference and predictive distribution. Based on the generative model proposed in this pa-
per, usual objectives are the state estimation problem, which aims at recovering the latent attention
parameter zt at time t given the observations X1:t and the inference problem which aims at approx-
imating the distribution of Xt given X1:t−1. After a training phase which produces an estimate θ̂ of
θ, the state estimation problem is usually solved by approximating the posterior mean of zt given
the observations X1:t when the model is driven by the parameter θ̂: ẑt =

∑M
m=1 ω

m
t ξ

m
t . To solve

the inference problem, note that

pθ̂(Xt|X1:t−1) =

∫
pθ̂(Xt, z1:t|X1:t−1)dz1:t ,

which may be approximated using the weighted samples at time t− 1 by

p̂M
θ̂

(Xt|X1:t−1) =

M∑
m=1

ωmt−1

∫
pθ̂(Xt|zt)pθ̂(zt|ξ

m
1:t−1, X1:t−1)dzt .

This distribution may be computed using the states dynamics which implies that pθ̂(zt|ξ
m
1:t−1, X1:t−1)

is a Gaussian probability density function. A Monte Carlo approximation of the predictive prob-
ability p̂M

θ̂
(Xt|X1:t−1) may be obtained straightforwardly by sampling from pθ̂(zt|ξ

m
1:t−1, X1:t−1).

This Monte Carlo estimate can be extended straightforwardly to predictions at future time steps.

4 Experiments

4.1 Results on synthetic datasets

Consider first an experimental setting where the observations model is known to assess the ability of
our model to capture the distributions of the observations. To that end, we designed two synthetic
auto-regressive time-series with a sequence length of 24 observations. For model I, one data sample
X = (X0, X1, ..., X24) is drawn as follows:

X0 ∼ N (0, 1) , Xt+1 = αXt + σεt+1 ,

where (εt)16t624 are i.i.d standard Gaussian variables independent of X0. For model II, the law
of a new observation given the past is multimodal and drawn as follows:

X0 ∼ N (0, 1) , Xt+1 = αUt+1Xt + β(1− Ut+1)Xt + σεt+1 ,

6

Alice Martin et al. The Monte Carlo Transformer

Table 1: Train and validation losses (×10−2) for synthetic data.

Train loss Val loss Train loss Val loss

Model I Model I Model II Model II
LSTM

d = 64, drop = 0.2 50.02 (0.13) 50.39 (0.70) 32.21 (0.13) 32.37 (0.67)
d = 64, drop = 0.3 50.37 (0.11) 50.81 (0.55) 32.40 (0.14) 32.46 (0.68)
d = 64, drop = 0.5 51.33 (0.41) 51.59 (1.29) 33.70 (0.24) 33.99 (0.79)

SMC-Transf.
d = 16, M = 10 49.92 (0.27) 50.20 (0.66) 32,23 (0.21) 32.18 (0.86)
d = 16, M = 30 49.98 (0.11) 50.23 (0.54) 32.82 (0.18) 32.83 (0.63)

where (εt)16t624 are i.i.d standard Gaussian variables independent of X0 and (Ut)16t624 are i.i.d
Bernoulli random variables variables with parameter p independent of X0 and of (εt)16t624. In
the first experiment, the dataset is sampled with α = 0.8 and σ2 = 0.5. In the second experiment,
the dataset is sampled with α = 0.9, β = 0.6α, p = 0.7 and σ2 = 0.3. More details on the hyper-
parameters used for such experiments are provided in the appendix. Here, all covariance matrices of
the SMC Transformer are assumed to be scalar. Table 1 displays the loss values and their associated
standard deviations at the end of training over a 5-fold cross-validation. The displayed losses are
the mean squared errors between the predictions (resp. weighted mean of the output particles) and
the true observations for the LSTM (resp. the SMC Transformer).

The main interest of our generative model and our estimation procedure is displayed in Fig-
ure 1, Table 2 and Figure 2. For each test example, at each time step t, 1000 samples are drawn
from the SMC estimate of the law of Xt+1 given X0:t. A MC-Dropout approach as described
in [Gal and Ghahramani, 2015, Section 4] is also used to estimate the uncertainty of Xt+1 from
1000 stochastic forward passes through the LSTM network with dropout. In this table, dropout
is added after the output of the LSTM layer. Figure 1 illustrates that the samples from the SMC
estimate match the true distribution at each time step while the dropout samples highly underes-
timate its variability. These samples are compared in Figure 1 to the true 95% confidence interval
at each time step which is available in this synthetic setting. Our generative model captures the
probability distribution of the observations while the LSTM models fail to estimate the known
variance of the observations. Based on these 1000 samples, Table 2 provides the empirical estimate
of the mean squared error of the predictive distribution of Xt+1 given the past for all time steps
t. For Model I, it is given by E[(Xt+1 − αXt)

2|Xt] (and the true value is σ2 = 0.5) and by
E[(Xt+1 − αUt+1Xt − β(1− Ut+1)Xt)

2|Xt] = pE[(Xt+1 − αXt)
2|Xt] + (1− p)E[(Xt+1 − βXt)

2|Xt]
for Model II. The means and standard deviations over the all time steps and all test examples
illustrate how the SMC samples capture the true variability of the law of a new observation given
the past. In this table, LSTM with dropout also in the LSTM layer are displayed. Dropout net-
works highly underestimate the variability which yields a predictive MSE too small for both the
monomodal distribution (Model I) and the multimodal distribution (Model II). This is confirmed
by Figure 2 which shows histograms over the 100 test examples and over all time steps of the fre-
quency of the 1000 samples which fall in the true confidence interval. Over all test samples and time
steps, 78.4% (resp. 93.6%) of the SMC with M = 30 (resp. LSTM with d = 64 and dropout = 0.5)
samples fall into the 80% confidence interval. Additional results are available in the appendix.

7

Alice Martin et al. The Monte Carlo Transformer

Figure 1: Samples distribution from each approach on a test example (Model I).

Table 2: Mean squared error of the predictive distribution over 1000 samples on 100 test examples.
The symbol ‖ separates between dropout only after the output of the LSTM layer (left) and full
dropout (right). Etα = E[(Xt+1 − αXt)

2|Xt] and Etβ = E[(Xt+1 − βXt)
2|Xt].

Model I Model II
Etα pEtα + (1− p)Etβ

True model 0.499 (0.032) 0.348 (0.070)

LSTM
d = 64, drop = 0.2 0.023 (0.037) ‖ 0.077 (0.115) 0.027 (0.038)
d = 64, drop = 0.3 0.029 (0.043) ‖ 0.116 (0.170) 0.029 (0.042)
d = 64, drop = 0.5 0.032 (0.047) ‖ 0.223 (0.338) 0.032 (0.048)

SMC-Transf.
d = 16, M = 10 0.543 (0.071) 0.481 (0.189)
d = 16, M = 30 0.515 (0.050) 0.353 (0.043)

8

Alice Martin et al. The Monte Carlo Transformer

Figure 2: Frequency of the 1000 samples in the true 95% (right) and 80% (left) confidence intervals
(Model I).

Table 3: Train and validation losses for covid data.
Train loss Val loss

LSTM - d = 64, drop = 0.2 ‖ 0.5 0.023 ‖ 0.039 0.025 ‖ 0.044

SMC-Transf. - d = 8, M = 10 ‖ 30 0.021 ‖ 0.020 0.024 ‖ 0.023

4.2 Covid-19 data

The performance of the stochastic Transformer is analyzed using Covid-19 data1 which gathers
daily deaths from the Covid-19 disease in 3261 US cities. Cities with less than 100 deaths over the
time period considered were discarded from the dataset: all algorithms are thus trained on 886 cities
decomposed into 80% for training and 20% for test and validation. Table 3 displays the training
results for different LSTM with Dropout and SMC Transformer architectures. Figure 3 displays
the 20 days ahead predictions, where the true observation is not available after day 40 and replaced
by a sample from the estimated model, for three cities in the test dataset. Here, the variability of
the observations is different for every sample: for our model, we first estimated a global variance
of the observations at training time, and then fine-tuned the estimated noise per test sample at
inference, using 30 iterations of an EM algorithm on the first 40 days. As the time horizon increases,
the variability of our predictions increases, thus maintaining a satisfactory combination of mean
prediction and error bars: the latter are crucial to model both the uncertainty in the observations
measurements (e.g potential errors in data collection), and the natural randomness found in such
problem, where daily death rates depend on complex dynamics and a multitude of external factors.
On the other hand, the underestimation of the output variability given by the MC-Dropout samples
for a rate of 0.2 is highlighted as it leads in some test examples to drifted predictions (see Maryland
example on the graph). When increasing the dropout rate up to 0.5, the increase in variability
comes at the cost of performance’s degradation (see Fairfax example and the training table): this
suggests that the confidence interval given by MC-Dropout is ill-calibrated, and that there is no
easy tuning of the dropout rate that could give satisfactory error bars. Additional graph, results
and full details about the hyper-parameters used for training are available in the appendix.

1https://github.com/CSSEGISandData/COVID-19

9

Alice Martin et al. The Monte Carlo Transformer

Figure 3: 20 days ahead predictions given by a SMC Transformer (d = 8, M = 10), and 2 MC-
Dropout LSTM (d = 64, dropout rate of 0.2 and 0.5). The black lines correspond to the ground
truth. The colored (resp. grey stripped and grey dotted) areas correspond to the variability of the
SMC Transformer (resp. 2 MC-Dropout LSTM with dropout of 0.2 and 0.5) predictions, i.e an
interval of mean ± std over the 1000 samples at each time step.

10

Alice Martin et al. The Monte Carlo Transformer

5 Related work

The SMC Transformer is part of an emerging line of research which focuses on reconciling traditional
model-based approaches and model-free ones that arose from the development of Deep Learning.
One such approach similar to the SMC Transformer is the Particle Filter Recurrent Neural Network
(PF-RNN) from [Ma et al., 2019]. Our work differs in several ways. First, the importance weights of
the PF-RNN do not depend directly on the output of the RNN model, i.e. on an observation model
estimated thanks to the SMC approach, but on a exterior learned function. The SMC Transformer
uses Fisher’s Identity to estimate the gradient of the likelihood of the observations, while the PF-
RNN directly optimizes the classic cross-entropy loss and adds an evidence lower bound term in the
objective function. The prediction algorithm of the PF-RNN only leverages the SMC algorithm to
improve performance at training time and outputs a single-point estimate, thus failing to capture
the observations distribution, which is the focus of our paper.

On this topic, our work is related to Bayesian Deep Learning: two popular Bayesian methods
to quantify uncertainty are MC-Dropout from [Gal and Ghahramani, 2015] and Bayes by Backprop
from [Blundell et al., 2015] and its extension to RNNs [Fortunato et al., 2017]. By introducing
randomness in the network’s parameters or in the training algorithm, they both train an ensemble
of neural networks giving a predictive distribution which tends to be overconfident (as illustrated
in Section 4); while our method, based on stochastic states, learns directly an observation model
almost able to capture perfectly the true variability of the observations.

6 Conclusion

In this paper, we proposed the SMC Transformer, a novel recurrent network naturally capturing
the observations distribution. The model maintains a distribution of self-attention parameters as
latent states, estimated by a set of particles. It then outputs a distribution of predictions instead
of a single-point estimate, and our inference method gives a flexible framework to quantify the
observations variability.

The number of particles of the embedded algorithm is a hyper-parameter that can be tuned
depending on the complexity of the task and dataset considered, and by taking in account the
trade-off between training time and precision. To our knowledge, this is the first method dedicated
to estimate uncertainty in the newly-developed Transformer model, and one of the few focusing
on uncertainty quantification in the context of sequence prediction. This SMC Transformer layer
could be used as a ”plug-and-play” layer for uncertainty quantification in a deeper neural network
representing sequential data: the data could be first encoded in a multi-layer neural network before
being processed sequentially by the SMC Transformer layer. We specifically chose to focus on
the Transformer model by having in mind future applications in the NLP field. We are indeed
particularly interested in the diversity in language generation that could arise from the particle filter
algorithm at inference. For such task, the distributions of words created by the SMC Transformer
could naturally mimic the diversity and richness found in natural language.

11

Alice Martin et al. The Monte Carlo Transformer

A SMC Transformer and the training algorithm

The unobserved state at time t is ζt = {z(t), q(t), κ(t), v(t)} and the complete-data likelihood may
be written

pθ(X1:T , ζ1:T) =

T∏
t=1

pθ(ζt|ζt−∆:t−1, Xt−∆:t−1)pθ(Xt|ζt−∆:t, Xt−∆:t−1) .

In the regression framework of this paper, the associated probability density functions is

pθ(Xt|ζt−∆:t, Xt−∆:t−1) = ϕGηobs (r(t)),Σobs
(Xt) ,

where ϕµ,Σ is the Gaussian probability density function with mean µ and covariance matrix Σ. A
graphical representation of our model which describes the dependency between states and observa-
tions is proposed in Figure A.

xt−3

xt−2

xt−1

ht−2

ht−1

ht

{[q,κ,v]m1:t−3}
M
m=1

{[q,κ,v]m1:t−2}
M
m=1

{[q,κ,v]m1:t−1}
M
m=1

ot−2 ωmt−2

ot−1 ωmt−1

ot ωmt

{zmt−2,r
m
t−2}

M
m=1

{zmt−1,r
m
t−1}

M
m=1

{zmt ,r
m
t }

M
m=1

SMC Transformer

Hidden layer
Cell input

SMC Transformer

Output layer

Figure 4: Graphical representation of the SMC transformer for sequential data.

Particle filtering/smoothing algorithm. For all t > 1, once the observation Xt is available,
the weighted particle sample {(ωmt , ξm1:t)}Nm=1 is transformed into a new weighted particle sample.
This update step is carried through in two steps, selection and mutation, using the auxiliary sampler
introduced in [Pitt and Shephard, 1999]. New indices and particles {(Imt+1, ξ

m
t+1)}Nm=1 are simulated

independently as follows:

1. Sample Imt+1 in {1, . . . , N} with probabilities proportional to {ωjt }16j6N .

2. Sample ξmt+1 using the model with the resampled trajectories.

In the regression framework of the paper, for any m ∈ {1, . . . , N}, the ancestral line ξ`1:t+1 is

updated as follows ξm1:t+1 = (ξ
Imt+1

1:t , ξmt+1) and is associated with the importance weight defined by

ωmt+1 ∝ pθ(Xt+1|ξmt+1−∆:t+1, Xt+1−∆:t) = exp{−‖Xt+1 −Gηobs(rmt+1)‖2Σobs
/2} .

12

Alice Martin et al. The Monte Carlo Transformer

ξ2
0

ω2
0

ξ3
0

ω3
0

ξ1
0

ω1
0

ξ2
1

ω2
1

ξ1
1

ω1
1

ξ3
1

ω3
1

ξ2
2

ω2
2

ξ1
2

ω1
2

ξ3
2

ω3
2

ξ2
3

ω2
3

ξ1
3

ω1
3

ξ3
3

ω3
3

ξ2
4

ω2
4

ξ1
4

ω1
4

ξ3
4

ω3
4

Figure 5: Particle filter: N = 3, n = 4.

The algorithm is illustrated in Figure 5: particles at the last time step are in blue and pink
particles are the ones which appear in the genealogy of at least one blue particle. White particle
have not been selected to give birth to a path up to the last time. In Figure 5, the N = 3 genealogical
trajectories are ξ1

0:4 = (ξ3
0 , ξ

2
1 , ξ

2
2 , ξ

3
3 , ξ

1
4), ξ2

0:4 = (ξ3
0 , ξ

1
1 , ξ

3
2 , ξ

2
3 , ξ

2
4), ξ3

0:4 = (ξ3
0 , ξ

2
1 , ξ

2
2 , ξ

3
3 , ξ

3
4).

The training algorithm The sequential Monte Carlo algorithm approximates ∇θ log pθ(X1:T)
by a weighted sample mean:

SMθ,T =

M∑
m=1

ωmT

T∑
t=1

[
∇θ log pθ(ξ

m
t |ξmt−∆:t−1, Xt−∆:t−1) +∇θ log pθ(Xt|ξmt−∆:t, Xt−∆:t−1)

]
,

where the importance weights (ωmT)16m6M and the trajectories ξm1:T are sampled according to the
particle filter described below. Thanks to Fisher’s identity, this approximation only requires to
compute the gradient of the state model loglikelihood θ 7→ log pθ(ξ

m
t |ξmt−∆:t−1, Xt−∆:t−1) and the

gradient of the observation model loglikelihood θ 7→ log pθ(Xt|ξmt−∆:t, Xt−∆:t−1). There is no need
to compute the gradient of the weights ωmT which depend on the parameter θ. Using TensorFlow
function tf.stop gradient on these weights, this allows to train the model with the following loss
function:

θ 7→ −
M∑
m=1

ωmT

T∑
t=1

[
log pθ(ξ

m
t |ξmt−∆:t−1, Xt−∆:t−1) + log pθ(Xt|ξmt−∆:t, Xt−∆:t−1)

]
.

In this paper, we propose to estimate all the parameters of the recurrent architecture based on
a gradient descent using SMθ,T . All parameters related to the noise (the covariance matrices) are
estimated using an explicit Expectation Maximization (EM) update [Dempster et al., 1977] each
time a batch of observations is processed. For each sequence of observations, the EM update relies
on the approximation of the intermediate quantity

E[log pθ(X1:T , ζ1:T)|X1:T]

= E[

T∑
t=1

log pθ(ζt|ζt−∆:t−1, Xt−∆:t−1) + log pθ(Xt|ζt−∆:t, Xt−∆:t−1)|X1:T]

13

Alice Martin et al. The Monte Carlo Transformer

by the following particle-based estimator:

QMθ,T =

M∑
m=1

ωmT

T∑
t=1

[
log pθ(ξ

m
t |ξmt−∆:t−1, Xt−∆:t−1) + log pθ(Xt|ξmt−∆:t, Xt−∆:t−1)

]
.

Then, QMθ,T may be maximized with respect to all covariances to obtain the new estimates. This is
a straightforward update which yields for instance for Σobs for the p-th update:

Σpobs =
1

T

M∑
m=1

ωmT

T∑
t=1

(Xt −Gηobs(rmt))>(Xt −Gηobs(rmt)) ,

where rmt are the resampled particles at time t. The estimate Σ̂obs of Σobs is then updated as
follows:

Σ̂obs = (1− ηp)Σ̂obs + ηpΣ
p
obs

where ηp is a learning rate chosen by the user (ηp = p−0.6 in the experiments).

Inference and predictive distribution used in the experiments. To solve the inference
problem, note that

pθ̂(Xt|X1:t−1) =

∫
pθ̂(Xt, z1:t|X1:t−1)dz1:t ,

which may be approximated using the weighted samples at time t− 1 by

p̂M
θ̂

(Xt|X1:t−1) =

M∑
m=1

ωmt−1

∫
pθ̂(Xt|zt)pθ̂(zt|ξ

m
1:t−1, X1:t−1)dzt .

A Monte Carlo approximation of the integral involved in the predictive probability p̂M
θ̂

(Xt|X1:t−1)

may be obtained straightforwardly. In the experiments, p̂M
θ̂

was approximated as follows. For

all 1 6 k 6 N (with N = 1000 in our experiments), sample independently Ik in {1, . . . ,M}
with weights proportional to (ωmt−1)16m6M and then zkt from pθ̂(zt|ξ

Ik
1:t−1, X1:t−1), i.e. from our

transformer model with the selected past trajectory of hidden states ξIk1:t−1. Finally rkt can be

computed from zkt and p̂M
θ̂

is approximated by N−1
∑N
k=1 ϕGηobs (rkt),Σ̂obs

(Xt) i.e. by a mixture of

Gaussian distributions with means given by (rkt)16k6N and variance Σ̂obs.

B Experiments

B.1 Additional results on synthetic datasets

The synthetic datasets were generated with 1000 samples: we used 800 of them for training and 100
of them for test and validation. For training the models, we used a batch size of 32, a number of
epochs equal to 50, and the ADAM algorithm with a learning rate of 0.001 and the original custom
schedule found in [Vaswani et al., 2017].

Table 4 displays the loss values and their associated standard deviations at the end of training
over a 5-fold cross-validation. The displayed losses are the mean squared errors between the predic-
tions (resp. weighted mean of the output particles) and the true observations for the LSTM (resp.

14

Alice Martin et al. The Monte Carlo Transformer

Table 4: Train and validation losses (×10−2) for synthetic data.

Train loss Val loss Train loss Val loss

Model I Model I Model II Model II
LSTM

d = 32, drop = 0.1 49.91 (0.10) 50.24 (0.58) 32.21 (0.09) 32.28 (0.69)
d = 32, drop = 0.2 50.43 (0.04) 50.79 (0.73) 32.49 (0.10) 32.50 (0.65)
d = 32, drop = 0.3 50.93 (0.26) 51.13 (0.54) 32.87 (0.07) 32.88 (0.65)
d = 32, drop = 0.4 51.89 (0.29) 51.98 (1.17) 34.11 (0.15) 34.02 (0.87)
d = 32, drop = 0.5 52.78 (0.36) 53.26 (1.10) 34.75 (0.18) 34.81 (0.90)
d = 64, drop = 0.1 49.76 (0.10) 50.14 (0.66) 32.06 (0.10) 32.17 (0.58)
d = 64, drop = 0.2 50.02 (0.13) 50.39 (0.70) 32.21 (0.13) 32.37 (0.67)
d = 64, drop = 0.3 50.37 (0.11) 50.81 (0.55) 32.40 (0.14) 32.46 (0.68)
d = 64, drop = 0.4 50.77 (0.36) 51.07 (1.15) 33.39 (0.23) 33.34 (0.90)
d = 64, drop = 0.5 51.33 (0.41) 51.59 (1.29) 33.70 (0.24) 33.99 (0.79)

SMC-Transf.
d = 8, M = 10 49.96 (0.18) 50.34 (0.33) 32,26 (0.14) 32,23 (0.76)
d = 16, M = 10 49.92 (0.27) 50.20 (0.66) 32,23 (0.21) 32.18 (0.86)
d = 16, M = 30 49.98 (0.11) 50.23 (0.54) 32.82 (0.18) 32.83 (0.63)

the SMC Transformer). Additional dropout rates and a Transformer with d = 8 were considered
to complete the experiments given in the main part of the paper.

These neural networks were also considered in Table 5.

B.2 Additional results on the Covid-19 data

The hyper-parameters used for training the SMC Transformer and the LSTM with dropout were the
following: the models were trained during 50 epochs with a batch size of 32, with a learning rate of
0.001 for the LSTM and the original learning rate with custom schedule from [Vaswani et al., 2017].
The LSTM with dropout include a dropout layer inside the LSTM layer, and before the output
layer.

Figure 6 displays another example of 20 days ahead predictions, where the true observation is
not available after day 40 and replaced by a sample from the estimated model, for two cities in the
test dataset. The figure shows that the confidence intervals given by the SMC Transformer capture
almost entirely the true sequence of predictions for these two cities with high variability in daily
death rates, which is not the case for the two LSTM with dropout.

References

[Blundell et al., 2015] Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015).
Weight uncertainty in neural networks. Proceedings of the 32nd International Conference on
Machine Learning (ICML), 37.

15

Alice Martin et al. The Monte Carlo Transformer

Figure 6: 20 days ahead predictions of covid-19 daily deaths for 2 cities. The black lines represent the
true predictions, and the colored areas represent the confidence interval given by a SMC Transformer
with 10 particles, while the grey stripped (resp. dotted) areas represent the confidence intervals
given by a LSTM with a dropout rate equal to 0.2 (resp. to 0.5).

16

Alice Martin et al. The Monte Carlo Transformer

Table 5: Mean squared error of the predictive distribution over 1000 samples on 100 test examples.
The symbol ‖ separates between dropout only after the output of the LSTM layer (left) and full
dropout (right). Etα = E[(Xt+1 − αXt)

2|Xt] and Etβ = E[(Xt+1 − βXt)
2|Xt].

Model I Model II
Etα pEtα + (1− p)Etβ

True model 0.499 (0.032) 0.348 (0.070)

LSTM
d = 32, drop = 0.1 0.024 (0.042) 0.027 (0.038)
d = 32, drop = 0.2 0.028 (0.051) 0.030 (0.042)
d = 32, drop = 0.3 0.040 (0.064) 0.033 (0.047)
d = 32, drop = 0.4 0.039 (0.061) 0.036 (0.054)
d = 32, drop = 0.5 0.051 (0.077) 0.041 (0.061)
d = 64, drop = 0.1 0.019 (0.030) ‖ 0.038 (0.059) 0.026 (0.036)
d = 64, drop = 0.2 0.023 (0.037) ‖ 0.077 (0.115) 0.027 (0.038)
d = 64, drop = 0.3 0.029 (0.043) ‖ 0.116 (0.170) 0.029 (0.042)
d = 64, drop = 0.4 0.027 (0.041) ‖ 0.155 (0.241) 0.029 (0.044)
d = 64, drop = 0.5 0.032 (0.047) ‖ 0.223 (0.338) 0.032 (0.048)

SMC-Transf.
d = 16, M = 10 0.543 (0.071) 0.481 (0.189)
d = 16, M = 30 0.515 (0.050) 0.353 (0.043)

[Brosse et al., 2020] Brosse, N., Riquelme, C., Martin, A., Gelly, S., and Moulines, É. (2020). On
last-layer algorithms for classification: Decoupling representation from uncertainty estimation.
arXiv preprint arXiv:2001.08049.

[Cappé et al., 2005] Cappé, O., Moulines, E., and Rydén, T. (2005). Inference in Hidden Markov
Models. Springer.

[Chen et al., 2018] Chen, M. X., Firat, O., Bapna, A., Johnson, M., Macherey, W., Foster, G.,
Jones, L., Parmar, N., Schuster, M., Chen, Z., et al. (2018). The best of both worlds: Combining
recent advances in neural machine translation. Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (ACL), 1:76–86.

[Corbière et al., 2019] Corbière, C., Thome, N., Bar-Hen, A., Cord, M., and Pérez, P. (2019).
Addressing failure prediction by learning model confidence. In Advances in Neural Information
Processing Systems, pages 2898–2909.

[Del Moral, 2004] Del Moral, P. (2004). Feynman-Kac Formulae. Genealogical and Interacting
Particle Systems with Applications. Springer.

[Del Moral et al., 2010] Del Moral, P., Doucet, A., and Singh, S. S. (2010). A backward particle in-
terpretation of feynman-kac formulae. ESAIM: Mathematical Modelling and Numerical Analysis,
44(5):947–975.

17

Alice Martin et al. The Monte Carlo Transformer

[Del Moral et al., 2015] Del Moral, P., Doucet, A., and Singh, S. S. (2015). Uniform stability of a
particle approximation of the optimal filter derivative. SIAM Journal on Control and Optimiza-
tion, 53(3):1278–1304.

[Dempster et al., 1977] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likeli-
hood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series
B, 39(1):1–38 (with discussion).

[Devlin et al., 2019] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert: Pre-
training of deep bidirectional transformers for language understanding. 2019 Annual Conference
of the North American Chapter of the Association for Computational Linguistics (NAACL),
pages 4171–4186.

[Douc et al., 2011] Douc, R., Garivier, A., Moulines, E., Olsson, J., et al. (2011). Sequential monte
carlo smoothing for general state space hidden markov models. The Annals of Applied Probability,
21(6):2109–2145.

[Dubarry and Le Corff, 2013] Dubarry, C. and Le Corff, S. (2013). Non-asymptotic deviation
inequalities for smoothed additive functionals in nonlinear state-space models. Bernoulli,
19(5B):2222–2249.

[Fearnhead et al., 2010] Fearnhead, P., Wyncoll, D., and Tawn, J. (2010). A sequential smoothing
algorithm with linear computational cost. Biometrika, 97(2):447–464.

[Fortunato et al., 2017] Fortunato, M., Blundell, C., and Vinyals, O. (2017). Bayesian recurrent
neural networks. CoRR, abs/1704.02798.

[Gal and Ghahramani, 2015] Gal, Y. and Ghahramani, Z. (2015). Dropout as a bayesian approxi-
mation: Representing model uncertainty in deep learning. Proceedings of the 33rd International
Conference on Machine Learning (ICML), 48.

[Gordon et al., 1993] Gordon, N., Salmond, D., and Smith, A. (1993). Novel approach to
nonlinear/non-Gaussian bayesian state estimation. IEE Proc. F, Radar Signal Process, 140:107–
113.

[Guo et al., 2017] Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. (2017). On calibration
of modern neural networks. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1321–1330. JMLR. org.

[Hao et al., 2019] Hao, J., Wang, X., Yang, B., Wang, L., Zhang, J., and Tu, Z. (2019). Modeling
recurrence for transformer. Proceedings of the 2019 Conference of the North.

[Kingma and Welling, 2014] Kingma, D. P. and Welling, M. (2014). Auto-encoding variational
bayes. CoRR, abs/1312.6114.

[Kitagawa, 1996] Kitagawa, G. (1996). Monte-Carlo filter and smoother for non-Gaussian nonlinear
state space models. Journal of Computational and Graphical Statistics, 1:1–25.

[Kitagawa and Sato, 2001] Kitagawa, G. and Sato, S. (2001). Monte carlo smoothing and self-
organizing state-space model. In Doucet, A., De Freitas, N., and Gordon, N., editors, Sequential
Monte Carlo methods in Practice. Springer.

18

Alice Martin et al. The Monte Carlo Transformer

[Lee et al., 2018] Lee, K., Lee, H., Lee, K., and Shin, J. (2018). Training confidence-calibrated
classifiers for detecting out-of-distribution samples. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net.

[Lin et al., 2017] Lin, Z., Feng, M., dos Santos, C. N., Yu, M., Xiang, B., Zhou, B., and Bengio, Y.
(2017). A structured self-attentive sentence embedding. CoRR, abs/1703.03130.

[Liu and Chen, 1998] Liu, J. and Chen, R. (1998). Sequential Monte Carlo methods for dynamic
systems. Journal of the American Statistical Association, 93:1032–1044.

[Ma et al., 2019] Ma, X., Karkus, P., Hsu, D., and Lee, W. S. (2019). Particle filter recurrent neural
networks. CoRR, abs/1905.12885.

[Nguyen et al., 2017] Nguyen, T., Le Corff, S., and Moulines, É. (2017). On the two-filter approxi-
mations of marginal smoothing distributions in general state-space models. Advances in Applied
Probability, 50(1):154–177.

[Olsson et al., 2008] Olsson, J., Cappe, O., Douc, R., and Moulines, E. (2008). Sequential monte
carlo smoothing with application to parameter estimation in nonlinear state space models.
Bernoulli, 14(1):155–179.

[Olsson et al., 2017] Olsson, J., Westerborn, J., et al. (2017). Efficient particle-based online smooth-
ing in general hidden markov models: the paris algorithm. Bernoulli, 23(3):1951–1996.

[Pitt and Shephard, 1999] Pitt, M. K. and Shephard, N. (1999). Filtering via simulation: Auxiliary
particle filters. Journal of the American Statistical Association, 94(446):590–599.

[Poyiadjis et al., 2011] Poyiadjis, G., Doucet, A., and Singh, S. (2011). Particle approximations of
the score and observed information matrix in state space models with application to parameter
estimation. Biometrika, 98:65–80.

[Radford et al., 2018] Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improv-
ing language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws.
com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.

[Radford et al., 2019] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I.
(2019). Language models are unsupervised multitask learners. OpenAI Blog, 1(8).

[Raffel et al., 2019] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y.,
Li, W., and Liu, P. J. (2019). Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008.

19

