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Abstract. In this work, we investigate the positivity of logarithmic and orbifold cotangent bundles
along hyperplane arrangements in projective spaces. We show that a very interesting example given
by Noguchi (as early as 1986) can be pushed further to a very great extent. Key ingredients of our
approach are the use of Fermat covers and the production of explicit global symmetric differentials.
This allows us to obtain some new results in the vein of several classical results of the literature on
hyperplane arrangements. These seem very natural using the modern point of view of augmented
base loci and working in Campana’s orbifold category.
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1. Introduction

1.1. Positive and quasi-positive cotangent bundles

In recent years, families of varieties with ample cotangent bundles have attracted much attention (see
e.g. [Deb05, Xie18, BD18a, Den20, Moh22, CR20, Ete21]), and there has been significant progress in this
area (even though finding an explicit surface with ample cotangent bundle in P

4 is still a tremendous
challenge). With the development of our understanding, the enrichment of techniques, and in connection
with hyperbolicity problems, some variations of this problem have started to emerge. For instance, in [BD18b],
the authors have been interested in the determination of the augmented base locus of logarithmic cotangent
bundles along normal crossing divisors in projective spaces. The stable base locus B(L) ⊆ X of a line bundle
L on a projective variety X is defined as the intersection of the base loci of all multiples of L. Then, the
augmented base locus (or non-ample locus) B+(L) ⊆ X is

B+(L)B
⋂
q∈N

B(qL−A)

for any ample line bundle A→ X. The augmented base locus of a line bundle is a geometric measure of
the positivity of its sheaf of global sections. In particular, it is different from the base variety when the line
bundle is big, and it is empty when the line bundle is ample. For vector bundles, one studies the augmented
base locus of the Serre line bundle on their projectivizations. The idea of augmented base loci for vector
bundles can be traced back to [Nog77], where it was already used in connection to hyperbolicity (see below).

In various cases, one does not really need this augmented base locus to be empty in order to obtain
interesting geometric consequences, and in many interesting settings, such as the logarithmic and orbifold
settings, one actually cannot expect the augmented base locus to be empty. This leads to the definition of
several notions of positivity, where one only asks for a certain geometric control of the non-ample locus. For
example, a line bundle L is said to be ample modulo a divisor D when B+(L) ⊆ D . Note that if L is ample
modulo D, then L is necessarily big.

Denote by p : X ′ B P(Ω(X,D))→ X the projectivized bundle of rank 1 quotients of the logarithmic
cotangent bundle of a smooth logarithmic pair (X,D). In this work, we will use the following definition.

Definition 1.1. We say that the cotangent bundle of (X,D) is ample modulo boundary if

p (B+(OX ′ (1))) ⊆D.

It is a weaker positivity property than the one introduced in [BD18b]. Consider the various residue exact
sequences coming with a simple normal crossing divisor in P

n. One gets many trivial quotients supported
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on the boundary components. Then, the projectivizations of these trivial quotients give subvarieties in the
projectivized logarithmic cotangent bundle, that constitute obstructions to the ampleness of the logarithmic
cotangent bundle (see [BD18b, Section 2.3]). In particular, one always has

D ⊆ p (B+(OX ′ (1))) .

One can thus view Definition 1.1 as asking the projection of the augmented base locus to be minimal. Brotbek
and Deng define Ω(X,D) to be “almost ample” when the augmented base locus B+(OX ′ (1)) itself (and not
its projection) is minimal. This means that the augmented base locus corresponds exactly to the trivial
quotients of the cotangent bundle given by the residue short exact sequence. Then, one has the following
(see [BD18b, Theorem A]).

Theorem 1.2 (Brotbek–Deng). Let Y be a smooth projective variety of dimension n with a very ample line bundle
H → Y . For c ⩾ n and d ⩾ (4n)n+2, the logarithmic cotangent bundle along the sum D = D1 + · · · +Dc of c
general hypersurfaces D1, . . . ,Dc ∈ |Hd | is “almost ample”.

This result is optimal concerning the number of components of the boundary divisor (see [BD18b,
Proposition 4.1]).

Proposition 1.3 (Brotbek–Deng). The logarithmic cotangent bundle along a simple normal crossing divisor with
c < n irreducible components in P

n is never big.

The effective degree bounds in [BD18b] being quite large, it is a natural question to ask what would be
the optimal degree bound (when one relaxes the condition on the number of components). An associated
problem is to find some low-degree examples of pairs with ample cotangent bundles modulo boundary.

To the best of our knowledge, before [BD18b], the only example of such quasi-positivity of the cotangent
bundle was due to Noguchi; see [Nog86]. It is an example given as early as 1986, in the paper in which he
defined logarithmic jet bundles. Noguchi introduced the following positivity property.

Definition 1.4. Let (X,D) be a smooth logarithmic pair. Set V B X \D . A vector bundle E on X is called
“quasi-negative” over V if there is a proper morphism ϕ : E → C

N to an affine space, such that ϕ is an
isomorphism from E|V \O to ϕ(E) \ϕ(E|D ), where O denotes the zero section.

Then, one has the following (see [Nog86]).

Theorem 1.5 (Noguchi). The logarithmic tangent bundle along a general arrangement A of six lines in P
2 is

“quasi-negative” over P2 \A .

The rough idea of the proof is that using an explicit basis of the logarithmic cotangent sheaf along an
arrangement of lines in general position, one is able to construct an immersive Kodaira map (under some
further explicit genericity condition). Some combinatorial work allows one to identify this supplementary
genericity condition as asking that in the dual projective space parametrizing hyperplanes, the points of the
arrangement do not all lie in a single quadric.

Now, one has the following.

Lemma 1.6. Let L be a globally generated line bundle. If |L| defines an immersive map on X \V , then B+(L) ⊆ V .

Proof. According to [BCL14, Theorem A], the augmented base locus B+(L) is the smallest closed subset V
of X such that the linear system |qL| defines an isomorphism of X \V onto its image for sufficiently large q.

For q large enough, the Stein factorization of φ|L| is given by

X
|qL|
−→ φ|qL|(X)

νq
−→ φ|L|(X)

for some finite morphism νq (see [Laz04, Lemma 2.1.28]). Now, since |L| defines an immersive map on X \V ,
the fibers of φ|L| are discrete. An immediate consequence is that on this set, φ|qL| has discrete and connected
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fibers. In other words, for sufficiently large q, the linear system |qL| defines an isomorphism from X \V onto
its image. □

This lemma allows us to reformulate the result of Noguchi as follows.

Theorem 1.7 (Noguchi). The logarithmic cotangent bundle along an arrangement A of d ⩾ 6 lines in P
2 in

general position with respect to hyperplanes and to quadrics is ample modulo A .

As mentioned above, in this smooth logarithmic setting, one cannot expect the orbifold cotangent
bundle to be plainly ample, and we have explained that ampleness modulo boundary is somehow optimal.
Concerning the optimal number of lines, combining Noguchi’s result with Theorem 1.11 below, we know that
it can only be five or six. It is not clear yet if ampleness modulo boundary of the logarithmic cotangent
bundle can be expected for five lines.

1.2. Hyperbolicity of complements of hypersurfaces

A very connected research area is that of complex hyperbolicity. Indeed, the following result is now
classical (see [Nog77] for the compact case). Given a logarithmic symmetric differential form ω on a smooth
logarithmic pair (X,D), which vanishes on an ample divisor, all entire maps f : C→ X \D land in the zero
locus of ω. In other words, f (C) ⊆ p(B+(OX ′ (1))). If Ω(X,D) is ample modulo boundary, one immediately
gets that all these curves are constant. One says that the pair (X,D) is Brody-hyperbolic. We see that here,
there is no need to have global ampleness in order to obtain interesting geometric applications.

It is thus an interesting companion question to ask about the hyperbolicity of complements of hypersur-
faces. Concerning this question, a very interesting setting seems to be the classical setting of hyperplane
arrangements, for which optimal degree bounds are reached.

To sum up some classical results of value distribution theory: in the case of hyperplane arrangements, the
(conjectural) optimal degree bounds are reached.

Conjecture 1.8 (Kobayashi). The complement of a general high degree hypersurface in P
n is Brody-hyperbolic.

Theorem 1.9 (Zaidenberg; cf. [Zai87, Zai93]). For a general hypersurface D in Pn of degree 2n, there is a line in
P
n meeting D in at most two points.

Theorem 1.10 (Bloch, Cartan, Green; cf. [Gre72]). The complement of an arrangement of 2n+1 hyperplanes in
general position in P

n is Brody-hyperbolic.

Theorem 1.11 (Snurnitsyn; cf. [Snu86, Zai93]). For any arrangement A of 2n hyperplanes in P
n, there is a line

in P
n meeting A in only two points.

These results have also their counterparts concerning weak hyperbolicity.

Conjecture 1.12 (Green–Griffiths–Lang). On a logarithmic pair (X,D) of logarithmic general type, there is a
proper subvariety Exc(X) ⊊ X containing the images of all non-constant entire maps f : C→ X \D .

Theorem 1.13 (Borel, Green; cf. [Gre72]). The maps f : C→ P
n \A with values in the complement of an

arrangement of n+2 hyperplanes are linearly degenerate.

Here, the condition d ⩾ n+2 corresponds exactly to the general type assumption. Notice that this is a
refinement of the classical theorem of Borel since there is no genericity assumption in the statement.

This motivates us to work with the interesting setting of hyperplane arrangements in the rest of the
paper. An underlying question is the following: Does the optimal lower bound on the degree of hyperplane
arrangements for which the logarithmic cotangent bundle is ample modulo boundary provide indications on
a lower bound on the degree for which Theorem 1.2 should hold?

Most of the results on hyperbolicity of complements of hyperplanes are obtained using Nevanlinna’s theory
of value distribution (see e.g. [Kob98] or [NW14]). One of the key tools is the so-called Cartan–Nochka’s
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second main theorem, which allows one to study not only entire curves in complements but also entire
curves intersecting the boundary divisor with prescribed multiplicities (see e.g. [NW14, Corollary 4.2.14]).
A complementary modern point of view on these orbifold curves is also given by the theory of Campana’s
orbifolds; see [Cam04]. An alternative approach to Nevanlinna theory for orbifold hyperbolicity is developed
in [CDR20]. Note however that hyperbolicity results that could be derived from the current work are weaker
than those derived from Cartan–Nochka’s second main theorem. This fact reflects unsurprisingly that
ampleness of the cotangent bundle is a much stronger property than hyperbolicity. Conjecturally, a variety is
hyperbolic if and only if all its subvarieties are of general type.

1.3. Main results of the paper

The common thread of this work is to push further Theorem 1.7. We obtain three main new results in this
direction (Theorems A, B, C).

We generalize the result of Noguchi to higher dimensions. We prove the following.

Theorem (Theorem A). The logarithmic cotangent bundle along an arrangement A of d ⩾
(n+2

2
)
hyperplanes in

P
n in general position with respect to hyperplanes and to quadrics is ample modulo A .

We extend the result of Noguchi to the geometric orbifold category introduced by Campana.

Theorem (Theorem B). The orbifold cotangent bundle along an arrangement A of d ⩾
(n+2

2
)
hyperplanes in P

n

in general position with respect to hyperplanes and to quadrics, with multiplicities m ⩾ 2n+2, is ample modulo A .

Theorem 1.7 amounts to the case n = 2 in Theorem A. Theorem A constitutes the case of infinite orbifold
multiplicity in Theorem B.

Lastly, we prove the positivity of orbifold cotangent bundles in all dimensions with low degrees and very
low multiplicities.

Theorem (Theorem C). For n ⩾ 2, the orbifold cotangent bundle along an arrangement A of d ⩾ 2n
(

2n
m−2 +1

)
hyperplanes in P

n with multiplicity m ⩾ 3 is big.

Theorem C is weaker concerning the positivity of the cotangent bundle but is spectacular concerning
multiplicities. Also remark that taking m linear in n, one gets a linear lower bound on the degree.

1.4. Organization of the paper

The paper is organized as follows. In Section 2, we generalize the result of Noguchi to higher dimensions
and prove Theorem A, using an explicit cohomological method, in the spirit of the original approach by
Noguchi.

In Section 3, we introduce precise definitions for various notions of positivity of orbifold cotangent
bundles.

In Section 4, we extend the result of Noguchi to the orbifold category introduced by Campana and
prove Theorem B, using a quite different explicit cohomological method. We rephrase the approach of
explicit Čech cohomology on complete intersections by Brotbek in the context of what we call Fermat covers.
Computations would tend to be quickly intractable when the dimension grows. However, we are able to use
the assumption of general type with respect to quadrics brought out in the study of the logarithmic case in
order to tame a little the computations and find a quick way to the proof.

In Section 5, we investigate the existence of orbifold symmetric forms for low multiplicities and prove
Theorem C, using a non-explicit cohomological method. We derive the sought result from works by Brotbek
and by Coskun–Riedl, again using Fermat covers.



6 L. Darondeau and E. Rousseau6 L. Darondeau and E. Rousseau

Acknowledgments

L.D. and E.R. would like to thank Joël Merker for interesting discussions on explicit orbifold sections and
around the resultant which was very helpful to find the right angle of attack for our problem.

L.D. would like to thank Henri Guenancia for discussions on augmented base loci and Mikhail Zaidenberg
for many interesting discussions over the years and for making him aware of Theorem 1.11. These interactions
took place during the conference Alkage hosted by Jean-Pierre Demailly, which gave L.D. a great opportunity
to present a preliminary version of this work to a distinguished audience. L.D. would like to thank Frédéric
Han for identifying the condition of general position with respect to quadrics. Lastly, L.D. would like
to warmly thank Damian Brotbek for introducing him in much detail to his work on explicit symmetric
differential forms during the supervision of his postdoc in Strasbourg, and for the fruitful collaboration that
followed.

E.R. would like to thank Stefan Kebekus and Tanuj Gomez for discussions on the positivity of orbifold
cotangent bundles, and Eric Riedl for discussions on bigness of cotangent bundles.

2. Ampleness modulo boundary of the logarithmic cotangent bundle

This section is devoted to proving the following generalization of Noguchi’s example.

Theorem A. The logarithmic cotangent bundle along an arrangement A of d ⩾
(n+2

2
)
hyperplanes in P

n in
general position with respect to hyperplanes and to quadrics is ample modulo A .

Proof. Consider an arrangement A of d = n+ 1 + k hyperplanes H0, . . . ,Hn+k in general linear position.
Choose homogeneous coordinates Z0, . . . ,Zn of Pn in such way that H0, . . . ,Hn are given by the equations
Zi = 0 and that Hn+j is given by the equation

a
j
0Z0 + a

j
1Z1 + · · ·+ a

j
nZn = 0

for some complex coefficients a
j
i for j = 1, . . . , k.

In the dual projective space parametrizing hyperplanes, consider the coordinate points parametrizing

H0, . . . ,Hn and the points (aj0, . . . , a
j
n) parametrizing Hn+1, . . . ,Hn+k . The arrangement A is in general

position with respect to hyperplanes if n + 1 of these points never lie in a single hyperplane, and A is
in general position with respect to quadrics if

(n+2
2
)

of these points never lie in a quadric. Recall that(n+2
2
)
− 1 hyperplanes in general linear position in P

n determine a unique quadric in the dual projective
space parametrizing hyperplanes.

Very concretely, in our setting, the arrangement A is in general position with respect to hyperplanes
when the minors (of any size) of the (n+1)× k coefficient matrix

AB
[[
a
j
i

]]
0⩽i⩽n
1⩽j⩽k

are non-zero. Moreover, for k ⩾
(n+1

2
)
, the arrangement A is in general position with respect to quadrics if

all the maximal minors of the
(n+2

2
)
× (n+1+k) matrix of all degree 2 monomials in the equation coefficients

are non-zero. Putting the squares in first position, and taking the coordinate points as the first n+1 points,

we get in particular that all maximal minors of the
(n+1

2
)
×k matrix of products a

j
i1
a
j
i2

(in lexicographic order)

A[2] B
[[
a
j
i1
a
j
i2

]]
0⩽i1<i2⩽n
1⩽j⩽k

are non-zero. We will use this fact at the end of the proof.
Outside of A , one can work on the affine chart Z0 , 0. The equations of the k last hyperplanes become

a
j
0 + a

j
1z1 + · · ·+ a

j
nzn = 0
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in the inhomogeneous coordinates zj B Zj /Z0. Then a local frame of the logarithmic tangent sheaf

Ω∨(Pn,A ) around the origin in U0 is given by z1
∂
∂z1

, . . . , zn
∂
∂zn

, and if we set (for obvious reason)

zn+j B a
j
0 + a

j
1z1 + · · ·+ a

j
nzn,

a basis of the space of global sections H0
(
P
n,Ω(Pn,A )

)
is given by

dz1
z1

, . . . ,
dzn
zn

,
dzn+1
zn+1

, . . . ,
dzn+k
zn+k

.

The Kodaira map associated to |O
P(Ω(Pn,A ))(1)| maps a point

(z, [ξ]) = (z1, . . . , zn; [V1z1∂/∂z1 + · · ·+Vnzn∂/∂zn]) ∈ P(Ω(Pn,A ))

to the point ϕ(z, [ξ])B [V1 : · · · : Vn : ϕ1(z,V ) : · · · : ϕk(z,V )] ∈ Pn+k−1, where

ϕj(z,V )B
a
j
1V1z1 + · · ·+ a

j
nVnz

n

a
j
0 + a

j
1z1 + · · ·+ a

j
nzn

.

We will prove that under the assumptions of the theorem, ϕ gives an immersion. Then, we obtain the
result by Lemma 1.6.

The coordinates Vi cannot be simultaneously zero. Regarding the symmetries of ϕ, it is sufficient to prove
that ϕ is immersive on one affine chart Vi , 0. Let us thus work on the chart V1 , 0, in affine coordinates
vi = Vi/V1, and in the affine chart “Z0 , 0” in P

n+k−1. One then has

ϕ(z, [ξ]) = (v2, . . . , vn,ϕ
1(z,v), . . . ,ϕk(z,v))

and

ϕj(z,v)B
a
j
1z1 + a

j
2v2z2 + · · ·+ a

j
nvnz

n

a
j
0 + a

j
1z1 + · · ·+ a

j
nzn

.

The Jacobian matrix of ϕ with respect to the coordinates (z,v) is the matrix

0 . . . 0 1 0
... ···

... ···
0 . . . 0 0 1

∗ . . . ∗

∂ϕi/∂zj
... ···

...
∗ . . . ∗


.

Its rank is thus n− 1+ rank(J), where J B
(
∂ϕi/∂zj

)
.

Let us write by convention v1 = 1 from now on.
The simple computation

∂ϕj /∂zi =
a
j
0a

j
ivi + a

j
ia

j
1(vi − v1)z1 + · · ·+ a

j
ia

j
n(vi − vn)zn

(aj0 + a
j
1z1 + · · ·+ a

j
nzn)2

shows that this matrix can be written as a matrix product J =M ·A[2]/(zn+1 · · ·zn+k)2. Here the columns
of M are M i = viEi for i = 1, . . . ,n, and then M(i1,i2) = (vi1 − vi2)(zi2Ei1 − zi1Ei2), where E1, . . . ,En is the
canonical basis of Cn for 1 ⩽ i1 < i2 ⩽ n (in lexicographic order). For example, for n = 3, we have

M B


v1 0 0 (v1 − v2)z2 (v1 − v3)z3 0
0 v2 0 (v2 − v1)z1 0 (v2 − v3)z3
0 0 v3 0 (v3 − v1)z1 (v3 − v2)z2

 .
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Points where ϕ is not an embedding are those where rank(M ·A[2]) < n. We claim that rank(M) = n.
If not, considering the first minor |M1 · · ·Mn|, one infers that at least one of the vi has to be 0. Thus,
assume that vp+1, . . . ,vn are zero and v1, . . . , vp are not. Note that p ⩾ 1 since v1 = 1. The minor

|M1 · · ·MpM(p,p+1) · · ·M(p,n)| is then v1 · · ·vp(−vpzp)n−p+1, which is not zero since zp , 0. This gives a

contradiction. Since k ⩾
(n+1

2
)
, the matrix A[2] has more columns than rows. By the general position

assumption, it is of maximal row rank. Therefore, rank(J) = rank(M ·A[2]) = rank(M) = n. This finishes
the proof of Theorem A. □

Remark 2.1. Observe that for six lines in P
2, we retrieve the generic condition brought out by Noguchi, by

elementary linear algebra manipulations (in the convention of [Nog86], we have a00 = a01 = a02 = 1 and also
a10 = a20 = 1).

Remark 2.2. We do not really need the general position assumption for d >
(n+2

2
)
; we only need that at least(n+2

2
)

of the d hyperplanes satisfy it.

Question 2.3. For the critical degree d =
(n+2

2
)
, is there an obstruction to the positivity of logarithmic

cotangent bundles if all hyperplanes lie in a single quadric?

3. Positivity of orbifold cotangent bundles

3.1. Campana’s orbifold category

Before proceeding to the proof, let us first recall various notions.
A smooth orbifold pair is a pair (X,∆), where X is a smooth projective variety and where ∆ is a Q-divisor

on X with only normal crossings and with coefficients between 0 and 1. In analogy with ramification divisors,
it is very natural to write

∆ =
∑
i∈I

(
1− 1/mi

)
∆i

with multiplicities mi = ai/bi in Q⩾1 ∪ {+∞}. If bi = 0, by convention ai = 1. Multiplicity 1 corresponds to
empty boundary divisors. Multiplicity +∞ corresponds to reduced boundary divisors. We set |∆|B

∑
i∈I ∆i

(it could be slightly larger than the support of ∆ because of possible multiplicities 1).
Such pairs (X,∆) are studied using their orbifold cotangent bundles (see [CP15]). Following the presentation

used notably in [Cla15], it is natural to define these bundles on certain Galois coverings, the ramification
of which is partially supported on ∆. A Galois covering π : Y → X from a smooth projective (connected)
variety Y will be termed adapted for the pair (X,∆) if

• for any component ∆i of |∆|, π∗∆i = piDi , where pi is an integer multiple of ai and Di is a simple
normal crossing divisor;
• the support of π∗∆+Ram(π) has only normal crossings, and the support of the branch locus of π

has only normal crossings.

There always exists such an adapted covering (cf. [Laz04, Proposition 4.1.12]).
Let π : Y → X be a ∆-adapted covering. For any point y ∈ Y , there exists an open neighbourhood U ∋ y

invariant under the isotropy group of y in Aut(π), equipped with centered coordinates wi such that π(U )
has coordinates zi centered in π(y) and

π(w1, . . . ,wn) =
(
z
p1
1 , . . . , z

pn
n

)
,

where pi is an integer multiple of the coefficient ai of (zi = 0). Here, by convention, if zi is not involved in
the local definition of ∆, then ai = bi = 1.

If all multiplicities are infinite (∆ = |∆|), then for any ∆-adapted covering π : Y → X, we set

Ω(π,∆)B π∗ΩX(log∆).
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For arbitrary multiplicities, the orbifold cotangent bundle is defined to be the vector bundle Ω(π,∆) fitting in
the following short exact sequence:

(3.1) 0 −→Ω(π,∆) ↪−−→Ω(π, |∆|) res−−→
⊕

i∈I : mi<∞
Oπ∗∆i /mi

−→ 0.

Here the quotient is the composition of the pullback of the residue map

π∗res : π∗ΩX(log|∆|) −→
⊕

i∈I : mi<∞
Oπ∗∆i

with the quotients Oπ∗∆i
↠ Oπ∗∆i /mi

(see [Cla15]).
Alternatively, the sheaf of orbifold differential forms adapted to π : Y → (X,∆) is the subsheaf Ω(π,∆) ⊆

Ω(π, |∆|) locally generated (in coordinates as above) by the elements

w
pi /mi
i π∗(dzi/zi) = w

−pi (1−1/mi )
i π∗(dzi).

Note that if the multiplicities mi are integers and if the cover π is strictly adapted (i.e. pi =mi ), then Ω(π,∆)
identifies with ΩY via the differential map of π.

3.2. Orbifold positivity

The direct image of the sheaf of Aut(π)-invariant sections of SNΩ(π,∆),

S[N ]Ω(X,∆)B π∗((S
NΩ(π,∆)))Aut(π) ⊆ SNΩX(log|∆|),

is a locally free subsheaf of logarithmic symmetric differentials which does not depend on the choice
of π (see [CDR20, Section 2.3]). Note that in almost all situations, S[N ]Ω(X,∆) , SNΩ(X,∆). The
sheaves S[N ]Ω(X,∆) are independently defined and cannot be seen as symmetric powers. One merely
has a morphism SpS[N ]Ω(X,∆)→ S[pN ]Ω(X,∆) given by multiplication. However, the philosophy in the
framework of Campana’s orbifolds is to study orbifold pairs through adapted covers, and we will.

We would like to relate positivity properties of the orbifold cotangent bundle with some positivity
properties of Ω(π,∆) for some adapted cover π. The definition of bigness is quite clear.

Definition 3.1. We say that (X,∆) has a big cotangent bundle if Ω(π,∆) is big for some (hence for all)
adapted covers π. Equivalently, the orbifold cotangent bundle of the pair (X,∆) is big if for some/any ample
integral divisor A ⊆ X, there exists an integer N such that H0(X,S[N ]Ω(X,∆)⊗A∨) , {0}.

To define ampleness, we will use augmented base loci, or rather their natural projections. In the spirit
of [MU19], in which augmented base loci of vector bundles are studied, we define the orbifold augmented
base locus of the cotangent bundle to the pair (X,∆) as follows. Recall that the base locus of a vector bundle
E is defined in [MU19] as

Bs(E)B
{
x ∈ X

/
H0(X,E)→ Ex is not surjective

}
.

Definition 3.2. The orbifold augmented base locus of Ω(X,∆) is

B+(Ω(X,∆))B
⋂

p/q∈Q

⋂
N>0

Bs
(
S[Nq]Ω(X,∆)⊗ (A∨)⊗Np

)
for an integral ample divisor A→ X.

Before proceeding to the definition, first observe the following. For an adapted cover π : Y → (X,∆), we
use the notation Y ′ B P(Ω(π,∆))→ Y .

Proposition 3.3. Over X \ |∆|, the image of the augmented base locus B+(OY ′ (1)) by the natural projection
Y ′ ↠ Y ↠ X does not depend on π. Indeed, it actually coincides with the orbifold augmented base locus
B+(Ω(X,∆))|X\|∆|.
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Proof. (1) We claim that for any adapted cover π, in order to compute the augmented base locus of Ω(π,∆),
it is sufficient to consider Aut(π)-invariant sections.

First notice that because of the relative ampleness of OY ′ (1), one can assume that the ample line bundle
in the definition of B+(OY ′ (1)) is the pullback of an ample line bundle on X and, in particular, is invariant
under Aut(π). Then observe that B+(OY ′ (1)) is Aut(π)-invariant. Indeed, for any global section σ and for
any element α of the Galois group, the Galois transform σα is also a global section. We deduce that for
each orbit of Aut(π), either all points are in the augmented base locus, or none are.

Let BG
+ (OY ′ (1)) denote the base locus obtained by considering only Aut(π)-invariant sections. If

v ∈ B+(OY ′ (1)), then obviously v ∈ BG
+ (OY ′ (1)). Conversely, consider v < B+(OY ′ (1)). By the preceding

considerations, the (finite) orbit of v stays outside B+(OY ′ (1)). By Noetherianity, B+(OY ′ (1)) can be realized
as a single base locus. One can then find a divisor in the associated linear system that avoids all the points
in the orbit of v. In other words, one can find a global section σ which does not vanish at any point of the
orbit of v. Moreover, this section can be made invariant after multiplication by its Galois conjugates. To
conclude, B+(OY ′ (1)) = BG

+ (OY ′ (1)).
(2) Now note that there is a natural morphism π∗S[N ]Ω(X,∆)→ SN (Ω(π,∆)) which is an injection of

sheaves and an isomorphism outside |∆|. Combining this with the preceding equality of base loci, one
obtains that B+(OY ′ (1)) has a projection on X \ |∆| which depends only on the sheaves S[N ]Ω(X,∆). Namely
(reasoning as in [MU19]), it is the restriction of B+(Ω(X,∆)). □

There are many interesting situations where one cannot expect global ampleness of Ω(π,∆) but where
bigness is not sufficient for applications (see below). Therefore, we shall introduce an intermediate positivity
property.

Definition 3.4. We say that (X,∆) has an ample cotangent bundle modulo boundary if its orbifold augmented
base locus is contained in the boundary.

Equivalently, (X,∆) has an ample cotangent bundle modulo boundary if for some (hence for all) adapted
covers π, the orbifold cotangent bundle Ω(π,∆) is ample modulo the Aut(π)-invariant closed subset living
over the boundary. Note that this positivity condition also corresponds to Viehweg’s bigness; see [BKK+15].
This definition will be used in practice.

Remark 3.5. As a consequence of Proposition 3.3, the “ampleness modulo boundary” of Ω(π,∆) does not
depend on π. Ampleness of orbifold cotangent bundles has recently been studied in the PhD thesis of Tanuj
Gomez, where it is shown by a different method that for strictly adapted covers ramifying exactly on |∆|,
the (global) ampleness of Ω(π,∆) does not depend on the cover. It would be interesting to check to which
extent ampleness of Ω(π,∆) is equivalent to the triviality of Hq(X,S[N ]Ω(X,∆)⊗A⊗p) for some ample A,
any p,q > 0, and N large enough.

Remark 3.6. In general, one cannot expect that there exists a strictly adapted covering ramifying exactly over
the boundary divisor. But if π : Y → (X,∆) is a strictly adapted cover ramifying exactly over ∆, a convenient
way to prove that the orbifold cotangent bundle Ω(X,∆) is ample modulo boundary is to prove that the
orbifold cotangent bundle Ω(π,∆) ≃ΩY is ample modulo its ramification locus; these two approaches are
actually equivalent.

3.3. Obstructions to orbifold positivity

Positivity of cotangent bundles of projective manifolds or log-cotangent bundles of pairs has been
investigated by many authors (see e.g. [Deb05, Xie18, BD18a, Den20, CR20, Ete21, Nog86, BD18b]). In
the orbifold setting, much less seems to be known. Nevertheless, results of [Som84] can be interpreted
as the study of ampleness of orbifold cotangent bundles associated to orbifolds (P2,∆) corresponding to
arrangements of lines in P

2. In particular, [Som84, Theorem 4.1] characterizes exactly which arrangements
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have ample orbifold cotangent bundles. An interesting consequence of this result is that when the orbifold
(P2,∆) is smooth (i.e. when the lines are in general position), the orbifold cotangent bundle is never ample.
This is due to the following fact. Let C be any irreducible component of π−1(|∆|); then ΩY |C �ΩC ⊕N ∗C
(see [Som84, Proof of Theorem 4.1, p. 217]), and degN ∗C = −C2 ⩽ 0. In other words, each component of the
boundary carries a negative quotient.

This can be generalized as follows.

Lemma 3.7. Let (Pn,∆) be a smooth orbifold pair with integer (or infinite) coefficients. Then, for any strictly
adapted covering π, the cotangent bundle Ω(π,∆) has negative quotients supported on each boundary component
with finite multiplicity and trivial quotients supported on each boundary component with infinite multiplicity.

Proof. Let ∆ = (1− 1/m1)∆1 +∆′ , where the multiplicity of ∆1 in ∆′ is zero.
If m1 =∞, the residue exact sequence Ω(π, |∆′ |) ↪→Ω(π, |∆|)↠ Oπ∗∆1

restricts to

Ω(π,∆′) ↪−−→Ω(π,∆) −↠ Oπ∗∆1
.

We get the sought trivial quotient on |π∗∆1|.
If m1 <∞, let D1 B π∗∆1/m1. Note that this is a reduced divisor. By (3.1), one has

Ω(π,∆) ↪−−→Ω(π, |∆|) −↠ OD1
⊕

⊕
i∈I : mi<∞

Oπ∗∆′i /mi

and

Ω(π,∆′) ↪−−→Ω(π, |∆|) −↠ Om1D1
⊕

⊕
i∈I : mi<∞

Oπ∗∆′i /mi
.

One infers

Ω(π,∆′) ↪−−→Ω(π,∆) −↠ Om1D1
⧸OD1

.

Let I denote the ideal sheaf of D1 in Y . The quotient above is isomorphic to I⧸Im1 . Composing with the
quotient I /Im1 ↠ I /I2 ≃N ∗D1

, we deduce that Ω(π,∆) has a negative quotient supported on |D1| (namely,
the conormal bundle of D1). □

Therefore, starting with smooth orbifold pairs associated to hyperplane arrangements in projective spaces,
the best one can hope for is ampleness modulo the boundary.

4. Ampleness modulo boundary of the orbifold cotangent bundle

This section is devoted to proving the following extension of Theorem A.

Theorem B. The orbifold cotangent bundle along an arrangement A of d ⩾
(n+2

2
)
hyperplanes in P

n in general
position with respect to hyperplanes and to quadrics, with multiplicities m ⩾ 2n+2, is ample modulo A .

We keep the setting and notation of Section 2.

Remark 4.1. One can accept different multiplicities for the hyperplanes. Indeed, lowering all multiplicities to
the lowest one (still assumed to be at least 2n+2), we are in the setting of Theorem B. But the augmented base
locus of the orbifold cotangent sheaf can only increase by doing this operation. (Note that the projectivized
orbifold cotangent bundles are isomorphic outside of the boundary). Applying the same reasoning, one can
also treat infinite multiplicities.
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4.1. Fermat covers

Considering the k linear relations between the hyperplanes

Hn+j = a
j
0H0 + · · ·+ a

j
nHn,

we identify the projective space P
n with the linear subspace of PN B P

n+k cut out by the k linear equations

Zn+j = a
j
0Z0 + · · ·+ a

j
nZn

in homogeneous coordinates Z0, . . . ,ZN , for N B n+ k. We also define the complete intersection Y in P
N

of the k Fermat hypersurfaces

Zm
n+j = a

j
0Z

m
0 + · · ·+ a

j
nZ

m
n .

The map π : [Zi] 7→ [Zm
i ] realizes Y as a cover of Pn ramifying exactly over the hyperplanes Hi , with

multiplicity m. In other words, Y is a (strictly) adapted cover of the orbifold pair (Pn,∆), where ∆ =
(1− 1/m)(H0 + · · ·+HN ). We call π : Y → (Pn,∆) the Fermat cover of (Pn,∆).

The cotangent bundle of the orbifold pair (Pn,∆) is ample modulo boundary when the cotangent bundle
of its Fermat cover is ample modulo its ramification locus.

An obvious obstruction to ampleness of the cotangent bundle is the presence of rational lines. The
following remark gives another nice justification for why we need to take at least 2n+1 hyperplanes in order
to hope for the orbifold cotangent bundle to be ample.

Remark 4.2. Recall that each Fermat hypersurface of degree m (without zero coefficient) in P
n+1 contains

an (n − 2)-dimensional family of “standard” lines. The standard lines can be described as follows. For
each partition of the set {0, . . . ,n+1} into r subsets with cardinalities i1, . . . , ir ⩾ 2, there is a rational map
P
n+1 d P

i1−1 × · · · ×Pir−1, the fibers of which are linear subspaces P
r−1 . Its restriction to the Fermat

hypersurface yields a rational map onto a product of lower-dimensional Fermat hypersurfaces (of total
dimension n+2−2r). Each fiber of this map contains a (2r −4)-dimensional family of lines, which are called
standard.

Lemma 4.3. There is no standard line in a generic complete intersection of k Fermat hypersurfaces in P
n+k if

and only if k ⩾ n.

Proof. Now, we consider a complete intersection of k ⩾ 2 Fermat hypersurfaces in P
n+k with generic

coefficients, and we consider only partitions of {0, . . . ,n+ k} into subsets with cardinalities at least 1 + k
(otherwise, the intersection of the complete intersection with the linear subspace would be generically empty).
There is no non-trivial such partition as soon as n+1+ k < 2(1+ k), i.e. k ⩾ n. □

4.2. Explicit symmetric differentials on Fermat covers

In [Bro16], Brotbek has described a way to produce global twisted symmetric differentials on complete
intersections Y in P

N . The following is a slight adaptation to the particular setting of Fermat covers
of [Bro16] (see also [Xie18, Dem20]); this may not appear very obvious due to some redaction shortcuts. We
could have made the proof (slightly) more heuristic with an approach involving an N × (N +1) matrix in the
spirit of [Bro16], but here we have preferred compactness.

Lemma 4.4. For any subset of pairwise distinct integers {j1, . . . , jn} in {n+1, . . . ,n+ k}, there is a global section
of SnΩY (2n+1−m) given on Z0 , 0 by

σ B

∣∣∣∣∣∣∣∣∣∣∣
a
j1−n
1 (z1z′j1 − z

′
1zj1) . . . a

j1−n
n (znz′j1 − z

′
nzj1)

...
...

a
jn−n
1 (z1z′jn − z

′
1zjn) . . . a

jn−n
n (znz′jn − z

′
nzjn)

∣∣∣∣∣∣∣∣∣∣∣⊗Z
2n+1−m
0 ,

where the zi B Zi/Z0 denote the standard affine coordinates on the chart Z0 , 0.
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Proof. We would like to underline that the most interesting part of the lemma is the “extra vanishing” of order
m−1 that we shall now explain (see [Dem20, Section 12D] for an analogous construction for higher-order jet
differentials).

The proof relies on the following very basic fact of linear algebra. Consider an n× (n+1) matrix such
that the sum of the columns is zero; then (up to sign) all its n× n minors are equal. This is more or less
Cramer’s rule. Let us denote by detc the minor obtained by removing column c from such a matrix.

For any j = n+1, . . . ,n+ k, one has

a
j−n
0 + a

j−n
1 zm1 + · · ·+ a

j−n
n zmn = zmj and a

j−n
1 zm−11 z′1 + · · ·+ a

j−n
n zm−1n z′n = zm−1j z′j .

Therefore, 
a
j1−n
0 (z0z′j1 − z

′
0zj1) . . . a

j1−n
n (znz′j1 − z

′
nzj1)

...
...

a
jn−n
0 (z0z′jn − z

′
0zjn) . . . a

jn−n
n (znz′jn − z

′
nzjn)



zm−10
...

zm−1n

 = 0,

where we set z0 B 1 and z′0 B 0 for convenience. Observe that one has

σ = det
0


a
j1−n
0 (z0z′j1 − z

′
0zj1) . . . a

j1−n
n (znz′j1 − z

′
nzj1)

...
...

a
jn−n
0 (z0z′jn − z

′
0zjn) . . . a

jn−n
n (znz′jn − z

′
nzjn)

⊗Z2n+1−m
0 .

One immediately infers some alternative expressions of σ on the intersections (Z0Zi , 0), in which the
sought “extra” vanishing appear.

(1) On (Z0Z1 , 0), we can use det1 instead of det0 (the same reasoning holds for Z2, · · · ,Zn):

σ = −
zm−10

zm−11

det
1


a
j1−n
0 (z0z′j1 − z

′
0zj1) . . . a

j1−n
n (znz′j1 − z

′
nzj1)

...
...

a
jn−n
0 (z0z′jn − z

′
0zjn) . . . a

jn−n
n (znz′jn − z

′
nzjn)

⊗Z2n+1−m
0 .

Let yi = zi/z1 denote the standard affine coordinates on (Z1 , 0). Recall that z0 = 1. We get the following
expression for σ :

σ = −det
1


a
j1−n
0 (y0y′j1 − y

′
0yj1) . . . a

j1−n
n (yny′j1 − y

′
nyj1)

...
...

a
jn−n
0 (y0y′jn − y

′
0yjn) . . . a

jn−n
n (yny′jn − y

′
nyjn)

⊗Z2n+1−m
1 .

Here we use (
ziz
′
j − z

′
izj

)
= z21

(
yiy
′
j − y

′
iyj

)
.

(2) Let us now consider the intersection (Z0Zn+1 , 0). The same reasoning holds for Zn+2, . . . ,Zn+k . Here
we have to enlarge the matrix by considering

a10z0 . . . a1nzn 1

a
j1−n
0 (z0z′j1 − z

′
0zj1) . . . a

j1−n
n (znz′j1 − z

′
nzj1) 0

...
...

...

a
jn−n
0 (z0z′jn − z

′
0zjn) . . . a

jn−n
n (znz′jn − z

′
nzjn) 0




zm−10
...

zm−1n

−zmn+1

 = 0.
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One has

σ = (−1)ndet
0


a10z0 . . . a1nzn 1

a
j1−n
0 (z0z′j1 − z

′
0zj1) . . . a

j1−n
n (znz′j1 − z

′
nzj1) 0

...
...

...

a
jn−n
0 (z0z′jn − z

′
0zjn) . . . a

jn−n
n (znz′jn − z

′
nzjn) 0


⊗Z2n+1−m

0 .

Using detn+1 instead of det0, one gets the alternative expression

σ = −
zm−10
zmn+1

det


a
j1−n
0 z0 . . . a

j1−n
n zn

a
j1−n
0 (z0z′j1 − z

′
0zj1) . . . a

j1−n
n (znz′j1 − z

′
nzj1)

...
...

a
jn−n
0 (z0z′jn − z

′
0zjn) . . . a

jn−n
n (znz′jn − z

′
nzjn)


⊗Z2n+1−m

0 .

Let yi = zi/z1 denote the standard affine coordinates on (Zn+1 , 0). We get

σ = −det


a
j1−n
0 y0 . . . a

j1−n
n yn

a
j1−n
0 (y0y′j1 − y

′
0yj1) . . . a

j1−n
n (yny′j1 − y

′
nyj1)

...
...

a
jn−n
0 (y0y′jn − y

′
0yjn) . . . a

jn−n
n (yny′jn − y

′
nyjn)


⊗Z2n+1−m

n+1 .

This finishes the proof. □

Remark 4.5. Note that the zero locus of σ does not depend on m. However, one will need m > 2n+1 to get
a global symmetric differential vanishing on an ample divisor.

4.3. Augmented base locus

Let V ⊂ Y be the Aut(π)-invariant open subset living above X \ |∆|. In other words, V = (Z0 · · ·ZN , 0).

Theorem 4.6. When m > 2n+1, the projection of the augmented base locus of O
P(ΩY )(1) does not intersect the

open V .

Proof. In this proof, we use repeatedly that we work on Z0 · · ·ZN , 0, and we will not necessarily mention it
anymore.

Let us set

BB


a10(z0z

′
n+1 − z

′
0zn+1) . . . a1n(znz

′
n+1 − z′nzn+1)

...
...

ak0(z0z
′
n+k − z

′
0zn+k) . . . akn(znz

′
n+k − z

′
nzn+k)

 ,
where z0, . . . , zN are the standard extrinsic affine coordinates on (Zi , 0) (for some i ∈ {0, . . . ,n}) and
z′0, . . . , z

′
N are the standard extrinsic homogeneous coordinates on P(ΩY ) ⊂ P(Ω

P
N ). By convention, zi = 1

and z′i = 0.

(1) The augmented base locus is contained in the locus where rankB < n. Indeed, since the first column
is a non-zero linear combination of the last n columns, it is equivalent to say that the rank of the n last
columns is less than n. But by the previous lemma, n×n minors in the last n columns are global sections of
SnΩY (2n+1−m). Here, it is also useful to notice that O(1) is relatively ample on P(ΩY ). Therefore, one
can define the augmented base locus of O(1) using the pullback of an ample line bundle on Y .
(2) In the spirit of the proof in the logarithmic case, we will write B as a product involving the matrix A[2].

Denote by b
j
i the coefficients of the matrix B. For j = 1, . . . , k, using the equations of P(ΩY ), one has

zm−1n+j b
j
i1
= zm−1n+j a

j
i1

(
zi1z

′
n+j − z

′
i1
zn+j

)
=

n∑
i2=0

a
j
i1
a
j
i2

(
zi1z

′
i2
− z′i1zi2

)
.
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Therefore,
B = diag

(
1/zm−1n+1 , . . . ,1/z

m−1
n+k

)
·AT

[2] ·W,

where W is an
(n+1

2
)
× (n+1) matrix, with row (i1, i2) equal to (zi1z

′
i2
− z′i1zi2)(Ei1 −Ei2) (where E0, . . . ,En is

the canonical basis of Cn+1). For example, for n = 2, we have

W =


(z0z′1 − z

′
0z1) (z1z′0 − z

′
1z0) 0

(z0z′2 − z
′
0z2) 0 (z2z′0 − z

′
2z0)

0 (z1z′2 − z
′
1z2) (z2z′1 − z

′
2z1)

 .
One infers that rankB = rankAT

[2]W . Moreover, under the assumption that A[2] is of full row rank (which

also means that AT
[2] is of full column rank), one has rank(AT

[2]W ) = rankW . Hence,

rankB = rankW.

(3) Now, we claim that W is of rank at least n, from which one deduces the result of the theorem, by the
first two points of the proof.

Indeed, we will exhibit a non-zero n × n minor in W . We work with the standard affine coordinates
on (Z0 , 0). For brevity, we will write wi1,i2 for zi1z

′
i2
− z′i1zi2 . If z′1 = · · · = z′n = 0, using the equations

of ΩY , one would immediately get that all first derivatives are simultaneously zero, which is not possible.
Therefore, assume that at least one of these first derivatives is non-zero, say z′1 = w0,1. For i = 2, . . . ,n, one
has ziw0,1 = (z1w0,i − z0w1,i). As a consequence, at least one of w0,i and w1,i is non-zero. Let us call it w⋆,i

for convenience. Recall that the rows of W are indexed by pairs (i1 < i2) ∈ {0, . . . ,n}2. Consider the n×n
minor made of columns 1, . . . ,n and of rows (0,1), (⋆,2), . . . , (⋆,n). It is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w1,0 0 . . . . . . 0

∗ w2,⋆
. . .

...
... 0

. . .
. . .

...
...

...
. . .

. . . 0
∗ 0 . . . 0 wn,⋆

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)nw0,1w⋆,2 · · ·w⋆,n , 0.

This proves our claim and therefore finishes the proof. □

Theorem B is then a plain corollary because the Fermat cover π : Y → (Pn,∆) is an adapted cover such
that Ω(π,∆) ≃ΩY .

Remark 4.7. One could deduce Theorem A from the same proof, but we have the feeling that the natural
role of the coefficient matrix A[2] would be less highlighted in this way.

Remark 4.8. The proof above may look disappointingly simple, but it is actually the synthesis of very hard
computational explorations. The matrix A[2], brought out by the logarithmic case, is the key to the proof,
and it was a turning point when we were able to involve it in the proof for n = 2. All barriers quickly
came down after that. We invite the reader to forget its existence for fun and to try to find some genericity
condition for A already in the cases n = 2 (or n = 3 for the most daring)!

5. Bigness of the orbifold cotangent bundle with low multiplicities

We are not able yet to generalize the strategy of Noguchi to the full orbifold category. Indeed, it seems
very difficult to produce explicit global sections for low multiplicities, even with many components in the
boundary. This is quite surprising in view of Theorem C, that we recall below.

Theorem C. For n ⩾ 2, the orbifold cotangent bundle along an arrangement A of d ⩾ 2n
(

2n
m−2 +1

)
hyperplanes

in P
n with multiplicity m ⩾ 3 is big.
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For n = 2, it was proved in [CDR20] that for m ⩾ 2, the orbifold cotangent bundle Ω(P2,∆) is big if
d ⩾ 11. Here we generalize this statement to higher dimension for any multiplicity m ⩾ 3.

Remark 5.1. The case m = 3 in any dimension is really difficult. This is illustrated by the following vanishing
theorem proven in [CDR20]: If D is a (reduced) smooth divisor (with an arbitrary large degree) in P

n and
if m ⩽ n, then there is no non-zero global orbifold symmetric differential for the pair (Pn, (1 − 1/m)D).
Actually, there is even no non-zero global jet differential of any order (higher jet order analogues of symmetric
differentials).

Proof of Theorem C. The proof relies on a theorem by Brotbek [Bro14] improved by Coskun and Riedl [CR20]
on cotangent bundles of complete intersections, and on our use of Fermat covers.

We keep the setting and notation of previous sections. Consider the Fermat cover π : Y → (Pn,∆), where
∆ is the orbifold divisor ∆B

∑n+k
i=0 (1−1/m)Hi on P

n. Showing that Ω(Pn,∆) is big is equivalent to showing
that Ω(π,∆) ≃ ΩY is big. In order to prove the bigness of ΩY , we apply [CR20, Theorem 2.7], which
gives that a smooth complete intersection of dimension n in P

N and type (d1, . . . ,dc), with c ⩾ n, has big
cotangent bundle if

di ⩾
4n2

N − 2n+1
+2.

In our situation, N = n+ k, and the complete intersection has type (m,. . . ,m). □

Remark 5.2. The methods used in [CDR20] (the Riemmann–Roch theorem) and in [CR20] (Morse inequalities)
do not provide any explicit global symmetric differential. Hence the existence of many global sections does
not provide any precise geometric information on the augmented base locus. On the other hand, the orbifold
multiplicity in Theorem C is extremely low, and there is no genericity assumption on A .
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