
HAL Id: hal-02896776
https://hal.science/hal-02896776v2

Preprint submitted on 20 Nov 2020 (v2), last revised 17 Nov 2021 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gradualizing the Calculus of Inductive Constructions
Meven Bertrand, Kenji Maillard, Nicolas Tabareau, Éric Tanter

To cite this version:
Meven Bertrand, Kenji Maillard, Nicolas Tabareau, Éric Tanter. Gradualizing the Calculus of Induc-
tive Constructions. 2020. �hal-02896776v2�

https://hal.science/hal-02896776v2
https://hal.archives-ouvertes.fr

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Gradualizing the Calculus of Inductive Constructions

MEVEN LENNON-BERTRAND, Gallinette Project-Team, Inria, France

KENJI MAILLARD, Gallinette Project-Team, Inria, France

NICOLAS TABAREAU, Gallinette Project-Team, Inria, France

ÉRIC TANTER, PLEIAD Lab, Computer Science Department (DCC), University of Chile, Chile

Acknowledging the ordeal of a fully formal development in a proof assistant such as Coq, we investigate

gradual variations on the Calculus of Inductive Construction (CIC) for swifter prototyping with imprecise types

and terms. We observe, with a no-go theorem, a crucial tradeoff between graduality and the key properties of

normalization and closure of universes under dependent product that CIC enjoys. Beyond this Fire Triangle

of Graduality, we explore the gradualization of CIC with three different compromises, each relaxing one

edge of the Fire Triangle. We develop a parametrized presentation of Gradual CIC that encompasses all three

variations, and develop their metatheory. We first present a bidirectional elaboration of Gradual CIC to a

dependently-typed cast calculus, which elucidates the interrelation between typing, conversion, and the

gradual guarantees. We use a syntactic model into CIC to inform the design of a safe, confluent reduction,

and establish, when applicable, normalization. We also study the stronger notion of graduality as embedding-

projection pairs formulated by New and Ahmed, using appropriate semantic model constructions. This work

informs and paves the way towards the development of malleable proof assistants and dependently-typed

programming languages.

ACM Reference Format:

Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter. 202Y. Gradualizing the Calculus

of Inductive Constructions . ACM Trans. Program. Lang. Syst. V, N, Article 1 (January 202Y), 64 pages.

1 INTRODUCTION
Gradual typing arose as an approach to selectively and soundly relax static type checking by

endowing programmers with imprecise types [Siek and Taha 2006; Siek et al. 2015]. Optimistically

well-typed programs are safeguarded by runtime checks that detect violations of statically-expressed

assumptions. A gradual version of the simply-typed lambda calculus (STLC) enjoys such expressive-

ness that it can embed the untyped lambda calculus. This means that gradually-typed languages

tend to accommodate at least two kinds of effects, non-termination and runtime errors. The smooth-

ness of the static-to-dynamic checking spectrum afforded by gradual languages is usually captured

by (static and dynamic) gradual guarantees which stipulate that typing and reduction are monotone

with respect to precision [Siek et al. 2015].

Originally formulated in terms of simple types, the extension of gradual typing to a wide variety

of typing disciplines has been an extremely active topic of research, both in theory and in practice.

As part of this quest towards more sophisticated type disciplines, gradual typing was bound to meet

with full-blown dependent types. This encounter saw various premises in a variety of approaches

to integrate (some form of) dynamic checking with (some form of) dependent types [Dagand et al.

2018; Knowles and Flanagan 2010; Lehmann and Tanter 2017; Ou et al. 2004; Tanter and Tabareau

2015; Wadler and Findler 2009]. Naturally, the highly-expressive setting of dependent types, in

which terms and types are not distinct and computation happens as part of typing, raises a lot of

subtle challenges for gradualization. In the most elaborate effort to date, Eremondi et al. [2019]

Authors’ addresses: Meven Lennon-Bertrand, Gallinette Project-Team, Inria, Nantes, France; Kenji Maillard, Gallinette

Project-Team, Inria, Nantes, France; Nicolas Tabareau, Gallinette Project-Team, Inria, Nantes, France; Éric Tanter, PLEIAD

Lab, Computer Science Department (DCC), University of Chile, Santiago, Chile.

. 0164-0925/202Y/1-ART1

https://doi.org/

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

https://doi.org/

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

present a gradual dependently-typed programming language, GDTL, which can be seen as an effort

to gradualize a two-phase programming language such as Idris [Brady 2013]. A key idea of GDTL

is to adopt an approximate form of computation at compile-time, called approximate normalization,
which ensures termination and totality of typing, while adopting a standard gradual reduction

semantics with errors and non-termination at runtime. The metatheory of GDTL however still

needs to be extended to account for inductive types.

This paper addresses the open challenge of gradualizing a full-blown dependent type theory,

namely the Calculus of Inductive Constructions (hereafter, CIC) [Coquand and Huet 1988; Paulin-

Mohring 2015], identifying and addressing the corresponding metatheoretic challenges. In doing

so, we build upon several threads of prior work in the type theory and gradual typing literature:

syntactic models of type theories to justify extensions of CIC [Boulier et al. 2017], in particular

the exceptional type theory of Pédrot and Tabareau [2018], an effective re-characterization of the

dynamic gradual guarantee as graduality with embedding-projection pairs [New and Ahmed 2018],

as well as the work on GDTL [Eremondi et al. 2019].

Motivation. We believe that studying the gradualization of a full-blown dependent type theory

like CIC is in and of itself an important scientific endeavor, which is very likely to inform the

gradual typing research community in its drive towards supporting ever more challenging typing

disciplines. In this light, the aim of this paper is not to put forth a unique design or solution, but to

explore the space of possibilities. Nor is this paper about a concrete implementation of gradual

CIC and an evaluation of its applicability; these are challenging perspectives of their own, which

first require the theoretical landscape to be unveiled.

This being said, as Eremondi et al. [2019], we can highlight a number of practical motivating

scenarios for gradualizing CIC, anticipating what could be achieved in a hypothetical gradual

version of Coq, for instance.

Example 1 (Smoother development with indexed types). CIC, which underpins languages and

proof assistants such as Coq, Agda and Idris, among others, is a very powerful system to program in,

but at the same time extremely demanding. Mixing programs and their specifications is attractive

but challenging.

Consider the classical example of length-indexed lists, of type vect A n as defined in Coq:
1

Inductive vect (A : □) : N → □ :=

| nil : vect A 0

| cons : A → forall n : N, vect A n → vect A (S n).

Indexing the inductive type by its length allows us to define a total head function, which can

only be applied to non-empty lists:

head : forall A n , vect A (S n) → A

Developing functions over such structures can be tricky. For instance, what type should the

filter function be given?

filter : forall A n (f : A → B), vect A n → vect A . . .

The size of the resulting list depends on how many elements in the list actually match the given

predicate f! Dealing with this level of intricate specification can (and does) scare programmers

away from mixing programs and specifications. The truth is that many libraries, such as Math-

Comp [Mahboubi and Tassi 2008], give up on mixing programs and specifications even for simple

structures such as these, which are instead dealt with as ML-like lists with extrinsically-established

properties. This tells a lot about the current intricacies of dependently-typed programming.

1
We use the notation □𝑖 for the predicative universe of types Type𝑖 , and omit the universe level 𝑖 when not required.

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Gradualizing the Calculus of Inductive Constructions 1:3

Instead of avoiding the obstacle altogether, gradual dependent types provide a uniform and

flexible mechanism to a tailored adoption of dependencies. For instance, one could give filter the

following gradual type, which makes use of the unknown term ? in an index position:

filter : forall A n (f : A → B), vect A n → vect A ?
This imprecise type means that uses of filterwill be optimistically accepted by the typechecker,

although subject to associated checks during reduction. For instance:

head N ? (filter N 4 even [0 ; 1 ; 2 ; 3])

typechecks, and is successfully convertible to 0, while:

head N ? (filter N 2 even [1 ; 3])

typechecks but fails upon reduction, when discovering that the assumption that the argument to

head is non-empty is in fact incorrect.

Example 2 (Defining general recursive functions). Another challenge of working in CIC is to

convince the type checker that recursive definitions are well founded. This can either require tight

syntactic restrictions, or sophisticated arguments involving accessibility predicates. At any given

stage of a development, one might not be in a position to follow any of these. In such cases, a

workaround is to adopt the “fuel pattern”, i.e., parametrizing a function with a clearly syntactically

decreasing argument in order to please the typechecker, and to use an arbitrary initial fuel value.

In practice, one sometimes requires a simpler way to unplug termination checking, and for that

purpose, many proof assistants support external commands or parameters to deactivate termination

checking.
2

Because the use of the unknown type allows the definition of fix-point combinators [Eremondi

et al. 2019; Siek and Taha 2006], one can use this added expressiveness to bypass termination

checking locally. This just means that the external facilities provided by specific proof assistant

implementations now become internalized in the language.

Example 3 (Large elimination, gradually). One of the argued benefit of dynamically-typed lan-

guages, which is accommodated by gradual typing, is the ability to define functions that can return

values of different types depending on their inputs, such as:

def foo(n)(m) { if (n > m) then m + 1 else m > 0 }

In a gradually-typed language, one can give this function the type ?, or even N → N → ? in
order to enforce proper argument types, and remain flexible in the treatment of the returned value.

Of course, one knows very well that in a dependently-typed language, with large elimination, we

can simply give foo the dependent type:

foo : forall (n m : N), if (n > m) then N else B

Lifting the term-level comparison n > m to the type level is extremely expressive, but hard to

work with as well, both for the implementer of the function and its clients.

In a gradual dependently-typed setting, one can explore the whole spectrum of type-level

precision for such a function, starting from the least precise to the most precise, for instance:

foo : ?
foo : N → N → ?
foo : N → N → if ? then N else ?
foo : forall (n m : N), if (n > m) then N else ?
foo : forall (n m : N), if (n > m) then N else B

2
such as Unset Guard Checking in Coq, or {-# TERMINATING #-} in Agda.

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

At each stage from top to bottom, there is less flexibility (but more guarantees!) for both the

implementer of foo and its clients. The gradual guarantee ensures that if the function is actually

faithful to the most precise type then giving it any of the less precise types above does not introduce

any new failure [Siek et al. 2015].

Example 4 (Gradually refining specifications). Let us come back to the filter function from

Example 1. Its fully-precise type requires appealing to a type-level function that counts the number

of elements in the list that satisfy the predicate (notice the dependency to the input vector v):

filter : forall A n (f : A → B) (v : vect A n), vect A (count_if A n f v)

Anticipating the need for this function, a gradual specification could adopt the above signature

for filter but leave count_if unspecified:

Definition count_if A n (f : A → B) (v: vect A n) : N := ? .
This situation does not affect the behavior of the program compared to leaving the return type

index unknown. More interestingly, one could immediately define the base case, which trivially

specifies that there are no matching elements in an empty vector:

Definition count_if A n (f : A → B) (v : vect A n) : N :=

match v with

| nil _ _ ⇒ 0

| cons _ _ _ ⇒ ?
end.

This slight increment in precision provides a little more static checking, for instance:

head N ? (filter N 4 even [])

does not typecheck, instead of failing during reduction.

Again, the gradual guarantee ensures that such incremental refinements in precision towards

the proper fully-precise version do not introduce spurious errors. Note that this is in stark contrast

with the use of axioms (which will be discussed in more depth in §2). Indeed, replacing correct

code with an axiom can simply break typing! For instance, with the following definitions:

Axiom to_be_done : N.

Definition count_if A n (f : A → B) (v: vect A n) : N := to_be_done.

the definition of filter does not typecheck anymore, as the axiom at the type-level is not convert-

ible to any given value.

Note: Gradual programs or proofs? One might wonder whether adapting the ideas of gradual

typing to a dependent type theory does not make more sense for programs than it does for proofs.

This observation is howevermisguided: from the point of view of the Curry-Howard correspondence,

proofs and programs are intrinsically related, so that gradualizing the latter begs for a gradualization

of the former. The examples above illustrate mixed programs and specifications, which naturally

also appeal to proofs: dealing with indexed types typically requires exhibiting equality proofs to

rewrite terms. Moreover, there are settings in which one must consider computationally-relevant

proofs, such as constructive algebra and analysis, homotopy type theory, etc. In such settings, using

axioms to bypass unwanted proofs breaks reduction, and because typing requires reduction, the

use of axioms can simply prevent typing, as illustrated in Example 4.

Contribution. This article reports on the following contributions:

• Weanalyze, from a type theoretic point of view, the fundamental tradeoffs involved in gradualizing

a dependent type theory such as CIC (§2), and establish a no-go theorem, the Fire Triangle of

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Gradualizing the Calculus of Inductive Constructions 1:5

Graduality, which does apply to CIC. In essence, this result tells us that a gradual type theory
3

cannot satisfy at the same time normalization, graduality, and conservativity with respect to CIC.
We explain each property and carefully analyze what it means in the type theoretic setting.

• We present an approach to gradualizing CIC (§3), parametrized by two knobs for controlling

universe constraints on the dependent function space, resulting in three meaningful variants

of Gradual CIC (GCIC), that reflect distinct resolutions of the Fire Triangle of Graduality. Each
variant sacrifices one key property.

• We give a novel, bidirectional and mutually-recursive elaboration of GCIC to a dependently-

typed cast calculus CastCIC (§5). This elaboration is based on a bidirectional presentation of

CIC, which we could not readily find in the literature (§4). Like GCIC, CastCIC is parametrized,

and encompasses three variants. We develop the metatheory of GCIC, CastCIC and elabora-

tion. In particular, we prove type safety for all variants, as well as the gradual guarantees and

normalization, each for two of the three variants.

• To further develop the metatheory of CastCIC, we appeal to various models (§6). First, to prove

strong normalization of two CastCIC variants, we provide a syntactic model of CastCIC into

CIC extended with induction-reduction [Dybjer and Setzer 2003; Ghani et al. 2015; Martin-Löf

1996]. Second, to prove the stronger notion of graduality with embedding-projection pairs [New

and Ahmed 2018] for the normalizing variants, we provide a model of CastCIC that captures

the notion of monotonicity with respect to precision. Finally, we discuss an extension of Scott’s

model based on 𝜔-complete partial orders [Scott 1976] to prove graduality for the variant with

divergence.

• We explain the challenging issue of equality in gradual type theories, and propose an approach

to handling equality in GCIC through elaboration (§7).

We finally discuss related work (§8) and conclude (§9). Some detailed proofs are omitted from the

main text and can be found in appendix.

2 FUNDAMENTAL TRADEOFFS IN GRADUAL DEPENDENT TYPE THEORY
Before exposing a specific approach to gradualizing CIC, we present a general analysis of the main

properties at stake and tensions that arise when gradualizing a dependent type theory.

We start by recalling two cornerstones of type theory, namely progress and normalization, and

allude to the need to reconsider them carefully in a gradual setting (§2.1). We explain why the

obvious approach based on axioms is unsatisfying (§2.2), as well as why simply using a type theory

with exceptions [Pédrot and Tabareau 2018] is not enough either (§2.3). We then turn to the gradual

approach, recalling its essential properties in the simply-typed setting (§2.4), and revisiting them

in the context of a dependent type theory (§2.5). This finally leads us to establish a fundamental

impossibility in the gradualization of CIC, which means that at least one of the desired properties

has to be sacrificed (§2.6).

2.1 Safety and Normalization, Endangered
As a well-behaved typed programming language, CIC enjoys (type) Safety (S), meaning that

well-typed closed terms cannot get stuck, i.e., the normal forms of closed terms of a given type are

exactly the canonical forms of that type. In CIC, a closed canonical form is a term whose typing

derivation ends with an introduction rule, i.e., a 𝜆-abstraction for a function type, and a constructor

for an inductive type. For instance, any closed term of type B is convertible (and reduces) to either

3
Note that we sometimes use “dependent type theory” in order to differentiate from the Gradual Type Theory of New et al.

[2019], which is simply typed. But by default, in this article, the expression "type theory" is used to refer to a type theory

with full dependent types, such as CIC.

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

true or false. Note that an open term can reduce to an open canonical form called a neutral term,

such as not x.
As a logically consistent type theory, CIC enjoys (strong) Normalization (N), meaning that

any term is convertible to its (unique) normal form.N together with S imply canonicity: any closed
term of a given type must reduce to a canonical form of that type. When applied to the empty type

False, canonicity ensures logical consistency: because there is no canonical form for False, there
is no closed proof of False. Note that N also has an important consequence in CIC. Indeed, in
this system, conversion—which coarsely means syntactical equality up-to reduction—is used in the

type-checking algorithm. N ensures that one can devise a sound and complete decision procedure

(a.k.a. a reduction strategy) in order to decide conversion, and hence, typing.

In the gradual setting, the two cornerstones S and N must be considered with care. First, any

closed term can be ascribed the unknown type ? first and then any other type: for instance, 0 :: ? :: B
is a well-typed closed term of type B.4 However, such a term cannot possibly reduce to either

true or false, so some concessions must be made with respect to safety—at least, the notion of

canonical forms must be extended.

Second,N is endangered. The quintessential example of non-termination in the untyped lambda

calculus is the term Ω := 𝛿 𝛿 where 𝛿 := (𝜆 𝑥 . 𝑥 𝑥). In the simply-typed lambda calculus (hereafter

STLC), as in CIC, self-applications like 𝛿 𝛿 and 𝑥 𝑥 are ill-typed. However, when introducing gradual

types, one usually expects to accommodate such idioms, and therefore in a standard gradually-typed

calculus such asGTLC [Siek and Taha 2006], a variant of Ω that uses (𝜆 𝑥 : ?. 𝑥 𝑥) for 𝛿 is well-typed
and diverges. The reason is that the argument type of 𝛿 , the unknown type ?, is consistent with the

type of 𝛿 itself, ? → ?, and at runtime, nothing prevents reduction from going on forever. Therefore,

if one aims at ensuring N in a gradual setting, some care must be taken to restrict expressiveness.

2.2 The Axiomatic Approach
Let us first address the elephant in the room: why would one want to gradualize CIC instead of

simply postulating an axiom for any term (be it a program or a proof) that one does not feel like

providing (yet)?

Indeed, we can augment CIC with a general-purpose wildcard axiom ax:

Axiom ax : forall A, A .

The resulting theory, called CIC+ax, has an obvious practical benefit: we can use (ax A), hereafter
noted axA, as a wildcard whenever we are asked to exhibit an inhabitant of some type A and we do

not (yet) want to. This is exactly what admitted definitions are in Coq, for instance, and they do

play an important practical role at some stages of any Coq development.

However, we cannot use the axiom axA in any meaningful way as a value at the type level. For
instance, going back to Example 1, one might be tempted to give to the filter function on vectors

the type forall A n (f : A → B), vect A n → vect A axN, in order to avoid the complications

related to specifying the size of the vector produced by filter. The problem is that the term:

head N axN (filter N 4 even [0 ; 1 ; 2 ; 3])

does not typecheck because the type of the filtering expression, vect A axN, is not convertible to

vect A (S axN), as required by the domain type of head N axN.

So the axiomatic approach is not useful for making dependently-typed programming any more

pleasing. That is, using axioms goes in total opposition to the gradual typing criteria [Siek et al.

4
We write 𝑎 :: 𝐴 for a type ascription, which in some systems is syntactic sugar for (𝜆𝑥 : 𝐴.𝑥) 𝑎 [Siek and Taha 2006], and

is primitive in others [Garcia et al. 2016].

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Gradualizing the Calculus of Inductive Constructions 1:7

2015] when it comes to the smoothness of the static-to-dynamic checking spectrum: given a well-

typed term, making it “less precise” by using axioms for some subterms actually results in programs

that do not typecheck or reduce anymore.

Because CIC+ax amounts to working in CICwith an initial context extended with ax, this theory
satisfies normalization (N) as much as CIC, so conversion remains decidable. However, CIC+ax
lacks a satisfying notion of safety because there is an infinite number of open canonical normal

forms (more adequately called stuck terms) that inhabit any type A. For instance, in B, we not only
have the normal forms true, false, and axB, but an infinite number of terms stuck on eliminations

of ax, such as match axA with ... or axN→B 1.

2.3 The Exceptional Approach
Pédrot and Tabareau [2018] present the exceptional type theory ExTT, demonstrating that it is

possible to extend a type theory with a wildcard term while enjoying a satisfying notion of safety,

which coincides with that of programming languages with exceptions.

ExTT is essentially CIC+err, that is, it extends CIC with an indexed error term errA that can
inhabit any type A. But instead of being treated as a computational black box like axA, errA is
endowed with computational content emulating exceptions in programming languages, which

propagate instead of being stuck. For instance, in ExTT we have the following conversion:

match errB return N with | true → O | false → 1 end ≡ errN

Notably, such exceptions are call-by-name exceptions, so one can only discriminate exceptions

on positive types (i.e., inductive types), not on negative types (i.e., function types). In particular, in

ExTT, errA→B and 𝜆 _ : A ⇒ errB are convertible, and the latter is considered to be in normal

form. So errA is a normal form of A only if A is a positive type.

ExTT has a number of interesting properties: it is normalizing (N) and safe (S), taking errA into
account as usual in programming languages where exceptions are possible outcomes of computation:

the normal forms of closed terms of a positive type (e.g., B) are either the constructors of that type
(e.g., true and false) or err at that type (e.g., errB). As a consequence, ExTT does not satisfy

full canonicity, but it does satisfy a weaker form of it. In particular, ExTT enjoys (weak) logical

consistency: any closed proof of False is convertible to errFalse, which is discriminable at False.
It has been shown that we can still reason soundly in an exceptional type theory, either using a

parametricity requirement [Pédrot and Tabareau 2018], or more flexibly, using different universe

hierarchies [Pédrot et al. 2019].

It is also important to highlight that this weak form of logical consistency is the most one can
expect in a theory with effects. Indeed, Pédrot and Tabareau [2020] have shown that it is not possible

to define a type theory with full dependent elimination that has observable effects (from which

exceptions are a particular case) and at the same time validates traditional canonicity. Settling for

less, as explained in §2.2 for the axiomatic approach, leads to an infinite number of stuck terms,

even in the case of booleans, which is in opposition to the type safety criterion of gradual languages,

which only accounts for runtime type errors.

Unfortunately, while ExTT solves the safety issue of the axiomatic approach, it still suffers from

the same limitation as the axiomatic approach regarding type-level computation. Indeed, even

though we can use errA to inhabit any type, we cannot use it in any meaningful way as a value at

the type level. The term:

head N errN (filter N 4 even [0 ; 1 ; 2 ; 3])

does not typecheck, because vect A errN is still not convertible to vect A (S errN). The reason

is that errN behaves like an extra constructor to N, so S errN is itself a normal form, and normal

forms with different head constructors (S and errN) are not convertible.

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

2.4 The Gradual Approach: Simple Types
Before going on with our exploration of the fundamental challenges in gradual dependent type

theory, we review some key concepts and expected properties in the context of simple types [Garcia

et al. 2016; New and Ahmed 2018; Siek et al. 2015].

Static semantics. Gradually-typed languages introduce the unknown type, written ?, which is

used to indicate the lack of static typing information [Siek and Taha 2006]. One can understand such

an unknown type in terms of an abstraction of the possible set of types that it stands for [Garcia et al.
2016]. This allows to naturally understand the meaning of partially-specified types, for instance

B → ? denotes the set of all function types with B as domain. Given imprecise types, a gradual type

system relaxes all type predicates and functions in order to optimistically account for occurrences

of ?. In a simple type system, the predicate on types is equality, whose relaxed counterpart is

called consistency.5 For instance, given a function f of type B → ?, the expression (f true) + 1

is well-typed because f could plausibly return a number, given that its codomain is ?, which is

consistent with N.

Note that there are other ways to consider imprecise types, for instance by restricting the un-

known type to denote base types (in which case ?would not be consistent with any function type), or
to only allow imprecision in certain parts of the syntax of types, such as effects [Bañados Schwerter

et al. 2016], security labels [Fennell and Thiemann 2013; Toro et al. 2018], annotations [Thiemann

and Fennell 2014], or only at the top-level [Bierman et al. 2010]. Here, we do not consider these

specialized approaches, which have benefits and challenges of their own, and stick to the main-

stream setting of gradual typing in which the unknown type is consistent with any type and can

occur anywhere in the syntax of types.

Dynamic semantics. Having optimistically relaxed typing based on consistency, a gradual lan-

guage must detect inconsistencies at runtime if it is to satisfy safety (S), which therefore has to be

formulated in a way that encompasses runtime errors. For instance, if the function f above returns

false, then an error must be raised to avoid reducing to false + 1—a closed stuck term, denoting a

violation of safety. The traditional approach to do so is to avoid giving a direct reduction semantics

to gradual programs, and instead, to elaborate them to an intermediate language with runtime casts,

in which casts between inconsistent types raise errors [Siek and Taha 2006]. Alternatively—and

equivalently from a semantics point of view—one can define the reduction of gradual programs

directly on gradual typing derivations augmented with evidence about consistency judgments,

and report errors when transitivity of such judgments is unjustified [Garcia et al. 2016]. There are

many ways to realize each of these approaches, which vary in terms of efficiency and eagerness of

checking [Bañados Schwerter et al. 2020; Herman et al. 2010; Siek et al. 2009; Siek and Wadler 2010;

Tobin-Hochstadt and Felleisen 2008; Toro and Tanter 2020].

Conservativity. A first important property of a gradual language is that it is a conservative
extension of a related static typing discipline. This property is hereafter called Conservativity (C),
and parametrized with the considered static system. For instance, we write that GTLC satisfies

C/STLC. Technically, Siek and Taha [2006] prove that typing and reduction of GTLC and STLC
coincide on their common set of terms (i.e., terms that are fully precise). An important aspect of C is

that the type formation rules and typing rules themselves are also preserved, modulo the presence

of ? as a new type and the adequate lifting of predicates and functions [Garcia et al. 2016]. While

this aspect is often left implicit, it ensures that the gradual type system does not behave in ad hoc

ways on imprecise terms.

5
Not to be confused with logical consistency!

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Gradualizing the Calculus of Inductive Constructions 1:9

Note that, despite its many issues, CIC+ax (§2.2) satisfies C/CIC: all pure (i.e., axiom-free) CIC
terms behave as they would in CIC. More precisely, two CIC terms are convertible in CIC+ax
iff they are convertible in CIC. Importantly, this does not mean that CIC+ax is a conservative

extension of CIC as a logic—which it clearly is not!

Gradual guarantees. The early accounts of gradual typing emphasized consistency as the central

idea. However, Siek et al. [2015] observed that this characterization left too many possibilities for the

impact of type information on program behavior, compared to what was originally intended [Siek

and Taha 2006]. Consequently, Siek et al. [2015] brought forth type precision (denoted ⊑) as the
key notion, from which consistency can be derived: two types A and B are consistent if and only

if there exists T such that T ⊑ A and T ⊑ B. The unknown type ? is the most imprecise type of all,

i.e., T ⊑ ? for any T. Precision is a preorder that can be used to capture the intended monotonicity
of the static-to-dynamic spectrum afforded by gradual typing. The static and dynamic gradual
guarantees specify that typing and reduction should be monotone with respect to precision: losing
precision should not introduce new static or dynamic errors.

These properties require precision to be extended from types to terms. Siek et al. [2015] present a

natural extension that is purely syntactic: a term ismore precise than another if they are syntactically

equal except for their type annotations, which can be more precise in the former. The static gradual
guarantee (SGG) states that if t ⊑ u and t is well-typed at type T, then u is also well-typed at some

type U ⊒ T. The dynamic gradual guarantee (DGG) is the key result that bridges the syntactic notion
of precision to reduction: if t ⊑ u and t reduces to some value v, then u reduces to some value

v ' ⊒ v; and if t diverges, then so does u. This property entails that t ⊑ u means that t may error

more than u, but otherwise they should behave the same.

Note the clear separation between the two forms of precision that follows from the strict type/term

distinction: the unknown type ? is part of the type precision preorder, but not part of the term

precision preorder; dually, the error term err is part of the term precision preorder, but not of the

type precision preorder.

Graduality. New and Ahmed [2018] give a semantic account of precision that directly captures

the property expressed as the DGG by Siek et al. [2015]. Considering precision as a generalization

of parametricity [Reynolds 1983], they define precision as relating terms that only differ in their

error behavior, with the more precise term able to fail more. To do so, they consider the following

notion of observational error-approximation.

Definition 1 (Observational error-approximation). A term Γ ⊢ 𝑡 : 𝐴 observationally error-approximates
a term Γ ⊢ 𝑢 : 𝐴, noted 𝑡 ≼𝑜𝑏𝑠 𝑢 if for all boolean-valued observation context C : (Γ ⊢ 𝐴) ⇒ (⊢ B)
closing over all free variables either

• C[𝑡] and C[𝑢] both diverge.
• Otherwise if C[𝑢]{∗ errB, then C[𝑡]{∗ errB.

Based on this notion, New and Ahmed [2018] can express the DGG in a more semantic fashion

by saying that term precision implies observational error-approximation:

If t ⊑ u then t ≼𝑜𝑏𝑠 u.

A key insight of their work is that this property, although desirable, is not enough to characterize

the good dynamic behavior of precision. Indeed, their notion of graduality mandates that precision

gives rise to embedding-projection pairs (ep-pairs): the cast induced by two types related by precision
forms an adjunction, which induces a retraction. In particular, going to a less precise type and back

is the identity. Technically, the adjunction part states that if we have A ⊑ B, a term a of type A, and
a term b of type B, then a ⊑ b :: A ⇔ a :: B ⊑ b. The retraction part further states that t is not only

more precise than t :: B :: A (which is given by the unit of the adjunction) but is equi-precise to it,

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

noted t ⊒⊑ t :: B :: A. Because precision implies observational error-approximation, equi-precision

implies observational equivalence, and so losing and recovering precision must produce a term

that is observationally equivalent to the original one.

New and Ahmed [2018] introduce the term Graduality (G) for these properties, which elegantly

generalize parametricity [Reynolds 1983]: the parametric relation R between two types A ⊑ B being
described by

a ⊑ b :: A ⇔ R a b ⇔ a :: B ⊑ b.

Graduality is also based on important underlying structural properties of precision on terms,

namely that term precision is stable by reduction (if t ⊑ t ' and t reduces to v and t ' to v ' , then
v ⊑ v '), and that the term and type constructors of the language are monotone (e.g., if t ⊑ t ' and
u ⊑ u ' then t u ⊑ t ' u '). These technical conditions, natural in a categorical setting [New et al.

2019], coincide with the programmer-level interpretation of precision and the DGG.

Finally, because of its reliance on observational equivalence, G is tied to safety (S), in that it

implies that valid gains of precision cannot get stuck.

2.5 The Gradual Approach: Dependent Types
Extending the gradual approach to a setting with full dependent types requires reconsidering

several aspects.

Newcomers: the unknown term and the error type. In the simply-typed setting, there is a clear

stratification: ? is at the type level, err is at the term level. Likewise, type precision, with ? as
greatest element, is separate from term precision, with err as least element.

In the absence of a type/term syntactic distinction as in CIC, this stratification is untenable:

• Because types permeate terms, ? is no longer only the unknown type, but it also acts as the

“unknown term”. In particular, this makes it possible to consider unknown indices for types,

as in Example 1. More precisely, there is a family of unknown terms ?A , indexed by their type

A. The traditional unknown type is just ?□, the unknown of the universe □.
• Dually, because terms permeate types, we also have the “error type”, err□. We have to deal

with errors in types.

• Precision must be unified as a single preorder, with ? at the top and err at the bottom. The

most imprecise term of all is ??□ (? for short)—more exactly, there is one such term per type

universe. At the bottom, errA is the most precise term of type A.

Revisiting Safety. The notion of closed canonical forms used to characterize legitimate normal

forms via safety (S) needs to be extended not only with errors as in the simply-typed setting, but

also with unknown terms. Indeed, as there is an unknown term ?A inhabiting any type A, we have
one new canonical form for each type A. In particular, ?B cannot possibly reduce to either true or

false or errB, because doing so would collapse the precision order. Therefore, ?A should propagate
computationally, like errA (§2.3).
The difference between errors and unknown terms is rather on their static interpretation. In

essence, the unknown term ?A is a dual form of exceptions: it propagates, but is optimistically

comparable, i.e., consistent with, any other term of type A. Conversely, errA should not be consistent
with any term of type A. Going back to the issues we identified with the axiomatic (§ 2.2) and

exceptional (§2.3) approaches when dealing with type-level computation, the term:

head N ?N (filter N 4 even [0 ; 1 ; 2 ; 3])

now typechecks: vect A ?N can be deemed consistent with vect A (S ?N), because S ?N is consis-

tent with ?N. This newly-brought flexibility is the key to support the different scenarios from the

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Gradualizing the Calculus of Inductive Constructions 1:11

introduction. So let us now turn to the question of how to integrate consistency in a dependently-

typed setting.

Relaxing conversion. In the simply-typed setting, consistency is a relaxing of syntactic type

equality to account for imprecision. In a dependent type theory, there is a more powerful notion

than syntactic equality to compare types, namely conversion (§ 2.1): if t :T and T≡U, then t :U.
For instance, a term of type T can be used as a function as soon as T is convertible to the type

forall (a :A), B for some types A and B. The proper notion to relax in the gradual dependently-typed
setting is therefore conversion, not syntactic equality.

Garcia et al. [2016] give a general framework for gradual typing that explains how to relax

any static type predicate to account for imprecision: for a binary type predicate P, its consistent
lifting Q(A ,B) holds iff there exist static types A ' and B ' in the denotation (concretization in abstract

interpretation parlance) of A and B, respectively, such that P(A ,B). As observed by Castagna et al.

[2019], when applied to equality, this defines consistency as a unification problem. Therefore, the

consistent lifting of conversion ought to be that two terms t and u are consistently convertible iff

they denote some static terms t ' and u ' such that t ' ≡ u ' . This property is essentially higher-order
unification, which is undecidable.

It is therefore necessary to adopt some approximation of consistent conversion (hereafter called

consistency for short) in order to be able to implement a gradual dependent type theory. And there

lies a great challenge: because of the absence of stratification between typing and reduction, the

static gradual guarantee (SGG) already demands monotonicity for conversion, a demand very close

to that of the DGG.
6

Precision and the Gradual Guarantees. The static gradual guarantee (SGG) captures the intuition
that “sprinkling” ? over a term maintains its typeability. As such, the notion of precision used to

formulate the SGG is inherently syntactic, over as-yet-untyped terms: typeability is the consequence
of the SGG theorem [Siek et al. 2015]. In contrast, graduality (G) operates over well-typed terms, so

a semantic notion of precision can be type-directed, as formulated by New and Ahmed [2018]. In

the simply-typed setting, these subtleties have no fundamental consequences: the syntactic notion

of precision and the semantic notion coincide.

With dependent types, however, using a syntactic notion of precision is only a possibility to

capture the SGG (and DGG), but cannot be used to capture G. This is because in the simply typed

setting, the syntactic notion of precision is shown to induce G using the stability of precision with

respect to reduction. However, a syntactic notion of precision cannot be stable by conversion in

type theory: conversion can operate on open terms, yielding neutral terms such as 1 :: X :: N where

X is a type variable. Such a term cannot reduce further, while less precise variants such as 1 :: ? :: N
would reduce to 1. Depending on the upcoming substitution for X, 1 :: X :: N can either raise an

error or reduce to 1. Those stuck open terms cannot be handled using syntactic definitions. Rather,

G has to be established relative to a semantic notion of precision. Unfortunately, such a semantic

notion presumes typeability, and therefore cannot be used to state the SGG.

DGG vs Graduality. In the simply-typed setting, graduality (G) can be seen as an equivalent,

semantic formulation of (the key property underlying) the DGG. We observe that, in a dependently-

typed setting, G is in fact a much stronger and useful property, due to the embedding-projection

pairs requirement.

To see why, consider a system in which any term of type A that is not fully-precise immediately

reduces to ?A . This system would satisfy C, S, N , and . . . the DGG. Recall that the DGG only

6
In a dependently-typed programming language with separate typing and execution phases, this demand of the SGG is

called the normalization gradual guarantee by Eremondi et al. [2019].

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

requires reduction to be monotone with respect to precision, so using the most imprecise term ?A as
a universal redux is surely valid. This collapse of the DGG is impossible in the simply-typed setting

because there is no unknown term: it is only possible when ?A exists as a term. It is therefore possible

to satisfy the DGG while being useless when computing with imprecise terms. Conversely, the

degenerate system breaks the embedding-projection requirement of graduality stated by New and

Ahmed [2018]. For instance, 1 :: ?□ :: N would be convertible to ?N, which is not observationally
equivalent to 1. Therefore, the embedding-projection requirement of graduality goes beyond the

DGG in a way that is critical in a dependent type theory, where it captures both the smoothness of

the static-to-dynamic checking spectrum, and the proper computational content of valid uses of

imprecision.

In the rest of this article, we use graduality G as the property that refers to both the DGG and

ep-pairs properties.

Observational refinement. Let us now come back to the notion of observational error-approximation

used in the simply-typed setting to state the DGG. New and Ahmed [2018] justify this notion

because in “gradual typing we are not particularly interested in when one program diverges more

than another, but rather when it produces more type errors.” This point of view is adequate in the

simply-typed setting because the addition of casts may only produce more type errors, but adding

casts can never lead to divergence when the original term does not diverge itself. Therefore, in that

setting, the definition of error-approximation includes equi-divergence.

The situation in the dependent setting is however more complicated. If the gradual theory

admits divergence, then a diverging term is more precise than the unknown term, which does not

diverge, thereby breaking the left-to-right implication of equi-divergence. Second, an error at a

diverging type𝑋 may be ascribed to ?□ then back to𝑋 . Evaluating this roundtrip requires evaluating

𝑋 itself, which makes the less precise term diverge. This breaks the right-to-left implication of

equi-divergence.

To summarize, the way to understand these counterexamples is that in a dependent setting, the

motto of graduality ought to be adjusted: more precise programs produce more type error or diverge
more. This leads to the following definition of observational refinement.

Definition 2 (Observational refinement). A term Γ ⊢ 𝑡 : 𝐴 observationally refines a term Γ ⊢ 𝑢 : 𝐴,
noted 𝑡 ⊑𝑜𝑏𝑠 𝑢 if for all boolean-valued observation context C : (Γ ⊢ 𝐴) ⇒ (⊢ B) closing over all free
variables, C[𝑢]{∗ errB or diverges implies C[𝑡]{∗ errB or diverges.

Note that, in a gradual dependent theory that admits divergence, equi-refinement does not imply

observational equivalence, because errors and divergence are collapsed. If the gradual dependent

theory is strongly normalizing, then both notions coincide.

2.6 The Fire Triangle of Graduality
To sum up, we have seen four important properties that can be expected from a gradual type theory:

safety (S), conservativity with respect to a theory 𝑋 (C/𝑋), graduality (G), and normalization (N).

Any type theory ought to satisfy at least S. Unfortunately, we now show that mixing the three

other properties C, G and N is impossible for STLC, as well as for CIC.

Preliminary: regular reduction. To derive this general impossibility result, by relying only on the

properties and without committing to a specific language or theory, we need to assume that the

reduction system used to decide conversion is regular, in that it only looks at the weak head normal

form of subterms for reduction rules, and does not magically shortcut reduction, for instance based

on the specific syntax of inner terms. As an example, 𝛽-reduction is not allowed to look into the

body of the lambda term to decide how to proceed.

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Gradualizing the Calculus of Inductive Constructions 1:13

This property is satisfied in all actual systems we know of, but formally stating it in full generality,

in particular without devoting to a particular syntax, is beyond the scope of this paper. Fortunately,

in the following, we need only rely on a much weaker hypothesis, which is a slight strengthening

of the retraction hypothesis of G. Recall that retraction says that when A ⊑ B, any term t of type A
is equi-precise to t :: B :: A. We additionally require that for any context C, if C[t] reduces at least 𝑘
steps, then C[t :: B :: A] also reduces at least 𝑘 steps. Intuitively, this means that the reduction of

C[t :: B :: A], while free to decide when to get rid of the embedding-to-B-projection-to-A, cannot
use it to avoid reducing t. This property is true in all gradual languages, where type information at

runtime is used only as a monitor.

Gradualizing STLC. Let us first consider the case of STLC. We show that Ω is necessarily a

well-typed diverging term in any gradualization of STLC that satisfies the other properties.

Theorem 5 (Fire Triangle of Graduality for STLC). Suppose a gradual type theory that satisfies
properties C/STLC and G. Then N cannot hold.
Proof. We pose Ω := 𝛿 (𝛿 :: ?) with 𝛿 := 𝜆 𝑥 : ?. (𝑥 :: ? → ?) 𝑥 and show that it must necessarily be

a well-typed diverging term. Because the unknown type ? is consistent with any type (§2.4) and

? → ? is a valid type (by C/STLC), the self-applications in Ω are well typed, 𝛿 has type ? → ?, and Ω
has type ?. Now, we remark that Ω = 𝐶 [𝛿] with 𝐶 [·] = [·] (𝛿 :: ?).

We show by induction on 𝑘 that Ω reduces at least 𝑘 steps, the initial case being trivial. Suppose

that Ω reduces at least 𝑘 steps. By maximality of ?with respect to precision, we have that ? → ? ⊑ ?,
so we can apply the strengthening of G applied to 𝛿 , which tells us that 𝐶 [𝛿 :: ? :: ? → ?] reduces
at least 𝑘 steps because 𝐶 [𝛿] reduces at least 𝑘 steps. But by 𝛽-reduction, we have that Ω reduces

in one step to 𝐶 [𝛿 :: ? :: ? → ?]. So Ω reduces at least 𝑘 + 1 steps.

This means that Ω diverges, which is a violation of N . □

This result could be extended to all terms of the untyped lambda calculus, not only Ω, in order

to obtain the embedding theorem of GTLC [Siek et al. 2015]. Therefore, the embedding theorem

is not an independent property, but rather a consequence of C and G—that is why we have not

included it as such in our overview of the gradual approach (§2.4).

Gradualizing CIC. We can now prove the same impossibility theorem for CIC, by reducing it to

the case of STLC. Therefore this theorem can be proven for type theories others than CIC, as soon
as they faithfully embed STLC.

Theorem 6 (Fire Triangle of Graduality for CIC). Suppose a gradual dependent type theory that
satisfies properties C/CIC and G. Then N cannot hold.
Proof. The typing rules of CIC contain the typing rules of STLC, using only one universe□0, where

the function type is interpreted using the dependent product and the notions of reduction coincide,

so CIC embeds STLC; a well-known result on PTS [Barendregt 1991]. This means that C/CIC implies

C/STLC. Additionally, G can be specialized to the simply-typed fragment of the theory, by setting

? = ?□0
to be the unknown type. Therefore, we can apply Theorem 5 and we get a well-typed term

that diverges, which is a violation of N . □

The Fire Triangle in practice. In non-dependent settings, all gradual languages where ? is universal
admit non-termination and therefore compromiseN . Garcia and Tanter [2020] discuss the possibility

to gradualize STLC without admitting non-termination, for instance by considering that ? is not
universal and denotes only base types (in such a system, ? → ? ̸⊑ ?, so the argument with Ω is

invalid). Without sacrificing the universal unknown type, one could design a variant of GTLC that

uses some mechanism to detect divergence, such as termination contracts [Nguyen et al. 2019].

This would yield a language that certainly satisfies N , but it would break G. Indeed, because the

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

contract system is necessarily over-approximating in order to be sound (and actually imply N),

there are effectively-terminating programs with imprecise variants that yield termination contract

errors.

To date, the only related work that considers the gradualization of full dependent types with ?
as both a term and a type, is the work on GDTL [Eremondi et al. 2019]. GDTL is a programming

language with a clear separation between the typing and execution phases, like Idris [Brady 2013].

GDTL adopts a different strategy in each phase: for typing, it uses Approximate Normalization

(AN), which always produces ?A as a result of going through imprecision and back. This means

that conversion is both total and decidable (satisfies N), but it breaks G for the same reason as the

degenerate system we discussed in §2.5 (notice that the example uses a gain of precision from the

unknown type to N, so the example behaves just the same with AN). In such a phased setting, the

lack of computational content of AN is not critical, because it only means that typing becomes

overly optimistic. To execute programs, GDTL relies on standard GTLC-like reduction semantics,

which is computationally precise, but does not satisfy N .

3 GCIC: OVERALL APPROACH, MAIN CHALLENGES AND RESULTS
Given the Fire Triangle of Graduality (Theorem 6), we know that gradualizing CIC implies making

some compromise. Instead of focusing on one possible compromise, this work develops three novel

solutions, each compromising one specific property (N , G, or C/CIC), and does so in a common

parametrized framework, GCIC.
This section gives an informal, non-technical overview of our approach to gradualizing CIC,

highlighting the main challenges and results. As such, it serves as a gentle roadmap to the following

sections, which are rather dense and technical.

3.1 GCIC: 3-in-1
To explore the spectrum of possibilities enabled by the Fire Triangle of Graduality, we develop a

general approach to gradualizing CIC, and use it to define three theories, corresponding to different
resolutions of the triangular tension between normalization (N), graduality (G) and conservativity

with respect to CIC (C/CIC).
The crux of our approach is to recognize that, while there is not much to vary within STLC itself

to address the tension of the Fire Triangle of Graduality, there are several variants of CIC that can

be considered by changing the hierarchy of universes and its impact on typing—after all, CIC is

but a particular Pure Type System (PTS) [Barendregt 1991].

In particular, we consider a parametrized version of a gradual CIC, called GCIC, with two

parameters (Fig. 3):

• The first parameter characterizes how the universe level of a Π type is determined during

typing: either as taking the maximum of the levels of the involved types, as in standard CIC,
or as the successor of that maximum. The latter option yields a variant of CIC that we call

CIC↑
(read “CIC-shift”). CIC↑

is a subset of CIC, with a stricter constraint on universe levels.

In particular CIC↑
loses the closure of universes under dependent product that CIC enjoys.

As a consequence, some well-typed CIC terms are not well-typed in CIC↑
.
7

• The second parameter is the reduction counterpart of the first parameter. Note that it is only

meaningful to allow this reduction parameter to be loose (i.e., using maximum) if the typing

parameter is also loose. Letting the typing parameter be strict (i.e., using successor) while the
reduction parameter is loose breaks subject reduction (and hence S).

7
A minimal example of a well-typed CIC term that is ill typed in CIC↑

is narrow : N → □, where narrow n is the type of

functions that accept n arguments. Such dependent arities violate the universe constraint of CIC↑
.

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Gradualizing the Calculus of Inductive Constructions 1:15

S N C/𝑋 G SGG DGG

GCICG ✓(Th. 8) ✗ CIC (Th. 21) ✓(Th. 30) ✓(Th. 22) ✓(Th. 23)

GCIC↑ ✓(idem) ✓(Th. 9 & 24) CIC↑
(idem) ✓(Th. 29) ✓(idem) ✓(Th. 23)

GCICN ✓(idem) ✓(idem) CIC (idem) ✗ ✗ ✗

Table 1. GCIC variants and their properties
S: safety — N: normalization — C/𝑋 : conservativity wrt theory 𝑋 — G: graduality (DGG + ep-pairs) —
SGG: static gradual guarantee — DGG: dynamic gradual guarantee

Based on these parameters, this work develops the following three variants of GCIC, whose
properties are summarized in Table 1:

(1) GCICG
: a theory that satisfies both C/CIC and G, but sacrifices N . This theory is a

rather direct application of the principles discussed in §2 by extending CIC with errors and

unknown terms, and changing conversion with consistency. This results in a theory that is

not normalizing.

(2) GCIC↑
: a theory that satisfies bothN andG, and supports Cwith respect toCIC↑

.This

theory uses the universe hierarchy at the typing level to detect the potential non-termination

induced by the use of consistency instead of conversion. This theory simultaneously satisfies

G, N and C/CIC↑ .

(3) GCICN
: a theory that satisfies both C/CIC and N , but does not fully validate G. This

theory uses the universe hierarchy at the computational level to detect potential divergence.

Such runtime check failures invalidate the DGG for some terms, and hence G, as well as the

SGG. Still, GCICN
satisfies a partial version of graduality: G holds on all terms that live in

CIC↑
, seen as a subsystem of CIC. This is arguably a strength of GCICN

over Approximate

Normalization [Eremondi et al. 2019], which breaks the ep-pairs requirement of G on all

terms, even first-order, simply-typed ones.

Table 1 also includes pointers to the respective theorems. Note that because GCIC is one common

framework with two parameters, we are able to establish several properties for all variants at once.

Practical implications of GCIC variants. Regarding the examples from §1, all three variants of

GCIC support the exploration of the type-level precision spectrum for the functions described

in Examples 1, 3 and 4. In particular, we can define filter by giving it the imprecise type

forall A n (f : A → B), vect A n → vect A ?N in order to bypass the difficulty of precisely char-

acterizing the size of the output vector. Any invalid optimistic assumption is detected during

reduction and reported as an error.

Unsurprisingly, the semantic differences between the three GCIC variants crisply manifest in

the treatment of potential non-termination (Example 2), more specifically, self application. Let us
come back to the term Ω used in the proof of Theorem 6. In all three variants, this term is well

typed. In GCICG
, it reduces forever, as it would in the untyped lambda calculus. In that sense,

GCICG
can embed the untyped lambda calculus just as GTLC [Siek et al. 2015]. In GCICN

, this

term fails at runtime because of the strict universe check in the reduction of casts, which breaks

graduality because ?□𝑖
→ ? □𝑖

⊑ ?□𝑖
tells us that the upcast-downcast coming from an ep-pair

should not fail. A description of the reductions in GCICG
and in GCICN

is given in full details in

§5.3. In GCIC↑
, Ω fails in the same way as in GCICN

, but this does not break graduality because of

the shifted universe level on Π types. A consequence of this stricter typing rule is that in GCIC↑
,

?□𝑖
→ ?□𝑖

⊑ ?□𝑗
for any 𝑗 > 𝑖 , but ?□𝑖

→ ?□𝑖
̸⊑ ?□𝑖

. Therefore, the casts performed in Ω do not

come from an ep-pair anymore and can legitimately fail.

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

Another scenario where the differences in semantics manifest is functions with dependent arities.
For instance, the well-known C function printf can be embedded in a well-typed fashion in

CIC: it takes as first argument a format string and computes from it both the type and number
of later arguments. This function brings out the limitation of GCIC↑

: since the format string can

specify an arbitrary number of arguments, we need as many →, and printf cannot typecheck

in a theory where universes are not closed under function spaces. In GCICN
, printf typechecks

but the same problem will appear dynamically when casting printf to ? and back to its original

type: the result will be a function that works only on format strings specifying no more arguments

than the universe level at which it has been typechecked. Note that this constitutes an example of

violation of graduality for GCICN
, even of the dynamic gradual guarantee. Finally, in GCICG

the

function can be gradualized as much as one wants, without surprises.

Which variant to pick? As explained in the introduction, the aim of this paper is to shed light on

the design space of gradual dependent type theories, not to advocate for one specific design. We

believe the appropriate choice depends on the specific goals of the language designer, or perhaps

more pertinently, on the specific goals of a given project, at a specific point in time.

The key characteristics of each variant are:

• GCICG
favors flexibility over decidability of type-checking. While this might appear heretical

in the context of proof assistants, this choice has been embraced by practical languages such

as Dependent Haskell [Eisenberg 2016], a dependently-typed Haskell where both divergence

and runtime errors can happen at the type level. The pragmatic argument is simplicity: by

letting programmers be responsible, there is no need for termination checking techniques

and other restrictions.

• GCIC↑
is theoretically pleasing as it enjoys both normalization and graduality. In practice,

though, the fact that it is not conservative wrt full CIC means that one would not be able to

simply import existing libraries as soon as they fall outset of the CIC↑
subset. In GCIC↑

, the

introduction of ? should be done with an appropriate understanding of universe levels. This

might not be a problem for advanced programmers, but would surely be harder to grasp for

beginners.

• GCICN
is normalizing and able to import existing libraries without restrictions, at the expense

of some surprises on the graduality front. Programmers would have to be willing to accept

that they cannot just sprinkle ? as they see fit without further consideration, as any dangerous
usage of imprecision will be flagged during conversion.

In the same way that systems like Coq and Agda support different ways to customize their

semantics (such as allowing Type-in-Type, or switching off termination checking)—and of course,

many programming languages implementations supporting some sort of customization, GHC being

a salient representative—one can imagine a flexible realization of GCIC that give users the control

over the two parameters we identify in this work, and therefore have access to all three GCIC
variants. Considering the inherent tension captured by the Fire Triangle of Graduality, such a

pragmatic approach might be the most judicious choice, making it possible to gather experience

and empirical evidence about the pros and cons of each in a variety of concrete scenarios.

3.2 Typing, Cast Insertion, and Conversion
As explained in §2.4, in a gradual language, whenever we reclaim precision, we might be wrong

and need to fail in order to preserve safety (S). In a simply-typed setting, the standard approach is

to define typing on the gradual source language, and then to translate terms via a type-directed cast

insertion to a target cast calculus, i.e., a language with explicit runtime type checks, needed for a

well-behaved reduction [Siek and Taha 2006] . For instance, in a call-by-value language, the upcast

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Gradualizing the Calculus of Inductive Constructions 1:17

(loss of precision) ⟨?⇐ N⟩ 10 is considered a (tagged) value, and the downcast (gain of precision)

⟨N ⇐ ?⟩ 𝑣 reduces successfully if 𝑣 is such a tagged natural number, or to an error otherwise.

We follow a similar approach for GCIC, which is elaborated in a type-directed manner to a

second calculus, named CastCIC (§5.1). The interplay between typing and cast insertion is however

more subtle in the context of a dependent type theory. Because typing needs computation, and

reduction is only meaningful in the target language, CastCIC is used as part of the typed elaboration
in order to compare types (§5.2). This means that GCIC has no typing on its own, independent of

its elaboration to the cast calculus.
8

In order to satisfy conservativity with respect to CIC (C/CIC), ascriptions in GCIC are required to

satisfy consistency: for instance, true :: ? :: N is well typed by consistency (twice), but true :: N is

ill typed. Such ascriptions inCastCIC are realized by casts. For instance 0 :: ? :: B inGCIC elaborates

(modulo sugar and reduction) to ⟨B ⇐ ?□⟩ ⟨?□ ⇐ N⟩ 0 in CastCIC. A major difference between

ascriptions in GCIC and casts in CastCIC is that casts are not required to satisfy consistency: a

cast between any two types is well typed, although of course it might produce an error.

Finally, standard presentations of CIC use a standalone conversion rule, as usual in declarative

presentations of type systems. To gradualize CIC, we have to move to a more algorithmic presenta-

tion in order to forbid transitivity, otherwise all terms would be well typed by way of a transitive

step through ?. But C/CIC demands that only terms with explicitly-ascribed imprecision enjoy its

flexibility. This observation is standard in the gradual typing literature [Garcia et al. 2016; Siek and

Taha 2006, 2007]. As in prior work on gradual dependent types [Eremondi et al. 2019], we adopt a

bidirectional presentation of typing for CIC (§4), which allows us to avoid accidental transitivity

and directly derive a deterministic typing algorithm for GCIC.

3.3 Realizing a Dependent Cast Calculus: CastCIC
To inform the design and justify the reduction rules provided for CastCIC, we build a syntactic

model of CastCIC by translation to CIC augmented with induction-recursion [Dybjer and Setzer

2003; Ghani et al. 2015; Martin-Löf 1996] (§6.1). From a type theory point of view, what makes

CastCIC peculiar is first of all the possibility of having errors (both “pessimistic” as err and

“optimistic” as ?), and the necessity to do intensional type analysis in order to resolve casts. For

the former, we build upon the work of Pédrot and Tabareau [2018] on the exceptional type theory

ExTT. For the latter, we reuse the technique of Boulier et al. [2017] to account for typerec, an
elimination principle for the universe □, which requires induction-recursion to be implemented.

We call the syntactic model of CastCIC the discrete model, in contrast with a semantic model

motivated in the next subsection. The discrete model of CastCIC captures the intuition that

the unknown type is inhabited by “hiding” the underlying type of the injected term. In other

words, ?□𝑖
behaves as a dependent sum Σ A :□𝑖 . A. Projecting out of the unknown type is realized

through type analysis (typerec), and may fail (with an error in the ExTT sense). Note that here,

we provide a particular interpretation of the unknown term in the universe, which is legitimized

by an observation made by Pédrot and Tabareau [2018]: ExTT does not constrain in any way the

definition of exceptions in the universe. The syntactic model of CastCIC allows us to establish

that the reduction semantics enjoys strong normalization (N), for the two variants CastCICN

and CastCIC↑
. Together with safety (S), this gives us weak logical consistency for CastCICN

and

CastCIC↑
.

8
This is similar to what happens in practice in proof assistants such as Coq [The Coq Development Team 2020, Core

language], where terms input by the user in the Gallina language are first elaborated in order to add implicit arguments,

coercions, etc. The computation steps required by conversion are performed on the elaborated terms, never on the raw

input syntax.

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

3.4 Varieties of Precision and Graduality
As explained earlier (§2.5), we need two different notions of precision to deal with SGG and DGG (or

rather G). At the source level (GCIC), we introduce a notion of syntactic precision that captures the

intuition of a more imprecise term as “the same term with subterms replaced by ?”, and is defined

without any assumption of typing. In CastCIC, we define a notion of structural precision, which is

mostly syntactic except that, in order to account for cast insertion during elaboration, it tolerates

precision-preserving casts (for instance, ⟨𝐴 ⇐ 𝐴⟩ 𝑡 is related to 𝑡 by structural precision). Armed

with these two notions of non-semantic precision, we prove elaboration graduality (Theorem 22),

that is the equivalent of SGG in our setting: if a term 𝑡 of GCIC elaborates to a term 𝑡 ′ of CastCIC,
then a term 𝑢 less syntactically precise than 𝑡 in GCIC elaborates to a term 𝑢 ′

less structurally

precise than 𝑡 ′ in CastCIC.
However, we cannot expect to prove G for CastCIC (in its variants CastCICG

and CastCIC↑
)

with respect to structural precision (§2.5) directly. This is because, contrarily to GTLC, more precise

terms can sometimes be more stuck, because of type variables. For instance, ⟨N ⇐ 𝑋 ⟩ ⟨𝑋 ⇐ B⟩ 0

is neutral due to the type variable 𝑋 , while ⟨N ⇐ ?□⟩ ⟨?□ ⇐ B⟩ 0 reduces to errB even though it

is less precise. Semantically, we are able to say that the more precise term will error whatever is

picked for 𝑋 , but the syntactic notion does not capture this. To prove G inductively, one however

needs to reason about such open terms as soon as one goes under a binder, and terms like the one

above cannot be handled directly.

In order to overcome this problem, we build an alternative model of CastCIC called themonotone
model (§6.2 to 6.5). This model endows types with the structure of an ordered set, or poset. In

the monotone model, we can reason about (semantic) propositional precision and establish that

it gives rise to embedding-projection pairs [New and Ahmed 2018]. As propositional precision

subsumes structural precision, it allows us to establish G for CastCIC↑
(Theorem 29) as a corollary

on closed terms. The monotone model only works for a normalizing gradual type theory, thus we

then establish G for CastCICG
using a variant of the monotone model based on Scott’s model [Scott

1976] of the untyped 𝜆-calculus using 𝜔-complete partial orders (§6.7).

4 PRELIMINARIES: BIDIRECTIONAL CIC

We develop GCIC on top of a bidirectional version of CIC, whose presentation is folklore among

type theory specialists [McBride 2019], but has never been spelled out in details — to our knowledge.

As explained before, this bidirectional presentation is mainly useful to avoid multiple uses of a

standalone conversion rule during typing, which becomes crucial to preserve C/CIC in a gradual

setting where conversion is replaced by consistency, which is not transitive.

Syntax. Our syntax forCIC terms, featuring a predicative universe hierarchy□𝑖 , is the following:
9

𝑡 ::= 𝑥 | □𝑖 | 𝑡 𝑡 | 𝜆 𝑥 : 𝑡 .𝑡 | Π𝑥 : 𝑡 .𝑡 | 𝐼@𝑖 (t) | 𝑐@𝑖 (t, t) | ind𝐼 (𝑡, 𝑧.𝑡, 𝑓 .y.t) (Syntax of CIC)

We reserve letters 𝑥,𝑦, 𝑧 to denote variables. Other lower-case and upper-case Roman letters are used

to represent terms, with the latter used to emphasize that the considered terms should be thought

of as types (although the difference does not occur at a syntactical level in this presentation). Finally

Greek capital letters are for contexts (lists of declarations of the form 𝑥 : 𝑇). We also use bold letters

X to denote sequences of objects 𝑋1, . . . , 𝑋𝑛 and 𝑡 [a/y] for the simultaneous substitution of a for y.
We present generic inductive types 𝐼 with constructors 𝑐 , although we restrict to strictly positive

9
In this work, we do not deal with the impredicative sort Prop, for multiple reasons. First, the models of §6 rely on the

predicativity of the universe hierarchy, see that section for details. More fundamentally, it seems inherently impossible

to avoid the normalization problem of Ω with an impredicative sort; and in the non-terminating setting, Prop can be

interpreted just as Type, following Palmgren [1998].

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Gradualizing the Calculus of Inductive Constructions 1:19

ones to preserve normalization, following [Giménez 1998]. At this point we consider only inductive

types without indices: §7 explains how to recover usual indexed inductive types with just one

equality type. Inductive types are formally annotated with a universe level @𝑖 , controlling the level

of its parameters: for instance List @𝑖 (𝐴) expects 𝐴 to be a type in □𝑖 . This level is omitted when

inessential. An inductive type at level 𝑖 with parameters a : Params(𝐼 , 𝑖) is noted 𝐼@𝑖 (a). Similarly

𝑐𝐼
𝑘
@𝑖 (a, b) denotes the 𝑘-th constructor of the inductive 𝐼 , taking parameters a : Params(𝐼 , 𝑖) and

arguments b : Args(𝐼 , 𝑖, 𝑐𝑘).
The inductive eliminator ind𝐼 (𝑠, 𝑧.𝑃, 𝑓 .y.t) corresponds to a fixpoint immediately followed by a

match. In Coq, one would write it

fix 𝑓 𝑠 := match 𝑠 as 𝑧 return 𝑃 with | 𝑐1 y ⇒ 𝑡1 ... | 𝑐𝑛 y ⇒ 𝑡𝑛 end

In particular, the return predicate 𝑃 has access to an extra bound variable 𝑧 for the scrutinee, and

similarly the branches 𝑡𝑘 are given access to variables 𝑓 and y, corresponding respectively to the

recursive function and the arguments of the corresponding constructor. Describing the exact guard

condition to ensure termination is outside the scope of this presentation, again see [Giménez 1998].

We implicitly assume in the rest of this paper that every fixpoint is guarded.

Bidirectional Typing. In the usual, declarative, presentation of CIC, conversion between types

is allowed at any stage of a typing derivation through a free-standing conversion rule. However,

when conversion is replaced by a non-transitive relation of consistency, this free-standing rule

is much too permissive and would violate C/CIC. Indeed, as every type should be consistent with

the unknown type ?□, using such a rule twice in a row makes it possible to change the type of

a typable term to any arbitrary type: if Γ ⊢ 𝑡 : 𝑇 , because 𝑇 ∼ ?□ and ?□ ∼ 𝑆 , we could derive

Γ ⊢ 𝑡 : 𝑆 . This in turn would allow typeability of any term, including fully-precise terms, which is

in contradiction with C/CIC.
Thus, we rely on a bidirectional presentation of CIC typing, presented in Fig. 1, where the

usual judgment Γ ⊢ 𝑡 : 𝑇 is decomposed into several mutually-defined judgments. The difference

between the judgments lies in the role of the type: in the inference judgment Γ ⊢ 𝑡 ⊲𝑇 , the type is
considered an output, whereas in the checking judgment Γ ⊢ 𝑡 ⊳𝑇 , the type is instead seen as an

input. Conversion can then be restricted to specific positions, namely to mediate between inference

and checking judgments (see Check), and can thus never appear twice in a row.

Additionally, in the framework of an elaboration procedure, it is interesting to make a clear

distinction between the subject of the rule (i.e., the object that is to be elaborated), inputs that can

be used for this elaboration, and outputs that must be constructed during the elaboration. In the

context checking judgment ⊢ Γ, Γ is the subject of the judgment. In all the other judgments, the

subject is the term, the context is an input, and the type is either an input or an output, as we just

explained.

An important discipline, that goes with this distinction, is that judgments should ensure that

outputs are well-formed, under the hypothesis that the inputs are. All rules are built to ensure

this invariant. This distinction between inputs, subject and output, and the associated discipline,

are inspired by McBride [2018, 2019]. This is also the reason why no rule for term elaboration

re-checks the context, as it is an input that is assumed to be well-formed. Hence, most properties

we state in an open context involve an explicit hypothesis that the involved context is well-formed.

Constrained Inference. Apart from inference and checking, we also use a set of constrained infer-
ence judgments Γ ⊢ 𝑡 ▶• 𝑇 , with the same modes as inference. These judgments infer the type 𝑇

but under some constraint, for instance that it should be a universe, a Π-type, or an instance of an

inductive 𝐼 . These come from a close analysis of typing algorithms, such as the one of Coq, where

in some places, an intermediate judgment between inference and checking happens: inference is

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

⊢ Γ

⊢ ·
Empty

⊢ Γ Γ ⊢ 𝑇 ▶□ □𝑖

⊢ Γ, 𝑥 : 𝑇
Concat

Γ ⊢ 𝑡 ⊲𝑇

Γ ⊢ □𝑖 ⊲□𝑖+1

Univ

(𝑥 : 𝑇) ∈ Γ

Γ ⊢ 𝑥 ⊲𝑇
Var

Γ ⊢ 𝐴 ▶□ □𝑗 Γ, 𝑥 : 𝐴 ⊢ 𝐵 ▶□ □𝑖

Γ ⊢ Π𝑥 : 𝐴.𝐵 ⊲□max(𝑖, 𝑗)
Prod

Γ ⊢ 𝐴 ▶□ □𝑖 Γ, 𝑥 : 𝐴 ⊢ 𝑡 ⊲𝐵
Γ ⊢ 𝜆 𝑥 : 𝐴.𝑡 ⊲Π𝑥 : 𝐴.𝐵

Abs

Γ ⊢ 𝑡 ▶
Π Π𝑥 : 𝐴.𝐵 Γ ⊢ 𝑢 ⊳𝐴

Γ ⊢ 𝑡 𝑢 ⊲𝐵 [𝑥/𝑢]
App

Γ ⊢ 𝑎𝑘 ⊳𝑋𝑘 [a/x]
Γ ⊢ 𝐼@𝑖 (a) ⊲□𝑖

Ind

Γ ⊢ 𝑎𝑘 ⊳𝑋𝑘 [a/x] Γ ⊢ 𝑏𝑙 ⊳𝑌𝑙 [a/x] [b/y]
Γ ⊢ 𝑐𝐼@𝑖 (a, b) ⊲ 𝐼@𝑖 (a)

Cons

with Params(𝐼 , 𝑖) = X and Args(𝐼 , 𝑖, 𝑐) = Y

Γ ⊢ 𝑠 ▶𝐼 𝐼@𝑖 (a)
Γ, 𝑧 : 𝐼 (a) ⊢ 𝑃 ▶□ □𝑗 Γ, 𝑓 : (Π 𝑧 : 𝐼@𝑖 (a), 𝑃), y : Yk [a/x] ⊢ 𝑡𝑘 ⊳ 𝑃 [𝑐𝐼𝑘@𝑖 a y/𝑧]

Γ ⊢ ind𝐼 (𝑠, 𝑧.𝑃, 𝑓 .y.t) ⊲ 𝑃 [𝑠/𝑧]
Fix

with Args(𝐼 , 𝑖, 𝑐𝑘) = Yk

Γ ⊢ 𝑡 ⊳𝑇
Γ ⊢ 𝑡 ⊲𝑇 ′ 𝑇 ′ ≡ 𝑇

Γ ⊢ 𝑡 ⊳𝑇
Check

Γ ⊢ 𝑡 ▶• 𝑇

Γ ⊢ 𝑡 ⊲𝑇 𝑇{∗
Π𝑥 : 𝐴.𝐵

Γ ⊢ 𝑡 ▶
Π Π𝑥 : 𝐴.𝐵

Prod-Inf

Γ ⊢ 𝑡 ⊲𝑇 𝑇{∗𝐼@𝑖 a

Γ ⊢ 𝑡 ▶𝐼 𝐼@𝑖 a
Ind-Inf

Γ ⊢ 𝑡 ⊲𝑇 𝑇{∗□𝑖

Γ ⊢ 𝑡 ▶□ □𝑖

Univ-Inf

𝑡 { 𝑢 (congruence rules omitted)

(𝜆 𝑥 : 𝐴.𝑡) 𝑢 { 𝑡 [𝑢/𝑥] ind𝐼 (𝑐𝑖 a b, 𝑃, t) { 𝑡𝑖 [𝜆 𝑥 : 𝐼 a. ind𝐼 (𝑥, 𝑃, t)/𝑓] [b/y]
𝑡 ≡ 𝑢

𝑡 ≡ 𝑢 := ∃𝑣 𝑣 ′, 𝑡{∗𝑣 ∧ 𝑢{∗𝑣 ′ ∧ 𝑡 =𝛼 𝑢

where =𝛼 denotes syntactic equality up-to renaming

Fig. 1. CIC: Bidirectional typing

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Gradualizing the Calculus of Inductive Constructions 1:21

𝑠Π (𝑖, 𝑗) := max(𝑖, 𝑗) 𝑐Π (𝑖) := 𝑖 (GCICG
-CastCICG

)

𝑠Π (𝑖, 𝑗) := max(𝑖, 𝑗) 𝑐Π (𝑖) := 𝑖 − 1 (GCICN
-CastCICN

)

𝑠Π (𝑖, 𝑗) := max(𝑖, 𝑗) + 1 𝑐Π (𝑖) := 𝑖 − 1 (GCIC↑
-CastCIC↑

)

Fig. 2. Universe parameters

performed, but then the type is reduced to expose its head constructor, which is imposed to be a

specific one. A stereotypical example is App: one starts by inferring a type for 𝑡 , but want it to be a

Π-type so that its domain can be used to check 𝑢. To the best of our knowledge, these judgments

have never been formally described elsewhere. Instead, in the rare bidirectional presentations

of CIC, they are inlined in some way, as they only amount to some reduction. However, this is

no longer true in a gradual setting: ? introduces an alternative, valid solution to the constrained

inference, as a term of type ? can be used where a term with a Π-type is expected. Thus, we will
need multiple rules for constrained inference, which is why we make it explicit already at this

stage.

Finally, we observe that, despite being folklore [McBride 2019], the equivalence of this bidirec-

tional formulation with standard CIC relies on the transitivity of conversion and this has never

been spelled out in details in the literature. In any case, this does not matter in our work, as in the

gradual setting, this conjecture does not hold. This is precisely the point of using a bidirectional

formulation in a gradual setting where consistency is not a transitive relation.

5 FROM GCIC TO CastCIC

In this section we present the elaboration of the source gradual system GCIC into the cast calculus

CastCIC. We start with CastCIC, describing its typing, reduction and metatheoretical properties

(§5.1). We next describe GCIC and its elaboration to CastCIC, along with few direct properties

(§5.2). This elaboration is mainly an extension of the bidirectional CIC presented in the previous

section. We illustrate the semantics of the different GCIC variants by considering the Ω term

(§5.3). We finally expose technical properties of the reduction of CastCIC (§5.4) used to prove the

most important theorems on elaboration: conservativity over CIC or CIC↑
, as well as the gradual

guarantees (§5.5).

5.1 CastCIC

Syntax. The syntax of CastCIC extends that of CIC (§4) with three new term constructors: the

unknown term ?𝑇 and dynamic failure err𝑇 of type 𝑇 , as well as the cast ⟨𝑇 ⇐ 𝑆⟩ 𝑡 of a term 𝑡 of

type 𝑆 to 𝑇 :

𝑡 ::= · · · | ?𝑡 | err𝑡 | ⟨𝑡 ⇐ 𝑡⟩ 𝑡 . (Syntax of CastCIC)

The unknown term and dynamic failure both behave as exceptions as defined in ExTT [Pédrot and

Tabareau 2018]. Casts keep track of the use of consistency during elaboration, implementing a

form of runtime type-checking, using the failure err𝑇 in case of a type mismatch. We call static the
terms of CastCIC that do not use any of these new constructors—static CastCIC terms correspond

to CIC terms.

Universe parameters. CastCIC is parametrized by two functions, described in Fig. 2, to account

for the three different variants of GCIC we consider (§3.1). The first function 𝑠Π computes the

level of the universe of a dependent product, given the levels of its domain and codomain (see the

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

Γ ⊢ 𝑡 ⊲𝑇
. . .

Γ ⊢ 𝐴 ▶□ □𝑗 Γ, 𝑥 : 𝐴 ⊢ 𝐵 ▶□ □𝑖

Γ ⊢ Π𝑥 : 𝐴.𝐵 ⊲□𝑠Π (𝑖, 𝑗)
Prod . . .

Γ ⊢ 𝑇 ▶□ □𝑖

Γ ⊢ ★𝑇 ⊲𝑇
Exc

Γ ⊢ 𝐴 ▶□ □𝑖 Γ ⊢ 𝐵 ▶□ □𝑗 Γ ⊢ 𝑡 ⊳𝐴
Γ ⊢ ⟨𝐵 ⇐ 𝐴⟩ 𝑡 ⊲𝐵

Cast

Fig. 3. CastCIC: Bidirectional typing (extending CIC Fig. 1)

H := □𝑖 | Π | 𝐼

head (Π𝐴𝐵) := Π head (□𝑖) := □𝑖 head (𝐼 a) := 𝐼 undefined otherwise

Germ𝑖 □𝑗 :=

{
□𝑗 (𝑗 < 𝑖)
err□𝑖

(𝑗 ≥ 𝑖) Germ𝑖 𝐼 := 𝐼 ?Params(𝐼 ,𝑖)

Germ𝑖 Π :=

{
?□𝑐Π (𝑖) → ?□𝑐Π (𝑖) (𝑐Π (𝑖) ≥ 0)
err□𝑖

(𝑐Π (𝑖) < 0)

Fig. 4. Head constructor and germ

updated Prod rule in Fig. 3). The second function 𝑐Π controls the universe levels in the reduction

of casts between ? → ? and ? (see Fig. 5).

Typing. Fig. 3 gives the typing rules for the three new primitives of CastCIC. Apart from the

modified Prod rule, all other typing rules are exactly the same as in CIC. When disambiguation

is needed, we note this typing judgment as ⊢cast. The typing rule for ?𝑇 and err𝑇 both say that

it infers 𝑇 when 𝑇 is a type. Hereafter, we use when possible the notation ★𝑇 to mean either ?𝑇
or err𝑇 . Note, that in CastCIC, no consistency premise appears when typing a cast: consistency

only plays a role in the GCIC layer, but disappears after the elaboration. Instead, we rely on the

usual conversion, defined as in CIC as the existence of 𝛼-equal reducts for the reduction described

hereafter.

Reduction. The typing rules of the new primitives are rather crude; the interesting part is really

their reduction behavior. The reduction rules of CastCIC are given in Fig. 5 (congruence rules

omitted). Reduction relies on two auxiliary functions that mediate between types and their head

constructor ℎ ∈ H (Fig. 4). The first is the partial function head that returns the head constructor

of a term, if it exists. The second is the germ
10

Germ𝑖 ℎ, which constructs the least precise type

(when it exists) with head ℎ at level 𝑖 .

10
The germ function corresponds to an abstraction function as in AGT [Garcia et al. 2016], if one interprets the head ℎ as the

set of all types whose head type constructor is ℎ. Wadler and Findler [2009] christened the corresponding notion a ground
type, later reused in the gradual typing literature. This terminology however clashes with its prior use in denotational

semantics [Levy 2004]: there a ground type is a first-order datatype. Note that Siek and Taha [2006] also call ground types

the base types of the language, such as B and N. We therefore prefer the less overloaded term germ, used by analogy with

the geometrical notion of the germ of a section [MacLane and Moerdijk 1992]: the germ of a head constructor represents an

equivalence class of types that are locally the same.

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Gradualizing the Calculus of Inductive Constructions 1:23

Reduction rules for cast:

Prod-Prod : ⟨Π(𝑥 : 𝐴2) .𝐵2 ⇐ Π(𝑥 : 𝐴1).𝐵1⟩ (𝜆 𝑥 : 𝐴.𝑡) { 𝜆𝑦 : 𝐴2. ⟨𝐵2 ⇐ 𝐵1 [𝑎1/𝑥]⟩ (𝑡 [𝑎/𝑥])

with 𝑎 := ⟨𝐴 ⇐ 𝐴2⟩ 𝑦 and 𝑎1 := ⟨𝐴1 ⇐ 𝐴2⟩ 𝑦

Prod-Germ :

〈
?□𝑖

⇐ Π(𝑥 : 𝐴d).𝐴c
〉
𝑓 {

〈
?□𝑖

⇐ Germ𝑖 Π
〉 (〈

Germ𝑖 Π ⇐ Π(𝑥 : 𝐴d).𝐴c
〉
𝑓

)
when Π(𝑥 : 𝐴d).𝐴c ≠ Germ𝑖 Π

Ind-Ind : ⟨𝐼 (a′) ⇐ 𝐼 (a)⟩ 𝑐 (a, 𝑏1, . . . , 𝑏𝑛) { 𝑐 (a′, 𝑏 ′
1
, . . . , 𝑏 ′𝑛)

with 𝑏 ′
𝑘

:= ⟨𝑌𝑘 [a′/x] [b′/y] ⇐ 𝑌𝑘 [a/x] [b/y]⟩ 𝑏𝑘

Ind-Germ :

〈
?□𝑖

⇐ 𝐼 (a)
〉
𝑡 {

〈
?□𝑖

⇐ Germ𝑖 𝐼
〉
(⟨Germ𝑖 𝐼 ⇐ 𝐼 (a)⟩ 𝑡) when 𝐼 (a) ≠ Germ𝑖 𝐼

Ind-Err : ⟨𝐼 (a′) ⇐ 𝐼 (a′′)⟩ ★𝐼 (a) { ★𝐼 (a′) Univ-Univ : ⟨□𝑖 ⇐ □𝑖⟩ 𝐴 { 𝐴

Up-Down :

〈
𝑋 ⇐ ?□𝑖

〉 〈
?□𝑖

⇐ Germ𝑖 ℎ
〉
𝑡 { ⟨𝑋 ⇐ Germ𝑖 ℎ⟩ 𝑡 when Germ𝑖 ℎ ≠ err□𝑖

Size-Err :

〈
?□𝑖

⇐ Germ𝑗 ℎ
〉
𝑡 { err?□𝑖

when 𝑗 > 𝑖

Head-Err : ⟨𝑇 ′ ⇐ 𝑇 ⟩ 𝑡 { err𝑇 ′ when head𝑇 ≠ head𝑇 ′

Down-Err : ⟨𝑋 ⇐ ?□⟩ ★?□ { ★𝑋 Err-Dom : ⟨𝑋 ⇐ err□⟩ 𝑡 { err𝑋

Err-Codom : ⟨err□ ⇐ 𝑍 ⟩ 𝑡 { errerr□ when head𝑍 is defined

Reduction rules for ? and err:

Prod-★ : ★Π(𝑥 :𝐴) .𝐵 { 𝜆(𝑥 : 𝐴).★𝐵 Ind-★ : ind𝐼 (★𝐼 (a) , 𝑧.𝑃, 𝑓 .y.t) { ★𝑃 [★𝐼 (a) /𝑧]

Fig. 5. CastCIC: Reduction rules (extending Fig. 1, congruence rules omitted)

The design of the reduction rules is mostly dictated by the discrete and monotone models of

CastCIC presented in §6. Nevertheless, we now provide some intuition about their meaning. Let

us start with rules Prod-★ and Ind-★. These rules simply specify the error-like behavior of both ?
and err. Similarly, rules Err-Dom, Err-Codom specify that err behaves like an error also with

respect to the cast—contrarily to ?, whose behavior is more specific.

Next are rules Prod-Prod, Ind-Ind and Univ-Univ, which correspond to success cases cast/dy-

namic type-checking, where the cast was used between types with the same head. In that case, casts

are either completely erased when possible, or propagated. We restrict Prod-Prod to abstractions

because of the absence of 𝜂-expansion in the system: allowing the cast between product types of

an arbitrary function 𝑓 to reduce to a 𝜆-abstraction would perform a kind of 𝜂-expansion on 𝑓 ,

that an uncast function cannot match in the absence of 𝜂. Since constructors and inductives are

fully-applied, this rule cannot be blocked on a partially applied constructor on inductive. As for

inductive types, the restriction to reduce only on constructors means that a cast between N and

N does not simply reduce away, since it waits for its argument to be a constructor to reduce. We

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

𝑡

� �(
𝑢 *4 𝜌 (𝑡)

(a) The triangle property.

𝑡

q}

�

!-
𝑢

 ,
𝑢 ′

q~
𝜌 (𝑡)

(b) The triangle property implies confluence.

Fig. 6. A visual representation of the triangle property (left) and its consequence on confluence (right).

follow this strategy to be consistent for all inductive types, since as soon as inductive types have

type arguments, such as list A, casts need the recursive behavior of Ind-Ind.

Rule Head-Err specifies failure of dynamic checking when the considered types have different

heads. Rule Size-Err corresponds to another kind of error, which does not happen in absence of

a type hierarchy: we are trying to upcast a term to ?, but at a universe level that is too low, and

hence also leads to a failure.

Rule Ind-Err propagates both ? and err between the same inductive type (applied to potentially

different parameters). Similarly, Rule Down-Err propagates both ? and err from the unknown

type to any type 𝑋 .

Finally, there are specific rules pertaining to casts to and from ?. Rules Prod-Germ and Ind-Germ

decompose the upcast of a generic type into ? as a succession of simple upcasts going from a germ

to ?. Rule Up-Down erases casts through ?, and combined with the previous success and failure

cases, completes the picture of dynamic type-checking.

Meta-Theoretical Properties. The typing and reduction rules just given ensure two of the meta-

theoretical properties introduced in § 2: S for the three variants of CastCIC, as well as N for

CastCICN
and CastCIC↑

. Before turning to these properties, let us show a crucial lemma, namely

the confluence of the rewriting system induced by reduction.

Lemma 7 (Confluence of CastCIC). If 𝑇 ({{)∗ 𝑈 there exists 𝑆 such that 𝑇{∗𝑆 and𝑈{∗𝑆 .

Proof. We extend the notion of parallel reduction (⇛) for CIC from [Sozeau et al. 2020] to account

for our additional reduction rules and show that the triangle property (the existence, for any term 𝑡 ,

of an optimal reduced term 𝜌 (𝑡) in one step (Fig. 6a) still holds. From the triangle property, it is easy

to deduce confluence of parallel reduction in one step (Fig. 6b), which implies confluence because

parallel reduction is between one-step reduction and iterated reductions. This proof method is

basically an extension of the Tait-Martin Löf criterion on parallel reduction [Barendregt 1984;

Takahashi 1995]. □

Let us now turn to S, which will be proven using the standard progress and subject reduction

properties. Progress describes a set of canonical forms, asserting that all terms that do not belong

to such canonical forms are not in normal form, i.e., can take at least one reduction step. Fig. 7

provides the definition of canonical forms, considering head reduction.

As standard, we distinguish between canonical forms and neutral terms. Neutral terms are

special kind of canonical forms that have the additional property that they can trigger a reduction

(such as a 𝜆 in an application, or a constructor of an inductive type in an elimination). Intuitively,

neutral terms correspond to (blocked) destructors, waiting for a substitution to happen, while other

canonical forms correspond to constructors.

The canonical forms for plain CIC are given by the first three lines of Fig. 7. The added rules deal

with errors, unknown terms and casts. First, an error err𝑡 or an unknown term ?𝑡 is a neutral when 𝑡
is neutral, and is canonical only when 𝑡 is□ or 𝐼 (a), but not a Π-type. This is because exception-like

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Gradualizing the Calculus of Inductive Constructions 1:25

canonical 𝜆 𝑥 : 𝐴.𝑡 canonical 𝑐 (a, b) canonical Π𝑥 : 𝐴.𝐵

canonical□ canonical 𝐼 (a)
neutral 𝑡

canonical 𝑡

neutral𝑥

neutral 𝑡

neutral 𝑡 𝑢

neutral 𝑡

neutral ind𝐼 (𝑡, 𝑧.𝑃, f .y.b)

canonical★□ canonical★𝐼 (a)

neutral 𝑡

neutral★𝑡

canonical

〈
?□𝑖

⇐ Germ𝑖 ℎ
〉
𝑡

neutral 𝑆

neutral ⟨𝑇 ⇐ 𝑆⟩ 𝑡
neutral 𝑡

neutral ⟨𝑇 ⇐ ?□⟩ 𝑡

neutral𝑇

neutral ⟨𝑇 ⇐ □⟩ 𝑡
neutral𝑇

neutral ⟨𝑇 ⇐ Π𝑥 : 𝐴.𝐵⟩ 𝑡
neutral𝑇

neutral ⟨𝑇 ⇐ 𝐼 (a)⟩ 𝑡

Fig. 7. Head neutral and canonical forms for CastCIC

terms reduce on Π-types (§2.3). Second, their is an additional specific form of canonical inhabitants

of ?□: these are upcasts from a germ, which can be seen as a term tagged with the head constructor

of its type, in a matter reminiscent of actual implementations of dynamic typing using type tags.

These canonical forms represent constructors for ?□. Finally, the cast operation behaves as a

destructor, but not on an inductive type as usually the case in CIC, but rather on the universe □.
This destructor first scrutinizes the source type of the cast. This is why the cast is neutral as soon

as its source type is neutral. Then, when the source type reduces to a head constructor, the cast

scrutinizes the target type, so the cast is neutral when the target type is neutral. Note that there is

however a special case when casting from ?□: in that case, the cast is neutral when its argument is

neutral.

Equipped with the notion of canonical form, we can state S for CastCIC:

Theorem 8 (Safety of the three variants of CastCIC (S)). CastCIC enjoys:
Progress: if 𝑡 is a well-typed term of CastCIC, then either canonical 𝑡 or there is some 𝑡 ′ such that

𝑡 { 𝑡 ′ with a weak-head reduction.
Subject reduction: if Γ ⊢cast 𝑡 ⊲𝐴 and 𝑡 { 𝑡 ′ then Γ ⊢cast 𝑡 ′ ⊳𝐴.
Thus CastCIC enjoys S.
Proof. Progress: The proof is by induction on the typing derivation of 𝑡 . If 𝑡 is already a canonical

form, we are done. Otherwise, its head term former must be a destructor (application, elimi-

nator or cast). Let us consider the case of application. We have a well-typed term 𝑢 𝑣 and

we know that 𝑢 either takes a head reduction step or is a canonical form. In the first case,

this reduction step is a head reduction for 𝑡 , and we are done. Otherwise, 𝑢 has a product

type because 𝑡 is well-typed. Since it is canonical, it can only be an abstraction or a neutral

term (it cannot be an error or unknown term because it is on a Π-type). In the first case, the

application 𝛽-reduces. In the second, 𝑡 is a neutral term, and thus canonical. All other cases

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

𝑥 ∼𝛼 𝑥 □𝑖 ∼𝛼 □𝑖
𝐴 ∼𝛼 𝐴′ 𝑡 ∼𝛼 𝑡 ′

𝜆 𝑥 : 𝐴.𝑡 ∼𝛼 𝜆 𝑥 : 𝐴′.𝑡 ′
𝐴 ∼𝛼 𝐴′ 𝐵 ∼𝛼 𝐵′

Π𝑥 : 𝐴.𝐵 ∼𝛼 Π𝑥 : 𝐴′.𝐵′
𝑡 ∼𝛼 𝑡 ′ 𝑢 ∼𝛼 𝑢 ′

𝑡 𝑢 ∼𝛼 𝑡 ′ 𝑢 ′

a ∼𝛼 a′

𝐼 (a) ∼𝛼 𝐼 (a′)
a ∼𝛼 a′ b ∼𝛼 b′

𝑐𝑘 (a, b) ∼𝛼 𝑐𝑘 (a, b)
𝑎 ∼𝛼 𝑎′ 𝑃 ∼𝛼 𝑃 ′ t ∼𝛼 t′

ind𝐼 (𝑠, 𝑧.𝑃, 𝑓 .y.t) ∼𝛼 ind𝐼 (𝑠 ′, 𝑧.𝑃 ′, 𝑓 .y.t′)

𝑡 ∼𝛼 𝑡 ′

𝑡 ∼𝛼
〈
𝐵′ ⇐ 𝐴′〉 𝑡 ′ 𝑡 ∼𝛼 𝑡 ′

⟨𝐵 ⇐ 𝐴⟩ 𝑡 ∼𝛼 𝑡 ′ 𝑡 ∼𝛼 ?𝑇 ′ ?𝑇 ∼𝛼 𝑡

Fig. 8. CastCIC: 𝛼-consistency

are similar: either a deeper reduction happens, 𝑡 itself reduces because some canonical form

was not neutral and creates a redex, or 𝑡 is neutral.

Subject reduction: Subject reduction can be derived from the injectivity of type constructors,

which is a direct consequence of confluence. See [Sozeau et al. 2020] for a detailed account of

this result in the simpler setting of CIC.
□

We now state normalization ofCastCICN
andCastCIC↑

, although the proof relies on the discrete

model defined in §6.1.

Theorem 9 (Normalization of CastCICN
and CastCIC↑

(N)). Every reduction path for a well-typed
term in CastCICN or CastCIC↑ is finite.
Proof. The translation induced by the discrete model presented in §6.1 maps each reduction step to

at least one step, see Theorem 24. So strong normalization holds whenever the target calculus of

the translation is normalizing. □

5.2 Elaboration from GCIC to CastCIC

Now that CastCIC has been described, we move on to GCIC. The typing judgment of GCIC is

defined by an elaboration judgment from GCIC to CastCIC, based upon Fig. 1, augmenting all

judgments with an extra output: the elaborated CastCIC term. This definition of typing using

elaboration is required because of the intricate interdependency between typing and reduction (§3).

Syntax. The syntax of GCIC extends that of CIC with a single new term constructor ?@𝑖 , where
𝑖 is a universe level. From a user perspective, one is not given direct access to the failure and cast

primitives, those only arise through uses of ?.

Consistent conversion. Before we can describe typing, we should turn to conversion. Indeed, to

account for the imprecision introduced by ?, elaboration employs consistent conversion to compare

CastCIC terms instead of the usual conversion relation.

Definition 3 (Consistent conversion). Two terms are 𝛼-consistent, written ∼𝛼 , if they are in the
relation defined by the inductive rules of Fig. 8.

Two terms are consistently convertible, or simply consistent, noted 𝑠 ∼ 𝑡 , if and only if there exists
𝑠 ′ and 𝑡 ′ such that 𝑠{∗𝑠 ′, 𝑡{∗𝑡 ′ and 𝑠 ′ ∼𝛼 𝑡 ′.

Thus 𝛼-consistency is an extension of 𝛼-equality that takes imprecision into account. Apart from

the standard rules making ? consistent with any term, 𝛼-consistency optimistically ignores casts,

and does not consider errors to be consistent with any term. The first point is to prevent casts

inserted by the elaboration from disrupting valid conversions, typically between static terms. The

second is guided by the idea that if errors are encountered at elaboration already, the term cannot

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Gradualizing the Calculus of Inductive Constructions 1:27

be well behaved, so it must be rejected as early as possible and we should avoid typing it. The

consistency relation is then built upon 𝛼-consistency in a way totally similar to how conversion

in Figs. 1 and 5 is built upon 𝛼-equality. Also note that this formulation of consistent conversion

makes no assumption of normalization, and is therefore usable as such in the non-normalizing

GCICG
.

An important property of consistent conversion, and a necessary condition for the conservativity

of GCIC with respect to CIC (C/CIC), is that it corresponds to conversion on static terms.

Proposition 10 (Properties of consistent conversion).

(1) two static terms are consistently convertible if and only if they are convertible in CIC.
(2) if 𝑠 and 𝑡 have a normal form, then 𝑠 ∼ 𝑡 is decidable.

Proof. First remark that 𝛼-consistency between static terms corresponds to 𝛼-equality of terms.

Thus, and because the reduction of static terms in CastCIC is the same as the reduction of CIC,
two consistent static terms must reduce to 𝛼-equal terms, which in turn implies that they are

convertible. Conversely two convertible terms of CIC have a common reduct, which is 𝛼-consistent

with itself.

If 𝑠 and 𝑡 are normalizing, they have a finite number of reducts, thus to decide their consistency

it is sufficient to check each pair of reducts for the decidable 𝛼-consistency. □

Elaboration. Elaboration from GCIC to CastCIC is given in Fig. 9, closely following the bidi-

rectional presentation of CIC (Fig. 1) for most rules, simply carrying around the extra elaborated

terms. Note how only the subject of the judgment is a source term in GCIC, both inputs (that have

already been elaborated) and outputs (that are to be elaborated) are target terms in CastCIC.11 Let
us comment a bit on the specific modifications and additions.

The most salient feature of elaboration is the cast insertions that mediate between merely

consistent but not convertible types. They of course are needed in the rule Check where the terms

are compared using consistency. But this is not enough: casts also appear in the newly introduced

rules Inf-Univ? Inf-Prod? and Inf-Ind?, where the type ?□𝑖
is replaced by the least precise type

of the right level verifying the constraint, which is exactly what Germ gives us. Note that in the

case of Inf-Univ? we could have replaced □𝑖 with Germ𝑖+1□𝑖 to make for a presentation similar

to the other two rules. The role of these three rules is to ensure the compatibility of the partial

inference judgments with the imprecision of ?. Indeed, without them a term of type ?□𝑖
could not

be used as a function, or as a scrutinee of a match.

Rule Ukn also deserves some explanation: ?@𝑖 is elaborated to ??□𝑖
, the least precise term of the

whole universe □𝑖 . This avoids unneeded type annotations on ? in GCIC. Instead, the context is
responsible for inserting the appropriate cast, e.g., ? :: 𝑇 elaborates to a term that reduces to ?𝑇 .
We do not drop annotations altogether because of an important property on which bidirectional

CIC is built: any well-formed term should infer a type, not just check. Thus, we must be able to

infer a type for ?. The obvious choice to have ? infer ?, as we choose. However, this ? is a term of

CastCIC, and thus needs a type index. Because this ? is used as a type, this index must be □, and
the universe level of the source ? is there to give us the level of this □. In a real system, this should

be handled by typical ambiguity [Harper and Pollack 1991], alleviating the user from the need to

give any annotations when they use ?—much in the same way a Coq user almost never specifies

explicit universe levels.

Finally, in order to obtain uniqueness of elaboration—which is not a priori guaranteed because

casts that depend on computation are inserted during elaboration—we fix a reduction strategy,

11
Colors are used to help with readability, making the distinction between terms of GCIC and terms of CastCIC clearer,

but are not essential.

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

Γ ⊢ 𝑡⇝ 𝑡 ⊲𝑇
(𝑥 : 𝑇) ∈ Γ

Γ ⊢ 𝑥⇝𝑥 ⊲𝑇
Var

Γ ⊢ □𝑖⇝□𝑖 ⊲□𝑖+1

Univ

Γ ⊢ 𝐴̃⇝𝐴 ▶□ □𝑖 Γ, 𝑥 : 𝐴 ⊢ 𝐵̃⇝𝐵 ▶□ □𝑗

Γ ⊢ Π𝑥 : 𝐴̃.𝐵̃⇝Π𝑥 : 𝐴.𝐵 ⊲□𝑠Π (𝑖, 𝑗)
Prod

Γ ⊢ 𝐴̃⇝𝐴 ▶□ □𝑖 Γ, 𝑥 : 𝐴 ⊢ 𝑡⇝ 𝑡 ⊲𝐵

Γ ⊢ 𝜆 𝑥 : 𝐴̃.𝑡⇝ 𝜆 𝑥 : 𝐴.𝑡 ⊲Π𝑥 : 𝐴.𝐵
Abs

Γ ⊢ 𝑡⇝ 𝑡 ▶Π Π𝑥 : 𝐴.𝐵 Γ ⊢ 𝑢̃ ⊳𝐴⇝𝑢

Γ ⊢ 𝑡 𝑢̃⇝ 𝑡 𝑢 ⊲𝐵 [𝑢/𝑥]
App

Γ ⊢ ?@𝑖⇝ ??□𝑖
⊲ ?□𝑖

Ukn

Γ ⊢ 𝑎𝑚 ⊳𝑋𝑚 [a/x]⇝𝑎𝑚

Γ ⊢ 𝐼@𝑖 (ã)⇝ 𝐼@𝑖 (a) ⊲□𝑖
Ind

Γ ⊢ 𝑎𝑚 ⊳𝑋𝑚 [a/x]⇝𝑎𝑚 Γ ⊢ ˜𝑏𝑛 ⊳𝑌𝑛 [a/x] [b/y]⇝𝑏𝑛

Γ ⊢ 𝑐𝑘@𝑖 (ã, b̃)⇝ 𝑐 (a, b) ⊲ 𝐼 (a)
Cons

with Params(𝐼 , 𝑖) = X and Args(𝐼 , 𝑖, 𝑐) = Y

Γ ⊢ 𝑠⇝ 𝑠 ▶𝐼 𝐼 (a) Γ, 𝑧 : 𝐼 (a) ⊢ 𝑃⇝ 𝑃 ▶□ □𝑖 Γ, 𝑓 : (Π 𝑧 : 𝐼 (a), 𝑃), y : Yk [a/x] ⊢ 𝑡𝑘 ⊳ 𝑃 [𝑐𝑘 (a, y)/𝑧]⇝ 𝑡𝑘

Γ ⊢ ind𝐼 (𝑠, 𝑧.𝑃, 𝑓 .y.t̃)⇝ ind𝐼 (𝑠, 𝑧.𝑃, f .y.t) ⊲ 𝑃 [𝑠/𝑧]
Fix

with Args(𝐼 , 𝑖, 𝑐𝑘) = Yk

Γ ⊢ 𝑡 ⊳𝑇 ⇝ 𝑡
Γ ⊢ 𝑡⇝ 𝑡 ⊲𝑇 𝑇 ∼ 𝑆

Γ ⊢ 𝑡 ⊳ 𝑆⇝ ⟨𝑆 ⇐ 𝑇 ⟩ 𝑡
Check

Γ ⊢ 𝑡⇝ 𝑡 ▶• 𝑇

Γ ⊢ 𝑡⇝ 𝑡 ⊲𝑇 𝑇{∗□𝑖

Γ ⊢ 𝑡⇝ 𝑡 ▶□ □𝑖
Inf-Ukn

Γ ⊢ 𝑡⇝ 𝑡 ⊲𝑇 𝑇{∗?□𝑖+1

Γ ⊢ 𝑡⇝ ⟨□𝑖 ⇐ 𝑇 ⟩ 𝑡 ▶□ □𝑖
Inf-Univ?

Γ ⊢ 𝑡⇝ 𝑡 ⊲𝑇 𝑇{∗
Π𝑥 : 𝐴.𝐵

Γ ⊢ 𝑡⇝ 𝑡 ▶Π Π𝑥 : 𝐴.𝐵
Inf-Prod

Γ ⊢ 𝑡⇝ 𝑡 ⊲𝑇 𝑇{∗?□𝑖
𝑐Π (𝑖) ≥ 0

Γ ⊢ 𝑡⇝ ⟨Germ𝑖 Π ⇐ 𝑇 ⟩ 𝑡 ▶Π Germ𝑖 Π
Inf-Prod?

Γ ⊢ 𝑡⇝ 𝑡 ⊲𝑇 𝑇{∗𝐼 (a)
Γ ⊢ 𝑡⇝ 𝑡 ▶𝐼 𝐼 (a)

Inf-Ind

Γ ⊢ 𝑡⇝ 𝑡 ⊲𝑇 𝑇{∗?□𝑖

Γ ⊢ 𝑡⇝ ⟨Germ𝑖 𝐼 ⇐ 𝑇 ⟩ 𝑡 ▶𝐼 Germ𝑖 𝐼
Inf-Ind?

Fig. 9. Type-directed elaboration from GCIC to CastCIC

typically weak-head reduction, for{∗
in constrained inference rules. This ensures that for instance

the 𝐴 and 𝐵 in a derivation of Γ ⊢⇝ 𝑡 ⊲Π𝑥 : 𝐴.𝐵 are unique. This could be avoided, in which case

we would obtain uniqueness of the inferred type only up to conversion, but would also make the

rest of the technical development more complex.

Direct properties. With this strategy fixed, the reduction rules then immediately translate to

an algorithm for elaboration. Coupled with the decidability of consistency (Prop. 10), this makes

elaboration decidable in GCICN
and GCIC↑

, although the same algorithm might diverge in GCICG
,

only giving us semi-decidability of typing.

Theorem 11 (Decidability of elaboration).Whenever{∗ is normalizing, the relations of inference,
checking and partial inference of Fig. 9 are decidable. When not, they are only semi-decidable.

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Gradualizing the Calculus of Inductive Constructions 1:29

Let us now state two soundness properties of elaboration that we can prove at this stage: it is

correct, insofar as it produces well-typed terms, and functional, in the sense that a given term of

GCIC can be elaborated to at most one term of CastCIC.

Theorem 12 (Correctness of elaboration). The elaboration produces well-typed terms in a well-formed
context. Namely, given Γ such that ⊢cast Γ, we have that:

• if Γ ⊢ 𝑡⇝ 𝑡 ⊲𝑇 , then Γ ⊢cast 𝑡 ⊲𝑇 ;
• if Γ ⊢ 𝑡⇝ 𝑡 ▶• 𝑇 then Γ ⊢cast 𝑡 ▶• 𝑇 (with • denoting the same index in both derivations);
• if Γ ⊢ 𝑡 ⊳𝑇 ⇝ 𝑡 and Γ ⊢cast 𝑇 ▶□ □𝑖 , then Γ ⊢cast 𝑡 ⊳𝑇 .

Proof. The proof is by induction on the elaboration derivation, mutually with similar properties for

all typing judgments. In particular, for checking, we have an extra hypothesis that the given type is

well-formed, as it is an input that should already have been typed.

Because the typing rules are very similar for both systems, the induction is mostly routine. Let

us point however that the careful design of the bidirectional rules already in CIC regarding the

input/output separation is important here. Indeed, we have that inputs to the successive premises

of a rule are always well-formed, either as inputs to the conclusion, or thanks to previous premises.

In particular, all context extensions are valid, i.e., Γ′, 𝑥 : 𝐴′
is used only when Γ ⊢ 𝐴′ ▶□ □𝑖 , and

similarly only well-formed types are used for checking. This ensures that we can always use the

induction hypothesis.

The only novel points to consider are the rules where a cast is inserted. For these, we rely on

the validity property (an inferred type is always well-typed itself) to ensure that the domain of

inserted casts is well-typed, and thus that the casts can be typed. □

Theorem 13 (Uniqueness of elaboration). Elaboration is unique:

• given Γ and 𝑡 , there is at most one 𝑡 and one 𝑇 such that Γ ⊢ 𝑡⇝ 𝑡 ⊲𝑇 ;
• given Γ and 𝑡 , there is at most one 𝑡 and one 𝑇 such that Γ ⊢ 𝑡⇝ 𝑡 ▶• 𝑇 ;
• given Γ, 𝑡 and 𝑇 , there is at moste one 𝑡 such that Γ ⊢ 𝑡 ⊳𝑇 ⇝ 𝑡 .

Proof. Like for Theorem 12, uniqueness of elaboration for type inference is defined and proven

mutually with similar properties for all typing judgments.

The main argument is that there is always at most one rule that can apply to get a typing

conclusion for a given term. This is true for all inference statements because there is exactly one

inference rule for each term constructor, and for checking because there is only one rule to derive

checking. In those cases simply combining the hypothesis of uniqueness is enough.

For ▶Π , by confluence of CastCIC the inferred type cannot at the same time reduce to ?□ and

Π𝑥 : 𝐴.𝐵, because those do not have a common reduct. Thus, only one of the two rules Inf-Prod

and Inf-Prod? can apply. Moreover, because of the fixed reduction strategy, the inferred type is

unique. The reasoning is similar for the other constrained inference judgments. □

5.3 Back to Omega
Now that GCIC, with its elaboration phase, has been entirely presented, let us come back to the

important example of Ω, and precise the behavior described in §3.1. Recall that Ω is the term 𝛿 𝛿 ,

with 𝛿 := 𝜆 𝑥 : ?@𝑖 + 1.𝑥 𝑥 . We leave out the casts present in §2 and 3 for clarity, knowing that they

will be introduced by elaboration. We also shift the level of ? up by one, because ?@𝑖 + 1, when

elaborated as a type, becomes ?□𝑖
. In all three systems, Ω is elaborated (in inference mode) to

Ω′
:= 𝛿 ′

〈
?𝑐Π (𝑖) ⇐ 𝑇 → ?𝑐Π (𝑖)

〉
𝛿 ′

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

where we use ?𝑗 instead of ?□𝑗
to ease readability, 𝑇 is the elaboration of ?@𝑖 + 1 as a type, namely

⟨□𝑖 ⇐ ?𝑖+1⟩ ??𝑖+1
, and

𝛿 ′ := 𝜆 𝑥 : 𝑇 . (⟨Germ𝑖 Π ⇐ 𝑇 ⟩ 𝑥)
(〈
?𝑐Π (𝑖) ⇐ 𝑇

〉
𝑥
)

The only difference at this point between the systems is the fact that this elaboration fails in GCIC↑

and GCICN
if 𝑖 is 0 because in that case 𝑐Π (0) is undefined, and thus the first use of 𝑥 in 𝛿 fails to

infer under the Π constraint, since its type reduces to ?0 (Rule Inf-Prod?).

However, upon reduction we can observe how this Ω′
reduces seamlessly in GCICG

, while

having 𝑐Π (𝑖) < 𝑖 makes it fail. Let us first look at Ω′
in GCICG

. To ease readability further, we have

compacted multiple successive casts to avoid repeating the same type.

Ω′ {∗ (𝜆 𝑥 : ?𝑖 . (⟨?𝑖 → ?𝑖 ⇐ ?𝑖⟩ 𝑥) (⟨?𝑖 ⇐ ?𝑖⟩ 𝑥)) ⟨?𝑖 ⇐ ?𝑖 → ?𝑖⟩ 𝛿 ′
{∗ (⟨?𝑖 → ?𝑖 ⇐ ?𝑖 ⇐ ?𝑖 → ?𝑖⟩ 𝛿 ′) (⟨?𝑖 ⇐ ?𝑖 ⇐ ?𝑖 → ?𝑖⟩ 𝛿 ′)
{∗ (⟨?𝑖 → ?𝑖 ⇐ ?𝑖 → ?𝑖⟩ 𝛿 ′) (⟨?𝑖 ⇐ ?𝑖 → ?𝑖⟩ 𝛿 ′)
{∗ (𝜆 𝑥 : ?. ⟨?𝑖 ⇐ ?𝑖⟩ ((⟨?𝑖 → ?𝑖 ⇐ ?𝑖⟩ 𝑥) (⟨?𝑖 ⇐ ?𝑖⟩ 𝑥))) (⟨?𝑖 ⇐ ?𝑖 → ?𝑖⟩ 𝛿 ′)

And there the reduction has almost looped, apart from the cast ⟨?𝑖 ⇐ ?𝑖⟩ in the first occurrence of

𝛿 ′, which will simply accumulate through reduction, but without hindering the non-normalizing

behavior. On the contrary, in GCIC↑
and GCICN

, the reductions are the same, and go as follows:

Ω′ {∗ (𝜆 𝑥 : ?𝑖 . (⟨?𝑖−1 → ?𝑖−1 ⇐ ?𝑖⟩ 𝑥) (⟨?𝑖−1 ⇐ ?𝑖⟩ 𝑥)) ⟨?𝑖 ⇐ ?𝑖 → ?𝑖−1⟩ 𝛿 ′
{∗ (⟨?𝑖−1 → ?𝑖−1 ⇐ ?𝑖 ⇐ ?𝑖 → ?𝑖−1⟩ 𝛿 ′) (⟨?𝑖−1 ⇐ ?𝑖 ⇐ ?𝑖 → ?𝑖−1⟩ 𝛿 ′)
{∗ (⟨?𝑖−1 → ?𝑖−1 ⇐ ?𝑖−1 → ?𝑖−1 ⇐ ?𝑖 → ?𝑖−1⟩ 𝛿 ′)

(⟨?𝑖−1 ⇐ ?𝑖−1 → ?𝑖−1 ⇐ ?𝑖 → ?𝑖−1⟩ 𝛿 ′)
{∗ (⟨?𝑖−1 → ?𝑖−1 ⇐ ?𝑖−1 → ?𝑖−1 ⇐ ?𝑖 → ?𝑖−1⟩ 𝛿 ′) err?𝑖−1

{∗ (𝜆 𝑥 : ?𝑖−1. ⟨?𝑖−1 ⇐ ?𝑖−1 ⇐ ?𝑖−1⟩ ((⟨?𝑖−1 → ?𝑖−1 ⇐ ?𝑖⟩ 𝑥 ′) (⟨?𝑖−1 ⇐ ?𝑖⟩ 𝑥 ′))) err?𝑖−1

where 𝑥 ′
is ⟨?𝑖 ⇐ ?𝑖−1 ⇐ ?𝑖−1⟩ 𝑥

{∗ ⟨?𝑖−1 ⇐ ?𝑖−1 ⇐ ?𝑖−1⟩ err?𝑖−1→?𝑖−1 err?𝑖−1

{∗ err?𝑖−1

The error is generated when downcasting from ?𝑖 to ?𝑖−1, which can be seen as a dynamic universe

inconsistency.

5.4 Precision and Reduction
Establishing the graduality of elaboration—the formulation of the static gradual guarantee (SGG)

in our setting—is no small feat, as it requires properties on computation in CastCIC that amount

to the dynamic gradual guarantee (DGG). Indeed, to handle the typing rules for checking and

constrained inference, it is necessary to know how consistency and reduction evolve as a type

becomes less precise. As already explained in § 3.4, we cannot directly prove graduality for a

syntactic notion of precision. However, a weaker simulation property—implying DG—can still be

shown; fortunately, this is enough to conclude on the graduality of elaboration. The purpose of

this section is to establish this property.

As we will see in details in §6, we can recover graduality for a semantic notion of precision

defined using a model construction. However, this semantic notion of precision cannot distinguish

between convertible terms. As such, it cannot inform us on the behavior of reduction, which is

why we cannot rely on it to establish graduality of elaboration.

This section was partly inspired from the proof of DGG by Siek et al. [2015] while of course

having to adapt to the much higher complexity ofCIC compared to STLC. In particular, the presence
of computation in the domain and codomain of casts is quite subtle to tame, as we must in general

reduce types in a cast before we can reduce the cast itself.

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Gradualizing the Calculus of Inductive Constructions 1:31

Technically, we need to distinguish between two notions of precision: (i) syntactic precision on

terms in GCIC that corresponds to the usual syntactic precision in gradual typing, (ii) structural

precision on terms of CastCIC that corresponds to syntactical precision together with a proper

account of cast operations. We first concentrate on the notion of precision in CastCIC.
In this section, we only state and discuss the various lemmas and theorems, and differ the reader

to Appendix A.2 for the detailed proofs.

Structural precision. As emphasized already, the key propertywewant to establish is that precision

is a simulation for reduction, i.e., less precise terms reduce at least as well as more precise ones.

This property guided the quite involved definition we are about to give for structural precision: it

is rigid enough to give us the induction hypothesis needed to prove simulation, while being lax

enough to be a consequence of a loss of precision before elaboration, which is needed to establish

elaboration graduality.

Before diving into the definition, let us note that the definition of structural precision relies

on typing, in order to handle casts that might appear or disappear in one term but not the other

during reduction. Similarly to ∼𝛼 , precision can ignore some casts. But in order to control what

kind of casts can be erased, we need to impose some restriction on the types involved in the

cast, typically to ensure that these ignored casts would not have raised an error: e.g., we want
to prevent 0 ⊑𝛼 ⟨B ⇐ N⟩ 0. Technically, to allow the definition of structural precision to rely on

typing, we need to record the two contexts of the compared terms, to know in which context they

shall be typed. We do so by using double-struck letters to denote contexts where each variable

is given two types, writing Γ, 𝑥 : 𝐴 | 𝐴′
for context extensions. We use Γ𝑖 for projections, i.e.,

(Γ, 𝑥 : 𝐴 | 𝐴′)1 := Γ1, 𝑥 : 𝐴, and write Γ | Γ′ for the converse pairing operation.

Structural precision, denoted Γ ⊢ 𝑡 ⊑𝛼 𝑡 ′, is defined in Fig. 10. Its definition uses the auxiliary

notion of definitional precision, denoted Γ ⊢ 𝑡 ⊑{ 𝑡 ′, which is the closure by reduction of structural

precision. Namely, 𝑡 ⊑{ 𝑡 ′ means that there exist 𝑠 and 𝑠 ′ such that 𝑡{∗𝑠 , 𝑡 ′{∗𝑠 ′ and Γ ⊢ 𝑠 ⊑𝛼 𝑠 ′.
The situation is the same as for consistency (resp. conversion), which is the closure by reduction of

𝛼-consistency (resp. 𝛼-equality). However, here, the notion of definitional precision is also used in

the definition of structural precision, in order to permit some computation in the types,
12
and thus

the two notions are mutually defined. We write Γ ⊑𝛼 Γ′ and Γ ⊑{ Γ′ for the pointwise extensions
to contexts.

Let us now explain the rules defining structural precision. Diagonal rules are completely structural,

apart from the Diag-Fix rule, where we add typing assumptions to provide us with the contexts

needed to compare the predicates. More interesting are the non-diagonal rules. First, ?𝑇 is greater

than any term of the right type, where "the right type" can itself use loss of precision (rule Ukn), and

accommodate for a small bit of cumulativity (rule Ukn-Univ), needed because of the typing rule for

Π-types that allows some flexibility on the levels of 𝐴 and 𝐵 within a fixed level for Π𝑥 : 𝐴.𝐵. On

the contrary, the error is smaller than any term (rule Err), even in its extended form on Π-types
(rule Err-Lambda), with a type restriction similar to the unknown. Finally, casts on the right-hand

side can be erased as long as they are performed on types that are less precise than the type of the

term on the left (rule Cast-R). Dually, casts on the left-hand side can be erased as long as they are

performed on types that are more precise than the type of the term on the right (rule Cast-L).

Catch-up lemmas. The fact that structural precision induces a simulation relies on a series of

lemmas that all have the same form: under the assumption that a term 𝑡 ′ is less precise than a term

𝑡 with a known head (□, Π, 𝐼 , 𝜆 or 𝑐), the term 𝑡 ′ can be reduced to a term that either has the same

12
Recall that we are in a dependently typed setting and so the two types involved in a cast may need to be reduced before

the cast itself can be reduced.

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1:32 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

Γ ⊢ 𝑡 ⊑𝛼 𝑡 ′

Γ ⊢ □𝑖 ⊑𝛼 □𝑖

Diag-Univ

Γ ⊢ 𝐴 ⊑𝛼 𝐴′ Γ, 𝑥 : 𝐴 | 𝐴′ ⊢ 𝐵 ⊑𝛼 𝐵′

Γ ⊢ Π𝑥 : 𝐴.𝐵 ⊑𝛼 Π𝑥 : 𝐴′.𝐵′ Diag-Prod

Γ ⊢ 𝐴 ⊑{ 𝐴′ Γ, 𝑥 : 𝐴 | 𝐴′ ⊢ 𝑡 ⊑𝛼 𝑡 ′

Γ ⊢ 𝜆 𝑥 : 𝐴.𝑡 ⊑𝛼 𝜆 𝑥 : 𝐴′.𝑡 ′
Diag-Abs

Γ ⊢ 𝑡 ⊑𝛼 𝑡 ′ Γ ⊢ 𝑢 ⊑𝛼 𝑢 ′

Γ ⊢ 𝑡 𝑢 ⊑𝛼 𝑡 ′ 𝑢 ′ Diag-App

Γ ⊢ 𝑥 ⊑𝛼 𝑥
Diag-Var

Γ ⊢ 𝐴 ⊑𝛼 𝐴′ Γ ⊢ 𝐵 ⊑𝛼 𝐵′ Γ ⊢ 𝑡 ⊑𝛼 𝑡 ′

Γ ⊢ ⟨𝐵 ⇐ 𝐴⟩ 𝑡 ⊑𝛼 ⟨𝐵′ ⇐ 𝐴′⟩ 𝑡 ′
Diag-Cast

Γ ⊢ a ⊑𝛼 a′ 𝑖 = 𝑖 ′

Γ ⊢ 𝐼@𝑖 (a) ⊑𝛼 𝐼@𝑖 ′(a′)
Diag-Ind

Γ ⊢ a ⊑𝛼 a′ Γ ⊢ b ⊑𝛼 b′ 𝑖 = 𝑖 ′

Γ ⊢ 𝑐@𝑖 (a, b) ⊑𝛼 𝑐@𝑖 (a, b)
Diag-Cons

Γ ⊢ 𝑠 ⊑𝛼 𝑠 ′ Γ1 ⊢ 𝑠 ▶𝐼 𝐼 (a) Γ2 ⊢ 𝑠 ′ ▶𝐼 𝐼 (a′) Γ, 𝑧 : 𝐼 (a) | 𝐼 (a′) ⊢ 𝑃 ⊑𝛼 𝑃 ′

Γ, 𝑓 : (Π 𝑧 : 𝐼 (a), 𝑃) | (Π 𝑧 : 𝐼 (a′), 𝑃 ′), y : Yk [a/x] | Yk [a′/x] ⊢ 𝑡𝑘 ⊑𝛼 𝑡 ′
𝑘

Γ ⊢ ind𝐼 (𝑠, 𝑧.𝑃, f .y.t) ⊑𝛼 ind𝐼 (𝑠 ′, 𝑃 ′, t′)
Diag-Fix

Γ1 ⊢ 𝑡 ⊲𝑇 Γ ⊢ 𝑇 ⊑{ 𝐴′ Γ ⊢ 𝑇 ⊑{ 𝐵′ Γ ⊢ 𝑡 ⊑𝛼 𝑡 ′

Γ ⊢ 𝑡 ⊑𝛼 ⟨𝐵′ ⇐ 𝐴′⟩ 𝑡 ′
Cast-R

Γ2 ⊢ 𝑡 ′ ⊲𝑇 ′ Γ ⊢ 𝐴 ⊑{ 𝑇 ′ Γ ⊢ 𝐵 ⊑{ 𝑇 ′ Γ ⊢ 𝑡 ⊑𝛼 𝑡 ′

Γ ⊢ ⟨𝐵 ⇐ 𝐴⟩ 𝑡 ⊑𝛼 𝑡 ′
Cast-L

Γ1 ⊢ 𝑡 ⊲𝑇 Γ ⊢ 𝑇 ⊑{ 𝑇 ′

Γ ⊢ 𝑡 ⊑𝛼 ?𝑇 ′
Ukn

Γ1 ⊢ 𝐴 ▶□ □𝑖 𝑖 ≤ 𝑗

Γ ⊢ 𝐴 ⊑𝛼 ?□𝑗

Ukn-Univ

Γ2 ⊢ 𝑡 ′ ⊲𝑇 ′ Γ ⊢ 𝑇 ⊑{ 𝑇 ′

Γ ⊢ err𝑇 ⊑𝛼 𝑡 ′
Err

Γ1 ⊢ 𝑡 ′ ▶Π Π𝑥 : 𝐴′.𝐵′ Γ ⊢ Π𝑥 : 𝐴.𝐵 ⊑{ Π𝑥 : 𝐴′.𝐵′

Γ ⊢ 𝜆 𝑥 : 𝐴. err𝐵 ⊑𝛼 𝑡 ′
Err-Lambda

Γ ⊢ 𝑡 ⊑{ 𝑡 ′
Γ ⊢ 𝑡 ⊑𝛼 𝑡 ′

Γ ⊢ 𝑡 ⊑{ 𝑡 ′
Γ ⊢ 𝑠 ⊑{ 𝑡 ′ 𝑡 { 𝑠

Γ ⊢ 𝑡 ⊑{ 𝑡 ′
Γ ⊢ 𝑡 ⊑{ 𝑠 ′ 𝑡 ′ { 𝑠 ′

Γ ⊢ 𝑡 ⊑{ 𝑡 ′

Fig. 10. Structural precision in CastCIC

head, or is some ?. We call these catch-up lemmas, as they enable the less precise term to catch-up

on the more precise one whose head is already fixed. Their aim is to ensure that casts appearing in

a less precise term never block reduction, as they can always be reduced away.

The lemmas are established in a descending fashion: first, on the universe in Lemma 14, then

on other types in Lemma 15, and finally on terms, namely on 𝜆-abstractions in Lemma 16 and

inductive constructors in Lemma 17. Each time, the previously proven catch-up lemmas are used to

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Gradualizing the Calculus of Inductive Constructions 1:33

reduce types in casts appearing in the less precise term, apart from Lemma 14, where the induction

hypothesis of the lemma being proven is used instead.

Lemma 14 (Universe catch-up). Under the hypothesis that Γ1 ⊑𝛼 Γ2, if Γ ⊢ □𝑖 ⊑{ 𝑇 ′ and Γ2 ⊢
𝑇 ′ ▶□ □𝑗 , then either 𝑇 ′{∗?□𝑗

with 𝑖 + 1 ≤ 𝑗 , or 𝑇 ′{∗□𝑖 .

Lemma 15 (Types catchup). Under the hypothesis that Γ1 ⊑𝛼 Γ2, we have the following:

• if Γ ⊢ ?□𝑖
⊑𝛼 𝑇 ′ and Γ2 ⊢ 𝑇 ′ ▶□ □𝑗 , then 𝑇 ′{∗?□𝑗

and 𝑖 ≤ 𝑗 ;
• if Γ ⊢ Π𝑥 : 𝐴.𝐵 ⊑𝛼 𝑇 ′, Γ1 ⊢ Π𝑥 : 𝐴.𝐵 ⊲□𝑖 and Γ2 ⊢ 𝑇 ′ ▶□ □𝑗 then either 𝑇 ′{∗?□𝑗

and 𝑖 ≤ 𝑗 ,
or 𝑇 ′{∗

Π𝑥 : 𝐴′.𝐵′ for some 𝐴′ and 𝐵′ such that Γ ⊢ Π𝑥 : 𝐴.𝐵 ⊑𝛼 Π𝑥 : 𝐴′.𝐵′;
• if Γ ⊢ 𝐼 (a) ⊑𝛼 𝑇 ′, Γ1 ⊢ 𝐼 (a) ⊲□𝑖 and Γ2 ⊢ 𝑇 ′ ▶□ □𝑗 then either 𝑇 ′{∗?□𝑗

and 𝑖 ≤ 𝑗 , or
𝑇 ′{∗𝐼 (a′) for some 𝑎′ such that Γ ⊢ 𝐼 (a) ⊑𝛼 𝐼 (a′).

Lemma 16 (𝜆-abstraction catch-up). If Γ ⊢ 𝜆 𝑥 : 𝐴.𝑡 ⊑𝛼 𝑠 ′, where 𝑡 is not an error, Γ1 ⊢ 𝜆 𝑥 : 𝐴.𝑡 ⊲Π𝑥 :

𝐴.𝐵 and Γ2 ⊢ 𝑠 ′ ▶Π Π𝑥 : 𝐴′.𝐵′, then 𝑠 ′{∗ 𝜆 𝑥 : 𝐴′.𝑡 ′ with Γ ⊢ 𝜆 𝑥 : 𝐴.𝑡 ⊑𝛼 𝜆 𝑥 : 𝐴′.𝑡 ′.

The previous lemma is the point where the difference between the three variants of CastCIC
manifests: it holds in full generality only in CastCICG

and CastCIC↑
, but only on terms not

containing ? in CastCICN
. Indeed, the fact that 𝑖, 𝑗 ≤ 𝑐Π (𝑠Π (𝑖, 𝑗)) is used crucially to ensure that

casting from a Π-type into ? and back does not reduce to an error, given the restrictions on types

in Cast-R. This is the manifestation in the reduction of the embedding-projection property [New

and Ahmed 2018]. In CastCICN
it holds only if one restricts to terms without ?, where those casts

never happen. This is important with regard to conservativity, as elaboration produces terms with

casts but without ?, and Lemma 16 ensures that for those precision is still a simulation, even in

CastCICN
.

A typical example of those differences is the following term 𝑡𝑖

𝑡𝑖 :=
〈
N → N ⇐ ?□𝑖

〉 〈
?□𝑖

⇐ N → N
〉
𝜆 𝑥 : N.suc(𝑥)

where N is taken at the lowest level, i.e., to mean N@0. Such terms appear naturally whenever a loss

of precision happened on a function, for instance when elaborating a term like (𝜆 𝑥 : N.suc(𝑥)) :: ? 0.

Now 𝑡𝑖 always reduces to

⟨N → N ⇐ Germ𝑖 Π⟩
〈
Germ𝑖 Π ⇐ ?□𝑖

〉 〈
?□𝑖

⇐ Germ𝑖 Π
〉
⟨Germ𝑖 Π ⇐ N → N⟩ 𝜆 𝑥 : N.suc(𝑥)

and this is where the real difference kicks in: if Germ𝑖 Π is err?□𝑖
(i.e., if 𝑐Π (𝑖) < 0) then the whole

term reduces to errN→N. Otherwise, further reductions finally give

𝜆 𝑥 : N.suc (⟨N ⇐ N⟩ ⟨N ⇐ N⟩ 𝑥)

Although the body is blocked by the variable 𝑥 , applying the function to 0 would reduce to 1 as

expected. Let us compare what happens in the three systems.

In CastCICG
, we have ⊢ 𝜆 𝑥 : N.suc(𝑥) ⊑𝛼 𝑡0, since ⊢ N → N ⊲□0, but 𝑐Π (0) = 0 so 𝑡0 reduces

safely and Lemma 16 holds. In CastCIC↑
, 𝑡0 errors but because 𝑠Π (0, 0) = 1 we have ⊢ N → N ⊲□1,

and thus 𝑡0 is not less precise than 𝜆 𝑥 : N𝑥suc(𝑥) thanks to the typing restriction in Cast-R, so

this error does not contradict Lemma 16. On the contrary, one has ⊢ 𝜆 𝑥 : N.suc(𝑥) ⊑𝛼 𝑡1, but since

0 ≤ 𝑐Π (1), 𝑡1 reduces safely. In CastCICN
, however, ⊢ 𝜆 𝑥 : N.suc(𝑥) ⊑𝛼 𝑡0 because 𝑠Π (0, 0) = 0,

but 𝑐Π (0) < 0, so the term errors even if it is less precise than the identity – Lemma 16 does not

hold in that case.

Lemma 17 (Constructors and inductive error catch-up). If Γ ⊢ 𝑐 (a, b) ⊑𝛼 𝑠 ′, Γ1 ⊢ 𝑐 (a, b) ⊲ 𝐼 (a) and
Γ2 ⊢ 𝑠 ′ ▶𝐼 𝐼 (a′), then either 𝑠 ′{∗?𝐼 (a′) or 𝑠 ′{∗𝑐 (a′, b′) with Γ ⊢ 𝑐 (a, b) ⊑𝛼 𝑐 (a′, b′).

Similarly, if Γ ⊢ ?𝐼 (a) ⊑𝛼 𝑠 ′, Γ1 ⊢ ?𝐼 (a) ⊲ 𝐼 (a) and Γ2 ⊢ 𝑠 ′▶𝐼 𝐼 (a′), then 𝑠 ′{∗?𝐼 (a′) with Γ ⊢ 𝐼 (a) ⊑{
𝐼 (a′).

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1:34 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

Note that for Lemma 17, we need to deal with unknown terms specifically, which is not necessary

for Lemma 16 because the unknown term in a Π-type reduces to a 𝜆-abstraction.

Simulation. We finally come to the main property of this section, the advertised simulation.

As discussed above, the proposition holds in CastCICG
, CastCIC↑

and for terms without ? in

CastCICN
. Remark that the simulation property needs to be stated mutually for structural and

definitional precision, but it is really informative for structural precision as definitional precision is

somehow a simulation by construction.

Theorem 18 (Simulation of reduction). Let Γ1 ⊑{ Γ2, Γ1 ⊢ 𝑡 ⊲𝑇 , Γ2 ⊢ 𝑢 ⊲𝑈 and 𝑡{∗𝑡 ′.
• If Γ ⊢ 𝑡 ⊑𝛼 𝑢 then there exists 𝑢 ′ such that 𝑢{∗𝑢 ′ and Γ ⊢ 𝑡 ′ ⊑𝛼 𝑢 ′.
• If Γ ⊢ 𝑡 ⊑{ 𝑢 then Γ ⊢ 𝑡 ′ ⊑{ 𝑢.

Proof sketch. The case of definitional precision follows by confluence of the reduction. For the case

of structural precision, the hardest point is to simulate 𝛽 and 𝜄 redexes, that is terms of the shape

ind𝐼 (𝑐 (a), 𝑧.𝑃, 𝑓 .y.t). This is where we use Lemmas 16 and 17, to show that similar reductions can

also happen in 𝑡 ′. We must also put some care into handling the premises of precision where typing

is involved. In particular, subject reduction is needed to relate the types inferred after reduction

to the type inferred before, and the mutual induction hypothesis on ⊑{ is used to conclude that

the premises holding on 𝑡 still hold on 𝑠 . Finally, the restriction to the gradual systems show up

again when considering the reduction rules with germs are involved, where the synchronization

between 𝑠Π and 𝑐Π is required to conclude. □

From this simulation property, we get as direct corollaries the properties we sought to handle

reduction (Corollary 19) and consistency (Corollary 20) in elaboration. Again those corollaries are

true in GCICG
, GCIC↑

and for terms in GCICN
containing no ?.

Corollary 19 (Reduction and types). Let Γ, 𝑇 and 𝑇 ′ be such that Γ1 ⊢ 𝑇 ▶□ □𝑖 , Γ2 ⊢ 𝑇 ′ ▶□ □𝑗 ,
Γ ⊢ 𝑇 ⊑𝛼 𝑇 ′. Then

• if 𝑇{∗?□𝑖
then 𝑇 ′{∗?□𝑗

with 𝑖 ≤ 𝑗 ;
• if 𝑇{∗□𝑖−1 then either 𝑇 ′{∗?□𝑗

with 𝑖 ≤ 𝑗 , or 𝑇 ′{∗□𝑖−1;
• if 𝑇{∗

Π𝑥 : 𝐴.𝐵 then either 𝑇 ′{∗?□𝑗
with 𝑖 ≤ 𝑗 , or 𝑇 ′{∗

Π𝑥 : 𝐴′.𝐵′ and Γ ⊢ Π𝑥 : 𝐴.𝐵 ⊑𝛼

Π𝑥 : 𝐴′.𝐵′;
• if 𝑇{∗𝐼 (a) then either 𝑇 ′{∗?□𝑗

with 𝑖 ≤ 𝑗 , or 𝑇 ′{∗𝐼 (a′) and Γ ⊢ 𝐼 (a) ⊑𝛼 𝐼 (a′).
Proof. Simulate the reductions of 𝑇 by using Theorem 18, then use Lemmas 14 and 15 to conclude.

Note that head reductions are simulated using head reductions in Theorem 18, and the reductions

of Lemmas 14 and 15 are also head reductions. Thus the corollary still holds when fixing weak-head

reduction as a reduction strategy. □

Corollary 20 (Monotonicity of consistency). If Γ ⊢ 𝑇 ⊑𝛼 𝑇 ′, Γ ⊢ 𝑆 ⊑𝛼 𝑆 ′ and 𝑇 ∼ 𝑆 then 𝑇 ′ ∼ 𝑆 ′.
Proof. By definition of ∼, we get some 𝑈 and 𝑉 such that 𝑇{∗𝑈 and 𝑆{∗𝑉 , and 𝑈 ∼𝛼 𝑉 . By

Theorem 18, we can simulate these reductions to get some 𝑈 ′
and 𝑉 ′

such that 𝑇 ′{∗𝑈 ′
and

𝑆 ′{∗𝑉 ′
, and also Γ1 ⊢ 𝑈 ⊑𝛼 𝑈 ′

and Γ1 ⊢ 𝑉 ⊑𝛼 𝑉 ′
. Thus we only need to show that 𝛼-consistency

is monotone with respect to structural precision, which is direct by induction on structural precision.

□

5.5 Properties of GCIC
We now have enough technical tools to prove conservativity and elaboration graduality for GCIC.
We state those theorems in an empty context in this section to make them more readable, but they

are of course corollaries of similar statements including contexts, proven by mutual induction. The

complete statements and proofs can be found in Appendix A.3.

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Gradualizing the Calculus of Inductive Constructions 1:35

𝑥 ⊑G

𝛼 𝑥 □𝑖 ⊑G

𝛼 □𝑖

𝐴 ⊑G

𝛼 𝐴′ 𝐵 ⊑G

𝛼 𝐵′

Π𝑥 : 𝐴.𝐵 ⊑G

𝛼 Π𝑥 : 𝐴′.𝐵′
𝐴 ⊑G

𝛼 𝐴′ 𝑡 ⊑G

𝛼 𝑡 ′

𝜆 𝑥 : 𝐴.𝑡 ⊑G

𝛼 𝜆 𝑥 : 𝐴.𝑡

𝑡 ⊑G

𝛼 𝑡 ′ 𝑢 ⊑G

𝛼 𝑢 ′

𝑡 𝑢 ⊑G

𝛼 𝑡 ′ 𝑢 ′
a ⊑G

𝛼 a′

𝐼 (a) ⊑G

𝛼 𝐼 (a′)
a ⊑G

𝛼 a′ b ⊑G

𝛼 b′

𝑐 (a, b) ⊑G

𝛼 𝑐 (a′, b′)

𝑎 ⊑G

𝛼 𝑎′ 𝑃 ⊑G

𝛼 𝑃 ′ t ⊑G

𝛼 t′

ind𝑎 (𝐼 , 𝑧.𝑃, f .y.t) ⊑G

𝛼 ind𝑎′ (𝐼 , 𝑧.𝑃 ′, f .y.t′) 𝑡 ⊑G

𝛼 ?

Fig. 11. GCIC: Syntactic precision

Conservativity. Elaboration systematically inserts casts during checking, thus even static terms

are not elaborated to themselves. Therefore we use a (partial) erasure function 𝜀, that (partially)

translates terms of CastCIC to terms of CIC by erasing all casts. We also introduce the notion of

erasability, characterizing terms that contain “harmless” casts, such that in particular the elaboration

of a static term is always erasable.

Definition 4 (Equiprecision). Two terms 𝑠 and 𝑡 are equiprecise in a context Γ, denoted Γ ⊢ 𝑠 ⊒⊑𝛼 𝑡

if both Γ ⊢ 𝑠 ⊑𝛼 𝑡 and Γ ⊢ 𝑡 ⊑𝛼 𝑠 .
Definition 5 (Erasure, erasability). Erasure 𝜀 is a partial function from the syntax of CastCIC to the
syntax of CIC, which is undefined on ? and err, is such that 𝜀 (⟨𝐵 ⇐ 𝐴⟩ 𝑡) = 𝜀 (𝑡), and is a congruence
for all other term constructors.

Given a context Γ we say that a term 𝑡 is erasable if 𝜀 (𝑡) is defined, well-typed, and equiprecise to 𝑡 .
Similarly a context Γ is called erasable if it is pointwise erasable. When Γ is erasable, we say that a
term 𝑡 is erasable in Γ to mean that it is erasable in Γ | 𝜀 (Γ).

Conservativity holds in all three systems, typability being of course taken into the corresponding

variant of CIC: full CIC for GCICG
and GCICN

, and CIC↑
for GCIC↑

.

Theorem 21 (Conservativity). Let 𝑡 be a static term. If ⊢CIC 𝑡 ⊲𝑇 for some type 𝑇 , then there exists 𝑡 ′

and 𝑇 ′ such that ⊢ 𝑡⇝ 𝑡 ′ ⊲𝑇 ′, and moreover 𝜀 (𝑡 ′) = 𝑡 and 𝜀 (𝑇 ′) = 𝑇 . Conversely if ⊢ 𝑡⇝ 𝑡 ′ ⊲𝑇 ′ for
some 𝑡 ′ and 𝑇 ′, then ⊢ 𝑡 ⊲ 𝜀 (𝑇 ′).
Proof sketch. Because 𝑡 is static, its typing derivation in GCIC can only use rules that have a

counterpart in CIC, and conversely all rules of CIC have a counterpart inGCIC. The only difference
is about the reduction/conversion side conditions, which are used on elaborated types in GCIC,
rather than their non-elaborated counterparts in CIC.
Thus, the main difficulty is to ensure that the extra casts inserted by elaboration do not alter

reduction. For this we maintain the property that all terms 𝑡 ′ considered in CastCIC are erasable,

and in particular that any static term 𝑡 that elaborates to some 𝑡 ′ is such that 𝜀 (𝑡 ′) = 𝑡 . From the

simulation property of structural precision (Theorem 18), we get that an erasable term 𝑡 has the

same reduction behavior as its erasure, i.e., if 𝑡{∗𝑠 then 𝜀 (𝑡){∗𝑠 ′ with 𝑠 ′ and 𝑠 equiprecise, and
conversely if 𝜀 (𝑡){∗𝑠 ′ then 𝑡{∗𝑠 with 𝑠 ′ and 𝑠 equiprecise. Using that property, we can prove that

constraint reductions (▶Π , ▶□ and ▶𝐼) in CastCIC and CIC behave the same on static terms. □

Elaboration Graduality. Next, we turn to elaboration graduality, the equivalent of the static

gradual guarantee (SGG) of Siek et al. [2015] in our setting. We state it with respect to a notion of

precision for terms in GCIC, syntactic precision ⊑G

𝛼 , defined in Fig. 11. It is generated by a single

non trivial rule 𝑡 ⊑G

𝛼 ?@𝑖 , and congruence rules for all term formers.

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1:36 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

Distinctively to the simply-typed setting, the presence of multiple types ?, one for each universe

level 𝑖 , requires an additional hypothesis relating elaboration and precision. We say that two

judgments 𝑡 ⊑G

𝛼 ?@𝑖 and Γ ⊢ 𝑡⇝ 𝑡 ⊲𝑇 are universe adequate if the universe level 𝑗 given by the

induced judgment Γ ⊢ 𝑇 ▶□ □𝑗 satisfies 𝑖 = 𝑗 . More generally, 𝑡 ⊑G

𝛼 𝑠 and ⊢ 𝑡⇝ 𝑡 ⊲𝑇 are universe
adequate if any subterm 𝑡0 of 𝑡 inducing judgments 𝑡0 ⊑G

𝛼 ?@𝑖 and Γ0 ⊢ 𝑡0⇝ 𝑡 ⊲𝑇 is universe

adequate. Note that this extraneous technical assumption on universe levels is not needed if we use

typical ambiguity, as described in §5.2, where the universe level is not given explicitly. Elaboration

graduality holds in the two systems satisfying G, i.e., GCICG
and GCIC↑

.

Theorem 22 (Elaboration Graduality / SGG). In GCICG and GCIC↑, if 𝑡 ⊑G

𝛼 𝑠 and ⊢ 𝑡⇝ 𝑡 ⊲𝑇 are
universe adequate, then ⊢ 𝑠⇝ 𝑠 ⊲ 𝑆 for some 𝑠 and 𝑆 such that ⊢ 𝑡 ⊑𝛼 𝑠 and ⊢ 𝑇 ⊑𝛼 𝑆 .
Proof sketch. The proof is by induction on the elaboration derivation for 𝑡 . All cases for inference

consist in a straightforward combination of the hypothesis.

Here again the technical difficulties arise in the rules involving reduction. This is where Corol-

lary 19 is useful, proving that the less structurally precise term obtained by induction in a constrained

inference reduces to a less precise type, and thus that either the rule can still be used; alternatively

one has to trade a Inf-Ukn, Inf-Prod or Inf-Ind rule respectively for a Inf-Univ?, Inf-Prod? or

Inf-Ind? rule in case the less precise type is some ?□𝑖
and the more precise type was not. Similarly

Corollary 20 proves that in the checking rule the less precise types are still consistent. □

DGG. Following Siek et al. [2015], using the fact that structural precision is a simulation (Theo-

rem 18), we can prove the DGG for CastCICG
and CastCIC↑

.

Theorem 23 (DGG for CastCICG
and CastCIC↑

). Let Γ ⊢ 𝑡 ⊲𝐴, Γ ⊢ 𝑢 ⊲𝐴.
If Γ | Γ ⊢ 𝑡 ⊑𝛼 𝑢 then 𝑡 ⊑𝑜𝑏𝑠 𝑢.

Proof. Let C : (Γ ⊢ 𝐴) ⇒ (⊢ B) closing over all free variables. By all the diagonal rules of structural

precision, we have Γ | Γ ⊢ C[𝑡] ⊑𝛼 C[𝑢]. By progress (Theorem 8), C[𝑡] either reduces to a value,

an error, or diverges, and similarly for C[𝑢]. If C[𝑡] diverges or reduces to errB, we are done. If it

reduces to a value 𝑣 that is either a constructor of B or ?B, then by the catch-up Lemma 17, C[𝑢]
either reduces to the same constructor, or to ?B. In particular, it cannot diverge or reduce to an

error. □

As observed in §2.5, there is no hope to prove graduality (G)—that is, that structural precision
induces ep-pairs—directly in the syntactic approach that we have used so far. Therefore, we defer

the proof of G for CastCIC↑
to the next section, where the notion of propositional precision based

on the monotone model is introduced to solve this issue. For CastCICG
, the proof cannot be

based on the monotone model as the cast operation is not well-founded (hence the presence of

non-terminating terms). We thus turn to a Scott-style interpretation of CastCICG
using 𝜔-cpos to

derive graduality for the diverging variant (§6.7).

6 REALIZING CastCIC AND GRADUALITY
To prove normalization of CastCICN

and CastCIC↑
, we now build a model of both theories with a

simple implementation of casts using case-analysis on types as well as exceptions, yielding the

discrete model, allowing to reduce the normalization of CastCIC to the normalization of the host

theory (§6.1).

Then, to prove graduality of CastCIC↑
, we build a more elaborate monotone model inducing

a precision relation well-behaved with respect to conversion. Following generalities about the

interpretation of CIC in poset in §6.2, we describe the construction of a monotone unknown type ?
in §6.3 and a hierarchy of universes in §6.4 and put these pieces together in §6.5, culminating in a

proof of graduality for CastCIC↑
(§6.6). In both the discrete and monotone case, the parameters

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

Gradualizing the Calculus of Inductive Constructions 1:37

★π𝐴𝐵 := 𝜆 𝑥 : El𝐴.★𝐵 𝑥 : Π𝐴𝐵 ?𝔲𝑗
:= ?

𝑗
: U𝑗 ?? := ?Σ̃H Germ

: Σ̃H Germ ?𝔫𝔞𝔱 := ?N :
˜N

★✠ 𝑗 := ∗ : ⊤ err𝔲𝑗
:= ✠ 𝑗

: U𝑗 err? := ✠Σ̃H Germ
: Σ̃H Germ err𝔫𝔞𝔱 := ✠N :

˜N

Fig. 12. Realization of exceptions (★ stands for either ? or err)

𝑐Π (−) and 𝑠Π (−,−) appear when building the hierarchy of universes and tying the knot with the

unknown type.

Finally, to deduce graduality for the non-terminating variant, CastCICG
, we describe at the

end of this section a model based on 𝜔-complete partial orders, extending the well-known Scott’s

model [Scott 1976] to CastCICG
(§6.7).

The models embed into a variant of CIC extended with induction-recursion [Dybjer and Setzer

2003] as well as function extensionality for the monotone model, whose judgments will be denoted

with ⊢IR. We use Agda [Norell 2009] as a practical counterpart to typecheck the components of

the models
13
and assume that the implementation satisfies standard metatheoretical properties,

14

namely subject reduction and strong normalization.

6.1 Discrete Model of CastCIC
The discrete model explains away the new term formers of CastCIC (Syntax of CastCIC) by a

translation it to CIC using two important ingredients:

• exceptions, following the approach of ExTT [Pédrot and Tabareau 2018], in order to interpret

both ? and err; and
• case-analysis on types [Boulier et al. 2017] to define the cast operator.

Exceptions. Following the general pattern of ExTT, we interpret each inductive type 𝐼 by an

inductive type 𝐼 featuring all constructors of 𝐼 and extended with two new constructors ?𝐼 and ✠𝐼 ,

corresponding respectively to ?𝐼 and err𝐼 of CastCIC. Figure 16 on the left describes the leading

example of natural numbers
˜N with 4 constructors. In the rest of this section, we only illustrate

inductive types on natural numbers. The definition of exceptions ?𝐴, err𝐴 at an arbitrary type 𝐴

then follows by case analysis on a code for𝐴 in Fig. 12. On types defined inductively – U, Σ̃H Germ,

˜N – we use the newly added constructors. On functions, the exceptions are defined by re-raising

the exception at the codomain in a pointwise fashion, whereas on the error type ✠ they are forced

to take the only value ∗ : ⊤ of its interpretation as a type (see the description of El below).

13
We detail the correspondence between the notions developed in the following sections and the formal development in

Agda [Bertrand et al. 2020]. The formalization covers most component of the discrete (DiscreteModelPartial.agda) and
monotone model (UnivPartial.agda) in a partial (non-normalizing) setting and only the discrete model is proved to be

normalizing assuming normalization of the type theory implemented by Agda (no escape hatch to termination checking is

used in DiscreteModelTotal).
The main definitions surrounding posets can be found in Poset.agda: top and bottom elements (called Initial and

Final in the formalization), embedding-projection pairs (called Distr) as well as the notions corresponding to indexed

families of posets (IndexedPoset, together with IndexedDistr). It is then proved that we can endow a poset structure

on the translation of each type formers from CastCIC: natural numbers in nat.agda, booleans in bool.agda, dependent

product in pi.agda. The definition of the monotone unknown type ? is more involved since we need to use a quotient (that

we axiomatize together with a rewriting rule in Unknown/Quotient.agda) and is defined in the subdirectory Unknown/.
Finally, all these building blocks are put together when assembling the inductive-recursive hierarchies of universes

(UnivPartial.agda, DiscreteModelPartial.agda and DiscreteModelTotal.agda).
14
These properties are conjectured but are still open problems to our knowledge.

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1:38 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

𝐴 ∈ U𝑖 𝐵 ∈ El𝐴 → U𝑗

π𝐴𝐵 ∈ U𝑠Π (𝑖, 𝑗)

𝑗 < 𝑖

𝔲 𝑗 ∈ U𝑖

𝔫𝔞𝔱 ∈ U𝑖 ? ∈ U𝑖 ✠ ∈ U𝑖

El (π𝐴𝐵) = Π(𝑎 : El𝐴) El(𝐵 𝑎) El 𝔲 𝑗 = U𝑗 El 𝔫𝔞𝔱 = ˜N El ? = Σ̃(ℎ : H).Germ ℎ El✠ = ⊤

Fig. 13. Inductive-recursive encoding of the discrete universe hierarchy

Universe and type-case. Case analysis on types is obtained through an explicit inductive descrip-

tion of the universes, translating□𝑖 to a type of codes U𝑖 described in Fig. 13. It contains dependent

product (π), universes (𝔲), inductives (e.g., 𝔫𝔞𝔱) as well as codes ? for the unknown type and ✠
for the error type. Accompanying the inductive definition of U𝑖 , the recursively defined decoding

function El provides a semantics for these codes. The error ✠ is decoded to the type ⊤ containing a

unique element ∗ ≡ ?✠ ≡ err✠ . The unknown ? is decoded to the extended dependent sum whose

elements are either:

• one of the two freely added constructors ?Σ̃,✠Σ̃ following the scheme of inductive types;

• or a dependent pair (ℎ; 𝑡) of a head constructor ℎ ∈ H𝑖 together with an element 𝑡 ∈ Germ𝑖 ℎ

where we stratify the head constructors H and germs (see Fig. 4) according to the universe

level 𝑖 , and just adapt the definition to the target type theory ⊢IR.

Crucially, the code for Π-types depends on the choice of parameter for 𝑠Π (𝑖, 𝑗). For the choice
of parameters corresponding to the system CastCICG

, the inductive-recursive definition of U𝑖

is ill-founded: since 𝑐Π (𝑠Π (𝑖, 𝑖)) = 𝑠Π (𝑖, 𝑖), we can inject Germ𝑠Π (𝑖,𝑖)Π = El𝑠Π (𝑖,𝑖)? → El𝑠Π (𝑖,𝑖)? into
El𝑠Π (𝑖,𝑖)? and project back in the other direction thanks to errors, exhibiting an embedding-retraction

suitable to interpret the untyped 𝜆-calculus and in particular Ω. In the Agda implementation, we

deactivate the termination-checker on the definition of the universe, thus effectively working in a

partial, inconsistent type theory.

In order to maintain normalization, the construction of the unknown type and the universe thus

needs to be stratified, which is possible when 𝑐Π (𝑠Π (𝑖, 𝑖)) < 𝑠Π (𝑖, 𝑖). This strict inequality occurs

for both CastCICN
and CastCIC↑

. We proceed by strong induction on the universe level, and note

that thanks to the level gap, the decoding El ?
𝑖
of the unknown type at a level 𝑖 can be defined

solely from the data of smaller universes available by inductive hypothesis, without any reference

to U𝑖 . We can then define the rest of the universe U𝑖 and the decoding function El at level 𝑖 without

trouble.

Note that results of Palmgren [1998] indicate that we couldn’t apply this inductive-recursive

translation to an impredicative universe in a consistent and strongly-normalizing meta theory ⊢IR.

Cast. Equipped with exceptions and the capability to do induction on types, we define cast :

Π(𝐴 : U𝑖) (𝐵 : U𝑗).𝐴 → 𝐵 in Fig. 14 by induction on the universe levels and case analysis on the

codes of the types𝐴, 𝐵. In the total setting, the definition of cast is well-founded: each recursive call
happens either at a strictly smaller universe (the two cases for π) or on a strict subterm of the term

being cast (case of inductive/𝔫𝔞𝔱 and ?). Note that each defining equations of cast corresponds
straightforwardly to the a reduction rule of Fig. 5.

Discrete translation. The translations [−] and J−K fromCastCIC toCIC+IR is defined by induction

on the syntax of terms and types in Fig. 15. The following theorem shows that it is a syntactic

model in the sense of [Boulier et al. 2017].

Theorem 24 (Discrete syntactic model). The translation preserves conversion and typing derivations:
(1) if Γ ⊢cast 𝑡 { 𝑢 then JΓK ⊢IR [𝑡] {IR

+ [𝑢], in particular JΓK ⊢IR [𝑡] ≡ [𝑢],

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

Gradualizing the Calculus of Inductive Constructions 1:39

cast (π𝐴d𝐴c) (π 𝐵d 𝐵c) 𝑓 := 𝜆 𝑏 : El𝐵d . let𝑎 = cast 𝐵d 𝐴d 𝑏 in cast (𝐴c 𝑎) (𝐵c 𝑏) (𝑓 𝑎)
cast (π𝐴d𝐴c) ?𝑖 𝑓 := (Π; cast (π𝐴d𝐴c) (Germ𝑖 Π) 𝑓) if Germ𝑖 Π ≠ ✠
cast (π𝐴d𝐴c) 𝑋 𝑓 := ✠𝑋 otherwise

cast 𝔫𝔞𝔱 𝔫𝔞𝔱 𝑛 := 𝑥

cast 𝔫𝔞𝔱 ? 𝑛 := (N;𝑥)
cast 𝔫𝔞𝔱 𝑋 𝑛 := ✠𝑋

cast ✠ 𝑍 ∗ := ✠𝑍

cast 𝔲 𝑗 𝔲 𝑗 𝐴 := 𝐴

cast 𝔲 𝑗 ?
𝑖 𝐴 := (□𝑗 ;𝐴) if 𝑗 < 𝑖

cast 𝔲 𝑗 𝑋 𝐴 := ✠𝑋 otherwise

cast ?
𝑖 𝑍 (𝑐;𝑥) := cast (Germ𝑖 𝑐) 𝑍 𝑥

cast ?
𝑖 𝑍 ?? := ?𝑍

cast ?
𝑖 𝑍 ✠? := ✠𝑍 otherwise

Fig. 14. Implementation of cast (discrete models)

J·K := ·

J𝐴K := El [𝐴]

[𝑥] := 𝑥

[□𝑖] := 𝔲𝑖

[Π𝑥 : 𝐴.𝐵] := π [𝐴] (𝜆 𝑥 : J𝐴K.[𝐵])
[𝑡 𝑢] := [𝑡] [𝑢]
[𝜆 𝑥 : 𝐴.𝑡] := 𝜆 𝑥 : J𝐴K.[𝑡]

JΓ, 𝑥 : 𝐴K := JΓK, 𝑥 : J𝐴K

[N] := 𝔫𝔞𝔱

[0] := 0

[suc] := suc
[indN] 𝑃 ℎ0 ℎsuc := ind ˜N 𝑃 ℎ0 ℎsuc ?𝑃 ? ˜N

err(𝑃 err ˜N)

[?𝐴] := ?[𝐴]
[err𝐴] := err[𝐴]
[⟨𝐵 ⇐ 𝐴⟩ 𝑡] := cast [𝐴] [𝐵] [𝑡]

Fig. 15. Discrete translation from CastCIC to CIC +IR

(2) if Γ ⊢cast 𝑡 : 𝐴 then JΓK ⊢IR [𝑡] : J𝐴K.
Proof. For the first part, all reduction rules from CIC are preserved without a change so that we

only need to be concerned with the reduction rules involving exceptions or a cast. The preserva-

tion for these hold directly by a careful inspection once we observe that the CastCIC stuck term〈
?□𝑖

⇐ Germ𝑖 ℎ
〉
𝑡 is in one-to-one correspondence with the one-step reduced form of its trans-

lation (ℎ; [𝑡]) : Σ̃(ℎ : H𝑖).Germ𝑖 ℎ. The second part is proved by a direct induction on the typing

derivation of Γ ⊢cast 𝑡 : 𝐴, using that exceptions and casts are well-typed ⊢IR ?, err : Π(𝐴 : U𝑖) El𝐴,

⊢IR cast : Π(𝐴 : U𝑖) (𝐵 : U𝑖)→El𝐴→El𝐵, and relying on assertion (1) to handle the conversion

rule. □

As explained in Theorem 9, Theorem 24 implies in particular that CastCIC↑
and CastCICN

are

strongly normalizing.

6.2 Poset-Based Models of Dependent Type Theory
The simplicity of the discrete model comes at the price of an inherent inability to characterize which

cast are sound, i.e., a graduality theorem. To overcome this limitation, we develop a monotone

model where, by construction, each type 𝐴 comes equipped with an order structure ⊑𝐴
—a reflexive,

transitive, antisymmetric and and proof-irrelevant relation—modeling precision between terms.

Each term and type constructor is enforced to be monotone with respect to these orders, providing

a strong form of graduality. This implies in particular that such a model can not be defined for

CastCICN
because this type theory lakes graduality.

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1:40 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

0, ?
˜N,✠ ˜N ∈ ˜N

𝑛 ∈ ˜N

suc𝑛 ∈ ˜N

0 ⊑ ˜N
0 ✠

˜N ⊑ ˜N 𝑛

0 ⊑ ˜N ?
˜N ?

˜N ⊑ ˜N ?
˜N

𝑛 ⊑ ˜N 𝑚

suc𝑛 ⊑ ˜N suc𝑚

𝑛 ⊑ ˜N ?
˜N

suc𝑛 ⊑ ˜N ?
˜N

Fig. 16. Order structure on extended natural numbers

As an illustration, the order on extended natural numbers (Fig. 16) makes ✠ ˜N the smallest

element and ? ˜N the biggest element. The “standard” natural numbers then lay in between failure

and indeterminacy, but are never related to each other by precision, since ⊑ ˜N
must coincide with

CIC’s conversion on static closed natural numbers so that conservativity with respect to CIC is

maintained.

Beyond the precision order on types, the nature of dependency forces us to spell out what the

precision between types entails. Following the analysis of [New and Ahmed 2018], a relation 𝐴 ⊑ 𝐵

between types should induce an embedding-projection pair (ep-pair): a pair of an upcast ↑ : 𝐴→𝐵

and a downcast ↓ : 𝐵→𝐴 satisfying a handful of properties with gradual guarantees as a corollary.

Definition 6 (Embedding-projection pairs). An ep-pair 𝑑 : 𝐴 ◁ 𝐵 between posets 𝐴, 𝐵 consists of
• an underlying relation 𝑑 ⊆ 𝐴 × 𝐵 such that 𝑎′ ⊑𝐴 𝑎 ∧ 𝑑 (𝑎, 𝑏) ∧ 𝑏 ⊑𝐵 𝑏 ′ =⇒ 𝑑 (𝑎′, 𝑏 ′)
• that is bi-represented by ↑𝑑 : 𝐴 → 𝐵, ↓ 𝑑 : 𝐵 → 𝐴, i.e., ↑𝑑 𝑎 ⊑𝐵 𝑏 ⇔ 𝑑 (𝑎, 𝑏) ⇔ 𝑎 ⊑𝐴 ↓𝑑 𝑏,
• such that the equality ↓𝑑 ◦ ↑𝑑 = id𝐴 holds.

Note that equiprecision of the retraction becomes here an equality because of antisymmetry.

Under these conditions, ↑𝑑 : 𝐴 ↩→ 𝐵 is injective, ↓𝑑 : 𝐵 ↠ 𝐴 is surjective and both preserve bottom

elements, explaining that we call 𝑑 : 𝐴 ◁ 𝐵 an embedding-projection pair. Note that to highlight the

connection between ep-pairs and parametricity, we present a definition of ep-pairs which makes

use of a relation. Assuming propositional and function extensionality, being an ep-pair is a property

of the underlying relation: there is at most one pair (↑ 𝑑 , ↓𝑑) representing the underlying relation

of 𝑑 .

Posetal families. By monotonicity, a family 𝐵 : 𝐴 → □ over a poset 𝐴 gives rise not only to a

poset 𝐵 𝑎 for each 𝑎 ∈ 𝐴, but also to ep-pairs 𝐵𝑎,𝑎′ : 𝐵 𝑎 ◁ 𝐵 𝑎′ for each 𝑎 ⊑𝐴 𝑎′. These ep-pairs
need to satisfy functoriality conditions

𝐵𝑎,𝑎 = ⊑𝐵 𝑎
and 𝐵𝑎,𝑎′′ = 𝐵𝑎′,𝑎′′ ◦ 𝐵𝑎,𝑎′ whenever 𝑎 ⊑𝐴 𝑎′ ⊑𝐴 𝑎′′.

In particular, this ensures that heterogeneous transitivity is well defined:

𝐵𝑎,𝑎′ (𝑏, 𝑏 ′) ∧ 𝐵𝑎′,𝑎′′ (𝑏 ′, 𝑏 ′′) ⇒ 𝐵𝑎,𝑎′′ (𝑏,𝑏 ′′).

Dependent products. Given a poset 𝐴 and a family 𝐵 over 𝐴, we can form the poset Π
mon 𝐴𝐵 of

monotone dependent functions from 𝐴 to 𝐵, equipped with the pointwise order. Its inhabitants

are dependent functions 𝑓 : Π(𝑎 : 𝐴).𝐵 𝑎 such that 𝑎 ⊑𝐴 𝑎′⇒𝐵𝑎,𝑎′ (𝑓 𝑎) (𝑓 𝑎′). Moreover, given

ep-pairs 𝑑𝐴 : 𝐴 ◁ 𝐴′
and 𝑑𝐵 : 𝐵 ◁ 𝐵′

, we can build an induced ep-pair 𝑑Π : Π
mon 𝐴𝐵 ◁ Π

mon 𝐴′ 𝐵′

with underlying relation

𝑑Π (𝑓 , 𝑓 ′) := 𝑑𝐴 (𝑎, 𝑎′) ⇒ 𝑑𝐵 (𝑓 𝑎, 𝑓 ′ 𝑎′),
↑ 𝑑Π 𝑓 := ↑𝑑𝐵 ◦ 𝑓 ◦ ↓ 𝑑𝐴 and ↓ 𝑑Π 𝑓 := ↓𝑑𝐵 ◦ 𝑓 ◦ ↑ 𝑑𝐴 .

The general case where 𝐵 and 𝐵′
actually depends on 𝐴,𝐴′

is obtained with similar formulas, but a

larger amount of data is required to handle the dependency: we refer to the accompanying Agda

development for the details.

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

Gradualizing the Calculus of Inductive Constructions 1:41

Inductive types. Generalizing the case of natural numbers, the order on an arbitrary extended

inductive type 𝐼 uses the following scheme:

(1) ✠𝐼 is below any element,

(2) ?𝐼 ⊑𝐼 ?𝐼 ,
(3) 𝑐 t ⊑𝐼 ?𝐼 whenever 𝑡𝑖 ⊑𝑋𝑖 ?𝑋𝑖

for all 𝑖

(4) each constructor 𝑐 is monotone with respect to the order on its arguments.

Similarly to dependent product, an ep-pair X ◁ X′
between the parameters of an inductive type 𝐼

induces an ep-pair 𝐼 X ◁ 𝐼 X′
.

6.3 Microcosm: the Monotone Unknown Type ?

In order to build the interpretation ? of the unknown type in the monotone model, we equip the

extended dependent sum Σ̃(ℎ : H𝑖) .Germ𝑖 ℎ from the discrete model with the precision relation

generated by the rules:

✠? ⊑ 𝑧 ?? ⊑ ??
𝑥 ⊑Germ ℎ 𝑥 ′

(ℎ;𝑥) ⊑ (ℎ;𝑥 ′)
𝑥 ⊑Germ ℎ ?Germ ℎ

(ℎ;𝑥) ⊑ ??
(1)

These rules ensure that the errors ✠? and ?? are respectively the smallest and biggest elements of

Σ̃(ℎ : H𝑖).Germ𝑖 ℎ. Non-error elements are comparable only if they have the same head constructor

ℎ and if so are compared according to the interpretation of that head constructor as an ordered

type Germ ℎ .

In order to globally satisfy G, ? should admit an ep-pair 𝑑ℎ : Germ𝑖 ℎ ◁ ?𝔲𝑖 whenever we have
a head constructor ℎ ∈ H𝑖 such that Germ𝑖 ℎ ⊑ ?𝔲𝑖 . Embedding an element 𝑥 ∈ Germℎ by

↑𝑑ℎ 𝑥 = (ℎ;𝑥) and projecting out of Germℎ by the following equations form a reasonable candidate.

↓𝑑ℎ (ℎ′, 𝑥) =
{
𝑥 if ℎ = ℎ′

✠Germℎ otherwise

↓𝑑ℎ ? = ?Germℎ, ↓𝑑ℎ ✠ = ✠Germℎ .

Note that we rely on H having decidable equality to compute the first case of ↓ 𝑑ℎ . Moreover ↑𝑑ℎ⊣↓𝑑ℎ
should be adjoints; in particular, the following precision relation needs to hold:

✠Germℎ ⊑Germ ℎ ↓ 𝑑ℎ✠ ⇐⇒ (ℎ,✠Germℎ) = ↑𝑑ℎ ✠Germℎ ⊑? ✠
?

Since ⊑?
should be antisymmetric, this is possible only if (ℎ,✠Germℎ) and ✠?

are identified in ?.

Finally, we define ? to be the quotient of Σ̃(ℎ : H).Germ ℎ identifying ✠
?
and (ℎ,✠Germℎ). The

precision relation described above descends on the quotient as well as ↑ 𝑑ℎ and ↓ 𝑑ℎ , effectively

giving rise to the required ep-pair 𝑑ℎ .

6.4 Realization of the Monotone Universe Hierarchy
Following the discrete model, the monotone universe hierarchy is also implemented through an

inductive-recursive datatype of codes U𝑖 together with a decoding function El : U𝑖 → □ presented

in Fig. 17. The precision relation ⊑ : U𝑖 → U𝑗 → □ presented below is an order (Theorem 25)

on this universe hierarchy. The “diagonal” inference rules, providing evidence for relating type

constructors from CIC, coincide with those of binary parametricity [Bernardy et al. 2012]. Outside

the diagonal, ✠ is placed at the bottom. More interestingly, the derivation of a precision proof

𝐴 ⊑ ?? provides a unique decomposition of 𝐴 through iterated germs directed by the relevant head

constructors. For instance, in the gradual systems where 𝑐Π (𝑠Π (𝑖, 𝑗)) = max(𝑖, 𝑗), the derivation of

(𝔫𝔞𝔱 → 𝔫𝔞𝔱) → 𝔫𝔞𝔱 ⊑ ? canonically decomposes as:

(𝔫𝔞𝔱→𝔫𝔞𝔱)→𝔫𝔞𝔱 ⊑ (?→?)→𝔫𝔞𝔱 ⊑ ?→? ⊑ ?

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

1:42 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

Monotone universes U𝑖 and decoding function El : U𝑖 → □ (cases distinct from Fig. 13)

𝐴 ∈ U𝑖 𝐵 ∈ Π
mon (𝑎 : El𝐴) .U𝑗

π𝐴𝐵 ∈ U𝑠Π (𝑖, 𝑗)
El (π𝐴𝐵) = Π

mon (𝑎 : El𝐴). El(𝐵 𝑎) El ? = ?

Precision order ⊑ on the universes (where 𝑖 ≤ 𝑗)

𝔫𝔞𝔱-⊑

𝔫𝔞𝔱𝑖 ⊑ 𝔫𝔞𝔱 𝑗

?-⊑

?
𝑖 ⊑ ?

𝑗

𝔲-⊑

𝔲𝑖
𝑘
⊑ 𝔲

𝑗

𝑘

✠-⊑

✠𝑖 ⊑ 𝐴 𝑗

π-⊑
𝐴 ⊑ 𝐴′ 𝑎 : El𝐴, 𝑎′ : El𝐴′, 𝑎𝜖 : 𝑎 ⊑𝐴 𝐴′ 𝑎

′ ⊢ 𝐵 𝑎 ⊑ 𝐵′ 𝑎′

π𝐴𝐵 ⊑ π𝐴′ 𝐵′

H-⊑
ℎ = head𝐴𝑖 ∈ H𝑖 𝐴 ⊑ Germ𝑗 ℎ

𝐴𝑖 ⊑ ?
𝑗

Precision on terms ⊑
𝐴 𝐵

(presupposing 𝐴 ⊑ 𝐵)

∗ ⊑✠ 𝐴
𝑎

𝑥 ⊑𝐴 𝑦

𝑥 ⊑𝐴 𝐴 𝑦

𝑎 ⊑
𝐴 Germ(head𝐴) 𝑥

𝑎 ⊑
𝐴 ?

[head𝐴, 𝑥]
𝑥 ⊑Germ𝑖 ℎ 𝑥 ′

[ℎ, 𝑥] ⊑
?
𝑖

?
𝑗 [ℎ, 𝑥 ′]

𝑎 : El𝐴, 𝑎′ : El𝐴′, 𝑎𝜖 : 𝑎 ⊑𝐴 𝐴′ 𝑎
′ ⊢ 𝑓 𝑎 ⊑𝐵 𝑎 𝐵′ 𝑎′ 𝑓

′ 𝑎′

𝑓 ⊑π𝐴𝐵 π𝐴′ 𝐵′ 𝑓
′ 𝑎 ⊑

𝐴 ?
?? ✠𝐴 ⊑

𝐴 ?
𝑧

Fig. 17. Monotone universe of codes and precision

This unique decomposition is at the heart of the reduction of the cast operator given in Fig. 5, and

it can be described informally as taking the path of maximal length between two related types
15
.

Such a derivation of precision 𝐴 ⊑ 𝐵 gives rise through decoding to ep-pairs El𝜀 (𝐴⊑𝐵) : 𝐴 ◁ 𝐵,

with underlying relation noted ⊑
𝐴 𝐵

: El𝐴 → El𝐵 → □.
It is interesting to observe what happens when 𝑐Π (𝑠Π (𝑖, 𝑗)) ≠ max(𝑖, 𝑗), that is in the non-gradual

setting of CastCICN
, on an example,:

𝔫𝔞𝔱→𝔫𝔞𝔱 @ ✠ = Germ0 Π ⊑ ?

So 𝔫𝔞𝔱→𝔫𝔞𝔱 is not lower than ? in that setting.

One crucial point of the monotone model is the mutual definition of codes U𝑖 together with the

precision relation, particularly salient on codes for Π-types: in π𝐴𝐵, 𝐵 : El𝐴 → U𝑖 is a monotone

function with respect to the order on El𝐴 and the precision on U𝑖 . This intertwining happens

because the order is required to be reflexive, a fact observed previously by Atkey et al. [2014] in the

similar setting of reflexive graphs. Indeed, a dependent function 𝑓 : Π(𝑎 : El𝐴). El (𝐵 𝑎) is related
to itself 𝑓 ⊑π𝐴𝐵 π𝐴𝐵

𝑓 if and only 𝑓 is monotone.
Theorem 25 (Properties of the universe hierarchy).

(1) ⊑ is reflexive, transitive, antisymmetric and irrelevant so that (U𝑖 , ⊑) is a poset.
(2) U𝑖 has a bottom element ✠𝑖 and a top element ?𝑖 ; in particular, 𝐴 ⊑ ?

𝑖 for any 𝐴 : U𝑖 .
(3) El : U𝑖 → □ is a family of posets over U𝑖 with underlying relation ⊑

𝐴 𝐵
whenever 𝐴 ⊑ 𝐵.

(4) U𝑖 and El𝐴 for any 𝐴 : U𝑖 verify UIP16: the equality on these types is irrelevant.
15
This decomposition is already present in [New and Ahmed 2018] and to be contrasted with the approaches based on

AGT [Garcia et al. 2016] that tend to pair values with most static witness of their type, i.e. canonical path of minimal length.

16
Uniqueness of Identity Proofs; in HoTT parlance, U𝑖 and El𝐴 are hSets.

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

Gradualizing the Calculus of Inductive Constructions 1:43

Proof sketch. All these properties are proved mutually, first by strong induction on the universe

levels, then by induction on the codes of the universe or the derivation of precision. We only prove

point (1) and refer to the Agda development for detailled formal proofs.

For reflexivity, all cases are immediate but for π𝐴𝐵: the induction hypothesis provides 𝐴 ⊑ 𝐴

and by point (3) El𝜀 (𝐴 ⊑ 𝐴) = ⊑𝐴
so we can apply the monotonicity of 𝐵.

For anti-symmetry, assuming 𝐴 ⊑ 𝐵 and 𝐵 ⊑ 𝐴, we prove by induction on the derivation of

𝐴 ⊑ 𝐵 and case analysis on the other derivation that𝐴 ≡ 𝐵. Note that we never need to consider the

rule H-⊑. The case Π-⊑ holds by induction hypothesis and because the relation 𝐴 ⊑𝐴 is reflexive.

All the other cases follow from antisymmetry of the order on universe levels.

For transitivity, assuming 𝐴𝐵 : 𝐴 ⊑ 𝐵 and 𝐵𝐶 : 𝐵 ⊑ 𝐶 , we prove by induction on the (lexico-

graphic) pair (𝐴𝐵, 𝐵𝐶) that 𝐴 ⊑ 𝐶:

Case 𝐴𝐵 = ?-⊑, necessarily 𝐵𝐶 = ?-⊑, we conclude by ?-⊑.
Case 𝐴𝐵 = H-⊑, necessarily 𝐵𝐶 = ?-⊑, ?𝑗 ⊑ ?

𝑗 ′
, we can thus apply the inductive hypothesis to

𝐴 ⊑ Germ𝑗 head𝐴 and Germ𝑗 head𝐴 ⊑ Germ𝑗 head𝐴 in order to conclude with H-⊑.
Case 𝐴𝐵 = ✠-⊑, we conclude immediately by ✠-⊑.
Case 𝐴𝐵 = 𝔫𝔞𝔱-⊑, 𝐵𝐶 = 𝔫𝔞𝔱-⊑ we conclude with 𝔫𝔞𝔱-⊑.
Case 𝐴𝐵 = 𝔲-⊑, 𝐵𝐶 = 𝔲-⊑ immediate by 𝔲-⊑.
Case 𝐴𝐵 = π-⊑, 𝐵𝐶 = π-⊑ by hypothesis we have

𝐴 = π𝐴d𝐴c 𝐵 = π 𝐵d 𝐵c 𝐶 = π𝐶d𝐶c 𝐴d ⊑ 𝐵d 𝐵d ⊑ 𝐶d

𝐴𝐵c
: ∀𝑎 𝑏, 𝑎 ⊑

𝐴d 𝐵d
𝑏 → 𝐴c 𝑎 ⊑ 𝐵c 𝑏 𝐵𝐶c

: ∀𝑏 𝑐, 𝑏 ⊑
𝐵d 𝐶d

𝑐 → 𝐵c 𝑏 ⊑ 𝐶c 𝑐

By induction hypothesis applied to 𝐴d ⊑ 𝐵d
and 𝐵d ⊑ 𝐶d

, the domains of the dependent

product are related 𝐴d ⊑ 𝐶d
. For the codomains, we need to show that for any 𝑎 : 𝐴d, 𝑐 : 𝐶d

such that 𝑎 ⊑
𝐴d 𝐶d

𝑐 we have 𝐴c 𝑎 ⊑ 𝐶c 𝑐 . By induction hypothesis, it is enough to prove

that 𝐴c 𝑎 ⊑ 𝐵c (↑𝐴d⊑𝐵d 𝑎) and 𝐵c (↑𝐴d⊑𝐵d 𝑎) ⊑ 𝐶c 𝑐 . The former follows from 𝐴𝐵c
applied to

𝑎 ⊑
𝐴d 𝐵d

↑𝐴d⊑𝐵d 𝑎 ⇔ 𝑎 ⊑𝐴d ↓ ↑ 𝑎 ⇔ 𝑎 ⊑𝐴d

𝑎 which holds by reflexivity, and the latter follows

from 𝐵𝐶c
applied to ↑𝐴d⊑𝐵d 𝑎 ⊑

𝐵d 𝐶d
𝑐 ⇔ 𝑎 ⊑

𝐴d 𝐶d
𝑐 .

Otherwise, we are left with the cases where 𝐴𝐵 = 𝔫𝔞𝔱-⊑, π-⊑ or 𝔲-⊑ and 𝐵𝐶 = H-⊑, we apply
the inductive hypothesis to 𝐴𝐵 and 𝐵 ⊑ Germ𝑗 head𝐵 in order to conclude with H-⊑.

So ⊑ is a reflexive, transitive and antisymmetric relation, we are only left with proof-irrelevance,

that for any 𝐴, 𝐵 there is at most one derivation of 𝐴 ⊑ 𝐵. Since the conclusion of the rules do

not overlap, we only have to prove that the premises of each rules are uniquely determined by

the conclusion. This is immediate for π-⊑. For H-⊑, 𝑐 = head𝐴 and 𝑗 ′ = pred 𝑗 are uniquely

determined by the conclusion so it holds too. □

6.5 Monotone Model of CastCIC↑

The monotone translation {−} presented in Fig. 18 brings together the monotone interpretation

of inductive types (N), dependent products, the unknown type ? as well as the universe hierar-

chy. Following the approach of [New and Ahmed 2018], casts are derived out of the canonical

decomposition through the unknown type using the property (2) from Theorem 25:

{⟨𝐵 ⇐ 𝐴⟩ 𝑡} :=↓
El𝜀 {𝐵 } ⊑? ↑El𝜀 {𝐴} ⊑? {𝑡}

Note that this definition formally depends on a chosen universe level 𝑗 for ?𝑗 , but the resulting

operation is independent of this choice thanks to the section-retraction properties of ep-pairs.

The difficult part of the model, the monotonicity of cast, thus holds by design. However, as a

consequence the translation does not validate the reduction rules of CastCIC on the nose: cast

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

1:44 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

Monotone translation of contexts

{| · |} := ·
{| · |}𝜀 := ·

{| Γ, 𝑥 : 𝐴 |} := {| Γ |}, 𝑥 : {|𝐴 |}
{| Γ, 𝑥 : 𝐴 |}𝜀 := {| Γ |}𝜀 , 𝑥0 : {|𝐴 |}

0
, 𝑥1 : {|𝐴 |}

1
, 𝑥𝜀 : {|𝐴 |}𝜀 𝑥0 𝑥1

Monotone translation on terms and types

{|𝐴 |} := El {𝐴} : Poset

{𝑥} := 𝑥

{□𝑖 } := 𝔲𝑖

{Π𝑥 : 𝐴.𝐵} := π {𝐴} {𝜆 𝑥 : 𝐴.𝐵}𝜀
{𝑡 𝑢} := {𝑡} {𝑢}
{𝜆 𝑥 : 𝐴.𝑡} := 𝜆 𝑥 : {|𝐴 |} .{𝑡}
{N} := 𝔫𝔞𝔱

{?𝐴} := ?{𝐴}
{err𝐴} := err{𝐴}
{⟨𝐵 ⇐ 𝐴⟩ 𝑡} := ↓

El𝜀 {𝐵 } ⊑? ↑El𝜀 {𝐴} ⊑? {𝑡}

{|𝐴 |}𝜀 := El𝜀 {𝐴}𝜀 : {|𝐴 |} ◁ {|𝐴 |}

{𝑥}𝜀 := 𝑥𝜀
{□𝑖 }𝜀 := 𝔲-⊑𝑖
{Π𝑥 : 𝐴.𝐵}𝜀 := π-⊑ {𝐴}𝜀 {𝜆 𝑥 : 𝐴.𝐵}𝜀
{𝑡 𝑢}𝜀 := {𝑡}𝜀 {𝑢}0

{𝑢}
1
{𝑢}𝜀

{𝜆 𝑥 : 𝐴. 𝑡}𝜀 := 𝜆(𝑥0 𝑥1 : {|𝐴 |}) (𝑥𝜀 : {|𝐴 |}𝜀 𝑥0 𝑥1). {𝑡}𝜀
{N}𝜀 := 𝔫𝔞𝔱-⊑
{?𝐴}𝜀 := refl {|𝐴 |} ?{𝐴}
{err𝐴}𝜀 := refl {|𝐴 |} err{𝐴}
{⟨𝐵 ⇐ 𝐴⟩ 𝑡}𝜀 := ↓

El𝜀 {𝐵 } ⊑?-mon ↑
El𝜀 {𝐴} ⊑?-mon {𝑡}𝜀

{−}𝛼 and {| − |}𝛼 where 𝛼 ∈ {0, 1} stand for the variable-renaming counterparts of {−} and {| − |} .
Fig. 18. Translation of the monotone model

can get stuck on type variables eagerly.
17
These rules still hold propositionally though so that we

have at least a model in an extensional variant ECIC18
of CIC.

Lemma 26. If Γ ⊢cast 𝑡 { 𝑢 then there exists a CIC term 𝑒 such that {Γ} ⊢ 𝑒 : {𝑡} = {𝑢} .
We can further enhance this result using the fact that we assume functional extensionality in our

target and can prove that the translation of all our types satisfy UIP. Under these assumptions, the

conservativity results of Hofmann [1995] and Winterhalter et al. [2019] apply, so we can recover a

translation targeting CIC.
Theorem 27. The translation {−} of Fig. 18 extends to a model of CastCIC into CIC extended with
induction-recursion and functional extensionality: if Γ ⊢cast 𝑡 : 𝐴 then {| Γ |} ⊢IR {𝑡} : {|𝐴 |} .

It is unlikely that the hypothesis that we make on the target calculus are optimal. We conjecture

that a variation of the translation described here could be developed in CIC extended only with

induction-induction to describe the intensional content of the codes U in the universe, and strict

propositions.

6.6 Back to Graduality
The precision order equipping each types of the monotone model can be reflected back to CastCIC,
giving rise to the propositional precision judgment

Γ ⊢cast 𝑡 ⊑𝑇 𝑆 𝑢 := ∃𝑒, {| Γ |}𝜀 ⊢IR 𝑒 : {𝑡} ⊑{𝑇 } {𝑆 } {𝑢} .
By the properties of the monotone model (Theorem 25), there is at most one witness up to propo-

sitional equality in the target that this judgment hold. This precision relation bears a similar

relationship to the structural precision ⊑𝛼 as propositional equality with definitional equality in

CIC. On the one hand, the propositional precision allows to prove precision statement inside the

target type theory, for instance we can show by a straightforward case analysis on 𝑏 : B that

𝑏 : B ⊢cast if 𝑏 then 𝐴 else 𝐴 ⊑□ □ 𝐴, a judgment that does not hold for syntactic precision.

17
An analysis of the correspondence between the discrete and monotone models can be found in Appendix B.

18ECIC enjoy equality reflection: two terms are definitionally equal whenever they are propositionally so.

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

Gradualizing the Calculus of Inductive Constructions 1:45

In particular, propositional precision is stable by propositional equality, and a fortiori it is invariant

by conversion in CastCIC: if 𝑡 ≡ 𝑡 ′, 𝑢 ≡ 𝑢 ′
and Γ ⊢cast 𝑡 ⊑

𝑇 𝑆
𝑢 then Γ ⊢cast 𝑡 ′ ⊑

𝑇 𝑆
𝑢 ′
. On the other

hand, the propositional precision relation is not decidable, thus not suited for typechecking where

structural precision has to be used instead.

Lemma 28 (Compatibility of structural and propositional precision).

(1) If ⊢cast 𝑡 : 𝑇 , ⊢cast 𝑢 : 𝑆 and ⊢ 𝑡 ⊑𝛼 𝑢 then ⊢cast 𝑡 ⊑
𝑇 𝑆

𝑢.
(2) Conversely, under the assumption that the meta-theory ⊢IR is logically consistent, if ⊢cast 𝑣1 ⊑B B

𝑣2 for normal forms 𝑣1, 𝑣2, then ⊢ 𝑣1 ⊑𝛼 𝑣2.
Proof. For the first statement, we strenghen the inductive hypothesis, proving by induction on the

derivation of structural precision the stronger statement:

If Γ ⊢ 𝑡 ⊑𝛼 𝑢, Γ1 ⊢cast 𝑡 : 𝑇 and Γ2 ⊢cast 𝑢 : 𝑈 then there exists a term 𝑒 such that

{|Γ |} ⊢IR 𝑒 : {𝑡} ⊑{𝑇 } {𝑈 } {𝑢} .
The cases for variables (Diag-Var) and universes (Diag-Univ) hold by reflexivity. The cases involv-

ing ? (Ukn, Ukn-Univ) and err (Err, Err-Lambda) amount to {?} and {err} being respectively
interpreted as top and bottom elements at each type. For Cast-R, we have 𝑢 = ⟨𝐵′ ⇐ 𝐴′⟩ 𝑡 ′,
𝐵′ = 𝑈 , and by induction hypothesis {| Γ |} ⊢ 𝑒 : {𝑡} ⊑{𝑇 } {𝐴′ } {𝑡 ′} and {| Γ |} ⊢ {𝑇 } ⊑ {𝐵′} . Let
𝑗 be a universe level such that {𝐴′} ⊑ ?

𝑗
, {𝐵′} ⊑ ?

𝑗
. By (heterogeneous) transitivity of preci-

sion applied to 𝑒 and the proof of {|𝐺 |} ⊢ _ ⊢ {𝑡} ⊑{𝐴′ } ?𝑗 ↑{𝐴′ } ⊑?𝑗 {𝑡 ′} , we obtain a proof 𝑒 ′ of

{|Γ |} ⊢ 𝑒 ′ : {𝑡} ⊑{𝑇 } {𝐵′ }↑{𝐴′ } ⊑?𝑗 {𝑡 ′} and by adjunction a proof 𝑒 ′′ of

{|Γ |} ⊢ 𝑒 : {𝑡} ⊑{𝑇 } {𝐵′ }↓{𝐵′ } ⊑?𝑗↑{𝐴′ } ⊑?𝑗 {𝑡 ′} ≡ {⟨𝐵′ ⇐ 𝐴′⟩ 𝑡 ′} ≡ {𝑢} .

The case Cast-L proceed in an entirely symmetric fashion since we only used the adjunction laws.

All the other cases, being congruence rules with respect to some term constructor, are consequences

of the monotonicity of said term constructor with a direct application of the inductive hypothesis

and inversion of the typing judgments.

For the second statement, by progress (Theorem 8), both 𝑣1 and 𝑣2 are canonical boolean, so we

can proceed by case analysis on the canonical forms 𝑣1 and 𝑣2 that are either true, false, errB

or ?B, ruling out the impossible cases by inversion of the premise ⊢cast 𝑣1 ⊑B B 𝑣2 and logical

consistency of ⊢IR. Out of the 16 possible cases, we obtain that only the following 9 cases are

possible:

⊢cast errB ⊑B BerrB ⊢cast errB ⊑B Btrue ⊢cast errB ⊑B Bfalse
⊢cast errB ⊑B B?B ⊢cast true ⊑B Btrue ⊢cast true ⊑B B?B

⊢cast false ⊑B Bfalse ⊢cast false ⊑B B?B ⊢cast ?B ⊑B B?B

For each case, a corresponding rule exists for the structural precision, proving that ⊢ 𝑣1 ⊑𝛼 𝑣2. □

We conjecture that the target for GCIC↑
is consistent, that is the assumed inductive-recursive

definition for the universe does not endanger consistency. A direct corollary of this lemma is that

GCIC↑
satisfies computational graduality, which is the key missing point of §5 and the raison d’etre

of the monotone model.

Theorem 29 (Graduality for GCIC↑
). GCIC↑ is gradual: for Γ ⊢cast 𝑡 : 𝑇, Γ ⊢cast 𝑡 ′ : 𝑇 and

Γ ⊢cast 𝑢 : 𝑈

DGG: if Γ ⊢cast 𝑡 ⊑
𝑇 𝑇

𝑡 ′ then 𝑡 ⊑𝑜𝑏𝑠 𝑡 ′;
Ep-pairs: if Γ ⊢cast 𝑇 ⊑□ □ 𝑈 then

Γ ⊢cast ⟨𝑆 ⇐ 𝑇 ⟩ 𝑡 ⊑𝑆 𝑆 𝑢 ⇔ Γ ⊢cast 𝑡 ⊑𝑇 𝑆 𝑢 ⇔ Γ ⊢cast 𝑡 ⊑𝑇 𝑇 ⟨𝑇 ⇐ 𝑆⟩ 𝑢,

Furthermore, Γ ⊢cast ⟨𝑈 ⇐ 𝑇 ⟩ ⟨𝑇 ⇐𝑈 ⟩ 𝑡 ⊒⊑ 𝑡 .

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

1:46 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

Proof. DGG: Let C[−] : (Γ ⊢ 𝑇) ⇒ (⊢ B) be an observation context, by monotonicity ⊢cast
C[𝑡] ⊑B B C[𝑡 ′]. Let ⊢cast 𝑣, 𝑣 ′ : B be the normal forms of C[𝑡] and C[𝑡 ′] (which exist

by Theorem 9), since propositional precision is invariant by reduction ⊢cast 𝑣 ⊑B B 𝑣 ′.
Lemma 28.(2) ensures that ⊢ 𝑣 ⊑𝛼 𝑣 ′ and we conclude using Theorem 23.

Ep-pairs: The fact that propositional precision induces an adjunction is a direct reformulation of

the fact that the relation ⊑{𝑇 } {𝑆 } underlies an ep-pair (Theorem 25.(3)), using the fact that

there is at most one upcast and downcast between two types. Similarly, the equi-precision

statement is an application of the first point to the proofs{
{| Γ |} ⊢IR _ : {𝑡} ⊑{𝑇 } {𝑇 } {⟨𝑆 ⇐ 𝑇 ⟩ ⟨𝑇 ⇐ 𝑆⟩ 𝑡}
{| Γ |} ⊢IR _ : {⟨𝑆 ⇐ 𝑇 ⟩ ⟨𝑇 ⇐ 𝑆⟩ 𝑡} ⊑{𝑇 } {𝑇 } {𝑡}

that hold because ↓ {𝑇 } ⊑{𝑆 }◦ ↑ {𝑇 } ⊑{𝑆 } = id in the monotone model.

□

In particular, combining Lemma 28.(1) with Theorem 29, we obtain the retract equation: that

is for structurally related types ⊢ 𝑇 ⊑𝛼 𝑈 , a term ⊢cast 𝑡 : 𝑇 is observationnaly equivalent to

⟨𝑈 ⇐ 𝑇 ⟩ ⟨𝑇 ⇐𝑈 ⟩ 𝑡 .

6.7 Graduality of GCICG

The monotone model presented in the previous sections can be related to the pointed model of

New and Licata [2020, Section 6.1]. As noted there, such a simple model is limited to first order

functions in the simply-typed setting. In our dependent setting featuring a universe hierarchy, we

can mitigate this limitation, yielding a model for CIC↑
.

However, this model does not allow us to account for the non-terminating variant GCICG
. In

order to go beyond this limitation, we explain how to adapt the Scott model of New and Licata

[2020, Section 6.2] based on pointed 𝜔-cpo to our setting. Types are interpreted as pointed 𝜔-

cpos, that is as orders (𝐴, ⊑) equipped with a smallest element ✠𝐴 ∈ 𝐴 and an operation sup𝑖 𝑎𝑖
computing the suprema of countable ascending chains (𝑎𝑖)𝑖∈𝜔 ∈ 𝐴𝜔

. Functions 𝑓 : 𝐴 → 𝐵 between

types are interpreted as monotone 𝜔-continuous maps, that is, for any ascending chain (𝑎𝑖)𝑖 ,
sup𝑖 𝑓 𝑎𝑖 = 𝑓 (sup𝑖 𝑎𝑖). In the same spirit, an ep-pair 𝑑 : 𝐴 ◁ 𝐵 should have its two representing

functions preserve suprema of ascending chains.
19
Following the seminal work of Scott [1976], the

unknown type ?𝑖 can be constructed as a solution to the recursive equation:

?𝑖 � ˜N + (?𝑖 → ?𝑖) + U0 + . . . + U𝑖

The key technical property that allows us to extend the model from the previous sections to

𝜔-cpos is that the universe can be extended with such a structure. This structure relies on the

folkflore lemma that the category of 𝜔-cpos and ep-pairs admit countable sequential colimits that

are furthermore preserved by the constructions on the universe. The same facts are also underlying

the construction of ?𝑖 .
Adapting the notion of precision Γ ⊢cast 𝑡 ⊑

𝑇 𝑆
𝑢 of the monotone model to use the order induced

by this model, and by using a compatibility with structural precision together with Theorem 23,

we can derive graduality for GCICG
.

Theorem 30 (Graduality for GCICG
). GCICG is gradual for the precision induced by the model based

on 𝜔-cpos.

19
The left adjoint automatically preserves suprema, not the right one

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

Gradualizing the Calculus of Inductive Constructions 1:47

7 DEALINGWITH EQUALITY
Up to now, we have left aside a very important aspect, namely, how to deal with equality in a

gradual dependent type theory.

7.1 Indexed Inductives and Equality
In dependent type theories with inductive types such as CIC, inductive types can be indexed,
meaning that each constructor can produce values with different type indices. The canonical

example is of course the length-indexed type of lists, vect A n (see definition in Example 1).

In a gradual dependent type theory, the monotonicity of constructors with respect to precision

raises a non-trivial challenge: by monotonicity, we should have vect A 0 ⊑ vect A ?N, and by

graduality (G), the roundtrip nil :: vect A ?N :: vect A 0 should be in equi-precision with nil.
However, no constructor of vect can possibly inhabit vect A ?N! Therefore, by safety (S), the only
inhabitant of vect A ?N is ? (omitting its type): too much precision is lost in the embedding to

recover nil in the projection.

A systematic way to expose a constructor yielding potentially unknown indices is to encode these

indices with additional parameters and explicit equalities to capture the constraints on indices:
20

Inductive vect𝑝 (A : □) (n : N) : □ :=

| nil𝑝 : 0 = n → vect𝑝 A n

| cons𝑝 : A → forall m : N, S m = n → vect𝑝 A m → vect𝑝 A n.

With this definition, the nil𝑝 constructor can legitimately be used to inhabit vect𝑝 A ?N, provided

we have an inhabitant (possibly ?) of 0 = n. Therefore, the challenge of supporting indexed inductive
types gradually is reduced to that of one indexed family, equality.

In CIC, propositional equality eq A x y, noted x = y, corresponds to the Martin-Löf identity

type [Martin-Löf 1975], with a single constructor refl for reflexivity, and the elimination principle

known as J:

Inductive eq (A : □) (x : A) : A → □ := refl : eq A x x .

J : forall (A : □) (P : A → □) (x : A) (t : P x) (y : A) (e : x = y), P y

together with the definitional equality:

J A P x t x (refl A x) ≡ t.

By G, whenever x ⊑ y, we have x = x ⊑ x = y, so going from x = x to x = y should not fail.

This in turn means that there has to be a canonical inhabitant of x = y whenever x ⊑ y. If precision
were internalized in CIC, as equality is, this would mean that x ⊑ y iff x = y, because by J, x = y
would imply x ⊑ y. In other words, precision ought to supplant (eq) equality. The problem is

that by G, precision must have an extensional flavor, akin to parametricity. Internalizing para-

metricity [Bernardy et al. 2015], extensional equality (with univalence [Cohen et al. 2015] or with

uniqueness of identity proof [Altenkirch et al. 2019]) or even mixing both [Cavallo and Harper

2019], is an active area of research that is very likely to take us quite far from CIC.
Another option is to treat precision as an external relation that is used metatheoretically and

implemented via a decision procedure, just as conversion in CIC is external, and decided by

reduction. The problem here is that extensionality is not decidable—likewise, in CIC, conversion
does not satisfy extensionality, i.e., f n ≡ g n for any closed term n does not imply that f ≡ g.
A gradual dependent type theory therefore needs to address this conundrum.

20
This technique has reportedly be coined “fording” by Conor McBride [McBride 1999, §3.5], in allusion to the Henry Ford

quote “Any customer can have a car painted any color that he wants, so long as it is black.”

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

1:48 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

7.2 Equality in GCIC

We propose a resolution to the treatment of equality that allows us to remain close to CIC, and is

compatible with all four properties, in particular S and G.

If we have a proof e : a = b, then e :: a = ?A :: a = b reduces in CastCIC to e, so we do have a

proper embedding-projection. However, due to the conundrum exposed previously, in the case

of an invalid gain of precision with respect to an equality, such as refl A a :: a = ?A :: a = b, with
a ≠ b, we are not able in general to eagerly detect the error, and so we obtain a fake inhabitant of

a = b, in addition to the ones obtained with err and ?. This is because detecting the error at this
stage amounts to deciding propositional equality in CIC, which is not possible in general.

Technically, we (grossly) over-approximate equality/precision inGCICwith a universal inductive

relation in CastCIC:

Inductive universal (A : □) (x y : A) : □ := all : universal A x y .

In particular, refl A x in GCIC is interpreted as all A x x in CastCIC. Importantly, we restrict

the use of this degenerate relation through its elimination principle, by defining it as casting:

J ' := 𝜆 A P x t y e ⇒ ⟨(P x)<= (P y)⟩ t .

J in GCIC is interpreted as J ' in CastCIC. A drawback is that J ' A P x t x (all A x x) is defini-
tionally equal to t only in a closed context; otherwise in general, it is just propositionally equal.

This is because the cast operator may be blocked on types containing variables.

Decidable equalities. Finally, we highlight that the decidable forms of equality, although equivalent

to the identity type eq, have a better behavior in this setting thanks to their computational content.

While this is obviously not a novel observation, the impact of decidable equality in the gradual

setting is worth highlighting.

For instance, encoding vect as vect𝑝 but using the decidable equality on N eqdec, we obtain
the expected conversions:

nil𝑝 e :: vect𝑝 A ?N :: vect𝑝 A 0 ≡ nil𝑝 e nil𝑝 e :: vect𝑝 A ?N :: vect𝑝 A 1 ≡ errB

whereas using the identity type, we get the following, where the casts are stuck on the variable e:

nil𝑝 e :: vect𝑝 A ?N :: vect𝑝 A 0 ≡ nil𝑝 (e :: 0=?N :: 0=0)

nil𝑝 e :: vect𝑝 A ?N :: vect𝑝 A 1 ≡ nil𝑝 (e :: 0=?N :: 0=1)

Coming back to Example 3, this means that using the encoding of vectors with decidable equality,

then in all three GCIC variants the term:

head ?N (filter N 4 even [0 ; 1 ; 2 ; 3])

typechecks and reduces to 0. Additionally, as expected:

head ?N (filter N 2 even [1 ; 3])

typechecks and fails at runtime. And similarly for Example 4.

8 RELATEDWORK
Bidirectional typing and unification. Our framework uses a bidirectional version of the type system

of CIC. Although this presentation is folklore among type theory specialists [McBride 2019],

the type system of CIC is rarely presented in this way on paper. However, the bidirectional

approach becomes necessary when dealing with unification and elaboration of implicit arguments.

Bidirectional elaboration is a common feature of proof assistant implementations, for instance

[Asperti et al. 2012], as it clearly delineates what information is available to the elaboration system

in the different typing modes. In a context with missing information due to implicit arguments,

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

Gradualizing the Calculus of Inductive Constructions 1:49

those implementations face the undecidable higher order unification [Dowek 2001]. In this error-

less context, the solution must be a form of under-approximation, using complex heuristics [Ziliani

and Sozeau 2017]. Deciding consistency is very close to unification, as observed by Castagna et al.

[2019], but our notion of consistency over-approximates unification, making sure that unifiable

terms are always consistent, relying on errors to catch invalid over-approximations at runtime.

Dependent types with effects. As explain in this paper, introducing the unknown type of gradual

typing also requires–in dependently typed setting–to introduce unknown terms at any type. This

means that a gradual dependent type theory naturally endorses an effectful mechanism which is

similar to having exceptions. This connects GCIC to the literature on dependent types and effects.

Several programming languages mix dependent types with effectful computation, either giving up

on metatheoretical properties, such as Dependent Haskell [Eisenberg 2016], or by restricting the

dependent fragment to pure expressions [Swamy et al. 2016; Xi and Pfenning 1998]. In the context

of dependent type theories, Pédrot and Tabareau [2017, 2018] have leveraged the monadic approach

to type theory, at the price of a weaker form of dependent large elimination for inductive types. The

only way to recover full elimination is to accept a weaker form of logical consistency, as crystallized

by the fire triangle between observable effects, substitution and logical consistency [Pédrot and

Tabareau 2020].

Ordered and directed type theories. The monotone model of CastCIC interpret types as posets

in order to give meaning to the notion of precision. Interpretations of dependent type theories in

ordered structures goes back to various works on domain theoretic and realizability interpretations

of (partial) Martin-Löf Type Theory [Ehrhard 1988; Palmgren and Stoltenberg-Hansen 1990; ?].

More recently, Licata and Harper [2011]; North [2019] extend type theory with directed structures

corresponding to a categorical interpretation of types, a higher version of the monotone model we

consider.

Hybrid approaches. [Ou et al. 2004] present a programming language with separate dependently-

and simply-typed fragments, using arbitrary runtime checks at the boundary. Knowles and Flanagan

[2010] support runtime checking of refinements. In a similar manner, [Tanter and Tabareau 2015]

introduce casts for subset types with decidable properties in Coq. They use an axiom to denote

failure, which breaks weak canonicity. Dependent interoperability [Dagand et al. 2018; Osera et al.

2012] supports the combination of dependent and non-dependent typing through deep conversions.

All these approaches are more intended as programming languages than as type theories, and none

support the notion of (im)precision that is at the heart of gradual typing.

Gradual typing. The blame calculus of Wadler and Findler [2009] considers subset types on

base types, where the refinement is an arbitrary term, as in hybrid type checking [Knowles and

Flanagan 2010]. It however lacks the dependent function types found in other works. Lehmann

and Tanter [2017] exploit the Abstracting Gradual Typing (AGT) methodology [Garcia et al. 2016]

to design a language with imprecise formulas and implication. They support dependent function

types, but gradual refinements are only on base types refined with decidable logical predicates.

Eremondi et al. [2019] also use AGT to develop approximate normalization and GDTL. While being

a clear initial inspiration for this work, the technique of approximate normalization cannot yield a

computationally-relevant gradual type theory (nor was it its intent, as clearly stated by the authors).

We hope that the results in our work can prove useful in the design and formalization of such

gradual dependently-typed programming languages. Eremondi et al. [2019] study the dynamic

gradual guarantee, but not its reformulation as graduality [New and Ahmed 2018], which as we

explain is strictly stronger in the full dependent setting. Finally, while AGT provided valuable

intuitions for this work, graduality as embedding-projection pairs was the key technical driver in

the design of CastCIC.

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

1:50 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

9 CONCLUSION
We have unveiled a fundamental tension in the design of gradual dependent type theories between

conservativity with respect to a dependent type theory such as CIC, normalization, and graduality.

We explore several resolutions of this Fire Triangle of Graduality, yielding three different gradual

counterparts of CIC, each compromising with one edge of the Triangle. We develop the metatheory

of all three variants of GCIC thanks to a common formalization, parametrized by two knobs

controlling universe constraints on dependent product types in typing and reduction.

This work opens a number of perspectives for future work. The delicate interplay between

universe levels and computational behavior of casts begs for a more flexible approach to the

normalizingGCICN
, for instance using gradual universes. The approach based on multiple universe

hierarchies to support logically consistent reasoning about exceptional programs [Pédrot et al.

2019] could be adapted to our setting in order to provide a seamless integration inside a single

theory of gradual features together with standard CIC without compromising normalization. This

could also lead the way to support consistent reasoning about gradual programs in the context of

GCIC. On the more practical side, there is still a lot of challenges ahead in order to implement a

gradual incarnation of GCIC in Coq, possibly parametrized in order to support the different modes

reflecting the three variants develop in this work.

REFERENCES
Thorsten Altenkirch, Simon Boulier, Ambrus Kaposi, and Nicolas Tabareau. 2019. Setoid type theory - a syntactic translation.

In MPC 2019 - 13th International Conference on Mathematics of Program Construction (LNCS, Vol. 11825). Springer, Porto,
Portugal, 155–196. https://doi.org/10.1007/978-3-030-33636-3_7

Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi. 2012. A Bi-Directional Refinement Algorithm

for the Calculus of (Co)Inductive Constructions. Volume 8, Issue 1 (2012). https://doi.org/10.2168/LMCS-8(1:18)2012

Robert Atkey, Neil Ghani, and Patricia Johann. 2014. A relationally parametric model of dependent type theory. In The
41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA,
January 20-21, 2014, Suresh Jagannathan and Peter Sewell (Eds.). ACM, 503–516. https://doi.org/10.1145/2535838.2535852

Felipe Bañados Schwerter, Alison M. Clark, Khurram A. Jafery, and Ronald Garcia. 2020. Abstracting Gradual Typing

Moving Forward: Precise and Space-Efficient. arXiv:2010.14094 [cs.PL]

Felipe Bañados Schwerter, Ronald Garcia, and Éric Tanter. 2016. Gradual Type-and-Effect Systems. Journal of Functional
Programming 26 (Sept. 2016), 19:1–19:69.

Henk Barendregt. 1991. Introduction to Generalized Type Systems. Journal of Functional Programming 1, 2 (April 1991),

125–154.

Henk P. Barendregt. 1984. The Lambda Calculus: Its Syntax and Semantics. North-Holland.
Jean-Philippe Bernardy, Thierry Coquand, and Guilhem Moulin. 2015. A Presheaf Model of Parametric Type Theory.

Electronic Notes in Theoretical Computer Science 319 (2015), 67–82.
Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. 2012. Proofs for free: Parametricity for dependent types. Journal

of Functional Programming 22, 2 (March 2012), 107–152.

Meven Bertrand, Kenji Maillard, Éric Tanter, and Nicolas Tabareau. 2020. https://github.com/pleiad/GradualizingCIC

Gavin Bierman, Erik Meijer, and Mads Torgersen. 2010. Adding Dynamic Types to C
#
. In Proceedings of the 24th European

Conference on Object-oriented Programming (ECOOP 2010) (Lecture Notes in Computer Science, 6183), Theo D’Hondt (Ed.).

Springer-Verlag, Maribor, Slovenia, 76–100.

Rastislav Bodík and Rupak Majumdar (Eds.). 2016. Proceedings of the 43rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL 2016). ACM Press, St Petersburg, FL, USA.

Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. 2017. The next 700 syntactical models of type theory. In

Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP 2017, Paris, France, January 16-17,
2017. 182–194. https://doi.org/10.1145/3018610.3018620

Edwin Brady. 2013. Idris, a General Purpose Dependently Typed Programming Language: Design and Implementation.

Journal of Functional Programming 23, 5 (Sept. 2013), 552–593.

Giuseppe Castagna (Ed.). 2009. Proceedings of the 18th European Symposium on Programming Languages and Systems (ESOP
2009). Lecture Notes in Computer Science, Vol. 5502. Springer-Verlag, York, UK.

Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek. 2019. Gradual typing: a new perspective.

See[POPL 2019 2019], 16:1–16:32.

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

https://doi.org/10.1007/978-3-030-33636-3_7
https://doi.org/10.2168/LMCS-8(1:18)2012
https://doi.org/10.1145/2535838.2535852
https://arxiv.org/abs/2010.14094
https://github.com/pleiad/GradualizingCIC
https://doi.org/10.1145/3018610.3018620

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

Gradualizing the Calculus of Inductive Constructions 1:51

Evan Cavallo and Robert Harper. 2019. Parametric Cubical Type Theory. arXiv:1901.00489.

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. 2015. Cubical Type Theory: a constructive interpretation

of the univalence axiom. (May 2015), 262 pages.

Thierry Coquand and Gérard Huet. 1988. The Calculus of Constructions. Information and Computation 76, 2-3 (Feb. 1988),

95–120.

Pierre-Évariste Dagand, Nicolas Tabareau, and Éric Tanter. 2018. Foundations of Dependent Interoperability. Journal of
Functional Programming 28 (2018), 9:1–9:44.

Gilles Dowek. 2001. Chapter 16 - Higher-Order Unification and Matching. In Handbook of Automated Reasoning, Alan
Robinson and Andrei Voronkov (Eds.). North-Holland, 1009–1062. https://doi.org/10.1016/B978-044450813-3/50018-7

Peter Dybjer and Anton Setzer. 2003. Induction-recursion and initial algebras. Ann. Pure Appl. Log. 124, 1-3 (2003), 1–47.
https://doi.org/10.1016/S0168-0072(02)00096-9

Thomas Ehrhard. 1988. A Categorical Semantics of Constructions. In Proceedings of the Third Annual Symposium on
Logic in Computer Science (LICS ’88), Edinburgh, Scotland, UK, July 5-8, 1988. IEEE Computer Society, 264–273. https:

//doi.org/10.1109/LICS.1988.5125

Richard A. Eisenberg. 2016. Dependent Types in Haskell: Theory and Practice. arXiv:1610.07978 [cs.PL]

Joseph Eremondi, Éric Tanter, and Ronald Garcia. 2019. Approximate Normalization for Gradual Dependent Types. See[ICFP

2019 2019], 88:1–88:30.

Luminous Fennell and Peter Thiemann. 2013. Gradual Security Typing with References. In Proceedings of the 26th Computer
Security Foundations Symposium (CSF). 224–239.

Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting Gradual Typing, See [Bodík and Majumdar 2016],

429–442. See erratum: https://www.cs.ubc.ca/ rxg/agt-erratum.pdf.

Ronald Garcia and Éric Tanter. 2020. Gradual Typing as if Types Mattered. In Informal Proceedings of the ACM SIGPLAN
Workshop on Gradual Typing (WGT20).

Neil Ghani, Lorenzo Malatesta, and Fredrik Nordvall Forsberg. 2015. Positive Inductive-Recursive Definitions. Log. Methods
Comput. Sci. 11, 1 (2015). https://doi.org/10.2168/LMCS-11(1:13)2015

Eduardo Giménez. 1998. Structural Recursive Definitions in Type Theory. In ICALP. 397–408.
Robert Harper and Robert Pollack. 1991. Type checking with universes. Theoretical Computer Science 89, 1 (1991). https:

//doi.org/10.1016/0304-3975(90)90108-T

David Herman, Aaron Tomb, and Cormac Flanagan. 2010. Space-efficient gradual typing. Higher-Order and Sympolic
Computation 23, 2 (June 2010), 167–189.

Martin Hofmann. 1995. Conservativity of Equality Reflection over Intensional Type Theory. In Types for Proofs and Programs,
International Workshop TYPES’95, Torino, Italy, June 5-8, 1995, Selected Papers. 153–164. https://doi.org/10.1007/3-540-

61780-9_68

ICFP 2019 2019.

Kenneth Knowles and Cormac Flanagan. 2010. Hybrid type checking. ACM Transactions on Programming Languages and
Systems 32, 2 (Jan. 2010), Article n.6.

Nico Lehmann and Éric Tanter. 2017. Gradual Refinement Types. In Proceedings of the 44th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL 2017). ACM Press, Paris, France, 775–788.

Paul Blain Levy. 2004. Call-By-Push-Value: A Functional/Imperative Synthesis. Semantics Structures in Computation, Vol. 2.

Springer.

Daniel R. Licata and Robert Harper. 2011. 2-Dimensional Directed Type Theory. In Twenty-seventh Conference on the
Mathematical Foundations of Programming Semantics, MFPS 2011, Pittsburgh, PA, USA, May 25-28, 2011 (Electronic Notes
in Theoretical Computer Science, Vol. 276), Michael W. Mislove and Joël Ouaknine (Eds.). Elsevier, 263–289. https:

//doi.org/10.1016/j.entcs.2011.09.026

Saunders MacLane and Ieke Moerdijk. 1992. Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Springer-
Verlag.

Assia Mahboubi and Enrico Tassi. 2008. Mathematical Components.
Per Martin-Löf. 1975. An intuitionistic theory of types: predicative part. In Logic Colloquium ’73, Proceedings of the

Logic Colloquium, H.E. Rose and J.C. Shepherdson (Eds.). Studies in Logic and the Foundations of Mathematics, Vol. 80.

North-Holland, 73–118.

Per Martin-Löf. 1996. On the Meanings of the Logical Constants and the Justifications of the Logical Laws. Nordic Journal
of Philosophical Logic 1, 1 (1996), 11–60.

Conor McBride. 1999. Dependently Typed Functional Programs and their Proofs. Ph.D. Dissertation. University of Edinburgh.

Conor McBride. 2018. Basics of Bidirectionalism. https://pigworker.wordpress.com/2018/08/06/basics-of-bidirectionalism/

Conor McBride. 2019. Check the Box!. In 25th International Conference on Types for Proofs and Programs. Invited presentation.
Max S. New and Amal Ahmed. 2018. Graduality from Embedding-Projection Pairs. , 73:1–73:30 pages.

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

https://doi.org/10.1016/B978-044450813-3/50018-7
https://doi.org/10.1016/S0168-0072(02)00096-9
https://doi.org/10.1109/LICS.1988.5125
https://doi.org/10.1109/LICS.1988.5125
https://arxiv.org/abs/1610.07978
https://doi.org/10.2168/LMCS-11(1:13)2015
https://doi.org/10.1016/0304-3975(90)90108-T
https://doi.org/10.1016/0304-3975(90)90108-T
https://doi.org/10.1007/3-540-61780-9_68
https://doi.org/10.1007/3-540-61780-9_68
https://doi.org/10.1016/j.entcs.2011.09.026
https://doi.org/10.1016/j.entcs.2011.09.026
https://pigworker.wordpress.com/2018/08/06/basics-of-bidirectionalism/

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

1:52 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

Max S. New and Daniel R. Licata. 2020. Call-by-name Gradual Type Theory. Logical Methods in Computer Science Volume

16, Issue 1 (Jan. 2020). https://doi.org/10.23638/LMCS-16(1:7)2020

Max S. New, Daniel R. Licata, and Amal Ahmed. 2019. Gradual Type Theory. See[POPL 2019 2019], 15:1–15:31.

Phuc C. Nguyen, Thomas Gilray, and Sam Tobin-Hochstadt. 2019. Size-change termination as a contract: dynamically

and statically enforcing termination for higher-order programs. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2019). ACM Press, Phoenix, AZ, USA, 845–859.

Ulf Norell. 2009. Dependently Typed Programming in Agda. In Advanced Functional Programming (AFP 2008) (Lecture Notes
in Computer Science, Vol. 5832). Springer-Verlag, 230–266.

Paige Randall North. 2019. Towards a Directed Homotopy Type Theory. In Proceedings of the Thirty-Fifth Conference on
the Mathematical Foundations of Programming Semantics, MFPS 2019, London, UK, June 4-7, 2019 (Electronic Notes in
Theoretical Computer Science, Vol. 347), Barbara König (Ed.). Elsevier, 223–239. https://doi.org/10.1016/j.entcs.2019.09.012

Peter-Michael Osera, Vilhelm Sjöberg, and Steve Zdancewic. 2012. Dependent Interoperability. In Proceedings of the 6th
workshop on Programming Languages Meets Program Verification (PLPV 2012). ACM Press, 3–14.

Xinming Ou, Gang Tan, Yitzhak Mandelbaum, and David Walker. 2004. Dynamic Typing with Dependent Types. In

Proceedings of the IFIP International Conference on Theoretical Computer Science. 437–450.
Erik Palmgren. 1998. On universes in type theory. In Twenty Five Years of Constructive Type Theory., G. Sambin and J. Smith

(Eds.). Oxford University Press, 191–204.

Erik Palmgren and Viggo Stoltenberg-Hansen. 1990. Domain Interpretations of Martin-Löf’s Partial Type Theory. Ann. Pure
Appl. Log. 48, 2 (1990), 135–196. https://doi.org/10.1016/0168-0072(90)90044-3

Christine Paulin-Mohring. 2015. Introduction to the Calculus of Inductive Constructions. In All About Proofs, Proofs for All,
Bruno Woltzenlogel Paleo and David Delahaye (Eds.). College Publications.

Pierre-Marie Pédrot and Nicolas Tabareau. 2017. An effectful way to eliminate addiction to dependence. In 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017. IEEE Computer

Society, 1–12. https://doi.org/10.1109/LICS.2017.8005113

Pierre-Marie Pédrot and Nicolas Tabareau. 2018. Failure is Not an Option - An Exceptional Type Theory. In Proceedings of
the 27th European Symposium on Programming Languages and Systems (ESOP 2018) (Lecture Notes in Computer Science,
Vol. 10801), Amal Ahmed (Ed.). Springer-Verlag, Thessaloniki, Greece, 245–271.

Pierre-Marie Pédrot and Nicolas Tabareau. 2020. The fire triangle: how to mix substitution, dependent elimination, and

effects. Proceedings of the ACM on Programming Languages 4, POPL (Jan. 2020), 58:1–58:28.

Pierre-Marie Pédrot, Nicolas Tabareau, Hans Fehrmann, and Éric Tanter. 2019. A Reasonably Exceptional Type Theory.

See[ICFP 2019 2019], 108:1–108:29.

POPL 2019 2019.

John C. Reynolds. 1983. Types, abstraction, and parametric polymorphism. In Information Processing 83, R. E. A. Mason (Ed.).

Elsevier, 513–523.

Dana Scott. 1976. Data Types as Lattices. SIAM J. Comput. 5, 3 (1976), 522–587.
Jeremy Siek, Ronald Garcia, and Walid Taha. 2009. Exploring the Design Space of Higher-Order Casts, See [Castagna 2009],

17–31.

Jeremy Siek and Walid Taha. 2006. Gradual Typing for Functional Languages. In Proceedings of the Scheme and Functional
Programming Workshop. 81–92.

Jeremy Siek and Walid Taha. 2007. Gradual Typing for Objects. In Proceedings of the 21st European Conference on Object-
oriented Programming (ECOOP 2007) (Lecture Notes in Computer Science, 4609), Erik Ernst (Ed.). Springer-Verlag, Berlin,

Germany, 2–27.

Jeremy Siek and Philip Wadler. 2010. Threesomes, with and without blame. In Proceedings of the 37th annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2010). ACM Press, Madrid, Spain, 365–376.

Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. 2015. Refined Criteria for Gradual Typing.

In 1st Summit on Advances in Programming Languages (SNAPL 2015) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 32). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Asilomar, California, USA, 274–293.

Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and Théo Winterhalter. 2020. Coq Coq correct!

verification of type checking and erasure for Coq, in Coq. Proc. ACM Program. Lang. 4, POPL (2020), 8:1–8:28. https:

//doi.org/10.1145/3371076

Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan Bharga-

van, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean Karim Zinzindohoue, and Santiago Zanella Béguelin.

2016. Dependent types and multi-effects in F
★
, See [Bodík and Majumdar 2016], 256–270.

M. Takahashi. 1995. Parallel Reductions in 𝜆-Calculus. Information and Computation 118, 1 (1995), 120 – 127. https:

//doi.org/10.1006/inco.1995.1057

Éric Tanter and Nicolas Tabareau. 2015. Gradual Certified Programming in Coq. In Proceedings of the 11th ACM Dynamic
Languages Symposium (DLS 2015). ACM Press, Pittsburgh, PA, USA, 26–40.

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

https://doi.org/10.23638/LMCS-16(1:7)2020
https://doi.org/10.1016/j.entcs.2019.09.012
https://doi.org/10.1016/0168-0072(90)90044-3
https://doi.org/10.1109/LICS.2017.8005113
https://doi.org/10.1145/3371076
https://doi.org/10.1145/3371076
https://doi.org/10.1006/inco.1995.1057
https://doi.org/10.1006/inco.1995.1057

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

Gradualizing the Calculus of Inductive Constructions 1:53

The Coq Development Team. 2020. The Coq proof assistant reference manual. https://coq.inria.fr/refman/ Version 8.12.

Peter Thiemann and Luminous Fennell. 2014. Gradual Typing for Annotated Type Systems. In Proceedings of the 23rd
European Symposium on Programming Languages and Systems (ESOP 2014) (Lecture Notes in Computer Science, Vol. 8410),
Zhong Shao (Ed.). Springer-Verlag, Grenoble, France, 47–66.

Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The Design and Implementation of Typed Scheme. In Proceedings of the
35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2008). ACM Press, San Francisco,

CA, USA, 395–406.

Matías Toro, Ronald Garcia, and Éric Tanter. 2018. Type-Driven Gradual Security with References. ACM Transactions on
Programming Languages and Systems 40, 4 (Nov. 2018), 16:1–16:55.

Matías Toro and Éric Tanter. 2020. Abstracting Gradual References. Science of Computer Programming 197 (Oct. 2020), 1–65.

Philip Wadler and Robert Bruce Findler. 2009. Well-Typed Programs Can’t Be Blamed, See [Castagna 2009], 1–16.

Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau. 2019. Eliminating reflection from type theory. In Proceedings of
the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019, Cascais, Portugal, January
14-15, 2019, Assia Mahboubi and Magnus O. Myreen (Eds.). ACM, 91–103. https://doi.org/10.1145/3293880.3294095

Hongwei Xi and Frank Pfenning. 1998. Eliminating array bound checking through dependent types. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’98). ACM Press, 249–257.

Beta Ziliani and Matthieu Sozeau. 2017. A comprehensible guide to a new unifier for CIC including universe polymorphism

and overloading. 27 (2017). https://doi.org/10.1017/S0956796817000028

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

https://coq.inria.fr/refman/
https://doi.org/10.1145/3293880.3294095
https://doi.org/10.1017/S0956796817000028

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

1:54 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

A COMPLEMENTS ON ELABORATION AND CastCIC

This section gives an extended account of §5. The structure is the same, and we refer to the main

section when things are already spelled out there.

A.1 CastCIC

We state and prove a handful standard, technical properties of CastCIC, that are useful in the next

sections. They should not be very surprising, the main specific point here is their formulation in

the bidirectional setting.

Property 1 (Weakening). If Γ ⊢ 𝑡 ⊲𝑇 then Γ,Δ ⊢ 𝑡 ⊲𝑇 , and similarly for the other typing judgments.

Proof. It suffices to prove it for Δ of length 1. For this we show by (mutual) induction on the typing

derivation the more general statement that if Γ,Δ ⊢ 𝑡 ⊲𝑇 then Γ, 𝑥 : 𝐴,Δ ⊢ 𝑡 ⊲𝑇 . It is true for the
base cases (including the variable), and we can check that all rules preserve it. □

Property 2 (Substitution). If Γ, 𝑥 : 𝐴,Δ ⊢ 𝑡 ⊲𝑇 and Γ ⊢ 𝑢 ⊳𝐴 then Γ,Δ[𝑢/𝑥] ⊢ 𝑡 [𝑢/𝑥] ⊲ 𝑆 with
𝑆 ≡ 𝑇 [𝑢/𝑥].
Proof. Again, the proof is by mutual induction on the derivation. In the checking judgment, we use

the transitivity of conversion to conclude. In the constrained inference, we need injectivity of type

constructors, which is a consequence of confluence. □

Property 3 (Validity). If Γ ⊢ 𝑡 ⊲𝑇 and ⊢ Γ, then Γ ⊢ 𝑇 ▶□ □𝑖 for some 𝑖 .

Proof. Once again, this is a routine induction on the inference derivation, using subject reduction

to handle the reductions in the constrained inference rules, to ensuring that the reduced type is still

well-formed. The hypothesis of context well-formedness is needed for the base case of a variable,

to ensured that the type drawn from the context is indeed well-typed. □

A.2 Precision and Reduction
Structural lemmas. Let us start our lemmas by counterparts to the weakening and substitution

lemmas for precision.

Lemma 31 (Weakening of precision). If Γ ⊢ 𝑡 ⊑𝛼 𝑡 ′, then Γ,∆ ⊢ 𝑡 ⊑𝛼 𝑡 ′ for any ∆.

Proof. This is by induction on the precision derivation, using weakening of CastCIC to handle the

uses of typing. □

Lemma 32 (Substitution and precision). If Γ, 𝑥 : 𝑆 | 𝑆 ′,∆ ⊢ 𝑡 ⊑𝛼 𝑡 ′, Γ ⊢ 𝑢 ⊑𝛼 𝑢 ′, Γ1 ⊢ 𝑢 ⊳ 𝑆 and
Γ2 ⊢ 𝑢 ′ ⊳ 𝑆 ′ then Γ,∆[𝑢 | 𝑢 ′/𝑥] ⊢ 𝑡 [𝑢/𝑥] ⊑𝛼 𝑡 ′[𝑢 ′/𝑥].
Proof. The substitution property follows from weakening, again by induction on the precision

derivation. Weakening is used in the variable case where 𝑥 is replaced by 𝑢 and 𝑢 ′
, and the

substitution property of CastCIC appears to handle the uses of typing. □

Catch-up lemmas. With these structural lemmas at hand, let us turn to the proofs of the catch-up

lemmas.

Proof of Lemma 14. We want to prove the following: under the hypothesis that Γ1 ⊑𝛼 Γ2, if Γ ⊢
□𝑖 ⊑{ 𝑇 ′

and Γ2 ⊢ 𝑇 ′ ▶□ □𝑗 , then either 𝑇 ′{∗?□𝑗
with 𝑖 + 1 ≤ 𝑗 , or 𝑇 ′{∗□𝑖 .

The proof is by induction on the precision derivation, mutually with the same property where

⊑{ is replaced by ⊑𝛼 .

Let us start with the proof for structural precision. Using the precision derivation, we can

decompose 𝑇 ′
into ⟨𝑆𝑛 ⇐𝑈𝑛−1⟩ . . . ⟨𝑆2 ⇐𝑈1⟩ 𝑇 ′′

, where the casts come from Cast-R rules, and

𝑇 ′′
is either □𝑖 (rule Diag-Univ) or ?𝑆 for some 𝑆 (rule Ukn), and we have Γ ⊢ □𝑖+1 ⊑{ 𝑆𝑘 ,

Γ ⊢ □𝑖+1 ⊑{ 𝑇𝑘 and Γ ⊢ □𝑖+1 ⊑{ 𝑆 . By induction hypothesis, all of 𝑆𝑘 , 𝑇𝑘 and 𝑆 reduce either

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

Gradualizing the Calculus of Inductive Constructions 1:55

to □𝑖+1 or some ?□𝑙
with 𝑖 + 1 ≤ 𝑙 . Moreover, because 𝑇 ′

type-checks against □𝑗 , we must have

𝑆𝑛 ≡ □𝑗 . This implies that 𝑆𝑛 cannot reduce to ?□𝑙
by confluence, and thus it must reduce to □𝑖+1.

Using that 𝑖 + 1 ≤ 𝑙 and the reduction rules〈
𝑋 ⇐ ?□𝑙

〉
??□𝑙

{ ?𝑋
⟨□𝑖+1 ⇐ □𝑖+1⟩ 𝑡 { 𝑡〈

𝑋 ⇐ ?□𝑙

〉 〈
?□𝑙

⇐ □𝑖+1

〉
𝑡 { ⟨𝑋 ⇐ □𝑖+1⟩ 𝑡

we can reduce away all casts. We thus get 𝑇 ′{∗□𝑖 or 𝑇
′{∗?□𝑖+1

, as expected.

For the definitional precision, if Γ ⊢ □𝑖 ⊑{ 𝑇 ′
then by decomposing the precision derivation

there is an 𝑆 ′ such that 𝑇 ′{∗𝑆 ′, Γ ⊢ □𝑖 ⊑𝛼 𝑆 ′, and by subject reduction Γ1 ⊢ 𝑆 ′ ▶□ □𝑗 . By

induction hypothesis, either 𝑆 ′{∗□𝑖 or 𝑆
′{∗

?□𝑖+1
, and composing both reductions we get the

desired result. □

Proof of Lemma 15. The proof of those catch-up lemmas is very similar to the previous one for

structural precision, but without the need for induction this time – we use the lemma just proven

instead. We show the one for product types.

First, let us show the property for ⊑𝛼 . Decompose 𝑇 ′
into ⟨𝑆𝑛 ⇐𝑈𝑛−1⟩ . . . ⟨𝑆2 ⇐𝑈1⟩ 𝑇 ′′

, where

𝑇 ′′
is not a cast, but either some ?𝑆 or a product type structurally less precise than Π𝑥 : 𝐴.𝐵. Now

by the previous lemma,𝑈𝑘 , 𝑇𝑘 and possibly 𝑆 all reduce to □ or ?□. Using the same reduction rules

as before, all casts can be reduced away, leaving us with either ?□ or a product type structurally

less precise than Π𝑥 : 𝐴.𝐵, as stated.

□

Proof of Lemma 16. The proof still follows the same idea: decompose the less precise term as a

series of casts, and show that all those casts can be reduced, using the previous lemma for product

types. The proof is somewhat more complex however, because the reduction of a cast between

product types does a substitution, which we need to handle using the previous substitution lemma

for precision.

Let us now detail the proof. First, decompose 𝑠 ′ into ⟨𝑆𝑛 ⇐𝑈𝑛−1⟩ . . . ⟨𝑆2 ⇐𝑈1⟩ 𝑢 ′
, where 𝑢 ′

is

either 𝜆 𝑥 : 𝐴′′.𝑡 ′′ or ?𝑆 for some 𝑆 . Moreover, all of the 𝑆𝑘 ,𝑈𝑘 and possibly 𝑆 are definitionally less

precise than Π𝑥 : 𝐴.𝐵. By definition of ⊑{ they all reduce to a term structurally less precise than a

reduct of Π𝑥 : 𝐴.𝐵, which must be a product type, and thus by Lemma 15 they all reduce to either

some ?□𝑗
or some product type. Moreover, given the typing hypothesis and confluence 𝑆𝑛 can only

be in the second case. By the rule

⟨𝑋 ⇐ ?□⟩ ??□
{?𝑋

if 𝑆 is ?□, we can reduce the innermost casts until it is (knowing that we will encounter one because

𝑆𝑛 is a product type), then use the rule

?Π𝑥 :𝐴′′.𝐵′′ { 𝜆 𝑥 : 𝐴′′.?𝐵′′

Thus without loss of generality we can suppose that 𝑢 ′
is an abstraction.

Now we show that all casts reduce, and that this reduction preserves precision, starting with the

innermost one. There are three possibilities for that innermost cast.

If it is

〈
?□𝑗

⇐ Germ𝑗 Π
〉
𝑢 ′
, then by typing this cannot be the outermost cast, and thus we can

use the rule 〈
𝑋 ⇐ ?□𝑗

〉 〈
?□𝑗

⇐ Germ𝑗 Π
〉
𝑢 ′ {

〈
𝑋 ⇐ Germ𝑗 Π

〉
𝑢 ′

In the second case, the cast is some ⟨Π𝑥 : 𝐴2.𝐵2 ⇐ Π𝑥 : 𝐴1 .𝐵1⟩ 𝜆 𝑥 : 𝐴′′.𝑡 ′′, and we can use the

rule

⟨Π𝑥 : 𝐴2.𝐵2 ⇐ Π𝑥 : 𝐴1.𝐵1⟩ 𝜆 𝑥 : 𝐴′′.𝑡 ′′ {
𝜆 𝑥 : 𝐴′′. ⟨𝐵2 ⇐ 𝐵1 [⟨𝐴1 ⇐ 𝐴2⟩ 𝑥/𝑥]⟩ 𝑡 ′′[⟨𝐴′′ ⇐ 𝐴2⟩ 𝑥/𝑥]

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

1:56 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

Moreover, using the precision hypothesis of Cast-R, we know that Γ ⊢ Π𝑥 : 𝐴.𝐵 ⊑{ Π𝑥 : 𝐴1.𝐵2

and Γ ⊢ Π𝑥 : 𝐴.𝐵 ⊑{ Π𝑥 : 𝐴2 .𝐵2. From the first one, using substitution and the rule Cast-R, we

get that Γ, 𝑥 : 𝐴 | 𝐴2 ⊢ 𝐵 ⊑{ 𝐵1 [⟨𝐴1 ⇐ 𝐴2⟩ 𝑥/𝑥]. The second gives in particular that Γ ⊢ 𝐴 ⊑{ 𝐴2.

Finally, inverting the proof of Γ ⊢ 𝜆 𝑥 : 𝐴.𝑡 ⊑𝛼 𝜆 𝑥 : 𝐴′′.𝑡 ′′ we also have Γ ⊢ 𝐴 ⊑𝛼 𝐴′′
and

Γ, 𝑥 : 𝐴 | 𝐴′′ ⊢ 𝑡 ⊑𝛼 𝑡 ′′. From this, again by substitution, we can derive Γ, 𝑥 : 𝐴 | 𝐴′′ ⊢ 𝑡 ⊑𝛼

𝑡 ′′[⟨𝐴′′ ⇐ 𝐴2⟩ 𝑥/𝑥]. Combining all of those, we can construct a derivation of

Γ ⊢ 𝜆 𝑥 : 𝐴.𝑡 ⊑𝛼 𝜆 𝑥 : 𝐴2. ⟨𝐵2 ⇐ 𝐵1 [⟨𝐴1 ⇐ 𝐴2⟩ 𝑥/𝑥]⟩ 𝑡 ′[⟨𝐴′′ ⇐ 𝐴2⟩ 𝑥/𝑥]

by a use of Diag-Abs followed by one of Cast-R.

The last case corresponds to

〈
?□𝑗

⇐ Π𝑥 : 𝐴′′.𝐵′′〉 𝑢 ′
when Π𝑥 : 𝐴′′.𝐵′′

is not Germ𝑗 ℎ, in which

case the reduction that applies is〈
?□𝑗

⇐ Π𝑥 : 𝐴′′.𝐵′′〉 𝑢 ′ {
〈
?□𝑗

⇐ ?□𝑐Π (𝑗) → ?□𝑐Π (𝑗)

〉 〈
?□𝑐Π (𝑗) → ?□𝑐Π (𝑗) ⇐ Π𝑥 : 𝐴′′.𝐵′′

〉
𝑢 ′

For this reduct to be less precise that 𝜆 𝑥 : 𝐴.𝑡 , we need that all types involved in the casts are

definitionally precise than Π𝑥 : 𝐴.𝐵, as we already have that Γ ⊢ 𝜆 𝑥 : 𝐴.𝑡 ⊑𝛼 𝑢 ′
. For ?□𝑗

and

Π𝑥 : 𝐴′′.𝐵′′
it is direct, as they were obtained using Lemma 15 with a reduct of Π𝑥 : 𝐴.𝐵. Thus

only the germ remains, for which it suffices to show that both 𝐴 and 𝐵 are less precise than

?□𝑐Π (𝑗) . Because Π𝑥 : 𝐴.𝐵 is typable and less precise than ?□𝑗
, we know that Γ1 ⊢ 𝐴 ▶□ □𝑘 and

Γ1, 𝑥 : 𝐴 ⊢ 𝐵 ▶□ □𝑙 with 𝑠Π (𝑘, 𝑙) ≤ 𝑗 , thus 𝑘 ≤ 𝑐Π (𝑗) and 𝑙 ≤ 𝑐Π (𝑗). Therefore Γ ⊢ 𝐴 ⊑𝛼 ?□𝑐Π (𝑗)
using rule Ukn-Univ, and similarly for 𝐵.

Note that this last reduction is the point where the system under consideration plays a role: in

CastCICN
, the reasoning does not hold. However, when considering only terms without ?, this

case never happens, and thus the rest of the proof still applies.

Thus, all casts must reduce, and each of those reductions preserves precision, so we end up with

a term 𝜆 𝑥 : 𝐴′.𝑡 ′ such that Γ ⊢ 𝜆 𝑥 : 𝐴.𝑡 ⊑𝛼 𝜆 𝑥 : 𝐴′.𝑡 ′, as expected. □

Proof of Lemma 17. We start by the proof of the second property. We have as hypothesis that

Γ ⊢ ?𝐼 (a) ⊑𝛼 𝑠 ′, Γ1 ⊢ ?𝐼 (a) ⊲ 𝐼 (a) and Γ2 ⊢ 𝑠 ′ ▶𝐼 𝐼 (a′), and wish to prove that 𝑠 ′{∗?𝐼 (a′) with
Γ ⊢ 𝐼 (a) ⊑𝛼 𝐼 (a′).

As previously, decompose 𝑠 ′ as ⟨𝑆𝑛 ⇐𝑈𝑛−1⟩ . . . ⟨𝑆2 ⇐𝑈1⟩ ?𝐼 (a′′) , where all𝑈𝑘 , 𝑆𝑘 and 𝐼 (a′′) are
definitionally less precise than 𝐼 (a), and thus reduce to either ?□𝑙

for some 𝑙 , or 𝐼 (c) for some c,
and 𝑆𝑛 can only be the second by typing. Using the three rules

⟨𝐼 (c′) ⇐ 𝐼 (c)⟩ ?𝐼 (c′′){∗?𝐼 (c′)〈
𝑋 ⇐ ?□𝑗

〉 〈
?□𝑗

⇐ Germ𝑗 𝐼
〉
𝑢 ′ {

〈
𝑋 ⇐ Germ𝑗 𝐼

〉
𝑢 ′〈

?□𝑗
⇐ 𝐼 (c)

〉
𝑢 ′ {

〈
?□𝑗

⇐ Germ𝑗 𝐼
〉 〈

Germ𝑗 𝐼 ⇐ 𝐼 (c)
〉
𝑢 ′

we can reduce all casts: the second one (maybe using the last one first) removes all casts through

?□, and then we can use the first one to propagate ?𝐼 (a′′) all the way through the casts, ending up

with a term ?𝑆𝑛 , which is the one we sought.

For the first property, again decompose 𝑠 ′ as ⟨𝑆𝑛 ⇐𝑈𝑛−1⟩ . . . ⟨𝑆2 ⇐𝑈1⟩ 𝑢 ′
where 𝑢 ′

does not

start with a cast. If𝑢 ′
is some ?𝐼 (a′′) , then we can use the proof above and we are finished. Otherwise

𝑢 ′
must be of the form 𝑐 (a′′, b′′). Again we reduce the casts starting with the innermost, using the

same two rules to remove the occurrences of ?□. The last case to handle is ⟨𝐼 (c′) ⇐ 𝐼 (c)⟩ 𝑐 (c′′, d).
The reduction that applies there preserves precision by repeated uses of the substitution property

of precision, and gives us a term with 𝑐 as a head constructor. Thus, we get the desired term with 𝑐

as a head constructor, and argument that are related to a and b. □

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

Gradualizing the Calculus of Inductive Constructions 1:57

Simulation.
Proof of Theorem 18. Both are shown by mutual induction on the precision derivation. We use

a stronger induction principle that the one given by the induction rules. Indeed, we need extra

induction hypothesis on the inferred type for a term. Proving this stronger principle is done by

making the proof of Property 3 slightly more general: instead of proving that an inferred type is

always well-formed, we prove that any property consequence of typing is true of all inferred types.

Denotational precision

We start with the second point, which is easiest. The proof is summarized by the following diagram:

𝑡 ⊑{ 𝑡 ′

𝑠 𝑢 ⊑𝛼 𝑢 ′

𝑣 ⊑𝛼 𝑣 ′

By definition of ⊑{ , there exists𝑢 and𝑢 ′
, reducts respectively of 𝑡 and 𝑡 ′, and such that Γ ⊢ 𝑢 ⊑𝛼 𝑢 ′

.

By confluence, there exists some 𝑣 that is a reduct of both 𝑢 and 𝑠 . By subject reduction, 𝑡 and 𝑡 ′

are all well typed, and thus by induction hypothesis, there exists some 𝑣 ′ such that 𝑢 ′{∗𝑣 ′ and
Γ ⊢ 𝑣 ⊑𝛼 𝑣 ′. But then 𝑣 is a reduct of 𝑠 and 𝑣 ′ is a reduct of 𝑡 ′, and so Γ ⊢ 𝑠 ⊑{ 𝑡 ′.

As for inferred types, this implies in particular that if Γ ⊢ 𝑡 ⊲𝑇 , Γ ⊢ 𝑇 ⊑{ 𝑇 ′
, 𝑡{∗𝑠 and Γ1 ⊢ 𝑠 ⊲ 𝑆 ,

then Γ ⊢ 𝑆 ⊑{ 𝑇 . Indeed Γ1 ⊢ 𝑠 ⊳𝑇 by subject reduction, thus 𝑆 and 𝑇 are convertible, and have

a common reduct 𝑈 by confluence. The property just stated then gives Γ ⊢ 𝑈 ⊑{ 𝑇 ′
, hence

Γ ⊢ 𝑆 ⊑{ 𝑇 ′
.

Syntactical precision — Non-diagonal precision rules

Let us now turn to ⊑𝛼 . It is enough to show that one step of reduction can be simulated, by induction

on the path 𝑡{∗𝑠 .
First, we consider the cases where the last rule used for Γ ⊢ 𝑡 ⊑𝛼 𝑡 ′ is not a diagonal rule.
For Ukn we must handle the side-condition involving the type of 𝑡 . However, by the previous

property, the inferred type of 𝑠 is also definitionally less precise than 𝑇 ′
. Thus the reduction in 𝑡

can be simulated by zero step of reduction steps. The reasoning for rules Err and Err-Lambda

is similar. As for rule Diag-Univ, subject reduction is enough to get what we seek, without even

resorting to the previous property.

Finally, we are left with non-diagonal cast-rules. Rule Cast-R is treated in the same way as for

Ukn, as the typing side-conditions are similar.

Thus, the only non-diagonal rule left for ⊑𝛼 is Cast-L.

Syntactical precision – Congruence reduction rules

Next, we can get rid of the congruence rules of reduction. Indeed, if the last rule used was Cast-L,

and the reduction happens in one of the types, of the cast, again the same reasoning as for Cast-R

applies. If it happens in the term, we can use the induction hypothesis on this term to conclude.

More generally, if the last rule used was a diagonal rule, then the congruence rule in 𝑡 can be

simulated by a similar congruence rules in 𝑡 , since 𝑡 and 𝑡 ′ have the same head.

Syntactical precision – non-diagonal cast

Let us now turn to the case where the last precision rule is Cast-L, and that cast does a head

reduction. More precisely, 𝑡 is some ⟨𝑇 ⇐ 𝑆⟩ 𝑢, with Γ ⊢ 𝑢 ⊑𝛼 𝑡 ′. There are four possibilities for
the reduction of that cast.

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

1:58 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

The first one is when the cast fails. When it does, whatever the rule, it always reduces to err𝑇 .
But then we know that Γ2 ⊢ 𝑡 ′ ⊲𝑇 ′

and Γ ⊢ 𝑇 ⊑{ 𝑇 ′
. Thus Γ ⊢ err𝑇 ⊑𝛼 𝑡 ′ using rule Err, and the

reduction is simulated by zero reductions.

The second case is when the cast disappears (cast between universes) or expands into two casts

without changing 𝑢 (cast through a germ), in those cases the reduct of 𝑡 is still smaller than 𝑡 ′. In
the case of cast expansion, we must use Cast-L twice, and thus prove that the type of 𝑡 ′ is less
precise than the introduced germ. But by the Cast-L rule that was used to prove Γ ⊢ 𝑡 ⊑𝛼 𝑡 ′, we
know that 𝑡 ′ infers a type𝑇 ′

which is definitionally less precise than some ?□𝑖
, and the germ under

consideration is Germ𝑖 ℎ. Thus, 𝑇
′
reduces to some 𝑆 ′ such that Γ ⊢ ?□𝑖

⊑𝛼 𝑆 ′, and this implies

that also Γ ⊢ Germ𝑖 ℎ ⊑𝛼 𝑆 ′.
The third case is when 𝐴 and 𝐵 are both product types or inductive types, and 𝑢 starts with an

abstraction or an inductive constructor. In that case, by Lemmas 16 and 17, 𝑡 ′ reduces to a term 𝑢 ′

with the same head constructor as 𝑢 or some ?𝐼 (a) . In the first case, by the substitution property of

precision we have Γ ⊢ 𝑠 ⊑𝛼 𝑢 ′
. In the second, we can use Ukn to conclude.

In the fourth case, 𝑡 is
〈
𝑋 ⇐ ?□𝑖

〉 〈
?□𝑖

⇐ Germ𝑖 ℎ
〉
𝑢 reducing to ⟨𝑋 ⇐ Germ𝑖 ℎ⟩ 𝑢. If Γ ⊢ 𝑢 ⊑𝛼

𝑡 ′ (i.e., rule Cast-L was used twice in a row), then we directly have Γ ⊢ ⟨𝑋 ⇐ Germ𝑖 ℎ⟩ 𝑢 ⊑𝛼 𝑡 ′.
Otherwise, rule Diag-Cast was used, 𝑡 ′ is some ⟨𝐵′ ⇐ 𝐴′⟩ 𝑢 ′

and we have Γ ⊢ 𝑢 ⊑𝛼 𝑢 ′
and

Γ1 ⊢ Germ𝑖 ℎ ⊑{ 𝐴′
. Moreover, Cast-L also gives Γ1 ⊢ 𝑋 ⊑{ 𝐵′

, since Γ2 ⊢ ⟨𝐵′ ⇐ 𝐴′⟩ 𝑢 ′ ⊲𝐵′
.

Thus Γ ⊢ ⟨𝑋 ⇐ Germ𝑖 ℎ⟩ 𝑢 ⊑𝛼 ⟨𝐵′ ⇐ 𝐴′⟩ 𝑢 ′
by a use of Diag-Cast.

Syntactical precision – 𝛽 and 𝜄 redexes

Next we consider the case where 𝑡 is a 𝛽 redex (𝜆 𝑥 : 𝐴.𝑡1) 𝑡2. Because the last applied precision

rule is diagonal, 𝑡 ′ must also decompose as 𝑡 ′′
1
𝑡 ′
2
. If 𝑡1 is some err𝑇 , then the reduct is err𝑇 and

must be still smaller that 𝑡 ′. Otherwise, Lemma 16 applies, thus 𝑡 ′′
1
reduces to some 𝜆 𝑥 : 𝐴′.𝑡 ′

1
that

is structurally less precise than 𝜆 𝑥 : 𝐴.𝑡1. Then the 𝛽 reduction of 𝑡 can be simulated with another

𝛽 reduction in 𝑡 ′, and using the substitution property we conclude that the redexes are still related

by precision.

If 𝑡 is a 𝜄-redex ind𝑐 (a,b) (𝐼 , 𝑧.𝑃, f .y.t), the reasoning is similar. Because the last precision rule is

diagonal, 𝑡 ′ must also be a fixpoint. Then, we use Lemma 17 to ensure that its scrutinee reduces

either to 𝑐 (a′, b′) or ?𝐼 (a′) . In the first case, a 𝜄-reduction of 𝑡 ′ and the substitution property is

enough to conclude. In the second case, 𝑡 ′ reduces to a term 𝑠 ′ := ?𝑃 ′ [?𝐼 (a′) /𝑧] , and we must show this

term to be less precise than 𝑠 , which is 𝑡𝑘 [𝜆 𝑥 : 𝐼 (a). ind𝐼 (𝑥, 𝑧.𝑃, f .y.t)/𝑧] [b/y]. Let 𝑆 be the type

inferred for 𝑠 , by rule Ukn, it is enough to show Γ ⊢ 𝑆 ⊑{ 𝑃 ′[?𝐼 (a′)/𝑧]. By subject reduction, 𝑆 and

𝑃 [𝑐𝑘 (a, b)/𝑧] (the type of 𝑡) are convertible, thus they have a common reduct𝑈 . Now we also have

by substitution that Γ ⊢ 𝑃 [𝑐𝑘 (a, b)/𝑧] ⊑𝛼 𝑃 ′[?𝐼 (a′)/𝑧]. Because 𝑃 [𝑐𝑘 (a, b)/𝑧] is the inferred type

for 𝑡 , the induction hypothesis applies to it, and thus there is some𝑈 ′
such that 𝑃 ′[?𝐼 (a′)𝑧/]{∗𝑈 ′

and also Γ ⊢ 𝑈 ⊑𝛼 𝑈 ′
.

Syntactical precision – error and ? reductions
For reduction Prod-★, i.e., when errΠ𝑥 :𝐴.𝐵 { 𝜆 𝑥 : 𝐴. err𝐵 , we can replace the use of Err by a

use of Err-Lambda. For reduction Ind-Err, i.e., when ind𝐼 (err𝐼 (a) , 𝑧.𝑃, f .y.t) we distinguish three

cases depending on 𝑡 ′. If 𝑡 ′ is ?𝑇 ′ (the precision rule between 𝑡 and 𝑡 ′ was Ukn) or ⟨𝑇 ′ ⇐ 𝑆 ′⟩ 𝑡 ′,
then Γ ⊢ 𝑃 [err𝐼 (a)/𝑧] ⊑{ 𝑇 ′

, and thus Γ ⊢ err𝑃 [err 𝐼 (a) /𝑧] ⊑𝛼 𝑡 ′ by using Err. Otherwise, the last

rule was Diag-Fix, and again we can conclude using Err and the substitution property of ⊑𝛼 .

Conversely, let us consider the reduction rules for ?. If 𝑡 is ?Π𝑥 :𝐴.𝐵 and reduces to 𝜆 𝑥 : 𝐴.?𝐵 , then
𝑡 ′ must be ?𝑇 , possibly surrounded by casts. If there are casts, they can be reduced away, until we

are left with ?𝑇 with Γ ⊢ Π𝑥 : 𝐴.𝐵 ⊑{ 𝑇 . By Lemma 15, 𝑇{∗??□ or 𝑇{∗𝑇Π𝑥 :𝐴′.𝐵′ . In the first case,

??□ is still less precise than 𝜆 𝑥 : 𝐴.𝐵, and in the second case, ?Π𝑥 :𝐴′.𝐵′ can also reduce to 𝜆 𝑥 : 𝐴′.?𝐵′ ,

which is less precise than 𝑠 ′. If 𝑡 is ind𝐼 (?𝐼 (a) , 𝑃, b), reducing to ?𝑃 [?𝐼 ((𝑎)) /𝑧] , we use the second part

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

Gradualizing the Calculus of Inductive Constructions 1:59

of Lemma 17 to conclude that also 𝑡 ′ reduces to some ind𝐼 (?𝐼 (a′) , 𝑃 ′, b′) that is less precise than 𝑡 .

From this, 𝑡 ′ { ?𝑃 ′ [?𝐼 ((𝑎′)) /𝑧] , which is less precise than 𝑠 .

Syntactical precision – diagonal cast reduction

This only leaves us with the reduction of a cast when the precision rule is Diag-Cast: we have

some ⟨𝑇 ⇐ 𝑆⟩ 𝑢 and ⟨𝑇 ′ ⇐ 𝑆 ′⟩ 𝑢 ′
that are pointwise related by precision, such that ⟨𝑇 ⇐ 𝑆⟩ 𝑡{∗𝑠

by a head reduction, and we must show that ⟨𝑇 ⇐ 𝑆⟩ 𝑢 simulates that reduction.

First, if the reduction for ⟨𝑇 ⇐ 𝑆⟩ 𝑡 is any reduction to an error, then the reduct is err𝑇 , and
since Γ2 ⊢ ⟨𝑇 ⇐ 𝑆⟩ 𝑢 ⊲ 𝑡 and Γ ⊢ 𝑇 ⊑{ 𝑇 ′

we can use rule Err to conclude. Now, let us consider

all other reduction rules for casts from top to bottom.

First, we are in the situation where 𝑡 is ⟨Π𝑥 : 𝐴2.𝐵2 ⇐ Π𝑥 : 𝐴1 .𝐵1⟩ 𝜆 𝑥 : 𝐴.𝑣 . If 𝑣 is err𝐵1
then

the reduct is more precise than any term. Otherwise, by Lemma 15, 𝑆 ′ reduces either to ?□ or

to a product type. In the first case, 𝑢 ′
must reduce to ??□ by Lemma 16, since it is less precise

than 𝜆 𝑥 : 𝐴.𝑣 and by typing it cannot start with a 𝜆. In that case, ⟨𝑇 ′ ⇐ 𝑆 ′⟩ 𝑢 ′ { ?𝑇 ′ , and since

Γ ⊢ Π𝑥 : 𝐴2 .𝐵2 ⊑{ 𝑇 ′
, we have that Γ ⊑𝛼 𝑠 ⊑𝛼 ?𝑇 ′ . Otherwise 𝑆 ′ reduces to some Π𝑥 : 𝐴′

1
.𝐵′

1
.

By Lemma 16, 𝑡 ′ reduces either to some ? or to an abstraction. In the first case, the previous

reasoning still applies. Otherwise, 𝑡 ′ reduces to some 𝜆 𝑥 : 𝐴′.𝑣 ′. Again, by Lemma 15, 𝑇 ′
reduces

either to a product type or to ?. In the first case 𝑡 ′ can simply do the same cast reduction as

𝑡 , and the substitution property of precision enables us to conclude. Thus, the only case left is

that where 𝑡 ′ is
〈
?□𝑖

⇐ Π𝑥 : 𝐴′
1
.𝐵′

1

〉
𝜆 𝑥 : 𝐴′.𝑣 ′. If Π𝑥 : 𝐴′

1
.𝐵′

1
is Germ𝑖 Π, then all of 𝐴, 𝐴1, 𝐴2, 𝐵1

and 𝐵2 are more precise than ?□𝑐Π (𝑖) , and this is enough to conclude that 𝑠 is less precise than〈
Germ𝑖 Π ⇐ ?□𝑖

〉
𝜆 𝑥 :?□𝑐Π (𝑖)𝑢

′
, using the substitution property of precision to relate 𝑢 ′

with the

substituted 𝑢, and Diag-Abs, Cast-L and Cast-R rules. The last case is when Π𝑥 : 𝐴′
1
.𝐵′

1
is not a

germ. Then the reduction of 𝑡 ′ first does a cast expansion through Germ𝑖 Π, followed by a reduction
of the cast between Π𝑥 : 𝐴′

1
.𝐵′

1
and Germ𝑖 Π. The reasoning of the two previous cases can be used

again to conclude.

The proof is similar for the corresponding reduction of cast between the same inductive type on

an inductive constructor.

Next, let us consider the case where 𝑡 is
〈
?□𝑖

⇐ Π𝑥 : 𝐴1 .𝐵1

〉
𝑓 . We have that 𝑇 ′ { ?□𝑗

by

Lemma 15 with 𝑖 ≤ 𝑗 , and thus Γ ⊢ Germ𝑖 Π ⊑{ 𝑇 ′
. Thus, using Diag-Cast for the innermost cast

in 𝑠 , and Cast-L for the outermost one, we conclude Γ ⊢ 𝑠 ⊑𝛼 ⟨𝑇 ′ ⇐ 𝑆 ′⟩ 𝑢 ′
. Again, the reasoning

is similar for the corresponding rule for inductive types.

As for ⟨□𝑖 ⇐ □𝑖⟩ 𝐴, we can replace rule Diag-Cast by rule Cast-R: indeed Γ1 ⊢ 𝐴 ⊳□𝑖 by

typing, thus Γ1 ⊢ 𝐴 ⊲𝑇 for some 𝑇 such that 𝑇 { □𝑖 . Therefore, since Γ ⊢ □𝑖 ⊑{ 𝑇 ′
, we have

Γ ⊢ 𝑇 ⊑{ 𝑇 ′
and similarly Γ ⊢ 𝑇 ⊑{ 𝑆 ′. Thus, rule Cast-R gives Γ ⊢ 𝐴 ⊑𝛼 𝑡 ′.

The last case left is the one where 𝑡 is
〈
𝑋 ⇐ ?□𝑖

〉 〈
?□𝑖

⇐ Germ𝑖 ℎ
〉
𝑣 . We distinguish on the

rule used to prove Γ ⊢
〈
?□𝑖

⇐ Germ𝑖 ℎ
〉
𝑣 ⊑𝛼 𝑢 ′

. If it is Cast-L, then we simply have Γ ⊢
⟨𝑋 ⇐ Germ𝑖 ℎ⟩ 𝑡 ⊑𝛼 ⟨𝑇 ′ ⇐ 𝑆 ′⟩ 𝑢 ′

using rule Diag-Cast, as Γ ⊢ Germ𝑖 ℎ ⊑{ 𝑆 ′ since Γ ⊢ ?□𝑖
⊑{

𝑆 ′. Otherwise the rule is Diag-Cast, 𝑡 ′ reduces to
〈
𝑇 ′ ⇐ ?□𝑗

〉 〈
?□𝑗

⇐𝑈 ′〉 𝑢 ′
, using Lemma 15

to reduce types less precise than ?□𝑖
to some ?□𝑗

with 𝑖 ≤ 𝑗 . We can use Diag-Cast on the

outermost cast, and Cast-R on the innermost to prove that this term is less precise than 𝑠 , as

Γ ⊢ Germ𝑖 ℎ ⊑{ ?□𝑗
since 𝑖 ≤ 𝑗 . □

A.3 Properties of GCIC
First, let us prove the critical lemma about erasable terms: they have the same reduction behavior

as their erasure.

Conservativity is an equivalence, so to prove it we break it down into two implications. We now

state and prove those in an open context and for the three different judgments.

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

1:60 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

Theorem 33 (GCIC is weaker than CIC – Open context). Let 𝑡 be a static term and Γ an erasable
context. Then

• if 𝜀 (Γ) ⊢CIC 𝑡 ⊲𝑇 then Γ ⊢ 𝑡⇝ 𝑡 ′ ⊲𝑇 ′ for some erasable 𝑡 ′ and 𝑇 ′ containing no ? and such that
𝜀 (𝑡 ′) = 𝑡 and 𝜀 (𝑇 ′) = 𝑇 ;

• if𝑇 ′ is an erasable term of CastCIC containing no ?, and 𝜀 (Γ) ⊢CIC 𝑡 ⊳ 𝜀 (𝑇 ′) then Γ ⊢ 𝑡 ⊳𝑇 ′⇝ 𝑡 ′

for some erasable 𝑡 ′ containing no ? such that 𝜀 (𝑡 ′) = 𝑡 ;
• if 𝜀 (Γ) ⊢CIC 𝑡 ▶ℎ 𝑇 then Γ ⊢ 𝑡⇝ 𝑡 ′ ▶ℎ 𝑇

′ for some erasable 𝑡 ′ and 𝑇 ′ containing no ? such that
𝜀 (𝑡 ′) = 𝑡 and 𝜀 (𝑇 ′) = 𝑇 .

Proof. Once again, the proof is by mutual induction, on the elaboration derivation of 𝑡 .

The inference steps are direct: one needs to combine the induction hypothesis together, using the

substitution property of precision and the fact that erasure commutes with substitution to handle

the cases of substitution in the inferred types.

Let us consider the case of Π-constrained inference next. We are given Γ erasable, and suppose

that 𝜀 (Γ) ⊢CIC 𝑡 ⊲𝑇 and 𝑇{∗
Π𝑥 : 𝐴.𝐵. By induction hypothesis there exists 𝑡 ′ and 𝑇 ′

erasable

such that Γ ⊢ 𝑡⇝ 𝑡 ′ ⊲𝑇 ′
and 𝜀 (𝑡 ′) = 𝑡 , 𝜀 (𝑇 ′) = 𝑇 . Because𝑇 ′

is erasable, it is less precise than𝑇 . By

Corollary 19, it must reduce to either ?□ or a product type. The first case is impossible because 𝑇 ′

does not contain any ? as it is erasable. Thus there are some 𝐴′
and 𝐵′

such that 𝑇 ′{∗
Π𝑥 : 𝐴′.𝐵′

and Γ ⊢ Π𝑥 : 𝐴.𝐵 ⊑𝛼 Π𝑥 : 𝐴′.𝐵′
. Since also Γ ⊢ 𝑇 ′ ⊑𝛼 𝑇 , by the same reasoning there are also some

𝐴′′
and 𝐵′′

such that𝑇{∗
Π𝑥 : 𝐴′′.𝐵′′

and Γ ⊢ Π𝑥 : 𝐴′.𝐵′ ⊑𝛼 Π𝑥 : 𝐴′′.𝐵′′
. Now because𝑇 is static,

so are Π𝑥 : 𝐴.𝐵 and Π𝑥 : 𝐴′′.𝐵′′
, and because of the comparisons with Π𝑥 : 𝐴′.𝐵′

we must have

𝜀 (Γ) ⊢ Γ Π𝑥 : 𝐴.𝐵 ⊑𝛼 Π𝑥 : 𝐴′′.𝐵′′
. Since both are static, this means they must be 𝛼-equal, since

no non-diagonal rule can be used on static terms. Hence, Π𝑥 : 𝐴.𝐵 = Π𝑥 : 𝐴′′.𝐵′′ = 𝜀 (Π𝑥 : 𝐴′.𝐵′),
implying that Π𝑥 : 𝐴′.𝐵′

is erasable. Thus, Γ ⊢ 𝑡⇝ 𝑡 ′ ▶Π Π𝑥 : 𝐴′.𝐵′
, both 𝑡 ′ and Π𝑥 : 𝐴′.𝐵′

are

erasable, and moreover 𝜀 (𝑡 ′) = 𝑡 and 𝜀 (Π𝑥 : 𝐴′.𝐵′) = Π𝑥 : 𝐴.𝐵, which is what had to be proved.

The other cases of constrained inference being very similar, let us turn to checking. We are given

Γ and 𝑇 ′
erasable, and suppose that 𝜀 (Γ) ⊢CIC 𝑡 ⊲ 𝑆 such that 𝑆 ≡ 𝜀 (𝑇 ′). By induction hypothesis,

Γ′ ⊢ 𝑡⇝ 𝑡 ′ ⊲ 𝑆 ′ with 𝑡 ′ and 𝑆 ′ erasable, 𝜀 (𝑡 ′) = 𝑡 and 𝜀 (𝑆 ′) = 𝑆 . But convertibility implies consistency,

so 𝑆 ∼ 𝜀 (𝑇 ′). By monotonicity of consistency, this implies 𝑆 ′ ∼ 𝑇 ′
. Thus Γ ⊢ 𝑡 ⊳𝑇 ′⇝ ⟨𝑇 ′ ⇐ 𝑆 ′⟩ 𝑡 ′.

We have 𝜀 (⟨𝑇 ′ ⇐ 𝑆 ′⟩ 𝑡 ′) = 𝜀 (𝑡 ′) = 𝑡 , so we are left to show that Γ ⊢ ⟨𝑇 ′ ⇐ 𝑆 ′⟩ 𝑡 ′ ⊒⊑𝛼 𝑡 . Using rules

Cast-L and Cast-R, and knowing already that Γ ⊢ 𝑆 ′ ⊒⊑𝛼 𝑆 , it remains to show that Γ ⊢ 𝑇 ′ ⊑{ 𝑆

and Γ ⊢ 𝑆 ⊑{ 𝑇 ′
. As 𝑆 and 𝜀 (𝑇 ′) are convertible, let 𝑈 be a common reduct. Using Theorem 18,

𝑇 ′{∗𝑈 ′
with Γ ⊢ 𝑈 ⊑𝛼 𝑈 ′

. Simulating that reduction again, we get 𝜀 (𝑇 ′){∗𝑈 ′′
with Γ ⊢ 𝑈 ′′ ⊑𝛼 𝑈 ′

.

As before, this implies 𝑈 = 𝑈 ′′ = 𝜀 (𝑈 ′). Thus, using the reduct 𝑈 ′
of 𝑇 ′

that is equiprecise with 𝑈 ,

we can conclude Γ ⊢ 𝑆 ⊑{ 𝑇 ′
and Γ ⊢ 𝑇 ′ ⊑{ 𝑆 . □

Theorem 34 (CIC is weaker than GCIC – Open context). Let 𝑡 be a static term and Γ an erasable
context of CastCIC. Then

• if Γ′ ⊢ 𝑡⇝ 𝑡 ′ ⊲𝑇 ′, then 𝑡 ′ and 𝑇 ′ are erasable and contain no ?, 𝜀 (𝑡 ′) = 𝑡 and 𝜀 (Γ′) ⊢ 𝑡 ⊲ 𝜀 (𝑇 ′);
• if𝑇 ′ is an erasable term of CastCIC containing no ? such that Γ′ ⊢ 𝑡 ⊳𝑇 ′⇝ 𝑡 ′, then 𝑡 ′ is erasable,
𝜀 (𝑡 ′) = 𝑡 and 𝜀 (Γ′) ⊢ 𝑡 ⊳ 𝜀 (𝑇 ′);

• if Γ′ ⊢ 𝑡⇝ 𝑡 ′▶ℎ𝑇
′, then 𝑡 ′ and𝑇 ′ are erasable and contain no ?, 𝜀 (𝑡 ′) = 𝑡 and 𝜀 (Γ′) ⊢ 𝑡 ▶ℎ 𝜀 (𝑇 ′).

Proof. The proof is similar to the previous one. Again, the tricky part is to handle reduction steps,

and we use equiprecision in the same way to conclude in those. □

As a direct corollary of those propositions, we get conservativity Theorem 21.

Elaboration graduality. Now for the elaboration graduality: again, we state it in an open context

for all three typing judgments.

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

Gradualizing the Calculus of Inductive Constructions 1:61

Theorem 35 (Elaboration graduality – Open context). Let Γ be a context such that Γ1 ⊑𝛼 Γ2, and 𝑡
and 𝑡 ′ be two GCIC terms such that 𝑡 ⊑G

𝛼 𝑡 ′. Then

• if Γ1 ⊢ 𝑡⇝ 𝑡 ⊲𝑇 and each subterm of 𝑡 that is against a ?@𝑖 in 𝑡 ′ infers a type in □𝑖 , then there
exists 𝑡 ′ and 𝑇 ′ such that Γ2 ⊢ 𝑡 ′⇝ 𝑡 ′ ⊲𝑇 ′, Γ ⊢ 𝑡 ⊑𝛼 𝑡 ′ and Γ ⊢ 𝑇 ⊑𝛼 𝑇 ′;

• If Γ1 ⊢ 𝑡 ⊳𝑇 ⇝ 𝑡 ′ and each subterm of 𝑡 that is against a ?@𝑖 in 𝑡 ′ infers a type in □𝑖 , then for
all 𝑇 ′ such that Γ ⊢ 𝑇 ⊑𝛼 𝑇 ′ there exists 𝑡 ′ such that Γ2 ⊢ 𝑡 ′ ⊳𝑇 ′⇝ 𝑡 ′ and Γ ⊢ 𝑡 ⊑𝛼 𝑡 ′;

• If Γ1 ⊢ 𝑡⇝ 𝑡 ′ ▶ℎ 𝑇 and each subterm of 𝑡 that is against a ?@𝑖 in 𝑡 ′ infers a type in □𝑖 , then
there exists 𝑡 ′ and 𝑇 ′ such that Γ2 ⊢ 𝑡 ′⇝ 𝑡 ′ ▶ℎ 𝑇

′, Γ ⊢ 𝑡 ⊑𝛼 𝑡 ′ and Γ ⊢ 𝑇 ⊑𝛼 𝑇 ′.
Proof. Once again, we use our favorite tool: induction on the typing derivation of 𝑡 .

Inference – Non-diagonal precision

For inference, we have to make a distinction on the rule used to prove 𝑡 ⊑G

𝛼 𝑡 ′: we have to handle

specifically the non-diagonal one, where 𝑡 ′ is some ?. We start with this, and treat the ones where

the rule is diagonal (i.e., when 𝑡 and 𝑡 ′ have the same head) next.

We have Γ1 ⊢ 𝑡⇝ 𝑡 ′ ⊲𝑇 ′
and Γ2 ⊢ ?@𝑖⇝ ??□𝑖

⊲ ?□𝑖
. Correctness of elaboration gives Γ1 ⊢ 𝑡 ′ ⊲𝑇 ′

,

and by validity Γ1 ⊢ 𝑇 ′ ⊲□𝑖 , the hypothesis on universe levels assuring us that this 𝑖 is the same as

the one in 𝑡 ′. Thus we have Γ ⊢ 𝑇 ′ ⊑𝛼 ?□𝑖
by rule Ukn, and in turn Γ ⊢ 𝑡 ′ ⊑𝛼 ??□𝑖

by a second use

of the same rule, giving us the required conclusions.

Inference – Variable

The inference rule for a variable gives us (𝑥 : 𝑇) ∈ Γ1. Because ⊢ Γ1 ⊑𝛼 Γ2, there exists some 𝑇 ′

such that (𝑥 : 𝑇 ′) ∈ Γ2, and Γ ⊢ 𝑇 ⊑𝛼 𝑇 ′
using weakening. Thus, Γ2 ⊢ 𝑥⇝𝑥 ⊲𝑇 ′

, and of course

Γ ⊢ 𝑥 ⊑𝛼 𝑥 .

Inference – Product

The type inference rule for product gives Γ1 ⊢ 𝐴̃⇝𝐴 ▶□ □𝑖 and Γ1, 𝑥 : 𝐴 ⊢ 𝐵̃⇝𝐵 ▶□ □𝑗 , and

the diagonal precision one gives 𝐴̃ ⊑G

𝛼 𝐴̃′
and 𝐵̃ ⊑G

𝛼 𝐵̃′
. Applying the induction hypothesis, we

get some 𝐴′
such that Γ2 ⊢ 𝐴̃′⇝𝐴′ ▶□ □𝑖 and Γ ⊢ 𝐴 ⊑𝛼 𝐴′

. The inferred type for 𝐴̃′
must be □𝑖

because it is some □𝑗 because of the constrained elaboration, and it is less precise than □𝑖 by the

induction hypothesis. From this, we also deduce that𝐺𝐺1, 𝑥 : 𝐴 ⊑𝛼 Γ2, 𝑥 : 𝐴′
. Hence the induction

hypothesis can be applied to 𝐵̃, giving Γ2 ⊢ 𝐵̃′⇝𝐵′ ▶□ □𝑗 . Combining this with the elaboration

for 𝐴̃′
, we obtain Γ2 ⊢ Π𝑥 : 𝐴̃′.𝐵̃′⇝Π𝑥 : 𝐴′.𝐵′ ⊲□𝑠Π (𝑖, 𝑗) . Moreover, Γ ⊢ Π𝑥 : 𝐴.𝐵 ⊑𝛼 Π𝑥 : 𝐴′.𝐵′

by combining the precision hypothesis on 𝐴 and 𝐵, and also Γ ⊢ □𝑠Π (𝑖, 𝑗) ⊑𝛼 □𝑠Π (𝑖, 𝑗) , relating the
two types.

Inference – Application

From the type inference rule for application, we have Γ1 ⊢ 𝑡⇝ 𝑡▶ΠΠ𝑥 : 𝐴.𝐵 and Γ1 ⊢ 𝑢̃ ⊳𝐴⇝𝑢, and

the diagonal precision gives 𝑡 ⊑G

𝛼 𝑡 ′ and 𝑢̃ ⊑G

𝛼 𝑢̃ ′
. By induction, we have Γ1 ⊢ 𝑡 ′⇝ 𝑡 ′ ▶Π Π𝑥 : 𝐴′.𝐵′

for some 𝑡 ′, 𝐴′
and 𝐵′

such that Γ ⊢ 𝑡 ⊑𝛼 𝑡 ′, Γ ⊢ 𝐴 ⊑𝛼 𝐴′
and Γ, 𝑥 : 𝐴 | 𝐴′ ⊢ 𝐵 ⊑𝛼 𝐵′

. Using

the induction hypothesis again with that precision property on 𝐴 and 𝐴′
gives Γ2 ⊢ 𝑢̃ ′ ⊳𝐴′⇝𝑢 ′

with Γ ⊢ 𝑢 ⊑𝛼 𝑢 ′
. Now it is just a matter to combine those to get Γ2 ⊢ 𝑡 ′ 𝑢̃ ′⇝ 𝑡 ′ 𝑢 ′ ⊲𝐵′[𝑢 ′/𝑥],

Γ ⊢ 𝑡 𝑢 ⊑𝛼 𝑡 ′ 𝑢 ′
and, by substitution property of precision, Γ ⊢ 𝐵 [𝑢/𝑥] ⊑𝛼 𝐵′[𝑢 ′/𝑥].

Inference – Other diagonal cases

All other cases are similar to those: combining the induction hypothesis directly leads to the desired

result, handling the binders in a similar way to that of products when needed.

Checking

For checking, we have the following Γ1 ⊢ 𝑡⇝ 𝑡 ⊲ 𝑆 , with 𝑆 ∼ 𝑇 . By induction hypothesis, Γ2 ⊢
𝑡 ′⇝ 𝑡 ′ ⊲ 𝑆 ′ with Γ ⊢ 𝑡 ⊑𝛼 𝑡 ′ and Γ ⊢ 𝑆 ⊑𝛼 𝑆 ′. But we also have as an hypothesis that Γ ⊢ 𝑇 ⊑𝛼 𝑇 ′

.

By the monotonicity of consistency, we conclude that 𝑆 ′ ∼ 𝑇 ′
, and thus Γ2 ⊢ 𝑡 ′ ⊳𝑇 ′⇝ ⟨𝑇 ′ ⇐ 𝑆 ′⟩ 𝑡 ′.

A use of Diag-Cast then ensures that Γ ⊢ ⟨𝑇 ⇐ 𝑆⟩ 𝑡 ⊑𝛼 ⟨𝑇 ′ ⇐ 𝑆 ′⟩ 𝑡 ′, as desired. The precision
between types 𝑇 and 𝑇 ′

has already been established.

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

1:62 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

Constrained inference – Inf-Prod rule

We are in the situation where Γ1 ⊢ 𝑡⇝ 𝑡 ⊲ 𝑆 and 𝑆{∗
Π𝑥 : 𝐴.𝐵. By induction hypothesis, Γ2 ⊢

𝑡 ′⇝ 𝑡 ′ ⊲ 𝑆 ′ with Γ ⊢ 𝑆 ⊑𝛼 𝑆 ′. Using Corollary 19, we get that 𝑆 ′{∗
Π𝑥 : 𝐴′.𝐵′

such that Γ ⊢ Π𝑥 :

𝐴.𝐵 ⊑𝛼 Π𝑥 : 𝐴′.𝐵′
, or 𝑆 ′{∗?□𝑖

. In the first case, by rule Inf-Prod we get Γ2 ⊢ 𝑡 ′⇝ 𝑡 ′▶Π Π𝑥 : 𝐴′.𝐵′

together with the precision inequalities for 𝑡 ′ and Π𝑥 : 𝐴′.𝐵′
. In the second case, we can use rule

Inf-Prod? instead, and get Γ2 ⊢ 𝑡 ′⇝ ⟨Germ𝑖 Π ⇐ 𝑆 ′⟩ 𝑡 ′ ▶Π Germ𝑖 Π, and 𝑐Π (𝑖) is larger than the

universe levels of both 𝐴′
and 𝐵′

. A use of Cast-R, together with the fact that Γ ⊢ 𝐴 ⊑𝛼 ?□𝑐Π (𝑖) by

Ukn-Univ and similarly for 𝐵, gives that Γ ⊢ 𝑡 ′ ⊑𝛼 ⟨Germ𝑖 Π ⇐ 𝑆 ′⟩ 𝑡 ′, and the precision between

types has been established already.

Constrained inference – Inf-Prod?

This time, Γ1 ⊢ 𝑡⇝ 𝑡 ⊲ 𝑆 , but 𝑆{∗?□𝑖
. By induction hypothesis, Γ2 ⊢ 𝑡 ′⇝ 𝑡 ′ ⊲ 𝑆 ′ with Γ ⊢ 𝑆 ⊑𝛼 𝑆 ′.

By Corollary 19, we get that 𝑆 ′{∗?□𝑖
. Thus Γ2 ⊢ 𝑡 ′⇝ ⟨Germ𝑖 Π ⇐ 𝑆 ′⟩ 𝑡 ′ ▶Π Germ𝑖 Π. A use of

Diag-Cast is enough to conclude.

Constrained inference – Other rules

All other cases are similar to the previous ones, albeit with a simpler handling of universe levels

(since we do not have to handle 𝑐Π).

□

B CONNECTING THE DISCRETE AND MONOTONE MODELS
Comparing the discrete and the monotone translations, we can see that they coincide on ground

types such as N. On functions over ground types, for instance N→N, the monotone interpretation

is more conservative: any monotone function 𝑓 : {| N→N |} induces a function
˜𝑓 : JN→NK by

forgetting the monotonicity, but not all functions from JN→NK are monotone
21
.

Extending the sketched correspondence at higher types, we obtain a (binary) logical relation

*−+ between terms of the discrete and monotone translations described in Fig. 19, that forgets

the monotonicity information on ground types. More precisely we define for each types 𝐴 in the

source a relation H𝐴I : J𝐴K → {|𝐴 |} → □ and for each term 𝑡 : 𝐴 a witness *𝑡 + : H𝐴I [𝑡] {𝑡} .
The logical relation employs a an inductively defined relation Urel,𝑖 between Udis

𝑖 := J□𝑖K and
Umon

𝑖 := {|□𝑖 |} whose constructors are relational codes relating codes of discrete and monotone

types. These relational codes are then decoded to relations between the corresponding decoded

types thanks to Elrel. The main difficult case in establishing the logical relation lie in relating the

casts, since that’s the main point of divergence of the two models.

Lemma 36 (Basis lemma).

(1) There exists a term castrel : HΠ(𝐴𝐵 : U).𝐴 → 𝐵I [cast] {cast} .
(2) More generally, if Γ ⊢cast 𝑡 : 𝐴 then HΓI ⊢IR *𝑡 + : H𝐴I [𝑡] {𝑡} .
In particular CastCIC terms of ground types behave similarly in both models.

Proof. Expanding the type of castrel, we need to provide a term

𝑐rel = castrel 𝐴𝐴′𝐴rel 𝐵 𝐵′ 𝐵rel 𝑎 𝑎
′ 𝑎rel : Elrel 𝐵rel ([cast]𝐴𝐵 𝑎) ({cast} 𝐴′ 𝐵′ 𝑎′)

where

𝐴 : J□𝑖K, 𝐴′
: {|□𝑖 |}, 𝐴rel : Urel𝐴𝐴′,

𝐵 : J□𝑖K, 𝐵′
: {|□𝑖 |}, 𝐵rel : Urel 𝐵 𝐵′,

𝑎 : El𝐴, 𝑎′ : El𝐴′, 𝑎rel : Elrel𝐴rel 𝑎 𝑎
′

We proceed by induction on 𝐴rel, 𝐵rel, following the defining cases for [cast] (see Fig. 14).
21
For instance the function swapping ✠ ˜N and ? ˜N is not monotone.

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

Gradualizing the Calculus of Inductive Constructions 1:63

Case 𝐴rel = πrel𝐴
d

rel
𝐴c

rel
and 𝐵rel = πrel 𝐵

d

rel
𝐵c

rel
: we pose 𝐴′ = π𝐴′d𝐴′c

and 𝐵′ = π 𝐵′d 𝐵′c

{cast} 𝐴′ 𝐵′ 𝑓 ′ = ↓?𝐵′ (↑?𝐴′ 𝑓
′) (by definition of {cast})

= ↓?→?

𝐵′ ◦ ↓?
?→?

◦ ↑?
?→?

◦ ↑?→?

𝐴′ (𝑓) (by decomposition of π ⊑ ?)

= ↓?→?

𝐵′ ◦ ↑?→?

𝐴′ (𝑓) (by section-retraction identity)

= 𝜆(𝑏 ′ : El𝐴′d). let𝑎′ = ↓?
𝐵′d ◦ ↑?

𝐴′d (𝑏) in (by def. of ep-pair on Π)

↓?
𝐵′c 𝑏′ ◦ ↑?𝐴′c 𝑎′ (𝑓 𝑎′)

= 𝜆(𝑏 ′ : El𝐴′d). let𝑎′ = {cast} 𝐵′d 𝐴′d 𝑏 ′ in (by definition of {cast})
{cast} (𝐴′c 𝑎′) (𝐵′c 𝑏 ′) (𝑓 𝑎′)

For any 𝑏 : El𝐵d
and 𝑏 ′ : El𝐵′d

, 𝑏rel : Elrel 𝐵
d

rel
𝑏 𝑏 ′, we have by inductive hypothesis

𝑎rel := *cast+ 𝐵d

rel
𝐴d

rel
𝑏rel : Elrel 𝐴rel ([cast] 𝐵d𝐴d 𝑏) ({cast} 𝐵′d𝐴′d 𝑏 ′)

so that, posing 𝑎 = [cast] 𝐵d𝐴d 𝑏 and 𝑎′ = {cast} 𝐵′d𝐴′d 𝑏 ′,

𝑓rel 𝑎 𝑎
′ 𝑎rel : Elrel (𝐴c

rel
𝑎 𝑎′ 𝑎rel) (𝑓 𝑎) (𝑓 ′ 𝑎′)

and by another application of the inductive hypothesis

*cast+ (𝐵c

rel
𝑏 𝑏 ′𝑏rel) (𝐴c

rel
𝑎 𝑎′ 𝑎rel) (𝑓rel 𝑎 𝑎′ 𝑎rel) : H𝐵c

rel
𝑏 𝑏 ′𝑏relI ([cast]𝐴𝐵 𝑓 𝑎) ({cast} 𝐴′ 𝐵′ 𝑓 ′ 𝑎′)

Packing these together, we obtain a term

*cast+ 𝐴rel 𝐵rel 𝑓rel : Elrel (π 𝐵d

rel
𝐵c

rel
) ([cast] 𝐴 𝐵 𝑓) ({cast} 𝐴′ 𝐵′ 𝑓 ′).

Case 𝐴rel = πrel𝐴
d

rel
𝐴c

rel
and 𝐵rel = ?rel: By definition of the logical relation at ?

𝑖
rel
, we need to

build a witness of type

Elrel (?𝑐Π (𝑖) → ?
𝑐Π (𝑖)) ([cast] 𝐴 (? → ?) 𝑓) (↓?

?→?
({cast} 𝐴′

? 𝑓 ′))
We compute that

↓?
?→?

({cast} 𝐴′
? 𝑓 ′) = ↓?

?→?
◦ ↓?

?
◦ ↑?𝐴′ 𝑓

′ = ↓?
?→?

◦ ↑?𝐴′ 𝑓
′ = {cast} 𝐴′ (? → ?) 𝑓 ′

So the result holds by induction hypothesis.

Other cases with 𝐴rel = πrel𝐴
d

rel
𝐴c

rel
: It is enough to show that {cast} 𝐴′ 𝐵′ 𝑓 ′ = ✠𝐵′ when

𝐵′ = ✠ (trivial) or head 𝐵′ ≠ pi. The latter case holds because ↓?
Germ 𝑐

↑?
Germ 𝑐′ 𝑥 = ✠ElH 𝑐 whenever

𝑐 ≠ 𝑐 ′ and downcasts preserve ✠.
Case𝐴rel = ?rel, 𝐵rel = πrel 𝐵

d

rel
𝐵c

rel
and𝑎 = (pi; 𝑓): By hypothesis,𝑎rel : Elrel (? → ?) 𝑓 (↓?

?→?
𝑎′)

and {cast} ? 𝐵′ 𝑎′ = {cast} (? → ?) 𝐵′ (↓?
?→?

𝑎′) so by induction hypothesis

*cast+ (?rel →rel ?rel) 𝐵rel 𝑓 (↓?
?→?

𝑎′) 𝑎rel : Elrel 𝐵rel ([cast] ?𝐵 (pi; 𝑓)) ({cast} ?𝐵′ 𝑎′)
The others cases with 𝐴rel = ?rel proceed in a similarly fashion. All cases with 𝐴rel = ✠rel are

immediate since ✠dis

and ✠mon

are related at any related types. Finally, the cases with𝐴rel = 𝔫𝔞𝔱rel
follow the same pattern as for πrel. □

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

1:64 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

Translation of contexts

H·I := · HΓ, 𝑥 : 𝐴I := HΓI, 𝑥dis : J𝐴K, 𝑥mon : {|𝐴 |}, 𝑥rel : H𝐴I 𝑥dis 𝑥mon

Logical relation on terms and types

H𝐴I := Elrel *𝐴+

*𝑥 + := 𝑥rel
*□𝑖 + := 𝔲rel,𝑖
*𝑡 𝑢+ := *𝑡 + [𝑢] {𝑢} * 𝑢+
*𝜆 𝑥 : 𝐴.𝑡 + := 𝜆(𝑥dis : J𝐴K) (𝑥mon : {|𝐴 |}) (𝑥rel : H𝐴I 𝑥dis 𝑥mon). * 𝑡 +
*Π𝑥 : 𝐴.𝐵+ := πrel *𝐴+ (𝜆(𝑥dis : J𝐴K) (𝑥mon : {|𝐴 |}) (𝑥rel : H𝐴I 𝑥dis 𝑥mon).H𝐵I)
*N+ := 𝔫𝔞𝔱rel
*?𝐴+ := ?H𝐴I : H𝐴I ?J𝐴K ?{𝐴}
*err𝐴+ := ✠H𝐴I : H𝐴I ✠J𝐴K ✠ {𝐴}
*cast+ := castrel

Inductive-recursive relational universe Urel : Udis→Umon→□

𝐴rel ∈ Urel,𝑖 𝐴 𝐴′ 𝐵 ∈ Π(𝑎 : 𝐴) (𝑎′ : 𝐴′).Elrel𝐴rel 𝑎 𝑎
′ → Urel, 𝑗 (𝐵 𝑎) (𝐵′ 𝑎′)

πrel 𝐴rel 𝐵rel ∈ Urel,𝑠Π (𝑖, 𝑗) (π𝐴𝐵) (π𝐴′ 𝐵′)

𝑗 < 𝑖

𝔲rel, 𝑗 ∈ Urel,𝑖 𝔲 𝑗 𝔲 𝑗

𝔫𝔞𝔱rel ∈ Urel,𝑖 𝔫𝔞𝔱 𝔫𝔞𝔱 ?rel ∈ Urel,𝑖 ? ? ✠rel ∈ Urel,𝑖 ✠ ✠

Decoding function Elrel : Urel𝐴𝐴′→El𝐴→El𝐴′→□

Elrel 𝔲rel, 𝑗 𝐴 𝐴′
:= Urel, 𝑗 𝐴 𝐴′

Elrel 𝔫𝔞𝔱rel 𝑛 𝑚 := 𝑛 =𝑚

Elrel✠rel ∗ ∗ := ⊤
Elrel ?rel (𝑐;𝑥) 𝑦 := Elrel (Germrel 𝑐) 𝑥 (downcast?,Germ 𝑐 𝑦)

Elrel (πrel 𝐴rel 𝐵rel) 𝑓 𝑓 ′ := Π(𝑎 : El𝐴) (𝑎′ : El𝐴′) (𝑎rel : Elrel𝐴rel 𝑎 𝑎
′).

Elrel (𝐵rel 𝑎 𝑎
′ 𝑎rel) (𝑓 𝑎) (𝑓 ′ 𝑎′)

Fig. 19. Logical relation between the discrete and monotone models

ACM Trans. Program. Lang. Syst., Vol. V, No. N, Article 1. Publication date: January 202Y.

	Abstract
	1 Introduction
	2 Fundamental Tradeoffs in Gradual Dependent Type Theory
	2.1 Safety and Normalization, Endangered
	2.2 The Axiomatic Approach
	2.3 The Exceptional Approach
	2.4 The Gradual Approach: Simple Types
	2.5 The Gradual Approach: Dependent Types
	2.6 The Fire Triangle of Graduality

	3 GCIC: Overall Approach, Main Challenges and Results
	3.1 GCIC: 3-in-1
	3.2 Typing, Cast Insertion, and Conversion
	3.3 Realizing a Dependent Cast Calculus: CastCIC
	3.4 Varieties of Precision and Graduality

	4 Preliminaries: Bidirectional CIC
	5 From GCIC to CastCIC
	5.1 CastCIC
	5.2 Elaboration from GCIC to CastCIC
	5.3 Back to Omega
	5.4 Precision and Reduction
	5.5 Properties of GCIC

	6 Realizing CastCIC and Graduality
	6.1 Discrete Model of CastCIC
	6.2 Poset-Based Models of Dependent Type Theory
	6.3 Microcosm: the Monotone Unknown Type ?
	6.4 Realization of the Monotone Universe Hierarchy
	6.5 Monotone Model of CastCIC
	6.6 Back to Graduality
	6.7 Graduality of GCICG

	7 Dealing with Equality
	7.1 Indexed Inductives and Equality
	7.2 Equality in GCIC

	8 Related Work
	9 Conclusion
	References
	A Complements on Elaboration and CastCIC
	A.1 CastCIC
	A.2 Precision and Reduction
	A.3 Properties of GCIC

	B Connecting the discrete and monotone models

