
HAL Id: hal-02896776
https://hal.science/hal-02896776v1

Preprint submitted on 10 Jul 2020 (v1), last revised 17 Nov 2021 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gradualizing the Calculus of Inductive Constructions
Meven Bertrand, Kenji Maillard, Nicolas Tabareau, Éric Tanter

To cite this version:
Meven Bertrand, Kenji Maillard, Nicolas Tabareau, Éric Tanter. Gradualizing the Calculus of Induc-
tive Constructions. 2020. �hal-02896776v1�

https://hal.science/hal-02896776v1
https://hal.archives-ouvertes.fr

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Gradualizing the Calculus of Inductive Constructions

MEVEN BERTRAND, Gallinette Project-Team, Inria, France

KENJI MAILLARD, Gallinette Project-Team, Inria, France

NICOLAS TABAREAU, Gallinette Project-Team, Inria, France

ÉRIC TANTER, PLEIAD Lab, Computer Science Department (DCC), University of Chile, Chile

Acknowledging the ordeal of a fully formal development in a proof assistant such as Coq, we investigate

gradual variations on the Calculus of Inductive Construction (CIC) for swifter prototyping with imprecise types

and terms. We observe, with a no-go theorem, a crucial tradeoff between graduality and the key properties of

canonicity, decidability and closure of universes under dependent product that CIC enjoys. Beyond this Fire

Triangle of Graduality, we explore the gradualization of CIC with three different compromises, each relaxing

one edge of the Fire Triangle. We develop a parametrized presentation of Gradual CIC that encompasses all

three variations, and jointly develop their metatheory. We first present a bidirectional elaboration of Gradual

CIC to a dependently-typed cast calculus, which elucidates the interrelation between typing, conversion, and

graduality. We then establish the metatheory of this cast calculus through both a syntactic model into CIC,

which provides weak canonicity, confluence, and when applicable, normalization, and a monotone model

that purports the study of the graduality of two of the three variants. This work informs and paves the way

towards the development of malleable proof assistants and dependently-typed programming languages.

1 INTRODUCTION
Gradual typing arose as an approach to selectively and soundly relax static type checking by

endowing programmers with imprecise types [Siek and Taha 2006; Siek et al. 2015]. Optimistically

well-typed programs are safeguarded by runtime checks that detect violations of statically-expressed

assumptions. A gradual version of the simply-typed lambda calculus enjoys such expressiveness

that it can embed the untyped lambda calculus. This means that gradually-typed languages tend to

accommodate at least two kinds of effects, non-termination and runtime errors. The effectivity of

gradual languages is measured by (static and dynamic) gradual guarantees, which stipulate that

typing and reduction are monotone with respect to precision [Siek et al. 2015].

Originally formulated in terms of simple types, the extension of gradual typing to a wide variety

of typing disciplines has been an extremely active topic of research, both in theory and in practice.

As part of this quest towards more sophisticated type disciplines, gradual typing was bound to meet

with full-blown dependent types. This encounter saw various premises in a variety of approaches

to integrate (some form of) dynamic checking with (some form of) dependent types [Dagand

et al. 2018; Knowles and Flanagan 2010; Lehmann and Tanter 2017; Ou et al. 2004; Tanter and

Tabareau 2015]. Naturally, the highly-expressive setting of dependent types, in which terms and

types are not distinct and computation happens as part of typing, raises a lot of subtle challenges

for gradualization. In the most elaborate effort to date, Eremondi et al. [2019] present a gradual

dependently-typed programming language, GDTL, which can be seen as an effort to gradualize a

two-phase programming language such as Idris. A key idea of GDTL is to adopt an approximate form

of computation at compile-time, called approximate normalization, which ensures termination and

totality of typing. Approximate normalization is however not applicable to design a computationally

relevant type theory, because a term that uses imprecision in any useful way necessarily normalizes

to the unknown term, even when no errors would have ensued.

Authors’ addresses: Meven Bertrand, Gallinette Project-Team, Inria, Nantes, France; Kenji Maillard, Gallinette Project-Team,

Inria, Nantes, France; Nicolas Tabareau, Gallinette Project-Team, Inria, Nantes, France; Éric Tanter, PLEIAD Lab, Computer

Science Department (DCC), University of Chile, Santiago, Chile.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Meven Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

This paper addresses the open challenge of gradualizing a full-blown dependent type theory,

namely the Calculus of Inductive Constructions (hereafter, CIC) [Coquand and Huet 1988; Paulin-

Mohring 2015], identifying and addressing the corresponding metatheoretic challenges. In doing

so, we build upon several threads of prior work in the type theory and gradual typing literature:

syntactic models of type theories to justify extensions of CIC [Boulier et al. 2017], in particular

the exceptional type theory of Pédrot and Tabareau [2018], an effective re-characterization of the

dynamic gradual guarantee as graduality with embedding-projection pairs [New and Ahmed 2018],

as well as the work on GDTL [Eremondi et al. 2019].

We make the following contributions:

• Weanalyze, from a type theoretic point of view, the fundamental tradeoffs involved in gradualizing

a dependent type theory such as CIC (§2), and establish a no-go theorem, the Fire Triangle of

Graduality, which does apply to CIC.

• We present an approach to gradualize CIC (§ 3), parametrized by two knobs for controlling

universe constraints on the dependent function space, resulting in three meaningful variants of

Gradual CIC (GCIC), that reflect distinct resolutions of the Fire Triangle of Graduality.
• We give a novel, mutually-recursive and bidirectional elaboration of GCIC to a dependently-

typed cast calculus CastCIC and prove that it satisfies a static notion of graduality akin to the

static gradual guarantee [Siek et al. 2015] (§5).

• We give a bidirectional presentation of CIC (§4), which we could not readily find in the literature,

and exploit it to define elaboration.

• We explain the challenging issue of equality in gradual type theories,
1
and propose an approach

to handle equality in GCIC through elaboration.

• We develop two models of CastCIC (§6). First, in order to justify CastCIC as a meaningful type

theory, we provide a syntactic model ofCastCIC intoCIC extended with induction-reduction [Dy-

bjer and Setzer 2003; Ghani et al. 2015; Martin-Löf 1996]. Second, we provide a model of CastCIC
that captures the notion of monotonicity with respect to precision, and prove graduality for the

relevant choices of parameters.

We finally discuss related work (§7) and conclude (§8). Complete definitions and detailed proofs

can be found in appendix.

2 FUNDAMENTAL TRADEOFFS IN GRADUAL DEPENDENT TYPE THEORY
Before exposing a specific approach to gradualize CIC, we present a general analysis of the main

properties at stake and tensions that arise when gradualizing a dependent type theory. In particular,

we establish a fundamental impossibility in the gradualization of CIC, which means that at least

one of the desired properties has to be sacrificed.

To begin, let us recall that, as a logically consistent type theory, CIC enjoys Normalization (N),

which entails that conversion is decidable. In particular, N means that one can devise a sound and

complete decision procedure (a.k.a. a reduction strategy) in order to decide conversion, and hence,

typing. CIC also satisfies canonicity, meaning that the normal forms of closed terms of a given type

are exactly the canonical forms of that type: for instance, any closed term of type B is convertible

(and reduces) to either true or false.

1
Note that we sometimes use “dependent type theory” in order to differentiate from the Gradual Type Theory of New et al.

[2019], which is simply typed. But by default, in this article, the expression "type theory" is used to refer to a type theory

with full dependent types, such as CIC.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Gradualizing the Calculus of Inductive Constructions 1:3

2.1 The Axiomatic Approach and Conservativity
Let us first address the elephant in the room: why would one want to gradualize CIC instead of

simply postulating any property one does not feel like proving (yet)?

Indeed, we can augment CIC with a general-purpose axiom: Axiom ? : forall A, A. The re-
sulting theory, CIC+?, has an obvious practical benefit: we can use (? A) , hereafter noted ?A ,
as a “wildcard” whenever we are asked to exhibit an inhabitant of some type A and we do not

want to. However, we cannot use ?A in any meaningful way as a value at the type level. For
instance, one might be tempted to give to the filter function on vectors (size-indexed lists)

the type forall A n (f: A→ B), Vect A n → Vect A ?N, in order to avoid the complications re-

lated to specifying the size of the vector produced by filter. The problem is that the term

head ?N (filter N 4 even [0;1;2:3]) does not type check because Vect A (S ?N) is not convert-

ible to Vect A ?N. So the axiomatic approach is not useful for making dependently-typed program-

ming any more pleasing.

On the metatheoretical front, CIC+? has a good property: all pure (i.e. axiom-free) CIC terms

behave as they would in CIC. In the gradual typing literature, this is often referred to as the

Conservativity (C) of the “gradual language” (here CIC+?) with respect to the “static language”

(hereCIC). We parametrize this property with the base theory, so we say thatCIC+? satisfies C/CIC.
2

Also, CIC+? still satisfiesN , so that conversion remains decidable. However, CIC+? loses canonicity.
Importantly, this does not just mean that, given a type A, ?A inhabits A, but that an infinite number

of normal forms (more adequately called stuck terms) inhabit A. For instance, in B, we not only
have the normal forms true, false, and ?B, but an infinite number of terms stuck on eliminations

of ?, such as match ?A with ... or ?N→B 1. Additionally, these terms are not convertible to a single

representative while they all represent the same wildcard, which really breaks conversion.

2.2 Exceptions and Weak Canonicity
Pédrot and Tabareau [2018] demonstrated that it is possible to extend a type theory with a wildcard

while preserving a form of canonicity. In particular they present an exceptional type theory ExTT,
which is essentially CIC+err. Like our axiom above, the error term errA can inhabit any type A,
but instead of being treated as an axiom, err is endowed with computational content emulating

exceptions in programming languages, which propagate instead of being stuck. For instance,

eliminating errB at type N (such as match errBwith true → O | false→ 1) is convertible to

errN. Notably, exceptions in ExTT are call-by-name exceptions, so one can only discriminate

exceptions on positive types (i.e. inductive types), not on negative types (i.e. function types). In

particular, in ExTT errA→B and _ _ : A ⇒ errB are convertible, and the latter is considered to be

in normal form. So errA is a normal form of A only if A is a positive type.

Consequently, ExTT satisfies Weak Canonicity (W): any closed term of a positive type (e.g. 1)
is convertible to either the constructors of that type (e.g. tt) or err at that type (e.g. err1). W,

together withN , gives weak logical consistency: any closed proof of False is convertible to errFalse,
which is discriminable at False. In terms of a programming language, this means that we avoid

stuck terms, and simply admit exceptions as a possible outcome of computation. We can still reason

soundly in an exceptional type theory, using different techniques [Pédrot and Tabareau 2018; Pédrot

et al. 2019]. Note that ExTT is also normalizing (N), althoughW can still hold in a theory for which

N does not: it then simply means that normal forms, when they exist, are canonical. It is important

2
Conservativity here means that two CIC terms are convertible in the larger system iff they are convertible in CIC. This is
the counterpart of the similar property for gradual languages in simple type systems [Siek et al. 2015], where conservativity

means that typechecking and evaluation coincide on terms from the static language. Importantly, this does not mean that

CIC+? is a conservative extension of CIC as a logic.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Meven Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

to highlight that not only is W the least one can hope for from a meaningful type theory, it is also

the most one can expect in terms of canonicity in a theory with effects [Pédrot and Tabareau 2020].

So why cannot we use ExTT as a proto-gradual type theory? Unfortunately, while it solves

the canonicity issue, using errA as a wildcard has the same practical limitation as the axiomatic

approach: even though we can use it to inhabit any type, we cannot use it in any meaningful way as

a value at the type level. In our example above, Vect A (S errN) is not convertible to Vect A errN.

2.3 Consistency, Precision, and Graduality
In non-dependent type systems and theories, ? is only a type, not a term. Type-level relations, such

as equality and subtyping, can be systematically relaxed to account for the unknown type [Garcia

et al. 2016; Siek and Taha 2006, 2007]. The relaxing of equality is called consistency, not to be

confused with logical consistency! With full dependent types, there is no longer any type/term

syntactic distinction, so the unknown type is in fact an unknown term. The key relation to relax in

this setting is conversion, so that Vect A (S ?N) can be deemed consistent with (or consistently

convertible to) Vect A ?N. In essence, the unknown term can be seen as a dual form of exception:

it should likewise propagate, but be optimistically comparable, i.e. consistent with, any other terms.

More precisely, ?A should be consistent with any term of type A while errA should not be consistent
with any such term. The “unknown type” is simply ?□.3 Note that because we now have two

exceptional terms, W means that the normal forms of type 1 are tt, err1, and ?1.

The early accounts of gradual typing emphasized consistency as the central idea. However,

Siek et al. [2015] observed that this characterization left too much possibilities for the impact of

type information on program behavior, compared to what was originally intended [Siek and Taha

2006]. Consequently, Siek et al. [2015] brought forth precision as the key notion. Precision is a

preorder that can be used to capture the intended continuity of the static-to-dynamic spectrum

afforded by gradual typing. The unknown type ? is considered the most imprecise type (A ⊑ ?
for any type A), and the static and dynamic gradual guarantees specify that typing and reduction

should be monotone with respect to precision: losing precision should not introduce new static or

dynamic errors. These properties require precision to be naturally extended from types to terms,

but importantly, imprecision only arises from types.

In an effort to give a more mathematically elegant presentation of the dynamic gradual guarantee,

New and Ahmed [2018] argue that the fundamental property of gradual typing is that precision gives

rise to embedding-projection (adjoint) pairs: going to a less precise type and back is the identity.

Therefore, if we have A ⊑ B, and a term t of type A, t :: B :: A is equal to t.4 They introduce the

term Graduality (G) for this property, to highlight the parallel between parametricity as the key

property of polymorphic typing and graduality as the key property of gradual typing. Graduality is

also based on important underlying structural properties of precision on terms, namely that it is

stable by reduction (if t ⊑ t' and t reduces to v and t' to v' , then v ⊑ v'), and that the term and

type constructors of the language are monotone (e.g. if t ⊑ t' and u ⊑ u' then t u ⊑ t' u'). These
technical conditions, natural in a categorical setting [New et al. 2019], coincide with the user-level

interpretation of precision and the gradual guarantees, namely that precision is compositional and

that losing precision is harmless [Siek et al. 2015].

We observe that, in a dependently-typed setting, the notion of graduality as embedding-projection

pairs is not just an equivalent formulation of the dynamic gradual guarantee, but a much stronger

property! Indeed, because of the presence of the unknown term, one could decide to produce ?A as
a result of going to ?□ and back. Doing so would satisfy the dynamic gradual guarantee formulated

3
We use the notation □𝑖 for the predicative universe of types Type𝑖 , omitting the universe level 𝑖 when irrelevant.

4
We write 𝑡 :: 𝐴 for a type ascription, which is syntactic sugar for (_𝑥 : 𝐴.𝑥) 𝑡 .

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Gradualizing the Calculus of Inductive Constructions 1:5

by Siek et al. [2015], but it would break the embedding-projection requirement of graduality stated

by [New and Ahmed 2018]. In a non-dependent setting, where ? is only a type and not a term, the

only possible values at type N are natural numbers (and the error), so the difference between both

properties is not palpable.

This imprecise approach of producing ?A as a result of going through imprecision and back is used

in Approximate Normalization (AN) [Eremondi et al. 2019]. For instance, with AN, 1 :: ?□ :: N is

convertible to ?N, not 1. This ensures that conversion is both total and decidable, but it is not mean-

ingful computationally. This is why Eremondi et al. [2019] only use AN in the typechecking phase of

the programming language GDTL, and not for executing GDTL programs—at runtime, GDTL uses a

standard possibly-failing, possibly-diverging, and precise notion of reduction. Therefore, graduality

as embedding-projection pairs characterizes both the smoothness of the static-to-dynamic checking

spectrum, and the proper computational content of valid uses of imprecision.

Note that in a dependently-typed setting where invalid gains of precision raise errors, it is not

possible to consider errA as a separate “runtime-only” term, because it can now appear at the

type-level as well, as in: forall (b : B), if b then N else err□. Therefore, errA also needs to

be considered in the precision partial order, and to satisfy graduality, it needs to be a bottom element.

Finally, observe that because for any type A, ?A is the most imprecise term at that type, then ??□
is the least precise term of all; more exactly, there is one such term per type universe. We simply

write ? for this term, omitting the universe level when not required. For clarity, we often still write

?A , which has to be understood as sugar for ? :: A.

2.4 The Fire Triangle of Graduality
To sum up, we have seen three important properties that can be expected from a gradual type theory:

conservativity with respect to theory𝑋 (C/𝑋), graduality (G), and normalization (N). Unfortunately,

achieving them all is impossible in the case of CIC.

Theorem 1 (Fire Triangle of Graduality). It is impossible to devise a gradual type theory that
satisfies at the same time the properties C/CIC, G and N .

Proof. Let us assume a theory that satisfies all three properties. Consider the term Omega defined as
(_ x : ?□𝑖

⇒ x x) (_ x : ?□𝑖
⇒ x x). By C/CIC, universes are closed under →, so that ?□𝑖

→ ?□𝑖

and ?□𝑖
lives at the same universe, hence by maximality of ?A (for any A) with respect to precision,

we have that ?□𝑖
→ ?□𝑖

⊑ ?□𝑖
. This means that ?□𝑖

→ ?□𝑖
and ?□𝑖

are consistent, and so the self-

applications in Omega (such as x x) are well-typed. Therefore, Omega is well-typed and has type

?□𝑖
. Given that ?□𝑖

→ ?□𝑖
and ?□𝑖

are closed types, byW we know that the embedding-projection

induced by precision (G) is definitional. Indeed, if it were not the case, consider the S constructor

of N of type N→ N, then the term (S :: ?□𝑖
→ ?□𝑖

:: ?□𝑖
) 0 would be a stuck closed term of type

N, contradicting W. So Omega must diverge, which is a violation of N . □

This no-go theorem means that when designing a gradual version of CIC, we must pick at most

two properties out of the three, and decide how to sacrifice the third. Note that Theorem 1 can

be proven for type theories others than CIC (for instance for a theory with only universes and

dependent functions), although there exists type theories for which all properties can simultaneously

be achieved (we will present one).

The Fire Triangle of Graduality admits several solutions, and this work develops several of them.

At the very least, one can devise theories that are degenerate in the sacrificed aspect. For instance a

theory that diverges as soon as ? is involved trivially satisfies C/CIC and G. Likewise, a theory whose

typing only accepts fully-precise terms would trivially satisfy C/CIC and N , but not G. A more

interesting example is approximate normalization [Eremondi et al. 2019], in which—as explained

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Meven Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

above—G is sacrificed by producing ? for any tentative gain of precision, irrespective of its validity,

in order to avoid both failure and non-termination.

Note that considering a non-universal notion of precision (where ?A is not maximal with respect

to precision for any type A) is not a viable escape route in CIC if one wants to satisfy G. Indeed,
as soon as there exists at least one term of a positive type that is more precise than, and different

from, ? (e.g. tt ⊑ ?1), then ? must be more imprecise than any term. This fact comes from the

monotonicity of the large eliminator of the considered inductive. For instance, consider the function

f := _ x : 1 ⇒ match x with tt → u for any term u: A. By monotonicity and the exceptional-like

propagation of ?1, we have f tt ⊑ f ?1 and f ?1 convertible to ?A , so u ⊑ ?A . So unless precision

is vacuously useless (i.e. coincides with conversion), it has to be universal.

2.5 A Last Challenge: Indexed Inductives and Equality
In dependent type theories with inductive types such as CIC, inductive types can be indexed,
meaning that each constructor can produce values with different type indices. The canonical

example is of course sized lists, a.k.a. vectors in Coq:

Inductive vect (A :□) : N → □ :=

nil : vect A 0

| cons : A → forall n : N, vect A n → vect A (S n).

In a gradual dependent type theory, the monotonicity of constructors with respect to precision

raises a non-trivial challenge: by monotonicity, we should have vect A 0 ⊑ vect A ?N, and by

G, the roundtrip nil :: vect A ?N :: vect A 0 should be equal to nil. However, no constructor

of vect can possibly inhabit vect A ?N. Therefore, by W, the only inhabitant of vect A ?N is ?
(omitting its type): too much precision is lost in the embedding to recover nil in the projection.

A systematic way to expose a constructor yielding potentially unknown indices is to encode

these indices with additional parameters and explicit equalities to capture the constraints on indices:

Inductive vect𝑝 (A : □) (n : N) : □ :=

nil𝑝 : 0 = n → vect𝑝 A n

| cons𝑝 : A → forall m : N, S m = n → vect𝑝 A m → vect𝑝 A n.

With this definition, the nil𝑝 constructor can legitimately be used to inhabit vect𝑝 A ?N, provided

we have an inhabitant (possibly ?) of 0 = n. Therefore, the challenge of supporting indexed inductive
types gradually is reduced to that of one indexed family, equality.

In CIC, the propositional equality = corresponds to the Martin-Löf identity type, with a single

constructor refl for reflexivity, and the elimination principle known as J:

Inductive eq (A :□) (x : A) : A → □ := refl : eq A x x.

J : forall (A:□) (P: A → □) (x:A) (t:P x) (y: A) (e: x = y), P y

together with the definitional equality J A P x t x (refl A x) ≡ t.
By G, whenever x ⊑ y, we have x = x ⊑ x = y, so going from x = x to x = y should not fail.

This in turn means that there has to be a canonical inhabitant of x = y whenever x ⊑ y. If precision
were internalized in CIC, as equality is, this would mean that x ⊑ y iff x = y, because by J, x = y
would imply x ⊑ y. In other words, precision ought to supplant (eq) equality. The problem is

that by G, precision must have an extensional flavor, akin to parametricity. Internalizing para-

metricity [Bernardy et al. 2015], extensional equality (with univalence [Cohen et al. 2015] or with

uniqueness of identity proof [Altenkirch et al. 2019]) or even mixing both [Cavallo and Harper

2019], is an active area of research that is very likely to take us quite far from CIC.
Another option is to treat precision as an external relation that is used metatheoretically and

implemented via a decision procedure, just as conversion in CIC is external, and decided by

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Gradualizing the Calculus of Inductive Constructions 1:7

reduction. The problem here is that extensionality is not decidable—likewise, in CIC, conversion
does not satisfy extensionality, i.e. f n ≡ g n for any closed term n does not imply that f ≡ g.
A gradual dependent type theory therefore needs to address this conundrum.

3 GCIC: OVERALL APPROACH, MAIN CHALLENGES AND RESULTS
This section gives an informal, non-technical overview of our approach to gradualizing CIC,
highlighting the main challenges and results. As such, it serves as a gentle roadmap to the following

sections, which are rather dense and technical. We end this section with a few concrete examples.

3.1 GCIC: 3-in-1
To explore the spectrum of possibilities enabled by the Fire Triangle of Graduality (Theorem 1), we

develop a general approach to gradualize CIC, and use it to define three theories, corresponding to

each of the possible resolutions of the triangular tension between normalization (N), graduality

(G) and conservativity with respect to CIC (C/CIC):

(1) GCICG
: a theory that satisfies both C/CIC and G, but sacrifices N

(2) GCICN
: a theory that satisfies both C/CIC and N , but sacrifices G

(3) GCIC↑
: a theory that satisfies both N and G, and supports C wrt to a variant of CIC, CIC↑

Instead of developing three theories independently, we expose a parametrized version of a

gradual CIC, called GCIC, with two parameters (Fig. 2). The first parameter characterizes how

the universe level of a Π type is determined during typing: either as taking the maximum of the

levels of the involved types, as in standard CIC, or as the successor of that maximum. This latter

option corresponds to what we call CIC↑
(read “CIC-shift”). We prove that we can satisfy all three

properties C,N and G for CIC↑
. The downside is that CIC↑

rejects some terms that are well-typed

in CIC.5 The second parameter of GCIC is the reduction counterpart of the first parameter and

needs to coincide for the theory to be gradual. Out of the four resulting possibilities, only three

are meaningful (if one is strict for typing, then more flexibility for reduction would break subject

reduction); these three possibilities correspond to GCICG
, GCICN

and GCIC↑
.

3.2 Typing, Cast Insertion, and Conversion
In CIC, typing appeals to conversion: any term of type A can also be given type B as long as both
are convertible, i.e. A ≡ B. Conversion is decided by a reduction strategy. Therefore, typing and

reduction are fundamentally intertwined in dependently-typed theories.

In a gradual language, whenever we reclaim precision, we might be wrong and need to fail in

order to satisfy subject reduction. Therefore, reduction needs to rely on casts.6 For instance, in a

call-by-value language, the upcast (loss of precision) ⟨? ⇐ N⟩ 10 is considered a (tagged) value,

and the downcast (gain of precision) ⟨N ⇐ ?⟩ 𝑣 reduces successfully if 𝑣 is such a tagged natural

number, or to an error otherwise.

In a simply-typed setting, the standard approach is to define typing on the gradual source

language, and then to translate terms via a type-directed cast insertion to a target cast calculus,

i.e. a language with explicit runtime type checks. The interplay between typing and cast insertion

is more subtle in the context of a dependent type theory. Because typing needs computation,

and imprecision needs safeguards to satisfy subject reduction, GCIC is likewise elaborated in a

type-directed manner to a second calculus, named CastCIC (§5.1), but this cast calculus is used as

5
A minimal example of a well-typed CIC term that is ill-typed in CIC↑

is narrow : N → □, where narrow n is the type of

functions that accept n arguments.

6
Or some other form of runtime tracking and checking, such as evidence [Garcia et al. 2016].

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Meven Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

part of the typed elaboration in order to compare types (§5.2). This means that GCIC has no typing

on its own, independent of its elaboration to the cast calculus.

Note that this is similar to what happens in practice in proof assistants such as Coq, where

terms that are input by the user are never typechecked as such, but are first elaborated in order to

add implicit arguments, coercions, etc. The computation steps required by conversion are always

performed on the elaborated terms, never on the raw input syntax. In fact, it would be impossible to

define untyped conversion directly on the input syntax. And indeed, in Coq, when the programmer

faces an error, it is often needed to use vernacular commands to make such inferred implicit

arguments and coercions visible in order to understand the underlying problem.

In order to satisfy conservativity with respect to CIC (C/CIC) ascriptions are required to satisfy

consistency: for instance, true :: ? :: N is well-typed by consistency (twice), but true :: N is ill-

typed. Such ascriptions in CastCIC are realized by casts. For instance 0 :: ? :: B in GCIC elaborates

(modulo sugar and reduction) to ⟨B ⇐ ?⟩ ⟨?⇐ N⟩ 0 in CastCIC. A major difference between

ascriptions in GCIC and casts in CastCIC is that casts are not required to satisfy consistency: a cast

between any two types is well-typed, although of course it might produce an error. This ensures

that subjection reduction holds, for instance when reducing ⟨B ⇐ ?⟩ ⟨?⇐ N⟩ 0 to ⟨B ⇐ N⟩ 0.

Finally, standard presentations of CIC use a standalone conversion rule, usual in declarative

presentations of type systems. In order to gradualize CIC, we have to move to an algorithmic

presentation in order to forbid transitivity; otherwise all terms would be well-typed by way of a

transition step through ?, but C/CIC demands that only terms with explicitly-ascribed imprecision

enjoy its flexibility. This observation is standard in the gradual typing literature [Garcia et al. 2016;

Siek and Taha 2006, 2007]. As is prior work on gradual dependent types [Eremondi et al. 2019], we

adopt a bidirectional presentation of typing (§4), which allows us to avoid accidental transitivity

and directly derive a deterministic typing algorithm for GCIC.

3.3 Realizing a Dependent Cast Calculus: CastCIC
In order to justify that CastCIC makes sense as a type theory, we build a syntactic model of

CastCIC by translation to a known variant of CIC (§6.1). From a type theory point of view, what

makes CastCIC peculiar is first of all the possibility of having errors (both “pessimistic” as err and

“optimistic” as ?), and the necessity to do intensional type analysis in order to resolve casts. For the

former, we build upon the work of Pédrot and Tabareau [2018] on the exceptional type theory ExTT.
For the latter, we reuse the technique of Boulier et al. [2017] to account for typerec, an elimination

principle for the universe □, which targets CIC augmented with induction-recursion [Dybjer and

Setzer 2003; Ghani et al. 2015; Martin-Löf 1996].
7

We call the syntactic model of CastCIC the discrete model, in contrast with a semantic model

motivated in the next subsection. The discrete model of CastCIC captures the intuition that the

unknown type ?□𝑖
behaves as a dependent sum ΣA : □𝑖 .A—the unknown type is inhabited by

“hiding” the underlying type A of the term that is injected into the unknown type. Projecting

out of the unknown type is realized through type analysis, and may fail with an error in the

ExTT sense. This syntactic model informs the design and justifies the reduction rules provided

for CastCIC: the reduction semantics enjoy confluence and, for the two variants CastCICN
and

CastCIC↑
, strong normalization (N). This model also gives us weak canonicity (W), and hence

weak logical consistency.

7
In this work, we do not deal with the impredicative sort Prop. The reason is that in the non-terminating setting, it can be

interpreted just as Type following Palmgren [1998], so including it does not bring any interesting insight. For the terminating

setting, it seems inherently impossible to avoid the problem of Omega with an impredicative sort; in particular, having an

impredicative sort is incompatible with the level-shifting approach we use in CIC↑
to enforce normalization.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Gradualizing the Calculus of Inductive Constructions 1:9

3.4 Varieties of Precision and Graduality
While the discrete model of CastCIC is enough to justify its computational content as a type theory,

it does not allow us to deduce the main properties coming from the gradual typing literature. In our

setting withGCIC that elaborates to CastCIC, graduality (G) can be studied at different levels. First,

at the source level (GCIC), we introduce a notion of syntactic precision that captures the syntactic

intuition of a more imprecise term as “the same term with more ?”, and is defined without any

assumption of typing, and hence conversion, because the latter is not defined in GCIC proper. In

CastCIC, we define a notion of structural precision, which is mostly syntactic except that, in order

to account for cast insertion during elaboration, it tolerates precision-preserving casts (for instance,

⟨𝐴 ⇐ 𝐴⟩ 𝑡 is related to 𝑡 by structural precision. Armed with these two notions of precision, we

prove elaboration graduality (Theorem 12): if a term 𝑡 of GCIC elaborates to a term 𝑡 of CastCIC,
then a term �̃� less syntactically precise than 𝑡 in GCIC elaborates to a term 𝑢 less structurally

precise than 𝑡 in CastCIC.
Finally, to prove G for CastCIC (in its variants CastCICG

and CastCIC↑
), we essentially need to

establish a bisimulation result for CastCIC wrt. structural precision. However, only a simulation

can be established (if the more precise term reduces, then the less precise one reduces too, to a less

precise term). The reverse does not hold because less precise termsmay reducemore by “unblocking”

neutral terms (stuck on variables). For instance, ⟨N ⇐ 𝑋 ⟩ ⟨𝑋 ⇐ N⟩ 0 is neutral due to the type

variable 𝑋 , while ⟨N ⇐ ?□⟩ ⟨?□ ⇐ N⟩ 0 reduces to 0 even though it is less precise. Structural

precision gives a bisimulation only in closed contexts, but of course, to prove it inductively, one

needs to reason about open contexts as well. Note that this difficulty is proper to dependent types

and the presence of variables at the type level.

In order to overcome this problem, we build an alternative model ofCastCIC (for the two variants

where graduality holds), called the monotone model (§6.2 to 6.5), which endows types with the

structure of an ordered set, or poset. In the monotone model, we can reason about (semantic)

propositional precision and establish propositional graduality, which corresponds to graduality

but only up-to propositional equality. Propositional precision subsumes structural precision and

together with weak canonicity, allows us to establish (computational) graduality (Theorem 13) for

CastCIC, which is the usual notion of graduality (G).

3.5 Dealing with Equality
We now return to the equality/precision conundrum exposed in §2.5. We propose a resolution that

allows us to remain close to CIC, and is compatible with all four properties, in particularW and G.

If we have a proof e : a = b, then e :: a = ?A :: a = b reduces in CastCIC to e, so we do have a

proper embedding-projection. However, due to the conundrum exposed previously, in the case of

an invalid gain of precision with respect to an equality, such as refl a :: a = ?A :: a = b, with a ≠ b,
we are not able in general to eagerly detect the error, and so we obtain a fake inhabitant of a = b,
in addition to the ones obtained with err and ?. This is because detecting the error at this stage
amounts to deciding propositional equality in CIC, which is not possible in general.

Technically, we (grossly) over-approximate equality/precision inGCICwith a universal inductive

relation in CastCIC:

Inductive universal (A : □) (x y : A) : □ := all : universal A x y.

In particular, refl A x in GCIC is interpreted as all A x x in CastCIC. Importantly, we restrict

the use of this degenerate relation through its elimination principle, by defining it as casting:

J' := _ A P x t y e ⇒ ⟨(P x)⇐ (P y)⟩ t.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Meven Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

J in GCIC is interpreted as J' in CastCIC. A drawback is that J' A P x t x (all A x x) is defini-
tionally equal to t only when A is a closed type; otherwise it is just propositionally equal. This is

because the embedding-projection pair induced by precision is definitional only for closed types.

CastCIC satisfies W in that the normal forms of type universal are either all, err or ?.
However, this notion of W in CastCIC does not transfer fully to GCIC, because all normal forms

of (the translation of) eq are not only (the translation of) refl, in addition to err and ?. So W in

GCIC does not hold for eq, but it does hold for any other positive type. In particular, GCIC enjoys

weak logical consistency: any closed proof of False is convertible to either errFalse or ?False.
In fact, any use of a non-canonical equality proof to establish False reduces to errFalse. For

instance, consider the standard proof that 0 = 1 is a contradiction:

Definition contra : eq 0 1 → False :=

_ e ⇒ J N (_ n : N ⇒ match n with 0 ⇒ True | S _ ⇒ False end) 0 I 1 e.

Using J' to interpret J, contra (refl 0 :: eq 0 ?N :: eq 0 1) reduces to ⟨False⇐ True⟩ I in
CastCIC, which in turn reduces to errFalse.

Finally, we highlight that the conundrum of the identity type eq does not manifest with decidable

forms of equality, thanks to their better computational behavior. To illustrate, consider an alternative

proof that 0=1 is a contradiction, this time using the decidable equality on N, eqN:

Definition contra' : eqN 0 1 → False := _ e ⇒ e.

The proof is the identity, so contra' (I :: eqN 0 ?N :: eqN 0 1) is just I :: eqN 0 ?N :: eqN 0 1,

which in CastCIC directly reduces to errFalse.
So while eq and eqN are equivalent, choosing to work with eqN can be significantly better

computationally.
8
For instance, going back to indexed inductive types, if we encode vect as vect𝑝

using eqN, we obtain the expected behavior:

nil𝑝 e :: vect𝑝 A ?N :: vect𝑝 A 0 ≡ nil𝑝 e nil𝑝 e :: vect𝑝 A ?N :: vect𝑝 A 1 ≡ errB

3.6 GCIC in Action
To conclude this overview section, we present small examples that illustrate both the commonalities

and differences between the three GCIC variants.

Indexed types. First of all, in all three systems, we can define filter by giving it the imprecise

type forall A n (f: A→ B), Vect A n → Vect A ?N in order to bypass the difficulty of precisely

characterizing the size of the output vector. If we adopt an encoding of Vectwith decidable equality,
as explained in §3.5, then the term head ?N (filter N 4 even [0;1;2:3]) typechecks and reduces

to 2. Likewise, head ?N (filter N 4 even [1;3]) typechecks and fails at runtime.

Large elimination. One of the argued benefit of dynamically-typed languages, which is accommo-

dated by gradual typing, is the ability to define functions that can return values of different types

depending for instance on their inputs, such as:

def foo(n)(m){ if (n > m) then m + 1 else m > 0

In a gradually-typed language, one can give this function the type ?, or even N → N → ? in
order to enforce proper argument types, and remain flexible in the treatment of the returned value.

Of course, one knows very well that in a dependently-typed language, with large elimination,

we can simply give foo the dependent type A := forall (n m : N), if (n > m) then N else B.
Lifting the term-level comparison n > m to the type level is extremely expressive, but hard to work

with as well, both for the implementor of the function and its clients. In all three variants of GCIC,
one can explore the whole spectrum of type-level precision for such a function:

? ⊒ N → N → ? ⊒ N → N → if ? then N else ? ⊒ forall (n m : N), if (n > m) then N else ? ⊒ A

8
This is not a novel observation, obviously, but the impact of decidable equality in the gradual setting is noteworthy.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Gradualizing the Calculus of Inductive Constructions 1:11

At each stage from left to right, there is less flexibility for both the implementor of foo and its

clients. Graduality ensures that if the function is actually faithful to the most precise type A, giving
it any of the less precise types above does not introduce any new failure.

Omega. Let us come back to the term Omega := (_ x : ?□𝑖
⇒ x x) (_ x : ?□𝑖

⇒ x x) used in the

proof of Theorem 1. In both GCICG
and GCICN

, this term is well-typed. In GCICG
, it even reduces

forever, as it would in the untyped lambda calculus. In that sense, GCICG
can embed the untyped

lambda calculus just as GTLC [Siek et al. 2015]. In GCICN
, this term fails at runtime because of the

strict universe check on casts.

In GCIC↑
, this term does not typecheck because of the shifted universe level on Π types. A

consequence of this stricter typing rule is that in GCIC↑
, ?□𝑖

→ ?□𝑖
⊑?□𝑗

for any 𝑗 > 𝑖 , but

?□𝑖
→ ?□𝑖

̸⊑?□𝑖
. Therefore the subterm f := _ x : ?□𝑖

⇒ x x does not typecheck: when attempting

to use x as a function, its type ?□𝑖
is elaborated to ?□𝑖−1

→ ?□𝑖−1
, which cannot accept an argument

of type ?□𝑖
.

Dependent arities. The well-known C function printf can be embedded in a well-typed fashion in

CIC: it takes as first argument a format string and computes from it the type of later arguments. This

function brings out the limitation ofGCIC↑
: since the format string can specify and arbitrary number

of arguments, we need as many →, and printf cannot typecheck in a theory where universes are

not closed under function spaces. In GCICN
, printf typechecks but the same problem will appear

dynamically when casting printf to ? and back to its original type: the result will be a function

that works only on format strings specifying no more arguments than the universe level at which

it has been typechecked. Finally, in GCICG
the function can be gradualized as much as one wants,

without surprises.

4 PRELIMINARIES: BIDIRECTIONAL CIC

We develop GCIC on top of a bidirectional version of CIC, whose presentation is folklore among

type theory specialists [McBride 2019], but has never been spelled out in details — to our knowledge.

As explained before, this bidirectional presentation avoids multiple uses of a standalone conversion

rule during typing, which becomes crucial to preserve C/CIC in a gradual setting where conversion

is replaced by consistency, which is not transitive.

Our syntax for CIC featuring a predicative universe hierarchy □𝑖 is:

𝑡 ::= 𝑥 | □𝑖 | 𝑡 𝑡 | _ 𝑥 : 𝑡 .𝑡 | Π𝑥 : 𝑡 .𝑡 | 𝐼 | 𝑐 | ind𝐼 (𝑡, 𝑡, t)
When needed, we use bold letters X to denote sequences of objects 𝑋1, . . . , 𝑋𝑛 and 𝑡 [a/y] for the
simultaneous substitution of 𝑦s for 𝑎s. We present generic inductive types, although we restrict

to strictly positive ones to preserve normalization, following [Giménez 1998]. At this point we

consider only inductive types without indices: § 2.5 and 3.5 explained how to recover indexed

inductive types using equality. Inductive types are formally annotated with a universe level @𝑖 ,

controlling the level of its parameters: for instance Σ@𝑖 (𝐴, 𝐵) expects 𝐴 to be a type in □𝑖 . This

level is hidden when unessential. An inductive type at level 𝑖 with parameters a : Params(𝐼 , 𝑖) is
noted 𝐼@𝑖 (a). Similarly 𝑐𝐼

𝑘
@𝑖 (a, b) denotes the 𝑘-th constructor of the inductive 𝐼 , taking parameters

a : Params(𝐼 , 𝑖) and arguments b : Args(𝐼 , 𝑖, 𝑐𝑘).
The inductive eliminator ind𝐼 (𝑠, 𝑧.𝑃, 𝑓 .y.t) corresponds to a fixpoint immediately followed by a

match: in Coq, one would write it fix 𝑓 𝑠 := match 𝑠 as 𝑧 return 𝑃 with | 𝑐1 y⇒ 𝑡1 ... | 𝑐𝑛 y⇒ 𝑡𝑛 .

The branches 𝑡𝑘 are thus typed in a context where they are given access to a function 𝑓 corresponding

to a recursive call. Describing the exact guard condition to ensure termination is outside the scope

of this presentation. We implicit assume in the rest of this paper that every fixpoint is guarded.

Fig. 1 presents bidirectional typing for CIC with several typing judgments. We reuse a discipline

due to McBride [2018, 2019] in which the objects involved in these typing relations are split between

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Meven Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

⊢ Γ

⊢ ·
⊢ Γ Γ ⊢ 𝑇 ▶□□𝑖

⊢ Γ, 𝑥 : 𝑇

Γ ⊢ 𝑡 ⊲𝑇

Γ ⊢ □𝑖 ⊲□𝑖+1

(𝑥 : 𝑇) ∈ Γ

Γ ⊢ 𝑥 ⊲𝑇
Γ ⊢ 𝐴▶□□𝑗 Γ, 𝑥 : 𝐴 ⊢ 𝐵▶□□𝑖

Γ ⊢ Π𝑥 : 𝐴.𝐵 ⊲□
max(𝑖, 𝑗)

Γ ⊢ 𝐴▶□□𝑖 Γ, 𝑥 : 𝐴 ⊢ 𝑡 ⊲𝐵
Γ ⊢ _ 𝑥 : 𝐴.𝑡 ⊲Π𝑥 : 𝐴.𝐵

Γ ⊢ 𝑡 ▶Π Π𝑥 : 𝐴.𝐵 Γ ⊢ 𝑢 ⊳𝐴

Γ ⊢ 𝑡 𝑢 ⊲𝐵 [𝑥/𝑢]

Γ ⊢ 𝑎𝑚 ⊳𝑋𝑚 [a/x]
Γ ⊢ 𝐼@𝑖 (a) ⊲□𝑖

Γ ⊢ 𝑎𝑚 ⊳𝑋𝑚 [a/x]Γ ⊢ 𝑏𝑛 ⊳𝑌𝑛 [a/x] [b/y]
Γ ⊢ 𝑐𝐼

𝑘
@𝑖 (a, b) ⊲ 𝐼@𝑖 (a)

with Params(𝐼 , 𝑖) = X and Args(𝐼 , 𝑖, 𝑐𝑘) = Y

Γ ⊢ 𝑠 ▶I 𝐼@𝑖 (a) Γ, 𝑧 : 𝐼 (a) ⊢ 𝑃 ▶□□𝑗 Γ, 𝑓 : (Π 𝑧 : 𝐼@𝑖 (a), 𝑃), y : Yk [a/x] ⊢ 𝑡𝑘 ⊳ 𝑃 [𝑐𝐼𝑘@𝑖 a y/𝑧]
Γ ⊢ ind𝐼 (𝑠, 𝑧.𝑃, 𝑓 .y.t) ⊲ 𝑃 [𝑠/𝑧]

Γ ⊢ 𝑡 ⊳𝑇
Γ ⊢ 𝑡 ⊲𝑇 ′ 𝑇 ′ ≡ 𝑇

Γ ⊢ 𝑡 ⊳𝑇
Γ ⊢ 𝑡 ▶

h
𝑇

Γ ⊢ 𝑡 ⊲𝑇 𝑇 {∗
Π𝑥 : 𝐴.𝐵

Γ ⊢ 𝑡 ▶Π Π𝑥 : 𝐴.𝐵

Γ ⊢ 𝑡 ⊲𝑇 𝑇 {∗ 𝐼@𝑖 a

Γ ⊢ 𝑡 ▶I 𝐼@𝑖 a

Γ ⊢ 𝑡 ⊲𝑇 𝑇 {∗ □𝑖

Γ ⊢ 𝑡 ▶□□𝑖

𝑡 { 𝑢 (congruence rules omitted)

(_ 𝑥 : 𝐴.𝑡) 𝑢 { 𝑡 [𝑢/𝑥] ind𝐼 (𝑐𝑖 a b, 𝑃, t) { 𝑡𝑖 [_ 𝑥 : 𝐼 a. ind𝐼 (𝑥, 𝑃, t)/𝑓] [b/y]
𝑡 ≡ 𝑢 𝑡 ≡ 𝑢 := ∃𝑣, 𝑡 { 𝑣 ∧ 𝑢 { 𝑣

Fig. 1. CIC: Bidirectional typing

three modes: inputs, subjects and outputs. In the inference judgment Γ ⊢ 𝑡 ⊲𝑇 , the context is an

input, the term is the subject, and the type is an output. In the checking judgment Γ ⊢ 𝑡 ⊳𝑇 , both
context and type are inputs, and the term is the subject. Conversion is restricted to specific positions,

namely to mediate between an inference and a checking judgment, and can thus never appear

twice in a row without explicit annotation. In the context checking judgment ⊢ Γ, the context is
the subject.

We also appeal to a constrained inference judgment, Γ ⊢ 𝑡 ▶h𝑇 , with the same modes as inference,

which infers the type 𝑇 under the constraint that its head constructor is ℎ, where ℎ ∈ H:

H := □𝑖 | Π | 𝐼 head (Π𝐴𝐵) := Π head (□𝑖) = □𝑖 head (𝐼 a) = 𝐼 (1)

In usual presentations of CIC this judgment is kept implicit because a type has to reduce to a

Π-type in order to validate the constraint. For instance, when typechecking an application 𝑡 𝑢,

one starts by inferring a type for 𝑡 , expecting a Π-type whose domain serves to check 𝑢. As we

will see, making this judgment explicit is important when gradualizing CIC. Additionally, the
input/subject/output distinction is particularly useful to turn typing into an elaboration procedure,

as it clearly separates between inputs that can be used to elaborate the subject, and outputs that

must be constructed. Each typing relation must ensure that its output are well-formed, under the

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Gradualizing the Calculus of Inductive Constructions 1:13

Γ ⊢ 𝑡 ⊲𝑇
. . .

Γ ⊢ 𝐴▶□□𝑗 Γ, 𝑥 : 𝐴 ⊢ 𝐵▶□□𝑖

Γ ⊢ Π𝑥 : 𝐴.𝐵 ⊲□𝑠Π (𝑖, 𝑗)

Γ ⊢ 𝑇 ▶□□𝑖

Γ ⊢ ?𝑇 ⊲𝑇

Γ ⊢ 𝑇 ▶□□𝑖

Γ ⊢ err𝑇 ⊲𝑇

Γ ⊢ 𝐴▶□□𝑖 Γ ⊢ 𝐵▶□□𝑗 Γ ⊢ 𝑡 ⊳𝐴
Γ ⊢ ⟨𝐵 ⇐ 𝐴⟩ 𝑡 ⊲𝐵

𝑠Π and 𝑐Π
𝑠Π (𝑖, 𝑗) := max(𝑖, 𝑗) 𝑐Π (𝑖) := 𝑖 (GCICG

-CastCICG
)

𝑠Π (𝑖, 𝑗) := max(𝑖, 𝑗) 𝑐Π (𝑖) := 𝑖 − 1 (GCICN
-CastCICN

)

𝑠Π (𝑖, 𝑗) := max(𝑖, 𝑗) + 1 𝑐Π (𝑖) := 𝑖 − 1 (GCIC↑
-CastCIC↑

)

Fig. 2. CastCIC: Bidirectional typing (extending CIC Fig. 1), and parameters

hypothesis that its inputs are. Most properties hence need an explicit hypothesis that the involved

contexts are well-formed, because contexts are never checked.

5 FROM GCIC TO CastCIC

In this section we present the elaboration of the source gradual system GCIC into the cast calculus

CastCIC. We start with CastCIC, its typing, reduction and state its metatheoretical properties

(§5.1). We then describe GCIC and its elaboration to CastCIC, along with few direct properties

(§5.2). We then expose technical properties of the reduction of CastCIC (§5.3) used to prove the

most important theorems on elaboration: conservativity over CIC or CIC↑
, as well as elaboration

and computational graduality (§5.4).

5.1 CastCIC

CastCIC is an extension of CIC with three new term constructors: the unknown term ?𝑇 and

dynamic failure err𝑇 of type 𝑇 , as well as the cast ⟨𝑇 ⇐ 𝑆⟩ 𝑡 of a term 𝑡 of type 𝑆 to 𝑇 . Casts keep

track of the use of consistency during elaboration, implementing a form of runtime type-checking.

We call static the terms of CastCIC without those, corresponding one-to-one with CIC terms.

CastCIC is parameterized by two functions to account for the three different variants of GCIC
we consider. The first function 𝑠Π computes the level of the universe of a dependent product, given

the levels of its domain and codomain. The second function 𝑐Π controls the universe levels in the

reduction of casts between ? → ? and ?. The typing rules of CastCIC, extending those of CIC,
and the three definitions of 𝑠Π and 𝑐Π are given in Fig. 2. The universe level of a Π-type is now
provided by the parameter 𝑠Π of the variant we are considering, rather than with a maximum. Note

also that in this system no consistency appears when typing a cast, only plain conversion. When

disambiguation is needed, we note this typing judgment as ⊢cast. Any derivation of ⊢cast gives
raise mutatis mutandi to a derivation without bidirectional information, closer to the judgment

frequently employed in type theory.

The reduction rules associated to the new terms of CastCIC are presented in Fig. 3, omitting

most congruences and using a let-form not present in the syntax as sugar. We reuse the notion of

head constructor ℎ ∈ H (see Eq. (1)). The germ Germ𝑖 ℎ constructs the least precise type with head

ℎ at level 𝑖 , and is defined as (where X = Params(𝐼 , 𝑖)):

Germ𝑖 □𝑗 =

{
□𝑗 (𝑗 < 𝑖)
err□𝑖

(𝑗 ≥ 𝑖) Germ𝑖 𝐼 = 𝐼 ?X Germ𝑖 Π =

{
?□𝑐Π (𝑖) → ?□𝑐Π (𝑖) (𝑐Π (𝑖) ≥ 0)
err□𝑖

(𝑐Π (𝑖) < 0)
The design of these reduction rules is enforced by the monotone model of CastCIC presented in §6.

The rules for reducing casts fall under three categories: either the head constructor of both types

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Meven Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

Reduction rules for cast:〈
Π(𝑥 : 𝐵d).𝐵c ⇐ Π(𝑥 : 𝐴d) .𝐴c

〉
(_ 𝑥 : 𝐴d .𝑡) { _ 𝑏 : 𝐵d . let𝑎 =

〈
𝐴d ⇐ 𝐵d

〉
𝑏 in

〈
(𝐵c 𝑏) ⇐ (𝐴c 𝑎)

〉
(𝑡 [𝑎/𝑥])〈

?□𝑖
⇐ Π(𝑥 : 𝐴d) .𝐴c

〉
𝑓 {

〈
?□𝑖

⇐ Germ𝑖 Π
〉
(
〈
Germ𝑖 Π ⇐ Π(𝑥 : 𝐴d) .𝐴c

〉
𝑓)

when Π(𝑥 : 𝐴d) .𝐴c ≠ Germ𝑖 Π〈
𝐼 (a′) ⇐ 𝐼 (a)

〉
𝑐𝑘 (a, 𝑏1, . . . , 𝑏𝑛) {

let𝑏 ′
1
= ⟨𝑌1 a′ ⇐ 𝑌1 a⟩ 𝑏1 in . . .

let𝑏 ′𝑛 = ⟨(𝑌𝑛 a′) [b′/y] ⇐ (𝑌𝑛 a) [b/y]⟩ 𝑏𝑛 in
𝑐𝑘 (a′, 𝑏 ′1, . . . , 𝑏

′
𝑛)〈

?□𝑖
⇐ 𝐼 (a)

〉
𝑡 {

〈
?□𝑖

⇐ Germ𝑖 𝐼
〉
(⟨Germ𝑖 𝐼 ⇐ 𝐼 (a)⟩ 𝑡) when 𝐼 (a) ≠ Germ𝑖 𝐼

⟨□𝑖 ⇐ □𝑖 ⟩ 𝐴 { 𝐴
〈
□𝑗 ⇐ □𝑖

〉
𝐴 { err□𝑗

when 𝑖 ≠ 𝑗〈
𝐼 (a′) ⇐ 𝐼 (a)

〉
★𝐼 (a) { ★𝐼 (a′)

〈
?□𝑖

⇐ Germ𝑗 ℎ
〉
𝑡 { err?□𝑖

when 𝑗 > 𝑖〈
𝑋 ⇐ ?□

〉
★?□ { ★𝑋

〈
𝑇 ′ ⇐ 𝑇

〉
𝑡 { err𝑇 ′ when head𝑇 ≠ head𝑇 ′〈

𝑋 ⇐ ?□𝑖

〉
(
〈
?□𝑖

⇐ Germ𝑖 ℎ
〉
𝑡) { ⟨𝑋 ⇐ Germ𝑖 ℎ⟩ 𝑡 when Germ𝑖 ℎ ≠ err□𝑖〈

𝑋 ⇐ err□
〉
𝑡 { err𝑋

〈
err□ ⇐ 𝑍

〉
𝑡 { errerr□ when head𝑍 ∈ H

Reduction rules for ? and err:

★
Π(𝑥 :𝐴) .𝐵 { _(𝑥 : 𝐴) .★𝐵 ind𝐼 (★𝐼 (a) , 𝑧.𝑃, 𝑓 .y.t) { ★𝑃 [★𝐼 (a) /𝑧]

𝑡 { 𝑢

★𝑡 { ★𝑢

Notation: ★𝑋 stands for both ?𝑋 and err𝑋

Fig. 3. CastCIC: Reduction rules (congruence rules omitted)

match and the cast reduces recursively to casts on the argument of the types, or there is a mismatch

leading to a failure err, or else an unknown type is involved. We denote the reflexive, transitive

closure of this reduction as{∗
. This presentation ensures the following properties on CastCIC:

Theorem 2 (Properties of CastCIC). CastCIC enjoys:

• Confluence: if 𝑇 ≡ 𝑈 there exists 𝑆 such that 𝑇 {∗ 𝑆 and𝑈 {∗ 𝑆 .
• Subject reduction: if Γ ⊢cast 𝑡 ⊲𝐴 and 𝑡 { 𝑡 ′ then Γ ⊢cast 𝑡 ′ ⊳𝐴
• Strong normalization for CastCICN and CastCIC↑

• Weak canonicity (W)

Proof sketch. We extend the notion of parallel reduction forCIC from [Sozeau et al. 2020] to account

for our additional reduction rules and show that the triangle property (the existence of an optimal

reduced term in one step) still holds. Subject reduction can be derived from the injectivity of type

constructors, which is a direct consequence of confluence. The translation induced by the discrete

model §6.1 maps each reduction step to at least one step, see Theorem 14. So strong normalization

holds whenever the target calculus of the translation is normalizing. To get weak canonicity, we

show a specific form of progress: if ⊢cast 𝑡 : B then 𝑡 takes a step or it is already a canonical form

(true, false, the dynamic failure errB or the unknown term ?B). □

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Gradualizing the Calculus of Inductive Constructions 1:15

𝑥 ∼𝛼 𝑥 □𝑖 ∼𝛼 □𝑖
𝐴 ∼𝛼 𝐴′ 𝑡 ∼𝛼 𝑡 ′

_ 𝑥 : 𝐴.𝑡 ∼𝛼 _ 𝑥 : 𝐴′.𝑡 ′
𝐴 ∼𝛼 𝐴′ 𝐵 ∼𝛼 𝐵′

Π𝑥 : 𝐴.𝐵 ∼𝛼 Π𝑥 : 𝐴′.𝐵′
𝑡 ∼𝛼 𝑡 ′ 𝑢 ∼𝛼 𝑢 ′

𝑡 𝑢 ∼𝛼 𝑡 ′ 𝑢 ′

a ∼𝛼 a′

𝐼 (a) ∼𝛼 𝐼 (a′)
a ∼𝛼 a′ b ∼𝛼 b′

𝑐𝑘 (a, b) ∼𝛼 𝑐𝑘 (a, b)
𝑎 ∼𝛼 𝑎′ 𝑃 ∼𝛼 𝑃 ′ t ∼𝛼 t′

ind𝐼 (𝑠, 𝑧.𝑃, 𝑓 .y.t) ∼𝛼 ind𝐼 (𝑠 ′, 𝑧.𝑃 ′, 𝑓 .y.t′)

𝑡 ∼𝛼 𝑡 ′

𝑡 ∼𝛼
〈
𝐵′ ⇐ 𝐴′〉 𝑡 ′ 𝑡 ∼𝛼 𝑡 ′

⟨𝐵 ⇐ 𝐴⟩ 𝑡 ∼𝛼 𝑡 ′ 𝑡 ∼𝛼 ?𝑇 ′ ?𝑇 ∼𝛼 𝑡

Fig. 4. CastCIC: 𝛼-consistency

5.2 Elaboration from GCIC to CastCIC

GCIC simply extends the syntax of CIC with an unknown term ?@𝑖 at each universe level. Its

typing is defined by the elaboration judgment from GCIC to CastCIC. Elaboration is bidirectional,

using three judgments that augment the typing ones of Fig. 1 with an extra output: the elaborated

CastCIC term. This mutual typing-elaboration is required because of the intricate interdependence

between typing and reduction (§3). The subject of the judgment is a source term in GCIC, and both
inputs and outputs are target terms in CastCIC (colors should help with readability, but are not

essential).

Instead of standard conversion, elaboration employs consistent conversion to compare CastCIC
terms. Consistent conversion is essentially conversion modulo 𝛼-consistency ∼𝛼 which is an exten-

sion of 𝛼-conversion that accommodates for imprecision, defined in Fig. 4. Apart from the standard

rules making ? consistent with any term, 𝛼-consistency optimistically ignores casts that could

interfere in the comparison, and does not consider errors consistent with any term.

Definition 1 (Consistent conversion). Two terms are consistently convertible, or simply consis-

tent, noted 𝑠 ∼ 𝑡 , iff there exists 𝑠 ′ and 𝑡 ′ such that 𝑠 {∗ 𝑠 ′, 𝑡 {∗ 𝑡 ′ and 𝑠 ′ ∼𝛼 𝑡 ′.

Note that this formulation of consistent conversion makes no assumption of normalization, and

is therefore usable as such in the non-normalizing GCICG
. An important property of consistent

conversion, and a fundamental building block of the conservativity of GCIC wrt. CIC, is that it
corresponds to conversion on static terms.

Proposition 3 (Properties of consistent conversion).

(1) two static terms are consistently convertible iff they are convertible in CIC.
(2) if 𝑠 and 𝑡 have a normal form, then 𝑠 ∼ 𝑡 is decidable.

Proof. First remark that 𝛼-consistency between static terms corresponds to 𝛼-equality of terms.

Thus, and because reduction of static terms in CastCIC is the same as reduction of CIC, two
consistent static terms must reduce to 𝛼-equal terms, which in turn implies that they are convertible.

Conversely two convertible terms of CIC have a common reduct, which is 𝛼-consistent with itself.

If 𝑠 and 𝑡 are normalizing, they have a finite number of reducts, thus to decide their consistency,

it is sufficient to check each pair of reducts for the decidable 𝛼-consistency. □

Elaboration from GCIC to CastCIC is given in Fig. 5, closely following the bidirectional presen-

tation of CIC (Fig. 1). The salient features of this process are the two cast insertions to mediate

between merely consistent but not convertible types: first, at transition between checking and

inference; second, during constrained inference. Indeed, a term inferring unknown ?□𝑖
is cast to

Germ𝑖 ℎ, the least precise type verifying the constraint of the head constructor ℎ. Also note that ? is
elaborated to ??□ and the context is responsible for inserting the appropriate cast, e.g. ? :: 𝑇 reduces

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Meven Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

Γ ⊢ 𝑡⇝ 𝑡 ⊲𝑇
(𝑥 : 𝑇) ∈ Γ

Γ ⊢ 𝑥⇝𝑥 ⊲𝑇 Γ ⊢ □𝑖⇝□𝑖 ⊲□𝑖+1

Γ ⊢ �̃�⇝𝐴▶□□𝑖 Γ, 𝑥 : 𝐴 ⊢ �̃�⇝𝐵▶□□𝑗

Γ ⊢ Π𝑥 : �̃�.�̃�⇝Π𝑥 : 𝐴.𝐵 ⊲□𝑠Π (𝑖, 𝑗)

Γ ⊢ �̃�⇝𝐴▶□□𝑖 Γ, 𝑥 : 𝐴 ⊢ 𝑡⇝ 𝑡 ⊲𝐵

Γ ⊢ _ 𝑥 : �̃�.𝑡⇝ _ 𝑥 : 𝐴.𝑡 ⊲Π𝑥 : 𝐴.𝐵

Γ ⊢ 𝑡⇝ 𝑡 ▶Π Π𝑥 : 𝐴.𝐵 Γ ⊢ �̃� ⊳𝐴⇝𝑢

Γ ⊢ 𝑡 �̃�⇝ 𝑡 𝑢 ⊲𝐵 [𝑢/𝑥] Γ ⊢ ?@𝑖⇝ ??□𝑖
⊲ ?□𝑖

Γ ⊢ 𝑎𝑚 ⊳𝑋𝑚 [a/x]⇝𝑎𝑚

Γ ⊢ 𝐼@𝑖 (ã)⇝ 𝐼@𝑖 (a) ⊲□𝑖
Γ ⊢ 𝑎𝑚 ⊳𝑋𝑚 [a/x]⇝𝑎𝑚 Γ ⊢ ˜𝑏𝑛 ⊳𝑌𝑛 [a/x] [b/y]⇝𝑏𝑛

Γ ⊢ 𝑐𝑘@𝑖 (ã, b̃)⇝ 𝑐𝑘 (a, b) ⊲ 𝐼 (a)
with Params(𝐼 , 𝑖) = X and Args(𝐼 , 𝑖, 𝑐𝑘) = Y

Γ ⊢ 𝑠⇝ 𝑠 ▶I 𝐼 (a)
Γ, 𝑧 : 𝐼 (a) ⊢ 𝑃⇝ 𝑃 ▶□□𝑖 Γ, 𝑓 : (Π 𝑧 : 𝐼 (a), 𝑃), y : Yk [a/x] ⊢ 𝑡𝑘 ⊳ 𝑃 [𝑐𝑘 (a, y)/𝑧]⇝ 𝑡𝑘

Γ ⊢ ind𝐼 (𝑠, 𝑧.𝑃, 𝑓 .y.t̃)⇝ ind𝐼 (𝑠, 𝑧.𝑃, f .y.t) ⊲ 𝑃 [𝑠/𝑧]

Γ ⊢ 𝑡 ⊳𝑇 ⇝ 𝑡
Γ ⊢ 𝑡⇝ 𝑡 ⊲𝑇 𝑇 ∼ 𝑆

Γ ⊢ 𝑡 ⊳ 𝑆⇝ ⟨𝑆 ⇐ 𝑇 ⟩ 𝑡

Γ ⊢ 𝑡⇝ 𝑡 ▶
h
𝑇

Γ ⊢ 𝑡⇝ 𝑡 ⊲𝑇 𝑇 {∗ □𝑖

Γ ⊢ 𝑡⇝ 𝑡 ▶□□𝑖

Γ ⊢ 𝑡⇝ 𝑡 ⊲𝑇 𝑇 {∗
Π𝑥 : 𝐴.𝐵

Γ ⊢ 𝑡⇝ 𝑡 ▶Π Π𝑥 : 𝐴.𝐵

Γ ⊢ 𝑡⇝ 𝑡 ⊲𝑇 𝑇 {∗ 𝐼 (a)
Γ ⊢ 𝑡⇝ 𝑡 ▶I 𝐼 (a)

Γ ⊢ 𝑡⇝ 𝑡 ⊲𝑇 𝑇 {∗ ?□𝑖

Γ ⊢ 𝑡⇝ ⟨Germ𝑖 ℎ ⇐ 𝑇 ⟩ 𝑡 ▶
h

Germ𝑖 ℎ

Fig. 5. Type-directed elaboration from GCIC to CastCIC

to ?𝑇 after elaboration. Thus only universe level annotations of ?@𝑖 are necessary to elaborate a

term.

In order to obtain uniqueness of elaboration, we fix a reduction strategy for{∗
to unveil the

head constructor in premises of constrained inference judgments, typically weak-head reduction.

The reduction rules then immediately translate to an algorithm for elaboration. Coupled with

the decidability of consistency (Prop. 3), this makes elaboration decidable in GCICN
and GCIC↑

,

although the same algorithm might diverge in GCICG
.

Let us already state two soundness properties of elaboration: it is correct, insofar as it produces

well-typed terms, and functional, as we just hinted.

Theorem 4 (Correctness of elaboration). The elaboration produces well-typed terms and contexts:
if ⊢cast Γ and Γ ⊢ 𝑡⇝ 𝑡 ⊲𝑇 , then Γ ⊢cast 𝑡 ⊲𝑇 .
Theorem 5 (Uniqeness of elaboration). Given Γ and 𝑡 , there is at most one 𝑡 and one𝑇 such that
Γ ⊢ 𝑡⇝ 𝑡 ⊲𝑇 .

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Gradualizing the Calculus of Inductive Constructions 1:17

Γ ⊢ 𝑡 ⊑𝛼 𝑡 ′
Γ1 ⊢ 𝑡 ⊲𝑇 Γ ⊢ 𝑇 ⊑{ 𝐴′ Γ ⊢ 𝑇 ⊑{ 𝐵′ Γ ⊢ 𝑡 ⊑𝛼 𝑡 ′

Γ ⊢ 𝑡 ⊑𝛼
〈
𝐵′ ⇐ 𝐴′〉 𝑡 ′

Γ2 ⊢ 𝑡 ′ ⊲𝑇 ′ Γ ⊢ 𝐴 ⊑{ 𝑇 ′ Γ ⊢ 𝐵 ⊑{ 𝑇 ′ Γ ⊢ 𝑡 ⊑𝛼 𝑡 ′

Γ ⊢ ⟨𝐵 ⇐ 𝐴⟩ 𝑡 ⊑𝛼 𝑡 ′

Γ1 ⊢ 𝑡 ⊲𝑇 Γ ⊢ 𝑇 ⊑{ 𝑇 ′

Γ ⊢ 𝑡 ⊑𝛼 ?𝑇 ′

Γ1 ⊢ 𝐴▶□□𝑖 𝑖 ≤ 𝑗

Γ ⊢ 𝐴 ⊑𝛼 ?□𝑖
Γ ⊢ err𝑇 ⊑𝛼 𝑡 ′ Γ ⊢ _ 𝑥 : 𝐴. err𝑇 ⊑𝛼 𝑡 ′

Fig. 6. CastCIC: Structural precision (Congruence rules omitted)

5.3 Precision and Reduction
To establish the graduality of elaboration, we need properties on reduction in CastCIC. For that,
we need a notion of precision in CastCIC that is a simulation for reduction, i.e. that less precise
terms reduce at least as well as more precise ones. To handle casts that might appear or disappear in

one term but not the other during reduction, this notion of precision cannot be purely syntactical:

it must give the possibility to ignore some casts, i.e. allow ⟨𝑇 ⇐ 𝑆⟩ 𝑡 to be less precise than 𝑡 ′ if
𝑡 ⊑𝛼 𝑡 ′, although we impose some restriction on the types involved to prevent unwanted failure.

We call this notion structural precision, ⊑𝛼 , defined hereafter. This approach is similar to the proof

of dynamic gradual guarantee in [Siek et al. 2015], although the presence of computation in the

domain and codomain of casts makes the proof quite more challenging.

Because of typing, we need to record the two contexts of the term compared with precision. We

do so by using double-struck letters, writing Γ, 𝑥 : 𝐴 | 𝐴′
for context extensions. We use Γ𝑖 for

projections, i.e. (Γ, 𝑥 : 𝐴 | 𝐴′)1 := Γ, 𝑥 : 𝐴, and write Γ | Γ′ for the converse pairing operation.

Definition 2 (Structural precision in CastCIC). Structural precision, denoted Γ ⊢ 𝑡 ⊑𝛼 𝑡 ′, is
defined in Fig. 6. We write ⊢ Γ ⊑𝛼 Γ′ for the pointwise extension to contexts, and ⊑𝛼 Γ if ⊢ Γ1 ⊑𝛼 Γ2.

For the proof of simulation, we also need to consider structural reduction up-to reduction, that

we call definitional precision, denoted Γ ⊢ 𝑡 ⊑{ 𝑡 ′, and meaning that there exists 𝑠 and 𝑠 ′ such that

𝑡 {∗ 𝑠 , 𝑡 ′ {∗ 𝑠 ′ and Γ ⊢ 𝑠 ⊑{ 𝑠 ′. The proof of simulation relies on catch-up lemmas, uncovering

head-constructors in less precise terms.

Lemma 6 (Type catch-up). Under the hypothesis that ⊑𝛼 Γ, if Γ ⊢ Π𝑥 : 𝐴.𝐵 ⊑{ 𝑇 ′, Γ1 ⊢ Π𝑥 :

𝐴.𝐵 ⊲□𝑖 and Γ2 ⊢ 𝑇 ′▶□□𝑗 then 𝑇 ′ {∗ ?□𝑗
and 𝑖 ≤ 𝑗 , or 𝑇 ′ {∗

Π𝑥 : 𝐴′.𝐵′ for some 𝐴′ and 𝐵′

such that Γ ⊢ Π𝑥 : 𝐴.𝐵 ⊑{ Π𝑥 : 𝐴′.𝐵′.
We have similar catch-up properties for □𝑖 , ?□𝑖

and 𝐼 (a) replacing Π𝑥 : 𝐴.𝐵.

Now is the point where the difference between the three different variants of CastCIC manifest:

the next lemma holds in full generality only in CastCICG
and CastCIC↑

. Indeed, the fact that

𝑖, 𝑗 ≤ 𝑐Π (𝑠Π (𝑖, 𝑗)) is used crucially to ensure that casting from a Π-type into ? and back does not

reduce to an error, given the restrictions we put on casts wrt. precision. This is the manifestation

in the reduction of the embedding-projection property [New and Ahmed 2018]. The lemma is

however still true in CastCICN
if one restricts to terms without ?, where those casts never happen.

Lemma 7 (_-abstraction catch-up). If Γ ⊢ _ 𝑥 : 𝐴.𝑡 ⊑𝛼 𝑠 ′, where 𝑡 is not an error, Γ1 ⊢ _ 𝑥 :

𝐴.𝑡 ⊲Π𝑥 : 𝐴.𝐵 and Γ2 ⊢ 𝑠 ′▶Π Π𝑥 : 𝐴′.𝐵′, then 𝑠 ′ {∗ _ 𝑥 : 𝐴′.𝑡 ′ with Γ ⊢ _ 𝑥 : 𝐴.𝑡 ⊑𝛼 _ 𝑥 : 𝐴′.𝑡 ′.

A similar lemma can be proven for terms of the shape ?𝐼 (a) and 𝑐𝑘 (a, b), in all three variants of

CastCIC.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Meven Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

𝑥 ⊑𝛼 𝑥 □𝑖 ⊑𝛼 □𝑖
𝐴 ⊑𝛼 𝐴′ 𝑡 ⊑𝛼 𝑡 ′

_ 𝑥 : 𝐴.𝑡 ⊑G

𝛼 _ 𝑥 : 𝐴.𝑡

𝑡 ⊑𝛼 𝑡 ′ 𝑢 ⊑𝛼 𝑢 ′

𝑡 𝑢 ⊑𝛼 𝑡 ′ 𝑢 ′
. . .

𝑡 ⊑𝛼 ?

Fig. 7. GCIC: Syntactic precision (Extract)

We now come to the most important property of this section, the advertised simulation. As

above, the proposition holds in CastCICG
, CastCIC↑

and for terms without ? is CastCICN
.

Theorem 8 (Simulation of reduction). If Γ1 ⊢ 𝑡 ⊲𝑇 , Γ2 ⊢ 𝑡 ′ ⊲𝑇 ′, Γ ⊢ 𝑡 ⊑𝛼 𝑡 ′ and 𝑡 {∗ 𝑠 then
there exists 𝑠 ′ such that 𝑡 ′ {∗ 𝑠 ′ and Γ ⊢ 𝑡 ′ ⊑𝛼 𝑠 ′.

Proof. The hardest point is to simulate 𝛽 and] redexes. This is where we use Lemma 7, to show that

similar reductions can also happen in 𝑡 ′. We must also put some care into handling the premises of

precision where typing is involved. In particular, subject reduction in needed to relate the types

inferred after reduction to the type inferred before, and the mutual induction hypothesis on ⊑{ is

used to conclude that the premises holding on 𝑡 still hold on 𝑠 . Finally, the restriction to the gradual

systems show up again when considering the reduction rules with germs are involved, where the

synchronization between 𝑠Π and 𝑐Π is required to conclude. □

Corollary 9 (Reduction and types). If Γ1 ⊢ 𝑇 ▶□□𝑖 , Γ2 ⊢ 𝑇 ′▶□□𝑗 , Γ ⊢ 𝑇 ⊑𝛼 𝑇 ′ and 𝑇 {∗

Π𝑥 : 𝐴.𝐵, then either 𝑇 ′ {∗ ?□𝑗
with 𝑖 ≤ 𝑗 , or 𝑇 ′ {∗

Π𝑥 : 𝐴′.𝐵′ and Γ ⊢ Π𝑥 : 𝐴.𝐵 ⊑𝛼 Π𝑥 : 𝐴′.𝐵′.
Similar properties hold for □𝑖 , ?□𝑖

and 𝐼 (a) replacing Π𝑥 : 𝐴.𝐵.

Note that head reductions are simulated using head reductions and the reductions of Lemma 6

are also head reductions. Thus, Corollary 9 still holds when restricting to head reductions.

Corollary 10 (Monotony of consistency). If Γ ⊢ 𝑇 ⊑𝛼 𝑇 ′, Γ ⊢ 𝑆 ⊑𝛼 𝑆 ′ and 𝑇 ∼ 𝑆 then 𝑇 ′ ∼ 𝑆 ′.

Proof. We have 𝑇 {∗ 𝑈 and 𝑆 {∗ 𝑉 such that 𝑈 ∼𝛼 𝑉 . Simulate those reductions to get some

𝑈 ′
and 𝑉 ′

such that Γ1 ⊢ 𝑈 ⊑𝛼 𝑈 ′
and Γ1 ⊢ 𝑉 ⊑𝛼 𝑉 ′

. Now we only need to show that syntactic

consistency is monotone wrt. structural precision, which is direct. □

5.4 Properties of GCIC
Elaboration systematically inserts casts during checking, thus even static terms are not elaborated

to themselves. This is why the statement of conservativity uses a (partial) erasure function Y, that

tries to take terms of CastCIC to term of CIC by erasing all casts. It holds in all three systems,

typability being of course taken into the corresponding variant of CIC: full CIC for GCICG
and

GCICN
, and CIC↑

for GCIC↑
.

Theorem 11 (Conservativity). If ⊢ 𝑡 ⊲𝑇 then ⊢ 𝑡⇝ 𝑡 ′ ⊲𝑇 ′ for some 𝑡 ′ and 𝑇 ′ such that Y (𝑡 ′) = 𝑡

and Y (𝑇 ′) = 𝑇 . Conversely if 𝑡 is a static term and ⊢ 𝑡⇝ 𝑡 ′ ⊲𝑇 ′ for some 𝑡 ′ and 𝑇 ′, then ⊢ 𝑡 ⊲ Y (𝑇 ′).
Proof. The main difficulty is to ensure that the extra casts inserted by elaboration do not block

reduction. For this we maintain the property that all terms considered in CastCIC are such that

their erasure is both more and less precise than themselves, and never contains ?. This is enough,
together with Theorem 8, to prove that they reduce in exactly the same way as their erasures. □

Next, we turn to elaboration graduality. It is stated wrt. syntactic precision ofGCIC terms, defined

in Fig. 7. Elaboration graduality holds in the two systems that (will be proven to) satisfy G, i.e.
GCICG

and GCIC↑
. Note that, with using universe polymorphism [Sozeau and Tabareau 2014], we

could get rid of the extra assumption on universe levels using universe variables instead of integers,

letting the typing of the elaborated term constrain these variables.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Gradualizing the Calculus of Inductive Constructions 1:19

Theorem 12 (Elaboration Graduality). If ⊢ 𝑡⇝ 𝑡 ⊲𝑇 , 𝑡 ⊑G

𝛼 𝑠 and each subterm of 𝑡 that is against
a ?@𝑖 in 𝑠 elaborates to a term whose type is in □𝑖 , then ⊢ 𝑠⇝ 𝑠 ⊲ 𝑆 for some 𝑠 and 𝑆 such that ⊢ 𝑡 ⊑𝛼 𝑠

and ⊢ 𝑇 ⊑𝛼 𝑆 .

Proof. Here again the technical difficulties arise in the rules involving reduction. This is where

Corollary 9 for the constrained inference is useful, proving that the less structurally precise term

obtained by induction outputs a less precise type. Similarly Corollary 10 proves that in the checking

rule the less precise types are still consistent. □

Last but not least, the computational graduality, that again holds only in GCICG
and GCIC↑

.

The proof is deferred to §6.5, where we develop the required monotone models. For simplicity it is

stated for booleans, but it holds more generally on inductive types.

Theorem 13 (Computational graduality). If ⊢cast 𝑠 ⊳B, ⊢cast 𝑡 ⊳B, ⊢ 𝑠 ⊑𝛼 𝑡 and 𝑡 {∗ errB, then
𝑠 {∗ errB.

6 REALIZING CastCIC

We realize CastCIC in two ways to obtain the missing steps towards confluence, normalization and

graduality. First through a simple implementation of casts in §6.1 using case-analysis on types as

well as exceptions resulting in the discrete model. Then, by building a more elaboratemonotone
model to define and reason about precision. Following generalities about the interpretation of CIC
in poset in §6.2, we describe the construction of a monotone unknown type ? in §6.3 and hierarchy

of universes in §6.4 and put these pieces together in §6.5, culminating in a proof of graduality.. In

both the discrete and monotone case, the choice of a normalizing model appears when building

the hierarchy of universes and tying the knot with the unknown type. The models embed into a

variant of CIC with induction-recursion [Dybjer and Setzer 2003] and function extensionality (for

the monotone model), with judgement ⊢IR. We use Agda as a pratical counterpart to typecheck the

components of the models (the code can be found as an anonymous supplementary material, with

explanations in appendix) and assume standard metatheoretical properties (those still being open

problems to our knowledge).

6.1 Discrete Models of CastCIC
The discrete model explains awayCastCIC by translating it toCIC implementing the new constants

of CastCIC using two important ingredients:

• exceptions, following the approach of ExTT [Pédrot and Tabareau 2018], in order to interpret

both ? and err; and
• case-analysis on types [Boulier et al. 2017] to define the cast operator.

The general theory of ExTT leads us to interpret each inductive type 𝐼 by an extended inductive

type 𝐼 , containing two new constructors ?𝐼 and ✠𝐼 , corresponding respectively to ?𝐼 and err𝐼
of CastCIC; see Fig. 11, left part, for an example. In the rest of this section, we only illustrate

inductives on natural numbers. The definition of exceptions at all types is then defined by case

analysis on the type in Fig. 8.

Case analysis on types is obtained through an explicit inductive description of the universes,

translating □𝑖 to a type of codes U𝑖 described in Fig. 9 containing dependent product (π), universes
(𝔲), inductives (e.g. 𝔫𝔞𝔱) as well as codes ? for the unknown type and ✠ for the error type. Accom-

panying the inductive definition of U𝑖 , the recursively defined decoding function El provides a

semantics for these codes. In particular, the error ✠ is decoded to the type ⊤ containing a unique

element ∗ ≡ ?✠ ≡ err✠ . The unknown ? is decoded to the extended dependent sum consisting of

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Meven Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

★π𝐴𝐵 := _ 𝑥 : El𝐴.★𝐵 𝑥 ?𝔲𝑗
:= ?

𝑗 ?? := ?Σ̃H Germ
?𝔫𝔞𝔱 := ?N

★✠ := ∗ err𝔲𝑗
:= ✠ 𝑗 err? := ✠Σ̃H Germ

err𝔫𝔞𝔱 := ✠N

Fig. 8. Realization of exceptions (★ stands for either ? or err)

𝐴 ∈ U𝑖 𝐵 ∈ El𝐴 → U𝑗

π𝐴𝐵 ∈ U𝑠Π (𝑖, 𝑗)

𝑗 < 𝑖

𝔲 𝑗 ∈ U𝑖

𝔫𝔞𝔱 ∈ U𝑖 ? ∈ U𝑖 ✠ ∈ U𝑖

El (π𝐴𝐵) = Π(𝑎 : El𝐴) El(𝐵 𝑎) El 𝔲 𝑗 = U𝑗 El 𝔫𝔞𝔱 = ˜N El ? = Σ̃(ℎ : H) Germ ℎ El✠ = ⊤

Fig. 9. Inductive-recursive encoding of the discrete universe hierarchy

cast (π𝐴d𝐴c) (π 𝐵d 𝐵c) 𝑓 := _ 𝑏 : El𝐵d . let𝑎 = cast 𝐵d 𝐴d 𝑏 in cast (𝐴c 𝑎) (𝐵c 𝑏) (𝑓 𝑎)
cast (π𝐴d𝐴c) ?𝑖 𝑓 := (Π; cast (π𝐴d𝐴c) (Germ𝑖 Π) 𝑓) if ∃ 𝑗 < 𝑖

cast (π𝐴d𝐴c) 𝑋 𝑓 := ✠𝑋 otherwise

cast 𝔲 𝑗 𝔲 𝑗 𝐴 := 𝐴

cast 𝔲 𝑗 ?
𝑖 𝐴 := (□𝑗 ;𝐴) if 𝑗 < 𝑖

cast 𝔲 𝑗 𝑋 𝐴 := ✠𝑋 otherwise

cast ✠ 𝑍 ∗ := ✠𝑍

cast ?
𝑖 𝑍 (𝑐;𝑥) := cast (Germ𝑖 𝑐) 𝑍 𝑥

cast ?
𝑖 𝑍 ?? := ?𝑍

cast ?
𝑖 𝑍 ✠? := ✠𝑍 otherwise

(Omitting inductives)

Fig. 10. Implementation of cast (discrete models)

pairs (ℎ; 𝑡) of a head constructor ℎ ∈ H𝑖
9
and 𝑡 ∈ Germ𝑖 ℎ, with two additional constructors ?Σ̃,✠Σ̃

freely added.

Crucially, the code for Π-types depends on the choice of parameter for 𝑠Π (𝑖, 𝑗). For the system
CastCICG

, the inductive-recursive definition of U𝑖 is not well-founded: the decoding of ? depends

through Germ on functions over itself, because 𝑐Π (𝑠Π (𝑖, 𝑖)) = 𝑠Π (𝑖, 𝑖). Such arbitrary fixpoints are

only achievable in a partial type theory. This is why CastCICG
does not satisfy N .

In order to maintain normalization, the construction of the unknown type and the universe

thus needs to be stratified, which is possible when 𝑐Π (𝑠Π (𝑖, 𝑖)) < 𝑠Π (𝑖, 𝑖). It is the case for both
CastCICN

and CastCIC↑
. We proceed by strong induction on the universe level, and note that

thanks to the level gap, the decoding El ?
𝑖
of the unknown type at a level 𝑖 can be defined solely

from the data of smaller universes available by inductive hypothesis, without any reference to U𝑖 .

We can then define the universe U𝑖 and the decoding function El at level 𝑖 without trouble.

Equipped with these, we define cast : Π(𝐴 : U𝑖) (𝐵 : U𝑗) .𝐴 → 𝐵 in Fig. 10 by induction on the

universe levels and case analysis on the codes of the types 𝐴, 𝐵. In the total setting, the definition

of cast is well-founded: each recursive call happens either at a strictly smaller universe (the two

cases for π) or on a strict subterm of the term being cast (case of inductive/𝔫𝔞𝔱 and ?). We consider

the translation defined by J𝐴K := El [𝐴] on types, and recursively on terms using:

[□𝑖] := 𝔲𝑖 [Π𝑥 : 𝐴.𝐵] := π [𝐴] (_ 𝑥 : J𝐴K.[𝐵]) [⟨𝐵 ⇐ 𝐴⟩ 𝑡] := cast [𝐴] [𝐵] [𝑡]

9
We stratify the head constructors H (see Eq. (1)) according to the universe level 𝑖 .

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Gradualizing the Calculus of Inductive Constructions 1:21

0, ?
˜N,✠ ˜N ∈ ˜N

𝑛 ∈ ˜N

suc𝑛 ∈ ˜N

0 ⊑ ˜N
0 ✠

˜N ⊑ ˜N 𝑛

0 ⊑ ˜N ?
˜N ?

˜N ⊑ ˜N ?
˜N

𝑛 ⊑ ˜N 𝑚

suc𝑛 ⊑ ˜N suc𝑚

𝑛 ⊑ ˜N ?
˜N

suc𝑛 ⊑ ˜N ?
˜N

Fig. 11. Order structure on extended natural numbers

Theorem 14 (Discrete syntactic model). The sketched translation [−] (see Fig. 15) satisfies:

(1) if Γ ⊢cast 𝑡 { 𝑢 then JΓK ⊢IR [𝑡] {IR

+ [𝑢], in particular JΓK ⊢IR [𝑡] ≡ [𝑢],
(2) if Γ ⊢cast 𝑡 : 𝐴 then JΓK ⊢IR [𝑡] : J𝐴K.

Proof. For the first part, all reduction rules from CIC are preserved without a change so that we

only need to be concerned with the reduction rules involving exceptions or a cast. The preserva-

tion for these hold directly by a careful inspection once we observe that the CastCIC stuck term〈
?□𝑖

⇐ Germ𝑖 ℎ
〉
𝑡 is in one-to-one correspondence with the one-step reduced form of its transla-

tion (ℎ; [𝑡]) : Σ̃H𝑖Germ𝑖 . The second part is proved by a direct induction on the typing derivation of

Γ ⊢cast 𝑡 : 𝐴, using that ⊢IR ?, err : Π(𝐴 : U𝑖) El𝐴, ⊢IR cast : Π(𝐴 : U𝑖) (𝐵 : U𝑖)→El𝐴→El𝐵, and

the first part for the conversion rule. □

6.2 Poset-based Models of Dependent Type Theory
The simplicity of the discrete model is at the price of an inherent inability to characterize which

cast are sound, i.e. a graduality theorem. To overcome this limitation, we develop a monotone

model where, by construction, each type 𝐴 comes equipped with an order structure ⊑𝐴
modeling

precision between terms. Each term and type constructor is monotone with respect to these orders,

providing a strong form of graduality.

As an illustration, the order on extended natural numbers (Fig. 11) makes ✠ ˜N the smallest

element and ? ˜N the biggest element. The “standard” natural numbers then lay in between failure

and indeterminacy, but are never related to each other by precision, so that conservativity with

respect to CIC is maintained.

Beyond the precision order on types, the nature of dependency forces us to spell out what the

precision between types entails. Following the analysis of [New and Ahmed 2018], a relation 𝐴 ⊑ 𝐵

between types should induce an embedding-projection pair (ep-pair): a pair of an upcast ↑ : 𝐴→𝐵

and a downcast ↓ : 𝐵→𝐴 satisfying a handful of properties with gradual guarantees as a corollary.

Definition 3 (Embedding-projection pairs). An ep-pair 𝑑 : 𝐴 −↦−→ 𝐵 between posets 𝐴, 𝐵 consists of

• an underlying relation 𝑑 ⊆ 𝐴 × 𝐵 such that 𝑎′ ≤𝐴 𝑎 ∧ 𝑑 (𝑎, 𝑏) ∧ 𝑏 ≤𝐵 𝑏 ′ =⇒ 𝑑 (𝑎′, 𝑏 ′)
• that is bi-represented by ↑𝑑 : 𝐴 → 𝐵, ↓ 𝑑 : 𝐵 → 𝐴, i.e. ↑𝑑 𝑎 ≤ 𝑏 ⇔ 𝑑 (𝑎, 𝑏) ⇔ 𝑎 ≤ ↓𝑑 𝑏,
• such that the equality ↓𝑑 ◦ ↑𝑑 = id𝐴 holds.

Under these conditions, ↑𝑑 : 𝐴 ↩→ 𝐵 is injective, ↓𝑑 : 𝐵 ↠ 𝐴 is surjective and both preserve bottom

elements, explaining that we call 𝑑 : 𝐴 −↦−→ 𝐵 an embedding-projection pair. Being an ep-pair is a

property of the underlying relation.

By monotony, a family 𝐵 : 𝐴 → □ over a poset 𝐴 gives rise not only to a poset 𝐵 𝑎 for

each 𝑎 ∈ 𝐴, but also to ep-pairs 𝐵𝑎,𝑎′ : 𝐵 𝑎 −↦−→ 𝐵 𝑎′ for each 𝑎 ⊑𝐴 𝑎′. These ep-pairs need to

satisfy a functoriality condition, which ensures that heterogeneous transitivity is well defined:

𝐵𝑎,𝑎′ (𝑏,𝑏 ′) ∧ 𝐵𝑎′,𝑎′′ (𝑏 ′, 𝑏 ′′) ⇒ 𝐵𝑎,𝑎′′ (𝑏,𝑏 ′′).
Given a poset𝐴 and a family 𝐵 over𝐴, we can form the poset Π

mon 𝐴𝐵 of monotone dependent
functions from 𝐴 to 𝐵, equipped with the pointwise order. Its inhabitants are dependent functions

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Meven Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

𝑓 : Π(𝑎 : 𝐴).𝐵 𝑎 such that 𝑎 ≤𝐴 𝑎′⇒𝐵𝑎,𝑎′ (𝑓 𝑎) (𝑓 𝑎′). Moreover, given ep-pairs 𝑑𝐴 : 𝐴 −↦−→ 𝐴′
and

𝑑𝐵 : 𝐵 −↦−→ 𝐵′10
we can build an induced ep-pair 𝑑Π : Π

mon 𝐴𝐵 −↦−→ Π
mon 𝐴′ 𝐵′

with underlying

relation 𝑑Π (𝑓 , 𝑓 ′) = 𝑑𝐴 (𝑎, 𝑎′)⇒𝑑𝐵 (𝑓 𝑎, 𝑓 ′ 𝑎′), ↑ 𝑑Π 𝑓 =↑𝑑𝐵 ◦𝑓 ◦ ↓ 𝑑𝐴 and ↓ 𝑑Π 𝑓 =↓𝑑𝐵 ◦𝑓 ◦ ↑ 𝑑𝐴 .

Generalizing the case of natural numbers, the order on an arbitrary extended inductive type 𝐼

uses the following scheme: (1) ✠𝐼 is below any element, (2) ?𝐼 ⊑𝐼 ?𝐼 , (3) ?𝐼 is above a constructor
whenever the arguments of the constructor are themselves dominated by their respective ?, and (4)
each constructor is monotone with respect to the order on its arguments. Similarly to dependent

product, an ep-pair X −↦−→ X′
between the parameters of an inductive type 𝐼 induces an ep-pair

𝐼 X −↦−→ 𝐼 X′
.

6.3 Microcosm: the Monotone Unknown Type ?

In order to build the interpretation ? of the unknown type in the monotone model, we equip the

extended dependent sum Σ̃(ℎ : H𝑖) Germ𝑖 ℎ from the discrete model with the precision relation

generated by the rules:

✠? ⊑ 𝑧 ?? ⊑ ??
ℎ ≡ ℎ′ 𝑥 ⊑

Germ ℎ Germ ℎ′ 𝑥
′

(ℎ;𝑥) ⊑ (ℎ′
;𝑥 ′)

𝑥 ⊑ ?Germ ℎ

(ℎ;𝑥) ⊑ ??
(2)

In order to globally satisfy G, ? should admit an ep-pair 𝑑ℎ : Germ𝑖 ℎ −↦−→ ?𝔲𝑖 for any ℎ ∈ H𝑖

corresponding to Germ𝑖 ℎ ⊑ ?𝔲𝑖 . Embedding an element 𝑥 ∈ Germℎ by ↑𝑑ℎ 𝑥 = (ℎ;𝑥) and
projecting out of Germℎ by the following equations form a reasonable candidate.

↓𝑑ℎ (ℎ, 𝑥) = 𝑥, ↓𝑑ℎ (ℎ′, 𝑥) = ✠Germℎ (ℎ ≠ ℎ′), ↓𝑑ℎ ? = ?Germℎ, ↓𝑑ℎ ✠ = ✠Germℎ .

Note that to compute the first two cases of ↓ 𝑑ℎ , we rely on H having decidable equality. However,

for ↑𝑑ℎ⊣↓𝑑ℎ to be adjoints, we need the following relation to hold:

✠Germℎ ⊑
Germ ℎ ?

↓ 𝑑ℎ✠ ⇐⇒ (ℎ,✠Germℎ) =↑𝑑ℎ ✠Germℎ ⊑? ✠

Extending precision with the left-hand side imposes in turn that the now equivalent terms ✠? and

(ℎ,✠Germℎ) must be quotiented to recover antisymmetry of the order ⊑?
. We show that with this

quotient, ? effectively admits the required ep-pair 𝑑ℎ .

6.4 Realization of the Monotone Universe Hierarchy
Following the discrete model, the monotone universe hierarchy is also implemented through an

inductive-recursive datatype of codes U𝑖 together with a decoding function El : U𝑖→□ presented

in Fig. 12. The relation of precision ⊑: U𝑖→U𝑗→□ presented below is an order (Theorem 15)

on this universe hierarchy. The “diagonal” inference rules, providing evidence for relating type

constructors from CIC, coincide with those of binary parametricity [Bernardy et al. 2012]. Outside

the diagonal, ✠ is placed at the bottom. More interestingly, the derivation of a precision proof

𝐴 ⊑ ?? provides a unique decomposition of 𝐴 through iterated germs. This unique decomposition

is at the heart of the reduction of the cast operator given in Fig. 3. Such a derivation of precision

𝐴 ⊑ 𝐵 gives rise through decoding to ep-pairs ElY (𝐴⊑𝐵) : 𝐴 −↦−→ 𝐵, with underlying relation noted

⊑
𝐴 𝐵

: El𝐴→El𝐵→□.
One crucial point of the monotone model is the mutual definition of codes U𝑖 together with the

precision relation, particularly salient on codes for Π-types: in π𝐴𝐵, 𝐵 : El𝐴 → U𝑖 is a monotone

function with respect to the order on El𝐴 and the precision on U𝑖 . This intertwining happens

because the order is required to be reflexive, a fact observed previously by Atkey et al. [2014] in the

10
A larger amount of data is actually required to handle dependency of B over A; we refer to the accompanying Agda

development

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Gradualizing the Calculus of Inductive Constructions 1:23

Monotone universes U𝑖 and decoding function El : U𝑖 → □ (cases distinct from Fig. 9)

𝐴 ∈ U𝑖 𝐵 ∈ Π
mon (𝑎 : El𝐴) U𝑗

π𝐴𝐵 ∈ U𝑠Π (𝑖, 𝑗)
El (π𝐴𝐵) = Πmon (𝑎 : El𝐴) El(𝐵 𝑎) El ? = ?

Precision order ⊑ on the universes (where 𝑖 ≤ 𝑗)

𝔫𝔞𝔱-⊑

𝔫𝔞𝔱𝑖 ⊑ 𝔫𝔞𝔱 𝑗

?-⊑

?
𝑖 ⊑ ?

𝑗

𝔲-⊑

𝔲𝑖
𝑘
⊑ 𝔲

𝑗

𝑘

✠-⊑

✠𝑖 ⊑ 𝐴 𝑗

π-⊑
𝐴 ⊑ 𝐴′ 𝑎 : El𝐴, 𝑎′ : El𝐴′, 𝑎𝜖 : 𝑎 ⊑𝐴 𝐴′ 𝑎

′ ⊢ 𝐵 𝑎 ⊑ 𝐵′ 𝑎′

π𝐴𝐵 ⊑ π𝐴′ 𝐵′

H-⊑
ℎ = head𝐴𝑖 ∈ H𝑖 𝐴 ⊑ El

𝑗

Hℎ

𝐴𝑖 ⊑ ?
𝑗

Precision on terms ⊑
𝐴 𝐵

(presupposing 𝐴 ⊑ 𝐵)

∗ ⊑✠ 𝐴
𝑎

𝑥 ⊑𝐴 𝑦

𝑥 ⊑𝐴 𝐴 𝑦

𝑎 ⊑
𝐴 Germ(head𝐴) 𝑥

𝑎 ⊑
𝐴 ?

[head𝐴, 𝑥]
𝑥 ⊑Germ𝑖 ℎ 𝑥 ′

[ℎ, 𝑥] ⊑
?
𝑖

?
𝑗 [ℎ, 𝑥 ′]

𝑎 : El𝐴, 𝑎′ : El𝐴′, 𝑎𝜖 : 𝑎 ⊑𝐴 𝐴′ 𝑎
′ ⊢ 𝑓 𝑎 ⊑𝐵 𝑎 𝐵′ 𝑎′ 𝑓

′ 𝑎′

𝑓 ⊑π𝐴𝐵 π𝐴′ 𝐵′ 𝑓
′ 𝑎 ⊑

𝐴 ?
?? ✠𝐴 ⊑

𝐴 ?
𝑧

Fig. 12. Monotone universe of codes and precision

similar setting of reflexive graphs. Indeed, a dependent function 𝑓 : Π(𝑎 : El𝐴)El (𝐵 𝑎) is related to

itself 𝑓 ⊑π𝐴𝐵 π𝐴𝐵
𝑓 if and only 𝑓 is monotone.

Theorem 15 (Properties of the universe hierarchy).

(1) ⊑ is reflexive, transitive, antisymmetric and irrelevant so that (U𝑖 , ⊑) is a poset.
(2) U𝑖 has a bottom element ✠𝑖 and a top element ?𝑖 ; in particular, 𝐴 ⊑ ?

𝑖 for any 𝐴 : U𝑖 .
(3) El : U𝑖 → □ is an indexed-poset with underlying relation ⊑

𝐴 𝐵
whenever 𝐴 ⊑ 𝐵.

(4) U𝑖 and El𝐴 for any 𝐴 : U𝑖 verify UIP11: the equality on these types is irrelevant.
Proof. All these properties are proved mutually, first by strong induction on the universe levels,

then by induction on the codes of the universe or the derivation of precision depending on the

particular property. □

6.5 Monotone Models of CastCIC
The monotone translation {−} presented hereafter brings together the monotone interpretation

of inductive types (N), dependent products, the unknown type ? as well as the universe hierar-

chy. Following the approach of [New and Ahmed 2018], casts are derived out of the canonical

decomposition through the unknown type using the property (2) from Theorem 15:

{⟨𝐵 ⇐ 𝐴⟩ 𝑡} :=↓
ElY {𝐵 }⊑? ↑ElY {𝐴}⊑? {𝑡}

Note that this definition formally depends on a chosen universe level for ?, but the resulting

operation is independent of this choice thanks to the section-retraction properties of ep-pairs.

The difficult part of the model, the monotoncity of cast, thus hold by definition. However, as a

consequence the translation does not validate the computation rules of CastCIC on the nose: cast
can get stuck on type variables eagerly. They still hold propositionally so that we have at least a

model in an extensional variant ECIC12
of CIC.

11
Uniqueness of Identity Proofs; in HoTT parlance, U𝑖 and El𝐴 are hSets.

12ECIC enjoy equality reflection: two terms are definitionally equal whenever they are propositionally so.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 Meven Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

{| 𝐴 |} = El {𝐴} : □ {_ 𝑥 : 𝐴. 𝑡} = (_ 𝑥 : {| 𝐴 |} .{𝑡}, {_ 𝑥 : 𝐴. 𝑡}Y)
{| 𝐴 |}Y = ElY {𝐴}Y : Π(𝑎 𝑎′ : {| 𝐴 |}).□ {_ 𝑥 : 𝐴. 𝑡}Y = _(𝑥 𝑥 ′ : {| 𝐴 |}) (𝑥Y : {| 𝐴 |}Y 𝑥 𝑥 ′). {𝑡}Y

Fig. 13. Translation of the monotone model (excerpt)

Lemma 16. If Γ ⊢cast 𝑡 { 𝑢 then there exists a CIC term 𝑒 such that {Γ} ⊢ 𝑒 : {𝑡} = {𝑢}.
We can further enhance this result using the fact that we assume functional extensionality in our

target and can prove that the translation of all our types satisfy UIP. Under these assumptions, the

conservativity results of Hofmann [1995] and Winterhalter et al. [2019] apply, so we can recover a

translation targeting CIC.

Theorem 17. The translation {−} of Fig. 13 extends to a model of CastCIC into CIC extended with
induction-recursion and functional extensionality: if Γ ⊢cast 𝑡 : 𝐴 then {| Γ |} ⊢IR {𝑡} : {| 𝐴 |}.

Connecting the discrete andmonotone models. Looking at the two translations, they clearly coincide
on ground types such as N. On dependent products over ground types, for instance N→N, the

monotone interpretation is more conservative {| N→N |} ⊂ JN→NK, keeping only the monotone

functions. Extending the sketched correspondence at higher types, we obtain a logical relation

* − +, for which we can prove the basis lemma: if Γ ⊢cast 𝑡 : 𝐴 then HΓI ⊢IR *𝑡 + : H𝐴I [𝑡] {𝑡}. In
particular CastCIC terms of ground types behave similarly in both models.

Back to computational graduality. The precision induced by the monotone model can be reflected

back to CastCIC. To this hand, we define the propositional precision judgment Γ ⊢cast 𝑡 ⊑
𝑇 𝑆

𝑢 on

typed CastCIC terms as the existence of a proof 𝑒 witnessing {| Γ |}Y ⊢IR 𝑒 : {𝑡} ⊑{𝑇 } {𝑆 } {𝑢}.
Lemma 18 (Properties of propositional precision). The propositional precision verifies:

• If ⊢ 𝑡 ⊑𝛼 𝑢 then ⊢cast 𝑡 ⊑ 𝑢.
• If ⊢cast 𝑡 ⊑ err𝔫𝔞𝔱 then 𝑡 ≡ err𝔫𝔞𝔱 .

A direct corollary of this lemma is that bothGCICG
andGCIC↑

satisfies computational graduality,

which is the key missing point of §5 and the raison d’etre of the monotone model.

7 RELATEDWORK
Bidirectional typing and unification. Bidirectional elaboration is a common feature in implemented

proof assistants, for instance [Asperti et al. 2012], as it clearly delineates what information is avail-

able to the elaboration system in the different typing modes. In a context with missing information

due to implicit arguments, those implementations face the undecidable higher order unification

[Dowek 2001]. In this error-less context, the solution must be a form of under-approximation, using

complex heuristics [Ziliani and Sozeau 2017]. Deciding consistency is very close to unification,

as observed by Castagna et al. [2019], but our notion of consistency over-approximates unifica-

tion, making sure that unifiable terms are always consistent, relying on errors to catch invalid

over-approximations at runtime.

Dependent types with effects. Several programming languages mix dependent types with effectful

computation, either giving up on metatheoretical properties, such as Dependent Haskell [Eisenberg

2016], or by restricting the dependent fragment to pure expressions [Swamy et al. 2016; Xi and

Pfenning 1998]. In the context of dependent type theories, Pédrot and Tabareau [2018] have

leveraged the monadic approach to type theory, at the price of a weaker form of dependent large

elimination for inductive types. The only way to recover full elimination is to accept a weaker form

of logical consistency, as crystallized by the fire triangle between observable effects, substitution

and logical consistency [Pédrot and Tabareau 2020].

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Gradualizing the Calculus of Inductive Constructions 1:25

Partial and Directed type theories. Interpretations of type theories in ordered structures goes back

to various works on realizability interpretations of (partial) Martin-Löf Type Theory [Ehrhard 1988;

Palmgren and Stoltenberg-Hansen 1990]. More recently, Licata and Harper [2011]; North [2019]

extend type theory with directed structures corresponding to a categorical interpretation of types,

a higher version of the monotone model we consider.

Hybrid approaches. [Ou et al. 2004] present a programming language with separate dependently-

and simply-typed fragments, using arbitrary runtime checks at the boundary. [Knowles and Flana-

gan 2010] support runtime checking of refinements. In a similar manner, [Tanter and Tabareau

2015] introduce casts for subset types with decidable properties in Coq. They use an axiom to

denote failure, which breaks weak canonicity. Dependent interoperability [Dagand et al. 2018;

Osera et al. 2012] supports the combination of dependent and non-dependent typing through deep

conversions. All these approaches are more intended as programming languages than as type

theories, and none support the notion of (im)precision that is at the heart of gradual typing.

Gradual typing. In the restricted setting of types refined with decidable logical predicates,

Lehmann and Tanter [2017] exploit the Abstracting Gradual Typing (AGT) methodology [Garcia

et al. 2016] to design a language with imprecise formulas and implication. Eremondi et al. [2019]

also use AGT to develop approximate normalization and GDTL. While being a clear initial inspi-

ration for this work, the technique of approximate normalization cannot yield a valid gradual

type theory (nor was it its intent, as clearly stated by the authors). We hope that the results in

our work can prove useful in the design and formalization of such gradual dependently-typed

programming languages. Eremondi et al. [2019] study the dynamic gradual guarantee, but not its

reformulation as graduality [New and Ahmed 2018], which as we explain is strictly stronger in the

full dependent setting. Finally, while AGT provided valuable intuitions for this work, graduality as

embedding-projection pairs was the key technical driver in the design of CastCIC.

8 CONCLUSION
We have unveiled a fundamental tension in the design of gradual dependent type theories between

conservativity with respect to a dependent type theory such as CIC, normalization, and graduality.

We explore several resolutions of this Fire Triangle of Graduality, yielding three different gradual

counterparts of CIC, each compromising with one edge of the Triangle. We develop the metatheory

of all three variants of GCIC thanks to a common formalization, parametrized by two knobs

controlling universe constraints on dependent product types in typing and reduction. In doing

so, we bridge the gap between recent advances in syntactic models of type theory, including

effectful ones, and in gradual typing, in particular thanks to the characterization of graduality as

embedding-projection pairs.

This work opens a number of perspectives for future work. The delicate interplay between

universe levels and computational behavior of casts begs for a more flexible approach to the

normalizingGCICN
, for instance using gradual universes. The approach based on multiple universe

hierarchies to support logically consistent reasoning about exceptional programs [Pédrot et al. 2019]

could be adapted to our setting in order to provide a seamless integration inside a single theory

of weakly consistent gradual features together with the standard CIC. This could also lead the

way to support consistent reasoning about gradual programs in the context of GCIC. On the more

practical side, there is still a lot of challenges ahead in order to implement a gradual incarnation of

Coq, possibly with different modes reflecting the different theories developed here (just as now

one can run Coq with type-in-type, strict propositions, etc).

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 Meven Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

REFERENCES
Thorsten Altenkirch, Simon Boulier, Ambrus Kaposi, and Nicolas Tabareau. 2019. Setoid type theory - a syntactic translation.

In MPC 2019 - 13th International Conference on Mathematics of Program Construction (LNCS, Vol. 11825). Springer, Porto,
Portugal, 155–196. https://doi.org/10.1007/978-3-030-33636-3_7

Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi. 2012. A Bi-Directional Refinement Algorithm

for the Calculus of (Co)Inductive Constructions. Volume 8, Issue 1 (2012). https://doi.org/10.2168/LMCS-8(1:18)2012

Robert Atkey, Neil Ghani, and Patricia Johann. 2014. A relationally parametric model of dependent type theory. In The
41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA,
January 20-21, 2014, Suresh Jagannathan and Peter Sewell (Eds.). ACM, 503–516. https://doi.org/10.1145/2535838.2535852

Jean-Philippe Bernardy, Thierry Coquand, and Guilhem Moulin. 2015. A Presheaf Model of Parametric Type Theory.

Electronic Notes in Theoretical Computer Science 319 (2015), 67–82.
Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. 2012. Proofs for free: Parametricity for dependent types. Journal

of Functional Programming 22, 2 (March 2012), 107–152.

Rastislav Bodík and Rupak Majumdar (Eds.). 2016. Proceedings of the 43rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL 2016). ACM Press, St Petersburg, FL, USA.

Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. 2017. The next 700 syntactical models of type theory. In

Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP 2017, Paris, France, January 16-17,
2017, Yves Bertot and Viktor Vafeiadis (Eds.). ACM, 182–194. https://doi.org/10.1145/3018610.3018620

Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek. 2019. Gradual typing: a new perspective.

See[POPL 2019 2019], 16:1–16:32.

Evan Cavallo and Robert Harper. 2019. Parametric Cubical Type Theory. arXiv:1901.00489.

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. 2015. Cubical Type Theory: a constructive interpretation

of the univalence axiom. (May 2015), 262 pages.

Thierry Coquand and Gérard Huet. 1988. The Calculus of Constructions. Information and Computation 76, 2-3 (Feb. 1988),

95–120.

Pierre-Évariste Dagand, Nicolas Tabareau, and Éric Tanter. 2018. Foundations of Dependent Interoperability. Journal of
Functional Programming 28 (2018), 9:1–9:44.

Gilles Dowek. 2001. Chapter 16 - Higher-Order Unification and Matching. In Handbook of Automated Reasoning, Alan
Robinson and Andrei Voronkov (Eds.). North-Holland, 1009–1062. https://doi.org/10.1016/B978-044450813-3/50018-7

Peter Dybjer and Anton Setzer. 2003. Induction-recursion and initial algebras. Ann. Pure Appl. Log. 124, 1-3 (2003), 1–47.
https://doi.org/10.1016/S0168-0072(02)00096-9

Thomas Ehrhard. 1988. A Categorical Semantics of Constructions. In Proceedings of the Third Annual Symposium on
Logic in Computer Science (LICS ’88), Edinburgh, Scotland, UK, July 5-8, 1988. IEEE Computer Society, 264–273. https:

//doi.org/10.1109/LICS.1988.5125

Richard A. Eisenberg. 2016. Dependent Types in Haskell: Theory and Practice. arXiv:1610.07978 [cs.PL]

Joseph Eremondi, Éric Tanter, and Ronald Garcia. 2019. Approximate Normalization for Gradual Dependent Types. See[ICFP

2019 2019], 88:1–88:30.

Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting Gradual Typing, See [Bodík and Majumdar 2016],

429–442. See erratum: https://www.cs.ubc.ca/ rxg/agt-erratum.pdf.

Neil Ghani, Lorenzo Malatesta, and Fredrik Nordvall Forsberg. 2015. Positive Inductive-Recursive Definitions. Log. Methods
Comput. Sci. 11, 1 (2015). https://doi.org/10.2168/LMCS-11(1:13)2015

Eduardo Giménez. 1998. Structural Recursive Definitions in Type Theory. In ICALP. 397–408.
Martin Hofmann. 1995. Conservativity of Equality Reflection over Intensional Type Theory. In Types for Proofs and Programs,

International Workshop TYPES’95, Torino, Italy, June 5-8, 1995, Selected Papers (Lecture Notes in Computer Science, Vol. 1158),
Stefano Berardi and Mario Coppo (Eds.). Springer, 153–164. https://doi.org/10.1007/3-540-61780-9_68

ICFP 2019 2019.

Kenneth Knowles and Cormac Flanagan. 2010. Hybrid type checking. ACM Transactions on Programming Languages and
Systems 32, 2 (Jan. 2010), Article n.6.

Nico Lehmann and Éric Tanter. 2017. Gradual Refinement Types. In Proceedings of the 44th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL 2017). ACM Press, Paris, France, 775–788.

Daniel R. Licata and Robert Harper. 2011. 2-Dimensional Directed Type Theory. In Twenty-seventh Conference on the
Mathematical Foundations of Programming Semantics, MFPS 2011, Pittsburgh, PA, USA, May 25-28, 2011 (Electronic Notes
in Theoretical Computer Science, Vol. 276), Michael W. Mislove and Joël Ouaknine (Eds.). Elsevier, 263–289. https:

//doi.org/10.1016/j.entcs.2011.09.026

Per Martin-Löf. 1996. On the Meanings of the Logical Constants and the Justifications of the Logical Laws. Nordic Journal
of Philosophical Logic 1, 1 (1996), 11–60.

Conor McBride. 2018. Basics of Bidirectionalism. https://pigworker.wordpress.com/2018/08/06/basics-of-bidirectionalism/

https://doi.org/10.1007/978-3-030-33636-3_7
https://doi.org/10.2168/LMCS-8(1:18)2012
https://doi.org/10.1145/2535838.2535852
https://doi.org/10.1145/3018610.3018620
https://doi.org/10.1016/B978-044450813-3/50018-7
https://doi.org/10.1016/S0168-0072(02)00096-9
https://doi.org/10.1109/LICS.1988.5125
https://doi.org/10.1109/LICS.1988.5125
https://arxiv.org/abs/1610.07978
https://doi.org/10.2168/LMCS-11(1:13)2015
https://doi.org/10.1007/3-540-61780-9_68
https://doi.org/10.1016/j.entcs.2011.09.026
https://doi.org/10.1016/j.entcs.2011.09.026
https://pigworker.wordpress.com/2018/08/06/basics-of-bidirectionalism/

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Gradualizing the Calculus of Inductive Constructions 1:27

Conor McBride. 2019. Check the Box!. In 25th International Conference on Types for Proofs and Programs. Invited presentation.
Max S. New and Amal Ahmed. 2018. Graduality from Embedding-Projection Pairs. , 73:1–73:30 pages.

Max S. New, Daniel R. Licata, and Amal Ahmed. 2019. Gradual Type Theory. See[POPL 2019 2019], 15:1–15:31.

Paige Randall North. 2019. Towards a Directed Homotopy Type Theory. In Proceedings of the Thirty-Fifth Conference on
the Mathematical Foundations of Programming Semantics, MFPS 2019, London, UK, June 4-7, 2019 (Electronic Notes in
Theoretical Computer Science, Vol. 347), Barbara König (Ed.). Elsevier, 223–239. https://doi.org/10.1016/j.entcs.2019.09.012

Peter-Michael Osera, Vilhelm Sjöberg, and Steve Zdancewic. 2012. Dependent Interoperability. In Proceedings of the 6th
workshop on Programming Languages Meets Program Verification (PLPV 2012). ACM Press, 3–14.

Xinming Ou, Gang Tan, Yitzhak Mandelbaum, and David Walker. 2004. Dynamic Typing with Dependent Types. In

Proceedings of the IFIP International Conference on Theoretical Computer Science. 437–450.
Erik Palmgren. 1998. On universes in type theory. In Twenty Five Years of Constructive Type Theory., G. Sambin and J. Smith

(Eds.). Oxford University Press, 191–204.

Erik Palmgren and Viggo Stoltenberg-Hansen. 1990. Domain Interpretations of Martin-Löf’s Partial Type Theory. Ann. Pure
Appl. Log. 48, 2 (1990), 135–196. https://doi.org/10.1016/0168-0072(90)90044-3

Christine Paulin-Mohring. 2015. Introduction to the Calculus of Inductive Constructions. In All About Proofs, Proofs for All,
Bruno Woltzenlogel Paleo and David Delahaye (Eds.). College Publications.

Pierre-Marie Pédrot and Nicolas Tabareau. 2018. Failure is Not an Option - An Exceptional Type Theory. In Proceedings of
the 27th European Symposium on Programming Languages and Systems (ESOP 2018) (Lecture Notes in Computer Science,
Vol. 10801), Amal Ahmed (Ed.). Springer-Verlag, Thessaloniki, Greece, 245–271.

Pierre-Marie Pédrot and Nicolas Tabareau. 2020. The fire triangle: how to mix substitution, dependent elimination, and

effects. Proceedings of the ACM on Programming Languages 4, POPL (Jan. 2020), 58:1–58:28.

Pierre-Marie Pédrot, Nicolas Tabareau, Hans Fehrmann, and Éric Tanter. 2019. A Reasonably Exceptional Type Theory.

See[ICFP 2019 2019], 108:1–108:29.

POPL 2019 2019.

Jeremy Siek and Walid Taha. 2006. Gradual Typing for Functional Languages. In Proceedings of the Scheme and Functional
Programming Workshop. 81–92.

Jeremy Siek and Walid Taha. 2007. Gradual Typing for Objects. In Proceedings of the 21st European Conference on Object-
oriented Programming (ECOOP 2007) (Lecture Notes in Computer Science, 4609), Erik Ernst (Ed.). Springer-Verlag, Berlin,

Germany, 2–27.

Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. 2015. Refined Criteria for Gradual Typing.

In 1st Summit on Advances in Programming Languages (SNAPL 2015) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 32). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Asilomar, California, USA, 274–293.

Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and Théo Winterhalter. 2020. Coq Coq correct!

verification of type checking and erasure for Coq, in Coq. Proc. ACM Program. Lang. 4, POPL (2020), 8:1–8:28. https:

//doi.org/10.1145/3371076

Matthieu Sozeau and Nicolas Tabareau. 2014. Universe Polymorphism in Coq. In Interactive Theorem Proving, Gerwin Klein

and Ruben Gamboa (Eds.). Springer International Publishing, Cham, 499–514.

Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan Bharga-

van, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean Karim Zinzindohoue, and Santiago Zanella Béguelin.

2016. Dependent types and multi-effects in F
★
, See [Bodík and Majumdar 2016], 256–270.

Éric Tanter and Nicolas Tabareau. 2015. Gradual Certified Programming in Coq. In Proceedings of the 11th ACM Dynamic
Languages Symposium (DLS 2015). ACM Press, Pittsburgh, PA, USA, 26–40.

Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau. 2019. Eliminating reflection from type theory. In Proceedings of
the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019, Cascais, Portugal, January
14-15, 2019, Assia Mahboubi and Magnus O. Myreen (Eds.). ACM, 91–103. https://doi.org/10.1145/3293880.3294095

Hongwei Xi and Frank Pfenning. 1998. Eliminating array bound checking through dependent types. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’98). ACM Press, 249–257.

Beta Ziliani and Matthieu Sozeau. 2017. A comprehensible guide to a new unifier for CIC including universe polymorphism

and overloading. 27 (2017). https://doi.org/10.1017/S0956796817000028

https://doi.org/10.1016/j.entcs.2019.09.012
https://doi.org/10.1016/0168-0072(90)90044-3
https://doi.org/10.1145/3371076
https://doi.org/10.1145/3371076
https://doi.org/10.1145/3293880.3294095
https://doi.org/10.1017/S0956796817000028

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Meven Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

A COMPLEMENTS ON ELABORATION AND CastCIC

This section gives an extended account of §5. The structure is the same, and we refer to the main

section when things are already spelled out there.

A.1 CastCIC

We state and prove a handful of properties of CastCIC, that are useful for in the next sections. They

are very standard technical building blocks of type theories, and should not be very surprising. The

main interesting point is their formulation in the bidirectional setting.

Property 1 (Weakening). If Γ ⊢ 𝑡 ⊲𝑇 then Γ,Δ ⊢ 𝑡 ⊲𝑇 , and similarly for the other typing judgments.

Proof. It suffices to prove it for one variable.We prove by (mutual) induction on the typing derivation

that if Γ,Δ ⊢ 𝑡 ⊲𝑇 then Γ, 𝑥 : 𝐴,Δ ⊢ 𝑡 ⊲𝑇 . It is true for the base cases (including the variable), and
we can check that all rules preserve it. □

Property 2 (Substitution). If Γ, 𝑥 : 𝐴,Δ ⊢ 𝑡 ⊲𝑇 and Γ ⊢ 𝑢 ⊳𝐴 then Γ,Δ[𝑢/𝑥] ⊢ 𝑡 [𝑢/𝑥] ⊲ 𝑆 with
𝑆 ≡ 𝑇 .

Proof. Again, the proof is by mutual induction on the derivation. In the checking judgment, we use

the transitivity of conversion to conclude. In the constrained inference, we need an extra property

to prove that a type convertible to a type with head constructor ℎ reduces to a type with the same

head constructor, which is a consequence of confluence. □

Property 3 (Validity). If Γ ⊢ 𝑡 ⊲𝑇 then Γ ⊢ 𝑇 ▶□□𝑖 for some 𝑖 .

Proof. Once again, this is a routine induction on the inference derivation, using subject reduction

to handle the reductions in the constrained inference rules, to ensure the reduced type is still

well-formed. □

A.2 Elaboration from GCIC to CastCIC

The clear distinction between inputs and outputs forced by the bidirectional approach makes the

proof of correction almost trivial, by distinguishing objects that are already well-formed from

objects whose well-formedness we should ensure.

Proof of Theorem 4. The proof is by induction on the elaboration derivation, mutually with similar

properties for all typing judgments.

The first key point is to ensure that context extensions we do in the rules are valid, i.e. we only
consider Γ′, 𝑥 : 𝐴′

when we know that ⊢ Γ′, 𝑥 : 𝐴′
, so that we can use the induction hypothesis. The

second is to use the validity property of CastCIC to ensure that all inserted casts are well-typed. □

As already hinted in the text, the uniqueness of elaboration is also eased by the bidirectional

approach, once we fix a reduction strategy.

Proof of Theorem 5. Uniqueness of elaboration is proven by induction on the elaboration derivation,

together with uniqueness for the other elaboration judgments.

The main argument is that there is always at most one rule that can apply to get the desired

conclusion. This is true for all inference statement because there is exactly one inference rule for

each term constructor, and for checking because there is only one rule to derive checking. In those

cases simply combining the hypothesis of uniqueness is enough. For constrained inference, by

confluence of CastCIC the inferred type cannot at the same time reduce to ?□ and□ (resp. a Π-type
or an inductive type), because those do not have a common reduct. Thus, only one of the two rules

can apply. Because of the fixed reduction strategy, the inferred types is moreover unique. □

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Gradualizing the Calculus of Inductive Constructions 1:29

Γ ⊢ 𝑡 ⊑𝛼 𝑡 ′

Γ ⊢ 𝑥 ⊑𝛼 𝑥 Γ ⊢ □𝑖 ⊑𝛼 □𝑖

Γ ⊢ 𝐴 ⊑𝛼 𝐴′ Γ, 𝑥 : 𝐴 | 𝐴′ ⊢ 𝐵 ⊑𝛼 𝐵′

Γ ⊢ Π𝑥 : 𝐴.𝐵 ⊑𝛼 Π𝑥 : 𝐴′.𝐵′

Γ ⊢ 𝐴 ⊑𝛼 𝐴′ Γ, 𝑥 : 𝐴 | 𝐴′ ⊢ 𝑡 ⊑𝛼 𝑡

Γ ⊢ _ 𝑥 : 𝐴.𝑡 ⊑𝛼 _ 𝑥 : �̃�.𝑡

Γ ⊢ 𝐴 ⊑𝛼 �̃� Γ ⊢ 𝐵 ⊑𝛼 �̃� Γ ⊢ 𝑡 ⊑𝛼 𝑡

Γ ⊢ ⟨𝐵 ⇐ 𝐴⟩ 𝑡 ⊑𝛼

〈
�̃� ⇐ �̃�

〉
𝑡

Γ ⊢ 𝑡 ⊑𝛼 𝑡 Γ ⊢ 𝑢 ⊑𝛼 �̃�

Γ ⊢ 𝑡 𝑢 ⊑𝛼 𝑡 �̃�

Γ ⊢ a ⊑𝛼 ã 𝑖 = 𝑖

Γ ⊢ 𝐼 (a) ⊑𝛼 𝐼 (ã)
Γ ⊢ a ⊑𝛼 ã Γ ⊢ b ⊑𝛼 b̃ 𝑖 = 𝑖

Γ ⊢ 𝑐𝑘 (a, b) ⊑𝛼 𝑐𝑘 (ã, b̃)

Γ ⊢ 𝑠 ⊑𝛼 𝑠 Γ1 ⊢ 𝑠 ▶I 𝐼 (a) Γ2 ⊢ 𝑠 ▶I 𝐼 (ã) Γ, 𝑧 : 𝐼 (a) | 𝐼 (ã) ⊢ 𝑃 ⊑𝛼 𝑃

Γ, 𝑓 : (Π 𝑧 : 𝐼 (a), 𝑃) | (Π 𝑧 : 𝐼 (ã), 𝑃), y : Yk [a/x] | Yk [ã/x] ⊢ 𝑡𝑘 ⊑𝛼 𝑡𝑘
Γ1, 𝑓 : (Π 𝑧 : 𝐼 (a), 𝑃), y : Yk [a/x] ⊢ 𝑡𝑘 ⊲𝑇𝑘

Γ, 𝑓 : (Π 𝑧 : 𝐼 (a), 𝑃) | (Π 𝑧 : 𝐼 (ã), 𝑃), y : Yk [a/x] | Yk [ã/x] ⊢ 𝑇𝑘 ⊑{ 𝑃 [?𝐼 (ã)/𝑧]
Γ ⊢ ind𝐼 (𝑠, 𝑃, t) ⊑𝛼 ind𝐼 (𝑠, 𝑃, t̃)

Γ1 ⊢ 𝑡 ⊲𝑇 Γ ⊢ 𝑇 ⊑{ �̃� Γ ⊢ 𝑇 ⊑{ �̃� Γ ⊢ 𝑡 ⊑𝛼 𝑡

Γ ⊢ 𝑡 ⊑𝛼

〈
�̃� ⇐ �̃�

〉
𝑡

Γ2 ⊢ 𝑡 ⊲𝑇 Γ ⊢ 𝐴 ⊑{ 𝑇 Γ ⊢ 𝐵 ⊑{ 𝑇 Γ ⊢ 𝑡 ⊑𝛼 𝑡

Γ ⊢ ⟨𝐵 ⇐ 𝐴⟩ 𝑡 ⊑𝛼 𝑡

Γ1 ⊢ 𝑡 ⊲𝑇 Γ ⊢ 𝑇 ⊑{ 𝑇

Γ ⊢ 𝑡 ⊑𝛼 ?𝑇

Γ1 ⊢ 𝐴▶□□𝑖 𝑖 ≤ 𝑗

Γ ⊢ 𝐴 ⊑𝛼 ?□𝑖

Γ ⊢ err𝑇 ⊑𝛼 𝑡 Γ ⊢ _𝑥 : 𝐴. err𝑇 ⊑𝛼 𝑡

Γ ⊢ 𝑡 ⊑{ 𝑡
Γ ⊢ 𝑡 ⊑𝛼 𝑡

Γ ⊢ 𝑡 ⊑{ 𝑡

Γ ⊢ 𝑡 ⊑𝛼 𝑡 𝑠 { 𝑡

Γ ⊢ 𝑠 ⊑{ 𝑡

Γ ⊢ 𝑡 ⊑𝛼 𝑡 𝑠 { 𝑡

Γ ⊢ 𝑡 ⊑{ 𝑠

Fig. 14. Structural and definitional precisions

A.3 Precision and Reduction
First thing first, the extended definition of precision. The only point to note, apart from the non-

congruence cases already present in the text, are the extra assumptions in the congruence ind

rule. The typing assumptions are there to provide us with the context needed to type-check the

predicate and branches, and the extra definitional precision, although a consequence of the other

premises once the simulation is proven, is needed to provide a strong enough induction hypothesis

to conclude when proving this simulation.

Let us start our lemmas by counterparts to the weakening and substitution lemmas for precision.

Lemma 19 (Weakening of precision). If Γ ⊢ 𝑡 ⊑𝛼 𝑡 , then Γ,∆ ⊢ 𝑡 ⊑𝛼 𝑡 for any ∆.
Proof. This is by induction on the precision derivation, using weakening of CastCIC to handle the

uses of typing. □

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 Meven Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

Lemma 20 (Substitution and precision). If Γ, 𝑥 : 𝑆 | 𝑆,∆ ⊢ 𝑡 ⊑𝛼 𝑡 , Γ ⊢ 𝑢 ⊑𝛼 �̃�, Γ1 ⊢ 𝑢 ⊳ 𝑆 and
Γ2 ⊢ �̃� ⊳ 𝑆 then Γ,∆[𝑢 | �̃�/𝑥] ⊢ 𝑡 [𝑢/𝑥] ⊑𝛼 𝑡 [�̃�/𝑥].
Proof. The substitution property follows from weakening, again by induction on the precision

derivation.Weakening is used in the variable case, and the substitution property ofCastCIC appears

to handle the uses of typing. □

Next, the extended catch-up lemmas.

Lemma 21 (Type catch-up). We have the following property, under the hypothesis that ⊑𝛼 Γ:
(1) if Γ ⊢ □𝑖 ⊑{ 𝑇 ′ and Γ2 ⊢ 𝑇 ′▶□□𝑗 , then 𝑇 ′ {∗ ?□𝑗

and 𝑖 + 1 ≤ 𝑗 or 𝑇 ′ {∗ □𝑖 ;
(2) if Γ ⊢ ?□𝑖

⊑{ 𝑇 ′ and Γ2 ⊢ 𝑇 ′▶□□𝑗 , then 𝑇 ′ {∗ ?□𝑗
and 𝑖 ≤ 𝑗 ;

(3) if Γ ⊢ Π𝑥 : 𝐴.𝐵 ⊑{ 𝑇 ′, Γ1 ⊢ Π𝑥 : 𝐴.𝐵 ⊲□𝑖 and Γ2 ⊢ 𝑇 ′▶□□𝑗 then 𝑇 ′ {∗ ?□𝑗
and 𝑖 ≤ 𝑗 , or

𝑇 ′ {∗
Π𝑥 : 𝐴′.𝐵′ for some 𝐴′ and 𝐵′ such that Γ ⊢ Π𝑥 : 𝐴.𝐵 ⊑{ Π𝑥 : 𝐴′.𝐵′;

(4) ifΓ ⊢ 𝐼 (a) ⊑{ 𝑇 ′,Γ1 ⊢ 𝐼 (a) ⊲□𝑖 andΓ2 ⊢ 𝑇 ′▶□□𝑗 then𝑇 ′ {∗ ?□𝑗
and 𝑖 ≤ 𝑗 , or𝑇 ′ {∗ 𝐼 (a′)

for some 𝑎′ such that Γ ⊢ 𝐼 (a) ⊑{ 𝐼 (a′).
Proof. All four proofs follow the same structure, we detail the first one, which is done by induction

on the precision derivation, mutually with the same property for structural precision.

Let us start with the proof of the property for structural precision. Using the precision hypothesis,

we can decompose 𝑇 into ⟨𝑆𝑛 ⇐ 𝑇𝑛−1⟩ . . . ⟨𝑆2 ⇐ 𝑇1⟩ 𝑈 , where 𝑇 is either □𝑖 or ?𝑆 for some 𝑆 , and

we have Γ ⊢ □𝑖+1 ⊑𝛼 𝑆𝑘 , Γ ⊢ □𝑖+1 ⊑𝛼 𝑆 ′
𝑘
and possibly Γ ⊢ □𝑖+1 ⊑𝛼 𝑆 . By induction hypothesis, all

of 𝑆𝑘 , 𝑇𝑘 and 𝑆 reduce either to □𝑖+1 or some ?□𝑙
with 𝑖 + 1 ≤ 𝑙 . Moreover, because 𝑇 type-checks

against □𝑗 , we must have 𝑆𝑛 ≡ □𝑗 . This implies that it cannot reduce to ?□𝑙
by confluence, and

thus it must reduce to □𝑖+1.

Using that 𝑖 + 1 ≤ 𝑙 and the reduction rules〈
𝑋 ⇐ ??□𝑙

〉
?□𝑙
{ ?𝑋

⟨□𝑖+1 ⇐ □𝑖+1⟩ 𝑡 { 𝑡〈
𝑋 ⇐ ?□𝑙

〉 〈
?□𝑙

⇐ □𝑖+1

〉
𝑡 { ⟨𝑋 ⇐ □𝑖+1⟩ 𝑡

we can reduce all casts. We thus get 𝑇 {∗ □𝑖 or 𝑇 {
∗ ?□𝑖+1

, as expected.

For the definitional precision, if Γ ⊢ □𝑖 ⊑{ 𝑇 then by decomposing the precision derivation

there is an 𝑆 such that 𝑇 {∗ 𝑆 , Γ ⊢ □𝑖 ⊑𝛼 𝑆 , and by subject reduction Γ1 ⊢ 𝑆 ▶□□𝑗 . By induction

hypothesis, either 𝑆 {∗ □𝑖 or 𝑆 {
∗
?□𝑖+1

, and composing both reductions we get the desired result.

The next three properties are proven in a similar fashion, apart from the fact that the lemma just

proven is used instead of the induction hypothesis. □

Proof of Lemma 7. As for Lemma 21, decompose 𝑠 into
〈
𝑆𝑛 ⇐ 𝑆 ′𝑛−1

〉
. . .

〈
𝑆2 ⇐ 𝑆 ′

1

〉
�̃�, where �̃� is

either _ 𝑥 : �̃�.𝑡 or ?𝑆 for some 𝑆 . Because all of the 𝑆𝑘 , 𝑆
′
𝑘
and possibly 𝑆 are definitionally less

precise than Π𝑥 : 𝐴.𝐵, by the previous lemma they all reduce all to either some ?□𝑗
with 𝑖 ≤ 𝑗 ,

or some Π𝑥 : �̃�.�̃�, and by typing it must be the second for 𝑆𝑛 . By the rule ⟨𝑋 ⇐ ?□⟩ ??□
{?𝑋 , if

𝑆 is not a Π-type, we can reduce the casts until it is, then use the rule ?
Π𝑥 :�̃�.�̃� { _ 𝑥 : �̃�.�̃�. Thus

without loss of generality we can suppose �̃� is some _ 𝑥 : �̃�.𝑡 .

Now we show that all casts reduce, and preserve precision, starting with the innermost one.

There are three possibilities for that innermost cast.

If it is

〈
?□𝑗

⇐ Germ𝑗 Π
〉
�̃�, then by typing this cannot be the outermost cast, and thus we can

use the rule

〈
𝑋 ⇐ ?□𝑗

〉 〈
?□𝑗

⇐ Germ𝑗 Π
〉
𝑋 {

〈
𝑋 ⇐ Germ𝑗 Π

〉
�̃� to reduce it.

In the second case, the cast is some ⟨Π𝑥 : 𝐴2 .𝐵2 ⇐ Π𝑥 : 𝐴1.𝐵1⟩ _ 𝑥 : 𝐴1.𝑡 that reduces to _ 𝑥 :

𝐴2. ⟨𝐵2 ⇐ 𝐵1 [𝑎/𝑥]⟩ 𝑡 [𝑎/𝑥] where 𝑎 is ⟨𝐴1 ⇐ 𝐴2⟩ 𝑥 . Inverting the precision hypothesis, we obtain

that Γ ⊢ 𝐴 ⊑𝛼 𝐴1, Γ ⊢ 𝐴 ⊑𝛼 𝐴2, Γ, 𝑥 : 𝐴 | 𝐴1 ⊢ 𝐵 ⊑𝛼 𝐵1, Γ, 𝑥 : 𝐴 | 𝐴2 ⊢ 𝐵 ⊑𝛼 𝐵2 and

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Gradualizing the Calculus of Inductive Constructions 1:31

Γ, 𝑥 : 𝐴 | 𝐴1 ⊢ 𝑡 ⊑𝛼 𝑡 , and we can use weakening to deduce from those that the reduct is still less

precise than _ 𝑥 : 𝐴.𝑡 .

The last case corresponds to

〈
?□𝑗

⇐ Π𝑥 : �̃�.�̃�
〉
�̃� when Π𝑥 : �̃�.�̃� is not Germ𝑗 ℎ, which is

reduced to

〈
?□𝑗

⇐ ?□𝑐Π (𝑗) → ?□𝑐Π (𝑗)

〉 〈
?□𝑐Π (𝑗) → ?□𝑐Π (𝑗) ⇐ Π𝑥 : �̃�.�̃�

〉
�̃�. For this reduct to be less

precise that _ 𝑥 : 𝐴.𝑡 , we need that all types involved in the casts are definitionally precise than

Π𝑥 : 𝐴.𝐵. For ?□𝑗
and Π𝑥 : �̃�.�̃� it is already an hypothesis. For ?□𝑐Π (𝑗) → ?□𝑐Π (𝑗) , it suffices to

show that both 𝐴 and 𝐵 are less precise than ?□𝑐Π (𝑗) . Because Π𝑥 : 𝐴.𝐵 is typable and less precise

than ?□𝑗
we know that Γ1 ⊢ 𝐴▶□□𝑘 and Γ1, 𝑥 : 𝐴 ⊢ 𝐵▶□□𝑙 with 𝑠Π (𝑘, 𝑙) ≤ 𝑗 , thus 𝑘 ≤ 𝑐Π (𝑗)

and 𝑙 ≤ 𝑐Π (𝑗). Therefore Γ ⊢ 𝐴 ⊑𝛼 ?□𝑐Π (𝑗) , and similarly for 𝐵.

Thus, all casts must reduce, and each of those reductions preserves precision, so we end up with

a term _ 𝑥 : �̃�.𝑡 such that Γ ⊢ _ 𝑥 : 𝐴.𝑡 ⊑𝛼 _ 𝑥 : �̃�.𝑡 , as expected. □

Lemma 22 (Constructors and inductive error catch-up). IfΓ ⊢ 𝑐𝑘 (a, b) ⊑𝛼 𝑠 ′,Γ1 ⊢ 𝑐𝑘 (a, b) ⊲ 𝐼 (a)
and Γ2 ⊢ 𝑠 ′▶I 𝐼 (a′), then either 𝑠 ′ {∗ ?𝐼 (a′) or 𝑠 ′ {∗ 𝑐𝑘 (a′, b′) with Γ ⊢ 𝑐𝑘 (a, b) ⊑𝛼 𝑐𝑘 (a′, b′).
Similarly, if Γ ⊢ ?𝐼 (a) ⊑𝛼 𝑠 ′, Γ1 ⊢ ?𝐼 (a) ⊲ 𝐼 (a) and Γ2 ⊢ 𝑠 ′▶I 𝐼 (a′), then 𝑠 ′ {∗ ?𝐼 (a′) with

Γ ⊢ 𝐼 (a) ⊑𝛼 𝐼 (a′).
Proof. The proofs are very similar to the abstraction case. The main difference is that we must treat

the case of ?𝐼 (ã) differently from ?
Π𝑥 :�̃�.�̃� , because on an inductive type it does not reduce. However,

the rule ⟨𝐼 (a2) ⇐ 𝐼 (a1)⟩ ?𝐼 (a1) { ?𝐼 (a2) can be used instead. □

From this, the simulation follows. We state it in full, i.e. together with the corresponding property

on definitions precision.

Theorem 23 (Simulation of reduction). The two following properties are true:

(1) if ⊑𝛼 Γ, Γ1 ⊢ 𝑡 ⊲𝑇 , Γ2 ⊢ 𝑡 ⊲𝑇 , Γ ⊢ 𝑡 ⊑𝛼 𝑡 and 𝑡 {∗ 𝑠 then there exists 𝑠 such that 𝑡 {∗ 𝑠 and
Γ ⊢ 𝑡 ⊑𝛼 𝑠 ,

(2) if ⊑𝛼 Γ, Γ1 ⊢ 𝑡 ⊲𝑇 , Γ2 ⊢ 𝑡 ⊲𝑇 , Γ ⊢ 𝑡 ⊑{ 𝑡 and 𝑡 {∗ 𝑠 then Γ ⊢ 𝑠 ⊑{ 𝑡 .

Proof. Both are shown by mutual induction on the precision derivation.

Denotational precision
The second point is the easiest. By definition of definitional precision, there exists 𝑢 and �̃�, reducts

respectively of 𝑡 and 𝑡 , and such that Γ ⊢ 𝑢 ⊑𝛼 �̃�. By confluence, there exists some 𝑣 that is a reduct

of both 𝑢 and 𝑠 . By subject reduction, 𝑡 and 𝑡 are all well-typed, and thus by induction hypothesis,

there exists some 𝑣 such that 𝑣 {∗ 𝑣 and Γ ⊢ 𝑣 ⊑𝛼 𝑣 . But then 𝑣 is a reduct of 𝑠 and 𝑣 is a reduct of

𝑡 , and so Γ ⊢ 𝑠 ⊑{ 𝑡 .

𝑡 ⊑{ 𝑡

𝑠 𝑢 ⊑𝛼 �̃�

𝑣 ⊑𝛼 𝑣

As a direct corollary, we have that if Γ ⊢ 𝑡 ⊲𝑇 , Γ ⊢ 𝑇 ⊑{ 𝑇 , 𝑡 {∗ 𝑠 and Γ1 ⊢ 𝑠 ⊲ 𝑆 , then

Γ ⊢ 𝑆 ⊑{ 𝑇 . Indeed Γ1 ⊢ 𝑠 ⊳𝑇 by subject reduction, thus 𝑆 and 𝑇 are convertible, and have a

common reduct𝑈 by confluence. By what we just proved, this gives Γ ⊢ 𝑈 ⊑{ 𝑇 , thus Γ ⊢ 𝑆 ⊑{ 𝑇 .

Syntactical precision — Congruence rules
It is enough to show that one step of reduction can be simulated.

First, we consider the congruence rules. The CastCIC and cast congruence rules on 𝑡 can be

simulated by similar congruence rules on 𝑡 . To handle the possibility of non-diagonal cast rules,

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1:32 Meven Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

with hypothesis involving the inferred type of 𝑡 , we use the previous corollary, that shows that any

type definitionally less precise than the type of 𝑡 is also definitionally less precise than the type of

𝑠 . As for the error congruence rule it can be ignored, since an error is smaller than anything else.

Thus, it suffices to consider the cases where the reduction happens at the head of 𝑡 , and 𝑡 has the

same head, i.e. we already got rid of all casts surrounding 𝑡 if they existed.

Syntactical precision – 𝛽 and] redexes
Next we consider the case of 𝛽 or] redexes. If the redex is an applied (_𝑥 : 𝐴. err𝑇) 𝑢, then the

reduct is err𝑇 and must be still smaller that 𝑡 . Otherwise, Lemmas 7 and 22 apply, and all casts

around the destructed term (i.e. the _-abstraction or inductive constructor) can be reduced while

keeping the syntactic precision relation between 𝑡 and 𝑡 . Then the 𝛽 or] reduction of 𝑡 can then

be simulated with another 𝛽 or] reduction in 𝑡 , using the substitution property of precision to

conclude. There is a special case, in the situation where the scrutinee of the less precise]-redex is

?𝐼 (ã) . In that case, this redex reduces to ?𝑃 [?𝐼 (ã) /𝑧] , and we must show this term to be less precise

that 𝑡𝑘 [_ 𝑥 : 𝐼 (a). ind𝐼 (𝑥, 𝑃, t)/𝑧] [b/y] of type 𝑇𝑘 . But the precision rule for the inductor gives that

Γ ⊢ 𝑇𝑘 ⊑{ 𝑃 [?𝐼 (a)/𝑧], which is exactly what we need to conclude – this is the reason for that

extraneous assumption: giving us the needed induction hypothesis here.

Syntactical precision – error and ? reductions
If the reduction of 𝑡 is any reduction to an error, including some of the specific error reduction rules,

then there is no need for a simulation because the error is more precise than anything. Similarly, if

the reduction is ?Π𝑥 :𝐴.𝐵 { _ 𝑥 : 𝐴. err𝐵 , the reduct is more precise than anything again.

Conversely, let us consider the ? reduction rules. If 𝑡 is ?Π𝑥 :𝐴.𝐵 and reduces to _ 𝑥 : 𝐴.𝐵, then

𝑡 must be ?𝑇 with Γ ⊢ Π𝑥 : 𝐴.𝐵 ⊑{ 𝑇 . Thus 𝑇 {∗ ??□ or 𝑇
Π𝑥 :�̃�.�̃� . In the first case, 𝑡 is still less

precise than _ 𝑥 : 𝐴.𝐵, and in the second case, it can simulate the reduction with the same one. If 𝑡 is

ind𝐼 (?𝐼 (a) , 𝑃, b), reducing to ?𝑃 [?𝐼 ((𝑎)) /𝑧] , we use the lemma on cast elimination around constructors

to conclude that also 𝑡 must reduce to some ind𝐼 (?𝐼 (ã) , 𝑃, b̃) that is less precise than 𝑡 . From this,

𝑡 { ?𝑃 [?𝐼 ((�̃�)) /𝑧] , which is less precise than the reduct of 𝑡 .

Syntactical precision – non-diagonal cast
Next, let us turn to the case where 𝑡 is ⟨𝐵 ⇐ 𝐴⟩ 𝑢 with Γ ⊢ 𝑢 ⊑𝛼 𝑡 (i.e. the precision was obtained

with a non-diagonal rule). There are four possibilities. The first one is when the cast fails, then the

error is of course smaller than 𝑡 .

The second case is when the cast disappears (cast between universes) or expands into two

casts without changing 𝑢 (cast through a germ), in those cases the reduct of 𝑡 is still smaller than

𝑡 . In the case of cast expansion, we must use non-diagonal precision rules, and thus prove that

the type of 𝑡 is less precise than the introduced germ. This is because the inferred type of 𝑡 is

definitionally less precise than some ?□𝑖
, and the germ considered is Germ𝑖 ℎ. It is enough to prove

that Γ ⊢ Germ𝑖 ℎ ⊑𝛼 ?□𝑖
, which is true because for all ℎ, if the germ is not an error (which it is here

as it appeared in a reduction) we have Γ1 ⊢ Germ𝑖 ℎ ⊲ 𝑗 for some 𝑗 ≤ 𝑖 .

The third case is when 𝐴 and 𝐵 are both Π-types or inductive types, and 𝑢 starts with a _ or an

inductive constructor. In that case, by the previous lemmas 𝑡 reduces to a term �̃� with the same

head constructor as 𝑢, and by the substitution property of precision we have Γ ⊢ 𝑠 ⊑𝛼 �̃�.

In the fourth case, 𝑡 is
〈
𝑋 ⇐ ?□𝑖

〉 〈
?□𝑖

⇐ Germ𝑖 ℎ
〉
𝑢 reducing to ⟨𝑋 ⇐ Germ𝑖 ℎ⟩ 𝑢. If Γ ⊢ 𝑢 ⊑𝛼

𝑡 , then we directly have Γ ⊢ ⟨𝑋 ⇐ Germ𝑖 ℎ⟩ 𝑢 ⊑𝛼 𝑡 . Otherwise, 𝑡 is some

〈
�̃� ⇐ �̃�

〉
�̃� and we have

Γ ⊢ 𝑢 ⊑𝛼 �̃�, Γ1 ⊢ Germ𝑖 ℎ ⊑{ �̃�. Moreover, the non-diagonal left cast rule gives Γ1 ⊢ 𝑋 ⊑{ �̃�

because Γ2 ⊢
〈
�̃� ⇐ �̃�

〉
�̃� ⊲ �̃�. Thus Γ ⊢ ⟨𝑋 ⇐ Germ𝑖 ℎ⟩ 𝑢 ⊑𝛼

〈
�̃� ⇐ �̃�

〉
�̃�.

Syntactical precision – diagonal cast
This only leaves us with the diagonal rule for casts: we are given ⟨𝑇 ⇐ 𝑆⟩ 𝑡 and

〈
𝑇 ⇐ 𝑆

〉
𝑡 that

are pointwise comparable, and such that ⟨𝑇 ⇐ 𝑆⟩ 𝑡 reduces, and we must show that

〈
𝑇 ⇐ 𝑆

〉
𝑡

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Gradualizing the Calculus of Inductive Constructions 1:33

simulates that reduction. We consider the reductions from top to bottom, ignoring all the ones that

give an error, as those are trivial to simulate.

First, we are in the situation of ⟨Π𝑥 : 𝐴2.𝐵2 ⇐ Π𝑥 : 𝐴1.𝐵1⟩ _ 𝑥 : 𝐴1.𝑢. If 𝑢 is err𝐵1
then the

reduct is more precise than any term. If 𝑆 reduces to ?□ then 𝑡 must reduce to ??□ because it is less

precise than _ 𝑥 : 𝐴1.𝑢 and by typing it cannot start with a _. In that case,

〈
𝑇 ⇐ 𝑆

〉
𝑡 { ?𝑇 , and

since Γ ⊢ Π𝑥 : 𝐴2 .𝐵2 ⊑𝛼 𝑇 , we have that Γ ⊑𝛼 𝑠 ⊑𝛼 ?𝑇 . Otherwise 𝑆 reduces to some Π𝑥 : �̃�1 .�̃�1,

and 𝑡 reduces to some _ 𝑥 : �̃�1.�̃�. If 𝑇 reduces to some Π𝑥 : �̃�2 .�̃�2, then the whole term can do the

same reduction as 𝑡 , and the substitution property of precision enables us to conclude. Thus, the

only case left is that of

〈
?□𝑖

⇐ Π𝑥 : �̃�1.�̃�1

〉
_ 𝑥 : �̃�1.𝑡 . If Π𝑥 : �̃�1 .�̃�1 is Germ𝑖 Π, then all of 𝐴1, 𝐴2,

𝐵1 and 𝐵2 are less precise than ?□𝑐Π (𝑖) , and this is enough to conclude that 𝑠 is less precise than〈
Germ𝑖 Π ⇐ ?□𝑖

〉
_ 𝑥 :?□𝑐Π (𝑖) 𝑡 . The last case is when Π𝑥 : �̃�1.�̃�1 is not a germ. Then there must

first be an expansion through Germ𝑖 Π, followed by a reduction of the cast between Π𝑥 : �̃�1.�̃�1

and Germ𝑖 Π. As the case just before, we have enough precisions of the domains and codomains to

get precision between the reducts by substitution. The reasoning is similar in the corresponding

case for inductive types.

Next, let us consider

〈
?□𝑖

⇐ Π𝑥 : 𝐴1.𝐵1

〉
𝑓 . We have that 𝑇 { ?□𝑗

with 𝑖 ≤ 𝑗 , and thus

Γ ⊢ Germ𝑖 Π ⊑{ 𝑇 . Thus, using a diagonal rule for the innermost cast, and a non-diagonal rule

for the outermost one, we conclude Γ ⊢
〈
?□𝑖

⇐ Π𝑥 : 𝐴1.𝐵1

〉
𝑓 ⊑𝛼

〈
𝑇 ⇐ 𝑆

〉
˜𝑓 . The reasoning is

similar is the corresponding case for inductive types.

As for ⟨□𝑖 ⇐ □𝑖⟩ 𝐴, then we can turn the diagonal rule into a non-diagonal one: indeed Γ1 ⊢
𝐴 ⊳□𝑖 by typing, thus Γ1 ⊢ 𝐴 ⊲𝑇 and 𝑇 { □𝑖 . Thus, as Γ ⊢ □𝑖 ⊑{ 𝑇 , we have Γ ⊢ 𝑇 ⊑{ 𝑇 and

similarly Γ ⊢ 𝑇 ⊑{ 𝑆 . Therefore, Γ ⊢ 𝐴 ⊑𝛼

〈
𝑇 ⇐ 𝑆

〉
�̃�.

Finally, the last case is

〈
𝑋 ⇐ ?□𝑖

〉 〈
?□𝑖

⇐ Germ𝑖 ℎ
〉
𝑡 , compared with

〈
�̃� ⇐ 𝑆

〉
𝑡 . If Γ ⊢ 𝑡 ⊑𝛼 𝑡

(i.e. there was a non-diagonal precision rule on the innermost cast), then we simply have Γ ⊢
⟨𝑋 ⇐ Germ𝑖 ℎ⟩ 𝑡 ⊑𝛼

〈
�̃� ⇐ 𝑆

〉
𝑡 by a diagonal rule, as Γ ⊢ Germ𝑖 ℎ ⊑{ 𝑆 since Γ ⊢ ?□𝑖

⊑{ 𝑆 .

Otherwise, we compare ⟨Germ𝑖 ℎ ⇐ 𝑋 ⟩ 𝑡 with
〈
�̃� ⇐ ?□𝑗

〉 〈
?□𝑗

⇐ 𝑆
〉
𝑡 (after reduction of the

types less precise than ?□𝑖
to some ?□𝑗

with 𝑖 ≤ 𝑗). We can use a diagonal rule of the outermost

cast, and a non-diagonal one on the innermost, as Γ ⊢ Germ𝑖 ℎ ⊑{ ?□𝑗
since 𝑖 ≤ 𝑗 . □

Corollary 24 (Reduction and types). If Γ1 ⊢ 𝑇 ▶□□𝑖 , Γ2 ⊢ 𝑇 ′▶□□𝑗 , Γ ⊢ 𝑇 ⊑𝛼 𝑇 ′ then

• if 𝑇 {∗ ?□𝑗
then 𝑇 ′ {∗ ?□𝑗

with 𝑖 ≤ 𝑗 ;
• if 𝑇 {∗ □𝑖−1 then either 𝑇 ′ {∗ ?□𝑗

with 𝑖 ≤ 𝑗 , or 𝑇 ′ {∗ □𝑖−1;
• if 𝑇 {∗

Π𝑥 : 𝐴.𝐵 then either 𝑇 ′ {∗ ?□𝑗
with 𝑖 ≤ 𝑗 , or 𝑇 ′ {∗

Π𝑥 : 𝐴′.𝐵′ and Γ ⊢ Π𝑥 :

𝐴.𝐵 ⊑𝛼 Π𝑥 : 𝐴′.𝐵′;
• if 𝑇 {∗ 𝐼 (a) then either 𝑇 ′ {∗ ?□𝑖

with 𝑖 ≤ 𝑗 , or 𝑇 ′ {∗ 𝐼 (a′) and Γ ⊢ 𝐼 (a) ⊑𝛼 𝐼 (a′).

A.4 Properties of GCIC
Let us first define the erasure function that is used in the statement of conservativity.

Definition 4 (Erasure). Erasure Y is a partial function from the syntax of CastCIC to the syntax
of CIC, that is undefined on ? and err, is such that Y (⟨𝐵 ⇐ 𝐴⟩ 𝑡) = Y (𝑡) and is a congruence for all
other term constructors.

We say that a context Γ of CastCIC is erasable if both ⊢ Γ ⊑𝛼 Y (Γ) and ⊢ Y (Γ) ⊑𝛼 Γ. When it is clear
from the context, we write simply Γ ⊢ 𝑡 ⊑𝛼 𝑠 instead of either Γ | Y (Γ) ⊢ 𝑡 ⊑𝛼 𝑠 or Y (Γ) | Γ ⊢ 𝑠 ⊑𝛼 𝑡 .
Similarly, given an erasable context Γ we say that a term 𝑡 is erasable if both Γ ⊢ 𝑡 ⊑𝛼 Y (𝑡) and

Γ ⊢ Y (𝑡) ⊑𝛼 𝑡 .

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1:34 Meven Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

Now we can state and prove both halves of the conservativity theorems, in an open context and

for the three different judgments.

Theorem 25 (GCIC is weaker than CIC – Open context).

• If Γ is an erasable context of CastCIC and Y (Γ) ⊢CIC 𝑡 ⊲𝑇 then Γ ⊢ 𝑡⇝ 𝑡 ′ ⊲𝑇 ′ for some erasable
𝑡 ′ and 𝑇 ′ containing no ? and such that Y (𝑡 ′) = 𝑡 and Y (𝑇 ′) = 𝑇 .

• If Γ is an erasable context ofCastCIC,𝑇 ′ is an erasable term ofCastCIC, and Y (Γ) ⊢CIC 𝑡 ⊳ Y (𝑇 ′)
then Γ ⊢ 𝑡 ⊳𝑇 ′⇝ 𝑡 ′ for some erasable 𝑡 ′ containing no ? such that Y (𝑡 ′) = 𝑡 .

• If Γ is an erasable context of CastCIC and Y (Γ) ⊢CIC 𝑡 ▶h𝑇 then Γ ⊢ 𝑡⇝ 𝑡 ′▶h𝑇
′ for some

erasable 𝑡 ′ and 𝑇 ′ containing no ? such that Y (𝑡 ′) = 𝑡 and Y (𝑇 ′) = 𝑇 .
Proof. The inference steps are direct: one needs to combine the induction hypothesis together,

using the substitution property of precision and the fact that Y (𝑡 [𝑢/𝑥]) = Y (𝑡) [Y (𝑢)/𝑥] to handle

the cases of substitution in the inferred types.

Let us consider the case of Π-constrained inference next. We are given Γ erasable, and suppose

that Y (Γ) ⊢CIC 𝑡 ⊲𝑇 and 𝑇 {∗
Π𝑥 : 𝐴.𝐵. By induction hypothesis, Γ ⊢ 𝑡⇝ 𝑡 ′▶Π𝑇

′
with 𝑡 ′ and 𝑇 ′

erasable, and Y (𝑡 ′) = 𝑡 , Y (𝑇 ′) = 𝑇 . Because 𝑇 ′
is erasable, it is less precise than 𝑇 . We cannot have

𝑇 ′ {∗
?□ because𝑇 ′

does not contain any ? as it is erasable, thus there is some 𝐴′
and 𝐵′

such that

𝑇 ′ {∗
Π𝑥 : 𝐴′.𝐵′

and Γ ⊢ Π𝑥 : 𝐴.𝐵 ⊑𝛼 Π𝑥 : 𝐴′.𝐵′
by Corollary 24. Using that lemma again, there

is also some �̃� and �̃� such that 𝑇 {∗
Π𝑥 : �̃�.�̃� and Γ ⊢ Π𝑥 : 𝐴′.𝐵′ ⊑𝛼 Π𝑥 : �̃�.�̃�. Now because 𝑇

is static, so are Π𝑥 : 𝐴.𝐵 and Π𝑥 : �̃�.�̃�, and because of the comparisons with Π𝑥 : 𝐴′.𝐵′
we must

have Π𝑥 : 𝐴.𝐵 = Π𝑥 : �̃�.�̃� = Y (Π𝑥 : 𝐴′.𝐵′). Therefore we have Γ ⊢ 𝑡⇝ 𝑡 ′▶Π Π𝑥 : 𝐴′.𝐵′
and both

𝑡 ′ and Π𝑥 : 𝐴′.𝐵′
are erasable, and moreover Y (𝑡 ′) = 𝑡 and Y (Π𝑥 : 𝐴′.𝐵′) = Π𝑥 : 𝐴.𝐵.

The other cases of constrained inference being very similar, let us turn to checking.We are given Γ
and𝑇 erasable, and suppose that Y (Γ) ⊢CIC 𝑡 ⊲ 𝑆 such that Y (𝑆) ≡ Y (𝑇). By induction hypothesis, Γ ⊢
𝑡⇝ 𝑡 ′▶Π 𝑆 ′ with 𝑡 ′ and 𝑆 ′ erasable, and Y (𝑡 ′) = 𝑡 , Y (𝑆 ′) = 𝑆 . But convertibility implies consistency,

so Y (𝑆) ∼ Y (𝑇), and the monotony of consistency gives 𝑆 ∼ 𝑇 . Thus Γ ⊢ 𝑡 ⊳𝑇 ⇝ ⟨𝑇 ′ ⇐ 𝑆 ′⟩ 𝑡 ′.
We have Y (⟨𝑇 ′ ⇐ 𝑆 ′⟩ 𝑡 ′) = Y (𝑡 ′) = 𝑡 , so we are left to show that Γ ⊢ ⟨𝑇 ′ ⇐ 𝑆 ′⟩ 𝑡 ′ ⊑𝛼 𝑡 and

Γ ⊢ 𝑡 ⊑𝛼 ⟨𝑆 ′ ⇐ 𝑇 ′⟩ 𝑡 ′. Using a diagonal rule for cast, this reduces to showing that Γ ⊢ 𝑇 ′ ⊑{ 𝑆 ′

and Γ ⊢ 𝑆 ′ ⊑{ 𝑇 ′
. The situation is symmetric, let us show only the first inequation. Because 𝑆 and

𝑇 are convertible, let𝑈 be a common reduct. Using the simulation, 𝑇 ′ {∗ 𝑇 ′′
with Γ ⊢ 𝑈 ⊑𝛼 𝑇 ′′

.

Simulating the reduction then gives 𝑆 {∗ �̃� and Γ ⊢ 𝑇 ′′ ⊑𝛼 �̃� . Because 𝑈 and �̃� are static, this

implies𝑈 = �̃� , and thus Γ ⊢ 𝑇 ′′ ⊑𝛼 𝑈 . Simulating the reduction to𝑈 also gives some 𝑆 ′′ such that

Γ ⊢ 𝑈 ⊑𝛼 𝑆 ′′. From this we can deduce Γ ⊢ 𝑇 ′′ ⊑𝛼 𝑆 ′′. □

Theorem 26 (CIC is weaker than GCIC – Open context).

• If Γ′ is an erasable context of CastCIC and 𝑡 is a static term such that Γ′ ⊢ 𝑡⇝ 𝑡 ′ ⊲𝑇 ′, then 𝑡 ′

and 𝑇 ′ are erasable and contain no ?, Y (𝑡 ′) = 𝑡 and Y (Γ′) ⊢ Y (𝑡 ′) ⊲ Y (𝑇 ′).
• If Γ′ is an erasable context of CastCIC,𝑇 ′ is an erasable term of CastCIC containing no ?, and 𝑡
is a static term such that Γ′ ⊢ 𝑡 ⊳𝑇 ′⇝ 𝑡 ′, then 𝑡 ′ is erasable, Y (𝑡 ′) = 𝑡 and Y (Γ′) ⊢ Y (𝑡 ′) ⊳ Y (𝑇 ′).

• If Γ′ is an erasable context of CastCIC and 𝑡 is a static term such that Γ′ ⊢ 𝑡⇝ 𝑡 ′▶h𝑇
′, then 𝑡 ′

and 𝑇 ′ are erasable and contain no ?, Y (𝑡 ′) = 𝑡 and Y (Γ′) ⊢ Y (𝑡 ′)▶h Y (𝑇 ′).
Proof. The proof is similar to the previous one, using the simulations again to handle reduction

steps. □

As a direct corollary of those propositions, we get conservativity Theorem 11.

Now for the elaboration graduality: again, we state it in an open context for all three typing

judgments.

Theorem 27 (Elaboration graduality – Open context). In all the properties below, we are given
a context Γ such that ⊑𝛼 Γ and two term 𝑡 and 𝑡 such that 𝑡 ⊑G

𝛼 𝑡 .

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Gradualizing the Calculus of Inductive Constructions 1:35

• If Γ1 ⊢ 𝑡⇝ 𝑡 ′ ⊲𝑇 and each subterm of 𝑡 that is against a ?@𝑖 in 𝑡 is in sort 𝑖 , then there exists 𝑡 ′

and 𝑇 such that Γ2 ⊢ 𝑡⇝ 𝑡 ′ ⊲𝑇 , Γ ⊢ 𝑡 ′ ⊑𝛼 𝑡 ′ and Γ ⊢ 𝑇 ⊑𝛼 𝑇 .
• If Γ1 ⊢ 𝑡 ⊳𝑇 ⇝ 𝑡 ′ and each subterm of 𝑡 that is against a ?@𝑖 in 𝑡 is in sort 𝑖 , then for all 𝑇 such
that Γ ⊢ 𝑇 ⊑𝛼 𝑇 , there exists 𝑡 ′ such that ˜Γ2 ⊢ 𝑡 ⊳𝑇 ⇝ 𝑡 ′ and Γ ⊢ 𝑡 ′ ⊑𝛼 𝑡 ′.

• If Γ1 ⊢ 𝑡⇝ 𝑡 ′▶h𝑇 and each subterm of 𝑡 that is against a ?@𝑖 in 𝑡 is in sort 𝑖 , then there exists
𝑡 ′ and 𝑇 such that Γ2 ⊢ 𝑡⇝ 𝑡 ′▶h𝑇 , Γ ⊢ 𝑡 ′ ⊑𝛼 𝑡 ′ and Γ ⊢ 𝑇 ⊑𝛼 𝑇 .

Proof. Those are proven by mutual induction on the typing derivation of 𝑡 , and case analysis on

the precision relation between 𝑡 and 𝑡 .

For inference, there are two kinds of cases: the ones where the rule used for precision is the

diagonal one (i.e. the one where 𝑡 and 𝑡 have the same head), and the non-diagonal one, where the

right term is some ?. We treat some of the cases of the first kind first (the rest is similar), and treat

the non-diagonal last.

Inference, diagonal variable case
The inference rule for a variable gives us (𝑥 : 𝑇) ∈ Γ1. Because ⊢ Γ ⊑𝛼 Γ̃, there exists some 𝑇

such that (𝑥 : 𝑇) ∈ Γ̃, and Γ ⊢ 𝑇 ⊑𝛼 𝑇 using weakening. Thus, Γ̃ ⊢ 𝑥⇝𝑥 ⊲𝑇 and Γ ⊢ 𝑇 ⊑𝛼 𝑇 , and

Γ ⊢ 𝑥 ⊑𝛼 𝑥 .

Inference, diagonal universe case
By reflexivity.

Inference, diagonal product case
The type inference rule for product gives Γ1 ⊢ 𝐴⇝𝐴′▶□□𝑖 and Γ1, 𝑥 : 𝐴′ ⊢ 𝐵⇝𝐵′▶□□𝑗 ,

and the diagonal precision one gives 𝐴 ⊑G

𝛼 �̃� and 𝑡 ⊑G

𝛼 𝑡 . Applying the induction hypothesis,

we get some �̃�′
such that Γ2 ⊢ �̃�⇝ �̃�′▶□□𝑖 and Γ ⊢ 𝐴′ ⊑𝛼 �̃�′

. As for the type, it must be □𝑖

because it is as the same time less precise than □𝑖 , and a sort (as it is the type of a constrained

inference). From this, we also deduce that ⊑𝛼 Γ, 𝑥 : 𝐴′ | �̃�′
and thus the induction hypothesis

can be applied to 𝐵, giving that Γ2 ⊢ �̃�⇝ �̃�′▶□□𝑗 . Therefore, combining those two statements

we obtain Γ2 ⊢ Π𝑥 : �̃�.�̃�⇝Π𝑖, 𝑗 𝑥 : �̃�′.�̃�′ ⊲□𝑠Π (𝑖, 𝑗) . Moreover, Γ ⊢ Π𝑥 : 𝐴′.𝐵′ ⊑𝛼 Π𝑥 : �̃�′.�̃�′
by

combining the precision hypothesis on 𝐴′
and 𝐵′

, and the equality of the indexes, and of course

Γ ⊢ □𝑠Π (𝑖, 𝑗) ⊑𝛼 □𝑠Π (𝑖, 𝑗) .
Inference, diagonal inductor case

In the case of the inductor, to be able to prove the precision, there are some extra assumptions.

The ones on typability are obtained by the correctness of elaboration. More interesting is the last

one. We pose ∆ := Γ, 𝑓 : (Π 𝑧 : 𝐼 (a), 𝑃) | (Π 𝑧 : 𝐼 (ã)), y : Yk [a/x] | Yk [ã/x] the double context
corresponding to branch 𝑘 . We have by correctness of elaboration ∆1 ⊢ 𝑡 ′𝑘 ▶P

′[𝑐𝑘 (a, y)/𝑧], and thus
∆1 ⊢ 𝑡 ′

𝑘
⊲𝑇 for some 𝑇 such that 𝑇 ≡ 𝑃 ′[𝑐𝑘 (a, y)/𝑧]. Thus, 𝑇 and 𝑃 ′[𝑐𝑘 (a, y)/𝑧] have a common

reduct 𝑈 . Moreover, ∆ ⊢ 𝑃 ′[𝑐𝑘 (a, y)/𝑧] ⊑𝛼 𝑃 ′[?𝐼 (ã)/𝑧] by the substitution property of precision.

Thus, by simulation, there must exist some �̃� such that 𝑃 ′[?𝐼 (ã)/𝑧] { �̃� and ∆ ⊢ 𝑈 ⊑𝛼 �̃� . Therefore,

∆ ⊢ 𝑇𝑘 ⊑{ 𝑃 ′[?𝐼 (ã)/𝑧]. From this, we get the expected conclusion that Γ ⊢ ind𝐼 (𝑠, 𝑃, t) ⊑𝛼

ind𝐼 (𝑠, 𝑃, t̃), and by substitution property of the precision, also Γ ⊢ 𝑃 [𝑠/𝑧] ⊑𝛼 𝑃 [𝑠/𝑧].
Inference, other diagonal cases

They are similar to the previous ones, basically combining together the induction hypothesis

together to conclude.

Inference, non-diagonal case
We have Γ1 ⊢ 𝑡⇝ 𝑡 ′ ⊲𝑇 ′

at level 𝑖 , and Γ2 ⊢ ?@𝑖⇝ ??□𝑖
⊲ ?□𝑖

. By correctness of elaboration, we

have Γ1 ⊢ 𝑡 ′ ⊲𝑇 ′
, and by validity Γ1 ⊢ 𝑇 ′ ⊲□𝑖 . Thus we have Γ ⊢ 𝑇 ′ ⊑𝛼 ?□𝑖

. Moreover this implies

that Γ ⊢ 𝑡 ′ ⊑𝛼 ??□𝑖
, and so we get the conclusions intended.

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1:36 Meven Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

J𝐴K := El [𝐴]
[𝑥] := 𝑥

[□𝑖] := 𝔲𝑖
[𝑡 𝑢] := [𝑡] [𝑢]
[_ 𝑥 : 𝐴.𝑡] := _ 𝑥 : J𝐴K.[𝑡]

[Π𝑥 : 𝐴.𝐵] := π [𝐴] (_ 𝑥 : J𝐴K.[𝐵])
[N] := 𝔫𝔞𝔱

[?𝐴] := ?[𝐴]
[err𝐴] := err[𝐴]
[⟨𝐵 ⇐ 𝐴⟩ 𝑡] := cast [𝐴] [𝐵] [𝑡]

Fig. 15. Discrete translation from CastCIC to CIC +IR

Checking
For checking, we have the following hypothesis by typing: Γ1 ⊢ 𝑡⇝ 𝑡 ′ ⊲ 𝑆 ′ and 𝑆 ′ ∼ 𝑇 ′

. By

induction hypothesis, Γ2 ⊢ 𝑡⇝ 𝑡 ′ ⊲ 𝑆 ′ with Γ ⊢ 𝑡 ′ ⊑𝛼 𝑡 ′ and Γ ⊢ 𝑇 ′ ⊑𝛼 𝑇 ′
. Using the extra

hypothesis that Γ ⊢ 𝑆 ′ ⊑𝛼 𝑆 ′ and the monotony of consistency, we conclude that 𝑆 ′ ∼ 𝑇 ′
, and thus

Γ2 ⊢ 𝑡 ⊳𝑇 ′⇝
〈
𝑇 ′ ⇐ 𝑆 ′

〉
𝑡 ′. A use of the diagonal rule for cast then ensures that Γ ⊢ ⟨𝑇 ′ ⇐ 𝑆 ′⟩ 𝑡 ′ ⊑𝛼〈

𝑇 ′ ⇐ 𝑆 ′
〉
𝑡 ′.

Π constrained inference, Π rule
By typing, we have the following hypothesis: Γ1 ⊢ 𝑡⇝ 𝑡 ′ ⊲ 𝑆 ′ and 𝑆 ′ {∗

Π𝑥 : 𝐴′.𝐵′
. By in-

duction hypothesis, Γ2 ⊢ 𝑡⇝ 𝑡 ′ ⊲ 𝑆 ′ with Γ ⊢ 𝑆 ′ ⊑𝛼 𝑆 ′. By the previous section, we get that

𝑆 ′ {∗
Π𝑥 : �̃�′.�̃�′

such that Γ ⊢ Π𝑥 : 𝐴′.𝐵′ ⊑𝛼 Π𝑥 : �̃�′.�̃�′
, or 𝑆 ′ {∗ ?□𝑖

. In the first

case, we get directly Γ2 ⊢ 𝑡⇝ 𝑡 ′▶Π Π𝑥 : �̃�′.�̃�′
together with the precision inequalities with

𝑡 ′ and Π𝑥 : 𝐴′.𝐵′
. In the second case, we get (using the other rule for constrained elabora-

tion) Γ2 ⊢ 𝑡⇝
〈
?□𝑐Π (𝑖) → ?□𝑐Π (𝑖) ⇐ 𝑆 ′

〉
𝑡 ′▶Π ?□𝑐Π (𝑖) → ?□𝑐Π (𝑖) , and 𝑐Π (𝑖) is larger than the

universe levels of both 𝐴′
and 𝐵′

. A use of the non-diagonal rule for precision, together with

the fact that Γ ⊢ 𝐴′ ⊑𝛼 ?□𝑐Π (𝑖) and Γ, 𝑥 : 𝐴′ | ?□𝑐Π (𝑖) ⊢ 𝐵′ ⊑𝛼 ?□𝑐Π (𝑖) , gives that Γ ⊢ 𝑡 ′ ⊑𝛼〈
?□𝑐Π (𝑖) → ?□𝑐Π (𝑖) ⇐ 𝑆 ′

〉
𝑡 ′.

Π constrained inference, ? rule
By typing, we have the following hypothesis: Γ1 ⊢ 𝑡⇝ 𝑡 ′ ⊲ 𝑆 ′ and 𝑆 ′ {∗ ?□𝑖

. By induction

hypothesis, Γ2 ⊢ 𝑡⇝ 𝑡 ′ ⊲ 𝑆 ′ with Γ ⊢ 𝑆 ′ ⊑𝛼 𝑆 ′. By the previous section, we get that 𝑆 ′ {∗ ?□𝑖
. Thus

Γ2 ⊢ 𝑡⇝
〈
?□𝑐Π (𝑖) → ?□𝑐Π (𝑖) ⇐ 𝑆 ′

〉
𝑡 ′▶Π ?□𝑐Π (𝑖) → ?□𝑐Π (𝑖) . A use of the diagonal rule for precision

is enough to conclude.

Other constrained inference
Similar to one of the two previous cases, the handling of the universe levels being actually simpler.

□

B COMPLEMENT TO MODELS OF CastCIC

This section provides material supplementing §6. Appendix B.1 provides a correspondence between

the notions developed in this paper and the formal development in Agda provided in the artefact.

An alternative paper version of some of the proof around the monotone universe hierarchy not

covered by the formalization are given in Appendix B.2 and an extended sketch of the alluded

logical relation between the discrete and monotone models can be found in Appendix B.3. Figure 15

completes the missing cases in the presentation of the translation for the discrete model.

B.1 Mapping to the Agda files
The agda formalization covers most component of the discrete (DiscreteModelPartial.agda)
and monotone model (UnivPartial.agda) in the partial (non-normalizing) setting and only the

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

Gradualizing the Calculus of Inductive Constructions 1:37

discrete model is proved to be normalizing assuming normalization of the type theory implemented

by Agda (no escape hatch to termination checking is used in DiscreteModelTotal).
The main definitions surrounding posets can be found in Poset.agda: top and bottom elements

(called Initial and Final in the formalization), embedding-projection pairs (called Distr) as
well as the notions corresponding to indexed families of posets (IndexedPoset, together with
IndexedDistr). It is then proved that we can endow a poset structure on the translation of each

type formers from CastCIC: natural numbers in nat.agda, booleans in bool.agda, dependent

product in pi.agda. The definition of the monotone unknown type ? is more involved since we need

to use a quotient (that we axiomatize together with a rewriting rule in Unknown/Quotient.agda)
and is defined in the subdirectory Unknown/.

Finally, all these building blocks are put together when assembling the inductive-recursive hierar-

chies of universes (UnivPartial.agda, DiscreteModelPartial.agda and DiscreteModelTotal.agda).

B.2 Properties of the monotone universe hierarchy
Since the agda code does not cover the total monotone model, we give a short paper proof of the

main part of Theorem 15.

Lemma 28. ⊑ is an order on Σ 𝑗≤𝑖U𝑗 , with bottom element ✠0 and top element ?𝑖 .

Proof. Reflexivity proceed by induction on the code and is immediate for all codes but π𝐴𝐵 for

which it holds by induction hypothesis on 𝐴 and by monotony of 𝐵.

Assuming 𝐴 ⊑ 𝐵 and 𝐵 ⊑ 𝐴, we prove by induction on the derivation of 𝐴 ⊑ 𝐵 and case analysis

on the other derivation that 𝐴 ≡ 𝐵. Note that we never need to consider the rule H-⊑. The case
Π-⊑ holds by induction hypothesis and because the relation 𝐴 ⊑𝐴 is reflexive. All the other cases

follow from antisymmetry of the order on L.
Assuming 𝐴𝐵 : 𝐴 ⊑ 𝐵 and 𝐵𝐶 : 𝐵 ⊑ 𝐶 , we prove by induction on the (lexicographic) pair

(𝐴𝐵, 𝐵𝐶) that 𝐴 ⊑ 𝐶:

Case 𝐴𝐵 = ?-⊑, necessarily 𝐵𝐶 = ?-⊑, we conclude by ?-⊑.
Case 𝐴𝐵 = H-⊑, necessarily 𝐵𝐶 = ?-⊑, ?𝑗 ⊑ ?

𝑗 ′
, we apply the inductive hypothesis to 𝐴 ⊑

El
pred 𝑗

H (head𝐴) and El
pred 𝑗

H (head𝐴) ⊑ El
pred 𝑗 ′

H (head𝐴) in order to conclude with H-⊑.
Case 𝐴𝐵 = ✠-⊑, we conclude immediately by ✠-⊑.
Case 𝐴𝐵 = 𝔫𝔞𝔱-⊑, 𝐵𝐶 = 𝔫𝔞𝔱-⊑ we conclude with 𝔫𝔞𝔱-⊑.
Case 𝐴𝐵 = 𝔲-⊑, 𝐵𝐶 = 𝔲-⊑ immediate by 𝔲-⊑.
Case 𝐴𝐵 = π-⊑, 𝐵𝐶 = π-⊑ by hypothesis we have

𝐴 = π𝐴d𝐴c 𝐵 = π 𝐵d 𝐵c 𝐶 = π𝐶d𝐶c 𝐴d ⊑ 𝐵d 𝐵d ⊑ 𝐶d

∀𝑎 𝑏, 𝑎 ⊑
𝐴d 𝐵d

𝑏 → 𝐴c 𝑎 ⊑ 𝐵c 𝑏 ∀𝑏 𝑐, 𝑏 ⊑
𝐵d 𝐶d

𝑐 → 𝐵c 𝑏 ⊑ 𝐶c 𝑐

By induction hypothesis, 𝐴d ⊑ 𝐶d
and we need to show that for any 𝑎 : 𝐴d, 𝑐 : 𝐶d

such

that 𝑎 ⊑
𝐴d 𝐶d

𝑐 we have 𝐴c 𝑎 ⊑ 𝐶c 𝑐 . This follows from the induction hypothesis applied

to 𝐴c 𝑎 ⊑ 𝐵c (↑𝐴d⊑𝐵d 𝑎) and 𝐵c (↑𝐴d⊑𝐵d 𝑎) ⊑ 𝐶c 𝑐 where we use that 𝑎 ⊑
𝐴d 𝐵d

(↑𝐴d⊑𝐵d 𝑎)
and (↑𝐴d⊑𝐵d 𝑎) ⊑

𝐵d 𝐶d
𝑐 thanks to the adjoint properties of ↑𝐴d⊑𝐵d , reflexivity of ⊑

𝐴d 𝐴d
and

𝑎 ⊑
𝐴d 𝐶d

𝑐 .

Otherwise, we are left with the cases where 𝐴𝐵 = 𝔫𝔞𝔱-⊑, π-⊑ or 𝔲-⊑ and 𝐵𝐶 = H-⊑, we apply
the inductive hypothesis to 𝐴𝐵 and 𝐵 ⊑ El

pred 𝑗

H (head𝐵) in order to conclude with H-⊑.
So ⊑ is a reflexive, transitive and antisymmetric relation, we are only left with proof-irrelevance,

that is for any 𝐴, 𝐵 there is at most one derivation of 𝐴 ⊑ 𝐵. Since the conclusion of the rules

do not overlap, we only have to prove that the premises of each rules are uniquely determined

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1:38 Meven Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

by the conclusion. This is immediate for π-⊑. For H-⊑, 𝑐 = head𝐴 and 𝑗 ′ = pred 𝑗 are uniquely

determined by the conclusion so it holds too. □

In order to prove Lemma 18, we use the following lemma.

Lemma 29 (Compatibility of definitional and propositional precision). If Γ ⊢ 𝑡 ⊑𝛼 𝑢,
Γ1 ⊢cast 𝑡 : 𝑇 , Γ2 ⊢cast 𝑢 : 𝑈 then there exists a CIC term 𝑒 such that {| Γ |} ⊢ 𝑒 : {𝑡} ⊑{𝑇 } {𝑈 } {𝑢}.
Proof. We prove the lemma by induction on the derivation of syntactic precision. The variable

and □ cases hold by reflexivity. The two cases involving ? and err amount to {?} and {err}
being respectively interpreted as top and bottom elements. The cases 𝑡 ⊑𝛼 ⟨𝐵′ ⇐ 𝐴′⟩ 𝑡 ′ and
⟨𝐵 ⇐ 𝐴⟩ 𝑡 ⊑𝛼 𝑡 ′ can be reduce to the diagonal case of cast because ⟨𝑇 ⇐ 𝑇 ⟩ 𝑡 = 𝑡 propositionally.

All the other cases, being congruence rules with respect to some term constructor, are consequences

of the monotonicity of said constructor with a direct application of the inductive hypothesis and

inversion of the typing judgments. □

B.3 Sketch of the logical relation between the discrete and monotone model
We recall that {·} denote themonotone translation (withmonotonicity proof given by {𝑡 : 𝐴}Y : {| 𝐴 |}Y {𝑡} {𝑡}).
We define a (binary) logical relation between the discrete and monotone translations that corre-

sponds to forgetting the monotonicity information on base cases. More precisely we define for

each types 𝐴 in the source a relation H𝐴I : J𝐴K → {| 𝐴 |} → □ and for each term 𝑡 : 𝐴 a witness

*𝑡 + : H𝐴I [𝑡] {𝑡}. Context are translated standardly as H·I = · and HΓ, 𝑥 : 𝐴I = HΓI, 𝑥 : J𝐴K, 𝑥 ′
: {|

𝐴 |}, 𝑥Y : H𝐴I 𝑥 𝑥 ′
.

Logical relation on terms and types

H𝐴I := ElY *𝐴 +
*𝑥 + := 𝑥𝜖
*□𝑖 + := 𝔲Y,𝑖
*𝑡 𝑢 + := *𝑡 + [𝑢] {𝑢} * 𝑢 +
* _ 𝑥 : 𝐴.𝑡 + := _(𝑥 : J𝐴K) (𝑥 ′

: {| 𝐴 |}) (𝑥Y : H𝐴I 𝑥 𝑥 ′). * 𝑡 +
* Π𝑥 : 𝐴.𝐵 + := πY *𝐴 + (_(𝑥 : J𝐴K) (𝑥 ′

: {| 𝐴 |}) (𝑥Y : H𝐴I 𝑥 𝑥 ′).H𝐵I)
*N + := 𝔫𝔞𝔱Y
* raise + := _(𝑏 𝑏 ′ : B) (_ : 𝑏 = 𝑏 ′) (𝐴𝐴′

: U𝑖) (𝐴Y : UY 𝐴 𝐴′).recB 𝐴Y ?Y,𝐴Y
✠Y,𝐴Y

* cast + := castY

Inductive-recursive relational universe UY : Udis→Umon→□ and decoding function
ElY : UY 𝐴𝐴′→El𝐴→El𝐴′→□

𝐴Y ∈ UY,𝑖 𝐴 𝐴′ 𝐵 ∈ Π(𝑎 : 𝐴) (𝑎′ : 𝐴′).ElY 𝐴Y 𝑎 𝑎
′ → UY,𝑗 (𝐵 𝑎) (𝐵′ 𝑎′)

πY 𝐴Y 𝐵Y ∈ UY,𝑠Π (𝑖, 𝑗) (π𝐴𝐵) (π𝐴′ 𝐵′)
𝑗 < 𝑖

𝔲Y,𝑗 ∈ UY,𝑖 𝔲 𝑗 𝔲 𝑗

𝔫𝔞𝔱Y ∈ UY,𝑖 𝔫𝔞𝔱 𝔫𝔞𝔱 ?Y ∈ UY,𝑖 ? ? ✠Y ∈ UY,𝑖 ✠ ✠

ElY (πY 𝐴Y 𝐵Y) 𝑓 𝑓 ′ := Π(𝑎 : El𝐴) (𝑎′ : El𝐴′) (𝑎Y : ElY 𝐴Y 𝑎 𝑎
′).

ElY (𝐵Y 𝑎 𝑎′ 𝑎Y) (𝑓 𝑎) (𝑓 ′.1𝑎′)
ElY 𝔲Y,𝑗 𝐴 𝐴′

:= U𝜖,𝑗 𝐴 𝐴′

ElY 𝔫𝔞𝔱Y 𝑛 𝑚 := 𝑛 =𝑚

ElY ?Y (𝑐;𝑥) 𝑦 := ElY (GermY 𝑐) 𝑥 (downcast?,Germ 𝑐 𝑦)
ElY ✠𝜖 ∗ ∗ := ⊤

The main difficulty of the relation lie in the relation between the casts

castY : H Π(𝐴𝐵 : U).𝐴 → 𝐵I [cast] {cast}

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

Gradualizing the Calculus of Inductive Constructions 1:39

Expanding the type of castY , we need to provide a term

𝑐Y = castY 𝐴𝐴′𝐴Y 𝐵 𝐵′ 𝐵Y 𝑎 𝑎
′ 𝑎Y : ElY 𝐵Y ([cast]𝐴𝐵 𝑎) ({cast}𝐴′ 𝐵′ 𝑎′)

where

𝐴 : J□𝑖K, 𝐴′
: {| □𝑖 |}, 𝐴Y : UY 𝐴𝐴′,

𝐵 : J□𝑖K, 𝐵′
: {| □𝑖 |}, 𝐵Y : UY 𝐵 𝐵′,

𝑎 : El𝐴, 𝑎′ : El𝐴′, 𝑎Y : ElY 𝐴Y 𝑎 𝑎
′

We proceed by induction on 𝐴Y , 𝐵Y , following the defining cases for [cast].
Case 𝐴Y = πY 𝐴

d
Y 𝐴

c
Y and 𝐵Y = πY 𝐵

d
Y 𝐵

c
Y : we compute with 𝐴′ = π𝐴′d𝐴′c

and 𝐵′ = π 𝐵′d 𝐵′c

{cast} 𝐴′ 𝐵′ 𝑓 ′ = ⇓?𝐵′ (⇑?𝐴′ 𝑓
′)

= ⇓?→?

𝐵′ ◦ ⇓?
?→?

◦ ⇑?
?→?

◦ ⇑?→?

𝐴′ (𝑓)
= ⇓?→?

𝐵′ ◦ ⇑?→?

𝐴′ (𝑓)
= _(𝑏 ′ : El𝐴′d). let𝑎′ = ⇓?

𝐵′d ◦ ⇑?
𝐴′d (𝑏) in

⇓?
𝐵′c 𝑏′ ◦ ⇑?𝐴′c 𝑎′ (𝑓 𝑎′)

= _(𝑏 ′ : El𝐴′d). let𝑎′ = {cast} 𝐵′d 𝐴′d 𝑏 ′ in
{cast} (𝐴′c 𝑎′) (𝐵′c 𝑏 ′) (𝑓 𝑎′)

For any 𝑏 : El𝐵d
and 𝑏 ′ : El𝐵′d

, 𝑏Y : ElY 𝐵
d

Y 𝑏 𝑏
′
, we have by inductive hypothesis

𝑎Y := * cast +𝐵d

Y 𝐴
d

Y 𝑏Y : ElY 𝐴Y ([cast] 𝐵d𝐴d 𝑏) ({cast} 𝐵′d𝐴′d 𝑏 ′)
so that, noting 𝑎 = [cast] 𝐵d𝐴d 𝑏 and 𝑎′ = {cast} 𝐵′d𝐴′d 𝑏 ′,

𝑓Y 𝑎 𝑎
′ 𝑎Y : ElY (𝐴c

Y 𝑎 𝑎
′ 𝑎Y) (𝑓 𝑎) (𝑓 ′ 𝑎′)

and by another application of the inductive hypothesis

* cast + (𝐵c

Y 𝑏 𝑏
′𝑏Y) (𝐴c

Y 𝑎 𝑎
′ 𝑎Y) (𝑓Y 𝑎 𝑎′ 𝑎Y) : H𝐵c

Y 𝑏 𝑏
′𝑏YI ([cast] 𝐴 𝐵 𝑓 𝑎) ({cast} 𝐴′ 𝐵′ 𝑓 ′ 𝑎′)

Packing these together, we built a term

* cast + 𝐴Y 𝐵Y 𝑓Y : ElY (π 𝐵d

Y 𝐵
c

Y) ([cast] 𝐴 𝐵 𝑓) ({cast} 𝐴′ 𝐵′ 𝑓 ′).
Case 𝐴Y = πY 𝐴

d
Y 𝐴

c
Y and 𝐵Y = ?Y : By definition of the logical relation at ?

𝑖
Y , we need to build a

witness of type

ElY (?pred 𝑖 → ?
pred 𝑖) ([cast] 𝐴 (? → ?) 𝑓) (⇓?

?→?
({cast} 𝐴′

? 𝑓 ′))
We compute that

⇓?
?→?

({cast}𝐴′
? 𝑓 ′) = ⇓?

?→?
◦ ⇓?

?
◦ ⇑?𝐴′ 𝑓

′ = ⇓?
?→?

◦ ⇑?𝐴′ 𝑓
′ = {cast}𝐴′ (? → ?) 𝑓 ′

So the result holds by induction hypothesis.

Other cases with 𝐴Y = πY 𝐴
d
Y 𝐴

c
Y : It is enough to show that {cast}𝐴′ 𝐵′ 𝑓 ′ = ✠𝐵′ when 𝐵′ = ✠

(trivial) or head 𝐵′ ≠ pi. The latter case holds because ⇓?
Germ 𝑐

⇑?
Germ 𝑐′ 𝑥 = ✠ElH 𝑐 whenever 𝑐 ≠ 𝑐 ′

and downcasts preserve ✠.
Case 𝐴Y = ?Y , 𝐵Y = πY 𝐵

d
Y 𝐵

c
Y and 𝑎 = (pi; 𝑓): By hypothesis, 𝑎Y : ElY (? → ?) 𝑓 (⇓?

?→?
𝑎′) and

{cast} ? 𝐵′ 𝑎′ = {cast} (? → ?) 𝐵′ (⇓?
?→?

𝑎′) so by induction hypothesis

* cast + (?Y →Y ?Y) 𝐵Y 𝑓 (⇓?
?→?

𝑎′) 𝑎Y : ElY 𝐵Y ([cast] ?𝐵 (pi; 𝑓)) ({cast} ?𝐵′ 𝑎′)

	Abstract
	1 Introduction
	2 Fundamental Tradeoffs in Gradual Dependent Type Theory
	2.1 The Axiomatic Approach and Conservativity
	2.2 Exceptions and Weak Canonicity
	2.3 Consistency, Precision, and Graduality
	2.4 The Fire Triangle of Graduality
	2.5 A Last Challenge: Indexed Inductives and Equality

	3 GCIC: Overall Approach, Main Challenges and Results
	3.1 GCIC: 3-in-1
	3.2 Typing, Cast Insertion, and Conversion
	3.3 Realizing a Dependent Cast Calculus: CastCIC
	3.4 Varieties of Precision and Graduality
	3.5 Dealing with Equality
	3.6 GCIC in Action

	4 Preliminaries: Bidirectional CIC
	5 From GCIC to CastCIC
	5.1 CastCIC
	5.2 Elaboration from GCIC to CastCIC
	5.3 Precision and Reduction
	5.4 Properties of GCIC

	6 Realizing CastCIC
	6.1 Discrete Models of CastCIC
	6.2 Poset-based Models of Dependent Type Theory
	6.3 Microcosm: the Monotone Unknown Type ?
	6.4 Realization of the Monotone Universe Hierarchy
	6.5 Monotone Models of CastCIC

	7 Related Work
	8 Conclusion
	References
	A Complements on Elaboration and CastCIC
	A.1 CastCIC
	A.2 Elaboration from GCIC to CastCIC
	A.3 Precision and Reduction
	A.4 Properties of GCIC

	B Complement to models of CastCIC
	B.1 Mapping to the Agda files
	B.2 Properties of the monotone universe hierarchy
	B.3 Sketch of the logical relation between the discrete and monotone model

