
HAL Id: hal-02896719
https://hal.science/hal-02896719v1

Preprint submitted on 10 Jul 2020 (v1), last revised 16 Feb 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Singularity Resolution for Multi-Level Constrained
Dynamically Feasible Kinematic Control

Kai Pfeiffer, Adrien Escande, Pierre Gergondet, Abderrahmane Kheddar

To cite this version:
Kai Pfeiffer, Adrien Escande, Pierre Gergondet, Abderrahmane Kheddar. Singularity Resolution for
Multi-Level Constrained Dynamically Feasible Kinematic Control. 2020. �hal-02896719v1�

https://hal.science/hal-02896719v1
https://hal.archives-ouvertes.fr


Singularity Resolution for Multi-Level Constrained Dynamically Feasible Kinematic
Control

Kai Pfeiffer1,2, Adrien Escande1, Pierre Gergondet1 and Abderrahmane Kheddar1,2

Abstract— With this work we introduce the notion of physical
feasibility into our previously presented method of kinematic
and algorithmic singularity resolution for kinematics based
robotic control. We begin by deriving Newton’s method of
multi-level constrained optimization and give a suitable expres-
sion for the hierarchical analytic Hessian. The link between
optimization and robotic control is then created. We proceed
to first reveal the difficulties of damping approaches for sin-
gularity resolution in acceleration based control. Consequently,
Newton’s method and the previously presented Quasi-Newton
method are only well-defined in the velocity domain. This
requires the conversion of the second-order equation of motion
and motion controllers into first order by suitably applying
forward integration. This way we achieve dynamically feasible
kinematic control while being robust towards singularities by
switching from the Gauss-Newton algorithm to the Newton’s
method using a reliable switching method. We verify our
approach in three robot experiments on the HRP-2KAI hu-
manoid robot where we supersede a classical damping based
constrained optimization controller in terms of accuracy. Fur-
thermore, the need for damping tuning is discarded. Thereby,
the least-squares formulation of the Gauss-Newton algorithm
and the Newton’s method greatly facilitates real-time control by
enabling the use of fast state-of-the art hierarchical quadratic
programming solvers.

I. INTRODUCTION

In [1] a novel solver was devised which allows multiple
task-space objectives formulated as optimization-based con-
trollers to be ordered in a strict hierarchy and solved very
efficiently. A further improvement on efficiency has been
introduced with the work of [2]. However, the evaluation
of these powerful solvers was confined to simulation or
well-calibrated experiments. The reason is that singularities
(whose nature is detailed later) generate unpredictable in-
stabilities and risky behaviours [3]. With this paper we aim
at solving this drawback in order to provide end-users de-
signing robotic motions a safe control framework. Therefore
it is very important to be able to specify multiple task-
space objectives and constraints without worrying about their
potential conflicts and resulting singularities [4]. This speeds
up the programming of robots for new operations especially
in industrial settings. According to our industrial partners,
this can take from three up to six months depending on the
complexity of the robot at hand and the type of operations.
Here end-users are requested to specify a set of usual
tasks (set-point, tip force control, trajectory tracking...) [5],
[6] under various predefined constraints (joint limits...) or

1 CNRS-AIST Joint Robotics Laboratory, JRL UMR3218/RL, Tsukuba,
Japan.

2 CNRS-University of Montpellier, LIRMM, UMR5506, Interactive
Digital Human, France.

constraints updated from online sensor readings especially
when concerned with the stability of the robot [7], [8], [9],
[10].

In classical constrained-quadratic-programming-based
control approaches, such tasks can be specified in a two-
level hierarchy where the equation of motion and all the
corresponding dynamics constraints are put on the constraints
level, while the robot control is put on the objective level,
see e.g. [11]. With the rise of new hierarchical solvers [12],
[1], [13] the robot control can handle more priority levels,
for example respecting joint limits over the control of any
other task. This allows designing very safe controllers,
strictly prioritizing safety, possible stability constraints and
objective tasks. Additionally, general hierarchies can be
handled in a very efficient manner, superseding soft (or
weighted) 2-level hierarchies in terms of computational
effort [2].

Problems arise however, if tasks on different levels of the
hierarchy get in conflict. Such algorithmic singularities need
to be resolved alongside kinematic singularities. Otherwise
the nearly rank deficient Jacobian –or its projection onto
the Jacobians of higher priority tasks in case of algorith-
mic singularities– leads to numerical instability with high
joint velocities. Kinematic singularities can be predicted and
prevented with an analytical robot workspace analysis [14],
[15], [16], [17]. Algorithmic singularities however depend
on the conflict with higher priority tasks at the current robot
configuration and therefore are harder to analyse [18]. Fur-
thermore, hierarchical solvers are intended to be employed on
humanoid robots in any industrial setting like Airbus airplane
assembly halls. Engineers without deeper understanding of
these issues should be able to set up robot problems safely
and easily, even if for example sensor readings give targets
that are outside of the feasible workspace of the robot.

One remedy would be to introduce a weighted regulariza-
tion term [3], [19], [20], [18], [21], [22], [23], [24] on the
joint velocities (also referred to as the Levenberg-Marquardt
(LM) algorithm or damped-least-squares).

Damping the joint velocities can be interpreted as approx-
imating the second order derivatives of the Taylor expansion
of the quadratic task error norm [25], [26] as a weighted
identity matrix. However, in our previous work [27] we
showed that using an approximation of the true second order
derivatives by the Broyden [28], Fletcher [29], Goldfarb [30]
and Shanno [31] (BFGS) method yields better convergence.
Additionally, the tuning of the damping parameter is not
straightforward [32].

This previously presented Quasi-Newton method was only



aimed at resolving singularities in hierarchical kinematics
based control problems. While kinematic control of robots
can be sufficient for fixed base robots [33], [34], this does not
necessarily hold for legged humanoids with an un-actuated
free-flyer base and unilateral friction contacts. Only with
a model of the forces and torques acting on the robot’s
body it can aim to maintain a physically stable posture [35].
Therefore, we present ways to include the equation of motion
and dynamics constraints into our scheme to guarantee
physically feasible motions.

This work then presents the following new contributions:
• The hierarchical Newton’s method is presented by giv-

ing an expression for the hierarchical analytical Hessian
(see sec. III). In the following we refer to both the
Quasi-Newton method and Newton’s method as “New-
ton’s method”;

• We adapt the Gauss-Newton (GN) algorithm and New-
ton’s method, which are both tools from optimization,
to control (see sec. IV);

• We show how regularization terms like damping nega-
tively influence the exponential convergence of second-
order motion controllers (see sec. V-A);

• Second-order motion controllers are then suitably
adapted to fit into the velocity based Newton’s method
of control (see sec. V-B);

• The dynamics in form of the equation of motion are
adapted accordingly and then integrated into the hierar-
chical control scheme (see sec. V-C);

• Experimental assessment of our developments with the
HRP-2Kai humanoid robot (see sec. IX).

II. PRELIMINARIES

The dynamics of a robot composed of rigid links is
determined by the equation of motion

M(q)q̈ +N(q, q̇) = ST τ + JT
c γ . (1)

q represents the configuration of the robot’s joints and free-
flyer base if any. The equation is non-linear in q and q̇ but
linear in the accelerations q̈, torques τ , and the generalized
contact wrenches γ. M(q) is the whole-body inertia matrix,
N(q, q̇) is the Coriolis and gravity vector and Jc the contact
points’ Jacobian matrix. S is a selection matrix to exclude
the unactuated free-flyer.

On the other hand we have motion controllers ëctrl =
−Jq̈ − J̇ q̇ (ctrl: control) where we want to drive some
non-linear geometric error function e(q) = fd(t)− f(q) to
zero (e : Rn → Rm, with sufficient continuity properties).
ëctrl = −kpe − kvė is given by a Proportional Derivative
(PD) controller with positive gains kp and kv . We define
J = ∇qf ∈ Rm,n so ∇qe = −J .

Now, we aim at solving a hierarchical dynamic control
problem with p levels [36], [37], [1], [13]

lexmin.
x(k+1),w

(k+1)
i

(‖w(k+1)
1 ‖2, ‖w(k+1)

2 ‖2, · · · , ‖w(k+1)
p ‖2) (2)

s.t. A
(k)
i x(k+1) + b

(k)
i 5 w

(k+1)
i i = 1..p . (3)

at the control time step k for the new robot state
x(k+1) =

[
q̈(k+1),T τ (k+1),T γ(k+1),T

]T
. Symbol 5

gathers equality (=) and inequality (≤) constraints. A(k)

and b(k) are determined by the equation of motion or the
motion objectives and w

(k+1)
i ∈ Rm is a slack variable

which relaxes infeasible objectives for example due to task
conflict.

In the following we drop the index k to simplify the
writing but keep the indices k − 1, k + 1.

The problem can also be formulated as a sequence of
program for l = 1..p

min
x,wl

1

2
‖w(k+1)

l ‖2 l = 1..p (4)

s.t. Alx
(k+1) + bl 5 w

(k+1)
l (5)

Al−1x
(k+1) + bl−1 5 w

∗,(k+1)
l−1 . (6)

w
∗,(k+1)
l−1 are the optimal values obtained from solving the

problems for i < l. An underlined vector vr (or vr,u) or
matrix V r is the stacked vector

[
vT1 · · · vTr

]T
or stacked

matrix
[
V T
1 · · · V T

r

]T
.

As it is, the above hierarchy cannot deal intrinsically with
kinematic singularities of the motion objectives, nor with
objectives that are conflicting altogether, resulting in algorith-
mic singularities. In order to resolve these singularities we
take a step back from control to optimization where we de-
rive the Gauss-Newton (GN) algorithm and Newton’s method
for lexicographically constrained optimization problems (see
sec. III).

Then, our derived optimization methods are put back to
kinematics control (see sec. IV). Our idea is that the GN
algorithm –that can be interpreted as the solver of the motion
control objectives– doesn’t approximate sufficiently well the
original non-linear geometric function around singularities.
This is due to neglecting second order information, making a
switch to Newton’s method necessary. The switching method
proposed in our previous work is briefly synthetized in
sec. VII.

In sec. V we show how a dynamic control problem
as given in (6) can be expressed at the velocity level.
This is necessary because Newton’s method in acceleration-
based control leads to overshooting behaviour without tricky
adaptive control gain tuning (see sec. V-A).

We present several methods to compute the hierarchical
Hessian for Newton’s method, be it analytically (see sec. VI-
B) or by BFGS approximations (see sec. VI-A and sec. VI-
C). Lastly, we implemented the theory in our controller
software with architecture integration to validate our ap-
proaches in three complex experiments with the HRP-2Kai
(see sec. IX).

III. MINIMIZING A NON-LINEAR GEOMETRIC FUNCTION

Let us consider the problem from a pure optimization
viewpoint. In order to derive the hierarchical GN algorithm
and Newton’s method we start with the following non-linear



least-squares problem

min
q,wl

1

2
‖wl‖2 l = 1..p (7)

s.t. el(q) 5 wl (8)
el−1(q) 5 w∗l−1 . (9)

The goal is to drive the constraint violation wl of each level l
to zero ‘at best’ such that the task error el(q) = 0. Already
obtained optimal violations of previous levels w∗l−1 must
stay unchanged.

If p = 1 and with the presence of equalities only we get

min
q,w

1

2
‖w‖2 (10)

s.t. e(q) = w . (11)

The first order optimality condition of this problem is

∇q,w,λL = K(q,w,λ) =

 JTλ
w + λ
w − e

 = 0 (12)

with the Lagrangian L = 1
2w

Tw+λT (w−e) and the vector
of Lagrange multipliers λ ∈ Rm (recall that ∇qe = −J ).

Applying a Newton step K(x + ∆x) = K(x) +
∇xK(x)∆x = 0 with xT =

[
qT wT λT

]
to this

condition yields JTλ
w + λ
w − e

+

∑m
d=1 λdHd 0 J T

0 I I
J I 0

∆q(k+1)

∆w(k+1)

∆λ(k+1)

=0 . (13)

We have ∇2
qL = ∇qJTλ =

∑m
d=1 λdHd which we

will refer to as the Hessian of the Lagrangian function
throughout this paper. Using the variable change w(k+1) =
w+∆w(k+1) and λ(k+1) = λ+∆λ(k+1), we get the system∑m

d=1 λdHd 0 J T

0 I I
J I 0

∆q(k+1)

w(k+1)

λ(k+1)

 =

0
0
e

 . (14)

Solving above system yields the step ∆q(k+1) (in the
following we simply write ∆q) which can be integrated to
the new configuration q(k+1) = q + ∆q.

This is also the optimality condition ∇xL = 0 of the
quadratic problem

min
∆q,w(k+1)

1

2

∥∥∥w(k+1)
∥∥∥2 +

1

2
∆qT

m∑
d=1

λdHd∆q (15)

s.t. e− J∆q = w(k+1) (16)

with the Lagrangian function L = 1
2w

(k+1)Tw(k+1) +
1
2∆qT

∑m
d=1 λdHd∆q + λ(k+1)T (w(k+1) − e + J∆q).

This form is akin to Newton’s method of optimization. If
Ĥ =

∑m
d=1 λdHd is positive definite above problem can be

rewritten to least squares form

min
∆q

1

2

∥∥∥∥[JR
]

∆q −
[
e
0

]∥∥∥∥2
2

(17)

with the Cholesky decomposition Ĥ = RTR and with
w(k+1) being given implicitly.

If the second order information Ĥ is neglected

min
∆q

1

2
‖J∆q − e‖22 (18)

we get to the GN algorithm.
In the following we refer to Newton’s method as being

the ‘augmented’ (as in augmented with second order infor-
mation) version of the GN algorithm [25].

The Lagrangian function of the general problem (7) at
level l with equalities only is

Ll =
1

2
wT

l wl + λT
l,l(wl − el) + λT

l−1,l(w
∗
l−1 − el−1) .

(19)

Note that λ ∈ R
∑p

i=1 mi,p is now a matrix with p columns.
The optimality condition is ∇q,w,λLl =

Kl(q,wl,λl,l,λl−1,l) = 0, with λl,l being the Lagrange
multiplier associated to (8), λl−1,l being the one associated
to all the constraints (9) and with

Kl(q,wl,λl,l,λl−1,l) =


JT
l λl,l + JT

l−1λl−1,l
wl + λl,l

wl − el
w∗l−1 − el−1

 . (20)

We then again apply a Newton step Kl(x+∆x) = Kl(x)+

∇Kl(x)∆x = 0 with xT =
[
qT wT

l λT
l,l λT

l−1,l

]
.

Now, the Hessian writes

Ĥl =

ml∑
d=1

λl,l,dHl,d +

l−1∑
i=1

mi∑
d=1

λi,l,dHi,d . (21)

If it is positive definite, the least squares formulation be-
comes

min
∆q

1

2

∥∥∥∥[Jl

Rl

]
∆q −

[
el
0

]∥∥∥∥2
2

l = 1..p (22)

s.t. el−1 − J l−1∆q = w
∗,(k+1)
l−1 , (23)

for Newton’s method or

min
∆q

1

2
‖Jl∆q − el‖22 l = 1..p (24)

s.t. el−1 − J l−1∆q = w
∗,(k+1)
l−1 (25)

for the GN-algorithm if the second order information R is
neglected.

Such hierarchical least squares problems can be solved in
a very efficient manner, see e.g. [1] or [2].

Inequality constraints (tasks) can be incorporated due
to the problem formulation with slack variables, see [12].
Above first order optimality conditions extend to the Karush-
Kuhn-Tucker conditions. Both solvers mentioned above im-
plement the active set method. Inactive constraints i thereby
result in wi = 0, λj,i = 0, not further influencing the
Hessian Ĥj on some level j ≥ i.



IV. FROM OPTIMIZATION TO KINEMATIC CONTROL

In the previous section III we introduced the GN algorithm
and Newton’s method of constrained optimization to drive a
non-linear geometric error function to zero. As we saw in our
previous work [27], this is equivalent to defining a quadratic
Taylor approximation [26]

Φ(q + ∆q) ≈

Φ(q)−∆qTJTe+
1

2
∆qT (JTJ +H)∆q (26)

=
1

2

∥∥∥∥[JR
]

∆q −
[
e
0

]∥∥∥∥2
2

(27)

of the quadratic function

Φ(q) =
1

2
eTe (28)

around q and looking for a bounded step ∆q in a certain
neighbourhood (called trust region) of it. Assuming a control
time step of ∆t = 1 s with ∆q = ∆tq̇ = q̇ we can make
a trivial connection between optimization, aiming to make a
step ∆q towards the optimum, and control, aiming to deter-
mine the new robot state triple

[
q, q̇, q̈

]
while minimizing

the error function with a certain behaviour.
However, a robot is usually controlled at a much lower

period with ∆t� 1 s. Especially when considering the robot
dynamics, one needs to compute the new velocity q̇(k+1) at
each control step k without making any assumption about
the time step ∆t. One can look for the new velocity q̇(k+1)

with the relation

ėctrl = −Jq̇(k+1) , (29)

yielding a given error velocity ėctrl. We can define a simple
proportional controller like ėctrl = −kpe with gain kp.

The required error decrease may only be achievable in a
linear least-squares sense

min
q̇(k+1)

1

2
‖Jq̇(k+1) + ėctrl‖22 . (30)

A solution is given by

q̇(k+1) = −J+ėctrl , (31)

using the Moore-Penrose pseudo-inverse J+. This formula-
tion corresponds to the GN algorithm.

Then, we integrate the velocities to the next state q(k+1)

q(k+1) = q + ∆tq̇(k+1) = q + ∆q . (32)

However, this approach is not suitable in the vicinity of
singularities: J is almost loosing at least one rank and q̇(k+1)

becomes very large due to numerical limitations.
In such situations we proposed in [27] to use Newton’s

method instead. Our claim was that neglecting the second or-
der information H in the second order Taylor approximation
(26) (as done in the GN algorithm), is only sufficient if away
from singularities. Using the second order information close
to singularities restores the original accuracy of the second
order Taylor approximation and prevents singular behaviour.

By taking H as a multiple of the identity, there is a con-
nection with the LM algorithm, which can be considered as
the classical method for singularity resolution in kinematics
control [18].

However, the LM algorithm is a ‘bad’ approximation of
the true second order information with worse convergence
behaviour. Later (see sec. VI) we present how to use the true
second order information, or how to gain a positive definite
approximation of it by the BFGS algorithm.

In the hierarchy, each non-linear task f(q) = fd or
f(q) ≤ fd is rewritten to the constrained GN algorithm
of control

min
q̇(k+1)

1

2
‖Jlq̇

(k+1) + ėctrl
l ‖22 (33)

s.t. − ėctrl
l−1 − J l−1q̇

(k+1) 5 w∗,(k+1)
l−1 (34)

or the constrained Newton’s method of control

min
q̇(k+1)

1

2

∥∥∥∥[Jl

Rl

]
q̇(k+1) +

[
ėctrl
l

0

]∥∥∥∥2
2

(35)

s.t. − ėctrl
l−1 − J l−1q̇ 5 w∗,(k+1)

l−1 . (36)

The set of priority-ordered least-squares problems is then
passed to the hierarchical solver [2].

Our switching strategy between the GN algorithm and
Newton’s method is described in sec. VII.

Note that ∆t connects the two entities of ‘optimization’
(optim) and ‘control’

J∆q + ∆tėctrl = ∆t(Jq̇(k+1) + ėctrl) =

woptim = ∆twctrl . (37)

That is, we calculate a new velocity q̇(k+1) but only do a
model based step ∆q = ∆tq̇(k+1) towards the optimum.
Consequently, the model needs to be updated with the
Hessian of the Lagrangian (19) using woptim and λoptim.
Since solving the constrained control problems (33) or (35)
yields wctrl and λctrl, a scaling of the form woptim = ∆twctrl

according to (37) is required. Due to the linear dependency
between the slack w and the Lagrange multipliers λ, see [2],
we further get λoptim = ∆tλctrl. In what follows, we write
w = woptim and λ = λoptim.

V. DYNAMICALLY FEASIBLE KINEMATIC CONTROL

The equation of motion ensuring physical feasibility is
of second order and correspondingly second order motion
controllers are defined. However, in the previous section IV
we have formulated the GN algorithm and Newton’s method
only in the velocity domain. In sec. V-A we argue why
the GN algorithm and Newton’s method cannot be extended
easily to the acceleration domain. Therefore, our idea for
acceleration-based control is to change the right hand side
ėctrl from a linear proportional controller to some controller
ėctrl

PD that emulates second order PD control ëctrl in the
velocity domain. In sec. V-B we show how this can be
achieved and apply the corresponding necessary adaptations
to the equation of motion which we include into our control
framework (see sec. V-C).



A. Damping in acceleration-based control

In the following we show that

min
q̈(k+1)

1

2

∥∥∥∥[JR
]
q̈(k+1) +

[
J̇ q̇(k) + ëctrl

0

]∥∥∥∥2
2

(38)

leads to low frequency oscillations around a minimum. For
simplicity, we assume R = µI .

Let’s take a point mass (m = 1) robot in 1D (x-axis) with
position f = x. Its desired position is xd = 0. The task
error is then e = xd − x = −x. The Jacobian of this robot
is J = df

dx = dx
dx = 1, the time derivative of the Jacobian is

J̇ = 0.
1) Velocity-based control: The control law is usually

written as first order ordinary differential equation (ODE)

ėctrl = −kpe = kpx = −Jẋ (39)
ẋ+ kpx = 0 (40)

with the solution ∫
dx

x
= −kp

∫
dt (41)

lnx = −kpt+ C (42)
x = D exp(−kpt) , (43)

where x → 0 for t → ∞. C and D are constants of
integration.

The numerical integration can be formulated as

x(k+1) = x−∆tkpx . (44)

2) Velocity-based control with damping: If we introduce
damping we get the following form[

1
µ

]
ẋ+

[
kp
0

]
x =

[
0
0

]
. (45)

The least squares solution to this problem (applying the
pseudo-inverse A+ = (ATA)−1AT for a full rank matrix
A) is the first order ODE

ẋ+
kp

1 + µ2
x = 0 (46)

and has the same solution as above (see sec. V-A.1)
3) Acceleration-based control: The control law for

acceleration-based control is usually written as

ëctrl = −kpe− kv ė = kpx+ kvẋ = −Jẍ− J̇ ẋ (47)
ẍ+ kvẋ+ kpx = 0 . (48)

The solution for this ODE is

x = exp(−1

2
δt)(A cos(wdt) +B sin(wdt)) (49)

where δ = kv/2/m and wd =
√
kp/m− δ2. Critical

damping with exponential convergence can be achieved for
kv(kp) = 2

√
mkp such that wd = 0.

Fig. 1: (49) plotted for m = 1, kp = 1, different µ and
kv = f(kp) = 2

√
mkp (black line and dashed lines) or

kv = f∗(kp, µ) = 2
√
m(1 + µ2)kp.

4) Acceleration-based control with damping: For the aug-
mented system[

1
µ

]
ẍ+

[
kv
0

]
ẋ+

[
kp
0

]
x =

[
0
0

]
(50)

again we apply the pseudo-inverse and get following ODE:

ẍ+
kv

1 + µ2
ẋ+

kp
1 + µ2

x = 0 (51)

The numerical integration writes as

x(k+1)=x+ ∆tẋ+
∆t2

2

(
− kv

1 + µ2
ẋ− kp

1 + µ2
x

)
, (52)

clearly exposing the influence of the damping µ on the
critically damped task gains kp and kv .

Critical damping can now be achieved with kv(kp, µ) =
2
√
m(1 + µ2)kp. Some convergence curves are plotted in

fig. 1. It can be clearly seen that the damping µ influences
the critically damped system negatively (i.e. overshooting) if
the gain is chosen according to kv(kp) instead of kv(kp, µ).

For a more complicated 3D robot with more and especially
coupled degree of freedom (DoF), and a time varying R,
it seems cumbersome to find the expression for critical
damping kv(kp,R) such that overshooting behaviour can be
prevented.

Therefore, we favour to shift the whole problem into the
velocity domain and emulate acceleration-based control by
adapting the right hand-side accordingly. This way we can
easily achieve exponential convergence as shown below.

B. Acceleration-based control expressed in the velocity do-
main

In velocity based control, the new joint velocity obtained
from (31) is integrated to the new joint configuration q(k+1)

by
q(k+1) = q + ∆tq̇(k+1) = q −∆tJ‡ėctrl (53)

where J‡ denotes the hierarchical pseudo-inverse [1].
The same scheme as in velocity-based control can be used

for acceleration-based control, leading to

ëctrl = −Jq̈(k+1) − J̇ q̇ . (54)



ëctrl is defined as a PD controller

ëctrl = −kpe− kvė . (55)

The integration to the new joint configuration then takes the
form

q̇(k+1) = q̇ + ∆tq̈(k+1) = q̇ −∆tJ‡(ëctrl + J̇ q̇) , (56)

q(k+1) = q + ∆tq̇ +
∆t2

2
q̈(k+1) (57)

= q + ∆tq̇ − ∆t2

2
J‡(ëctrl + J̇ q̇) . (58)

Let’s now replace the accelerations in (54) by forward
differences

q̈(k+1) =
q̈(k+1) − q̇

∆t
(59)

such that we get

ėctrl
PD = −Jq̇(k+1) . (60)

ėctrl
PD is defined as

ėctrl
PD = −Jq̇ + ∆t(ëctrl + J̇ q̇) (61)

for the GN algorithm and

ėctrl
PD = −

[
J
R

]
q̇ + ∆t(ëctrl + J̇ q̇) (62)

for Newton’s method. This acceleration-based PD control in
velocity gives

q̇(k+1) = −J‡ėctrl
PD (63)

= J‡Jq̇ −∆tJ‡(ëctrl + J̇ q̇) (64)

q(k+1) = q −∆tJ‡ėctrl
PD (65)

= q + ∆tJ‡Jq̇ −∆t2J‡(ëctrl + J̇ q̇) (66)

= q + ∆tq̇ −∆t2J‡(ëctrl + J̇ q̇) (67)

for the GN algorithm and

q̇(k+1) = −
[
J
R

]‡
ėctrl

PD (68)

=

[
J
R

]‡ [
J
R

]
q̇ −∆t

[
J
R

]‡
(ëctrl + J̇ q̇) (69)

q(k+1) = q −∆t

[
J
R

]‡
ėctrl

PD (70)

= q + ∆t

[
J
R

]‡ [
J
R

]
q̇ −∆t2

[
J
R

]‡
(ëctrl + J̇ q̇)

(71)

= q + ∆tq̇ −∆t2
[
J
R

]‡
(ëctrl + J̇ q̇) (72)

for Newton’s method if ėctrl
PD is used instead of ėctrl in (53).

If rank(J) = m or rank(
[
J R

]T
) = n then J‡J = I or[

J R
]T‡ [

J R
]T

= I [1] and the above value of q̇(k+1)

in (67) is the same as the one obtained with acceleration-
based control in (58). However, the joint positions are
missing the factor 0.5 in front of the third term of (67)
and (72).

Therefore, an adjustment in the calculation of the joint
positions need to be made. We calculate the joint positions
by

q
(k+1)
mod = q + ∆t(

1

2
q̇(k+1) +

1

2
q̇) (73)

= q + ∆t(
1

2
(q̇ −∆tJ‡(ëctrl + J̇ q̇)) +

1

2
q̇) (74)

= q + ∆tq̇ − ∆t2

2
J‡(ëctrl + J̇ q̇) . (75)

which corresponds to the one of the acceleration based equa-
tion of motion. The joint velocities q̇(k+1) stay untouched
since they already correspond to the ones of the acceleration
based PD controller. Accordingly, we need to calculate the
step ∆q for LexLSAug2BFGS by

∆qmod = q
(k+1)
mod − qmod (76)

instead of ∆q = ∆tq̇(k+1). Both LexLSAug2AH and LexL-
SAug2BFGS are robust with regard to the inconsistent La-
grange multipliers which correspond to the step ∆q and not
to the true step ∆qmod. However, it is subject to discussion
whether consistency with the acceleration based problem
or consistency with the optimization problem is preferred.
For the real robot experiments in the validation section IX,
we use (59) without the corresponding modification of the
joint positions (73). This poses a good compromise between
consistency with the acceleration based problem and the
optimization theory.

In [38] it is proposed to simply control a robot in velocity-
based control

ėctrl = −Jq̇(k+1) (77)

with ėctrl = −kpe since both velocity-based and
acceleration-based control are consistent. However, desired
behaviours like PD control can not be realized. That is why
we choose to implement the above presented method for
acceleration-based control in velocity, solving (33) or (35)
with our new right hand side ėctrl

PD (61).
To come back to the 1-D robot example from the previous

section V-A, we can now see that damping terms do not
influence the critically damped system kp, kv . The new
velocity for a control step k can be calculated by

ẋ(k+1) = −ėctrl
PD (78)

= J−1Jẋ−∆tJ−1(ëctrl + J̇ ẋ) = ẋ−∆tëctrl (79)

with J = 1 and J̇ = 0. The numerical integration can be
formulated as

x(k+1) = x+ ∆tẋ−∆t2ëctrl . (80)

Note that for exponential convergence the original system
ẍ+ kvẋ+ kpx = 0 still needs to be critically damped with
kv = 2

√
mkp.

For the augmented system[
1
µ

]
ẋ+

[
ėctrl

PD
0

]
=

[
0
0

]
(81)



again we apply the pseudo-inverse and get the following
expression for the new velocity ẋ(k+1):

ẋ(k+1) = − 1

1 + µ2
ėctrl

PD =
1

1 + µ2
(ẋ−∆tëctrl) . (82)

The numerical integration can be formulated as

x(k+1) = x+
∆t

1 + µ2
(ẋ−∆tëctrl) . (83)

The original critically damped system kp, kv is not influ-
enced by the damping µ, ensuring exponential convergence.

Note that this scheme of linear integration of the joint
velocities to the joint angle configuration requires the orien-
tation of the robot-base to be expressed with Euler angles
instead of quaternions. Singular cases (gimbal lock) need to
be avoided. We assume small changes of the base orientation
between control iterations. We then can set the robot’s free-
flyer base configuration (for example the Denavit-Hartenberg
parameters) to the current joint angle configuration. At the
same time the Euler angles are set to the zero x − y − x
Euler configuration.

C. Including the dynamics

We have formulated our second order motion controllers in
the velocity domain. Similarly, the acceleration components
of the equation of motion (1) are replaced by forward
differences:

M(q)
q̇(k+1) − q̇

∆t
+N(q, q̇) = ST τ (k+1) + JT

c γ
(k+1) ,

(84)
or rewritten into matrix form[
M(q)

∆t
−ST −JT

c

]q̇(k+1)

τ (k+1)

γ(k+1)

 = M
q̇

∆t
−N(q, q̇) .

(85)

However, for numerical robustness it is desirable to keep
the conditioning of the system matrix by

[
M(q) −ST −JT

c

] q̇(k+1)

∆tτ (k+1)

∆tγ(k+1)

=Mq̇ −∆tN(q, q̇) .

(86)

This computes q̇(k+1), ∆tτ (k+1) and ∆tγ(k+1), so the
solution vector has to be changed accordingly to get τ (k+1)

and γ(k+1) by dividing ∆tτ (k+1) and ∆tγ(k+1) by ∆t.
The equation of motion can be considered full rank if

the inertia matrix M is physically consistent and therefore
positive definite [39], [40]. This means that the system
matrix of the equation of motion

[
M −ST −JT

c

]
is

not concerned with kinematic singularities of the contact
Jacobians Jc.

Furthermore, we do not apply Newton’s method. The
equation of motion is already linear in the accelerations (or
velocities in case of the forward integration), joint torques
and generalized contact forces. It therefore fits into our
lexicographical problem (6) with the system matrix A =[
M −ST −JT

c

]
and the right hand side b = −Mq̇ +

∆tN(q, q̇) and we do not need to consider it in the Hessian
calculation of the lower lever linearized constraints.

Dynamic constraints including the equation of motion and
torque and contact force limits have the highest priority. This
way their feasibility is guaranteed with wdyn = 0.

VI. HESSIAN CALCULATION FOR NEWTON’S METHOD OF
HIERARCHICAL CONTROL

The calculation of the Hessian Ĥ , which is necessary for
the augmentation of the GN algorithm to Newton’s method,
is presented in this section.

A. BFGS approximation of the Hessian based on the La-
grangian (19)

The Hessian Ĥl of level l (21) can be approximated by
the BFGS algorithm

B
(k+1)
l =Bl +

yly
T
l

yT
l ∆q(k)

−Bl∆q
(k)∆q(k),TBl

∆q(k),TBl
∆q(k) .

(87)
This update is positive definite if Bl is positive definite as
well as the curvature is greater than zero yT

l ∆q(k) > ξ. In
theory ξ = 0 but in practice we choose a numerical threshold
like ξ = 1e−12∆t2. If the curvature condition is not fulfilled
no update is done but we keep augmenting with the last
updated value Bl. Note that in our control we solve for
q̇(k+1) so we need to explicitly provide ∆q(k) = ∆tq̇(k)

to the BFGS algorithm.
Following (20), we define the gradient as

∇qLl =

l∑
i=1

JT
i λi,l . (88)

Then yl = ∇qLl − ∇qL(k−1)
l where we only use the La-

grange multipliers of the current iterate yl = −
∑l

i=1(Ji −
J

(k−1)
i )Tλi,l (see [41]).
Bl is initialized by

Bl =

l∑
i∈A

max(ζ,
1

2
‖∆tėctrl

PD,i‖22)I∗i (89)

whereA is the current active set. I∗ is an identity matrix with
diagonal entries corresponding to the joints on the kinematic
chain of the task. As in [23], ζ = 10−3∆t2 is a lower
threshold for augmented tasks with very small errors.

Note that the BFGS update actually computesB = JTJ+
Ĥ and not just Ĥ alone. However, we skip the reduction to
Ĥ = B − JTJ since it may result in an indefinite matrix
Ĥ .

We call this algorithm LexDynBFGS (Lexicographic Aug-
mentation for Dynamics with BFGS). It is the extension of
LexLSAUG2 from our previous work [27].

B. Analytic Hessian

For the analytic Hessian calculation Ĥl of level l (21) we
need to calculate the second order derivatives

H = ∇2
qf(q) (90)



of the geometric functions f(q) for all levels 1 to l. For this
we follow [42] which is in O(n2) and hence comparable to
the BFGS algorithm.

Since the hierarchical Hessian Ĥ can become negative
definite a simple Cholesky decomposition can not be ap-
plied. Instead, we use the regularization proposed in [43]
beforehand to get the closest semi positive definite matrix
H̃ by

H̃ =
1

2
(Ĥ + V (Σ + εI∗)V T ) . (91)

The regularization requires a full polar decomposition for
example by the SVD decomposition

Ĥ = UΣV T (92)

which is computationally expensive. An approximation of
the polar decomposition based on Newton’s method is avail-
able [44] but does not calculate the squared Eigenvalues Σ
explicitly.
H̃ is the matrix Ĥ with all the negative Eigenvalues

being zero. We add a small term εI∗ with ε � 1 in
order to improve numerical stability and smoothness of
the solution. However, this can influence the convergence
behaviour negatively. Indeed, the tendency to only converge
to suboptimal minima increases with the magnitude of ε.

Numerical behaviour can be improved if Hessians H are
only added to Ĥ if their corresponding Lagrange multiplier
λ > ρ with ρ ≈ 1e−12∆t2 being a small numerical value.

We call this algorithm LexDynAH (Lexicographic Aug-
mentation for Dynamics with Analytic Hessian).

C. Hierarchical Hessian built from BFGS approximations of
Hessians of non-linear geometric functions

While the BFGS method presented in sec. VI-A approxi-
mates the Hessian JTJ+Ĥ of the Lagrangian function (19)
we propose another BFGS method which approximates the
Hessian H of the geometric function f .

For this we develop the second order Taylor approximation
of the non-linear geometric function e(q)

f(q + ∆q) = f(q) + ∆qT∇f +
1

2
∆qT∇2f∆q (93)

where ∇fq = J and ∇2
qf = H .

The gradient y for each component of f is the difference
of the transposed corresponding row of J and J (k−1)

y1:m = (J1:m − J (k−1)
1:m )T . (94)

For an end-effector task in 3D task space m = 3. We
therefore need to do three BFGS updates (87) for B1 with
y1, B2 with y2 and B3 with y3, respectively.

Following (21), these single Hessian components B are
then used to compose the Hessian Ĥl of level l.

This means that even though the BFGS updates B are
semi-positive definite we again can end up with an indefinite
matrix Ĥ≈l which needs to be regularized by the Higham
regularization.

This could be one of the reasons why some preliminary
results for this BFGS method showed bad behaviour (i.e.
unsmooth joint trajectories) so we do not further address it.

The Symmetric Rank 1 (SR1) method [45], [46], [47]
might be a promising alternative since it allows indefinite
updates and therefore gives a good approximation to the
indefinite analytic Hessian.

VII. SWITCHING STRATEGY BETWEEN GN ALGORITHM
AND NEWTON’S METHOD AND CHANGES IN THE ACTIVE

SET

As in our previous work [27] we switch to the GN-
algorithm whenever the quadratic norm residual

ω =
1

2
‖w‖22 =

1

2
‖Jq̇ + ėctrl

PD‖22 < ν . (95)

The threshold ν is typically chosen as ν = 10−12∆t2.
Reason is that the second order augmentation R is of full

rank and therefore all the kinematic chain’s joints of the
task on the respective level are occupied. Hence, these joints
cannot be used any more for the resolution of tasks on lower
priority levels. Therefore, it is necessary to ‘free’ joints as
soon as an augmentation is not necessary to achieve the best
possible robot convergence on all levels.

The analytic hierarchical Hessian Ĥ (21) becomes nil
inherently if the corresponding Lagrange multipliers or sec-
ond order information (90) become nil as well. Since for
numerical reasons Ĥ 6= 0 even if we are close to the two
conditions we use the above switching method even when
relying on the analytic hierarchical Hessian.

Unlike in our previous work, we do not reinitialize the
BFGS algorithm from level c to the last level l in the case
of a GN algorithm to Newton’s method switch, or an active
set change on level c. Instead, we keep the last update B
and only set to zero the rows and columns of joints that are
not occupied any more by the current inactive constraints.
In the case of constraint activation we put a small value
on the diagonal of occupied joints by the newly activated
constraints. Especially with the occurrence of several on
and off switches of the same constraint over several control
iterations, it seems unreasonable to discard every time of the
so far gained second order information.

In some cases it might be more favourable to fully restart
the BFGS algorithm in order to avoid second order artefacts
of some inactivated constraints which might decelerate con-
vergence of the current active set. However, in our previous
work we showed in simulations that the BFGS algorithm
possesses quick recovery capabilities, allowing second order
artefacts to vanish over the course of few control iterations.

VIII. PRACTICAL CONSIDERATIONS

A. Handling model insufficiencies

In addition to the trust region adaptation method from our
previous work [27] we introduce a further adjustment that
operates directly on the BFGS Hessian approximation B.
For this, we observe the joint accelerations. Once we have
several (usually two) consecutive sign changes in the joint



accelerations we add a small value (ζ) on the diagonal of
B corresponding to the joint where the event occurred. This
way we add additional damping to decelerate this specific
joint and avoid potential instability.

B. Computational speed

The problem (33) or (35) is built and solved in a matter
of several hundred microseconds. Yet the real computational
challenge is the active set method which might require solv-
ing (33) or (35) several times until the optimal active set is
determined. Especially in dynamically challenging motions,
e.g. contact switching, robot falling or being close to falling
with almost loosing closure of the friction contacts... we
observed cases of above hundred active set iterations. This is
caused by an interplay between the dynamic constraints and
the trust region constraint and requires further investigation.

Since making the solver [2] faster is highly involved (for
example updating the QR-decomposition factors after an
active set change or improving the active set search itself)
we resorted to a makeshift in which we stop the active set
method once a certain level is optimal enough. Usually this
would be the contact constraints since we do not want to
compromise on their optimality and risk falling.

After every active set iteration we decide upon several
criteria whether we stop the active set search:
• Measure the norm of the slack ω and check if it is below

a certain threshold (1e−12∆t2).
• We have gone through a certain number of iterations in

the optimality phase (10 iterations). We switch from
the feasibility to the optimality phase with the first
deactivation of a constraint.

• We are above a certain number of overall active set
iterations (30 iterations).

If so, we exit the solver and are satisfied with the cur-
rent solution. At this point, the robot motion is physically
feasible and all the hard constraints like contact wrench,
torque and joint limits, the trust region constraint and the
contact constraints are at their optimum. However, lower
level constraints are only solved sub-optimally. Since cases
of high active set iterations only occur over a limited number
of control iterations the optimality of lower priority levels is
restored quickly in subsequent control iterations.

We also use a slightly modified version of [2] where we
only restart the decomposition from the level where the active
set change occurred.

IX. VALIDATION

For validation we conducted three experiments with the
position controlled HRP-2Kai robot having 32 DoF (plus
6 DoF for the un-actuated free-flyer), 1.71 m height and
2.11 m arm span. As our solver we use LexLSI [2] which
solves problem (33) or possibly (35) with second order
augmentation from LexDynBFGS or LexDynAH. LexLSI is
based on the active set method and we warm start it at every
control iteration with the active set found in the previous
control iteration. We solve for the variables q̇(k+1), ∆tτ (k+1)

and ∆tγ(k+1), see (86). The resulting velocities are then

integrated to the joint positions (32) which are sent to the
robot with a control frequency of 200 Hz (∆t = 5 ms).

The hierarchy is then composed as follows:

Hierarchy for LexDynBFGS and LexDynAH
1) • 4nc (nc: number of contacts) bounds on gener-

alized contact wrenches: γ > 0
• 32 joint limits using a velocity damper [48]

2) • 38 integrated equations of motion
• 38 torque limits

3) 38 trust region limits
4) 3 inequality constraints for self-collision avoidance
5) 18 (12 for exp. 1) geometric contact constraints
6) 1 equality constraint on the head yaw joint to put the

vision marker into the field of view, not for exp. 1
7) 3 inequality constraints on the CoM
8) • 6 end-effector equality constraints for left and

right hand
• 3 equality constraints to keep the chest orien-

tation upright, not in exp. 1
9) 3 stricter inequality constraints on the CoM, not

for exp. 1.
10) 38 constraints to minimize joint velocities: q̇ = 0
11) 4nc constraints to minimize the generalized contact

wrenches: γ = 0

Constraints in bold have to be considered in the calculation
of the hierarchical Hessian. Note that for bound constraints
we generally have B = 0 and H = 0.

The hierarchical separation of the bound constraints on
the generalized contact wrenches and the joint limits from
the equation of motion allows LexLSI to cheaply handle the
variable bounds on the first level.

The trust region constraint is necessary to ensure that
the new step ∆q = ∆tq̇(k+1) is bounded within a certain
neighbourhood ∆ of the current state q, ‖∆q‖∞ < ∆. In
this region we ‘trust’ the second order Taylor approximation
of Φ(q) (28) to be accurate enough. In this work, we set
∆ = 0.01 rad or m.

Note that the trust region constraint and the joint velocity
minimum norm task include the none actuated free-flyer.
Indeed, the free-flyer is numerically relevant as it is present
in all the Jacobians. Therefore, we put the constraint only
after the equation of motion to avoid constricting the free-
flyer velocity for example in the case of a robot free fall.

As comparison we use the least squares solver LSSOL [49]
which is also used in our laboratory’s robot control frame-
work. It has a constraint (level 1) and an objective level
(level 2). Thereby, inequality constraints are only allowed
on level 1. It is also based on the active set method and we
warm start it with the active set found in the previous control
iteration. On both levels a soft hierarchy can be established
by weighting tasks against each other (therefore we call this
solver Weighted Least Squares - WLS). The constrained
robot problem is then defined following previous works [5],
[50], [51], [52], [53], [6], [54] which make use of control
frameworks based on weighted constrained QP’s:



Hierarchy for WLS
1) • 4nc bounds on generalized contact wrenches:

γ > 0
• 32 joint limits using an acceleration damper [48]
• 38 equations of motion
• 38 torque limits
• 3 inequality constraints for self collision avoid-

ance
• 18 (12 for exp. 1) geometric contact constraints
• 3 inequality constraints on the CoM

2) • 6 end-effector equality constraints for left and
right hand

• 32 equality constraints to maintain a reference
posture (with the head yaw joint turned towards
the vision marker, exp. 2 and exp. 3)

• 4nc constraints to minimize the generalized con-
tact wrenches: γ = 0

The hierarchy for WLS contains the dynamic constraints
(equation of motion, γ bounds, τ bounds), joint limits,
self-collision avoidance, CoM task and contact tasks as
constraints on level 1. All these tasks have the same priority
without weighting. Since the notion of constraint relaxation
is not introduced in LSSOL, the feasibility of these con-
straints has to be guaranteed in order to avoid solver failures.
Especially the self-collision avoidance, the contact and the
CoM constraints are the source of potential conflict or
even of (unresolved) kinematic singularities. This highlights
the significance of being able to easily design safe robot
problems with LexDynBFGS or LexDynAH.

The reaching task is defined as an objective on level 2.
A posture reference task is also added at the objective

level. Similarly to the LM algorithm it acts as a velocity
damper, allowing to approach singular configurations. The
task is added with a low weight 1e−3 (5e−2 for exp 2 and
exp 3), which needs to be tuned depending on the task to be
performed. For example reaching for very far away targets
requires a higher weight.

Additionally, another task γ = 0 on the objective level is
added to yield a fully determined and full rank problem. It
has a small weight 1e−5 (1e−4 for exp. 2 and exp.3).

We solve for the variables q̈(k+1), τ (k+1) and γ(k+1) and
integrate the accelerations twice to the joint positions (57)
which are then sent to the robot.

For both solvers we substitute the torques τ (k+1) with the
equation of motion which reduces the number of variables
from 108 to 70 for exp. 1, and 112 to 74 for exp. 2 and
exp. 3 respectively.

A. Experiment 1

In the first experiment (exp. 1, see Fig. 2) the robot is
controlled to take a simple stretching pose. It shows that
LexDynBFGS and LexDynAH enable numerically stable
robot behaviour even with the presence of kinematic and
algorithmic singularities. At the same time the task error
norm is minimized to a higher degree w.r.t WLS.

For this we establish two contacts with the environment
on the two feet standing on the ground. Each foot consists of
four contact points (overall nc = 8) placed on each corner
of the rectangular foot.

The robot then continues to move the left hand to
[0.4, 0.5, 1.3] m and the right hand to [0.4,−0.5, 1.3] m
which is on each side of the robot’s chest. After that it targets
[0.4,−2, 2] m and [0.4, 2, 2] m which are both out-of-reach
positions on its left top and right top side respectively. This
forces the robot to take a stretched configuration along the
convergence process. At this point, the end-effector tasks are
in algorithmic singularity due to conflict with the geometric
contact constraints.

Thereby, LexDynBFGS shows the best minimization of
the norm of the Euclidean distance of the left and right hand
to their targets (see Fig. 3). Both legs and arms are fully
stretched. Consequently, the contact Jacobians of the left and
right foot are singular. This seemingly does not influence the
robot’s joint velocity (see Fig. 4), joint torque (see Fig. 12a)
and contact wrench (see Fig. 13a) behaviour due to the full
rank property of the equation of motion.

The convergence is the longest out of the three solvers
as there is a large period of flat curvature with very small
yT∆q(k) ≈ 1e−16 (between ca. 45 s and 90 s). This leads to
slow joint motions since the BFGS Hessian approximation
is not updated but rather remains as a static damping term
similar to the LM algorithm.

The joint velocities are fairly smooth (see Fig. 4) and
pose no problem on the real robot. If for some end-user
the movements are too jerky a weighted and dotted identity
matrix αI∗ could be added to B. However, this has a light
side effect on the convergence.

The switch to Newton’s method is taking place on the way
to the first way point at around 25 s. There is a quick switch
to Newton’s method and back at around 105 s on the left
and right foot position task but does not further influence
the robot behaviour (see Fig. 5).

For most of the time there is only one active set iteration
per control iteration, yielding computation times well below
5 ms. However, at approximately 40 s there is a peak in
active set iterations of 17 with a loop time of just below
5 ms (see Fig. 6). Other peaks are computational artefacts
on the home PC which was used to remote control the robot
(PC Intel Core i7-4720HQ CPU @ 2.60GHz with 8 GB of
RAM).

Similar behaviour is seen for LexDynAH but it converges
faster to a less optimal minimum (see Fig. 3 for the task
error norm and Fig. 7 for joint behaviour)

In Fig. 9 a clear increase in computation times can be
seen at around 26 s when the second order augmentation
and the corresponding Higham regularization with SVD
decomposition starts (see Fig. 8).

Note that the Hessian is computed all the time even if there
is no augmentation. Its computation time is included in ‘All’.
Computing the CoM Hessian of the 38 DoF HRP-2Kai robot
takes about 150 µs and calculating all the Hessians accounts
for approximately less than 1 ms.



Fig. 2: Exp. 1, from left to right: 1.: LexDynBFGS, the robot has moved both its hands to the first target, 2.: LexDynBFGS,
the robot has converged with both arms and both legs stretched 3.: LexDynAH, the robot has converged with one arm and
both legs stretched, 4.: WLS, the robot has converged with only the legs stretched.

Fig. 3: Exp. 1, comparison of sum of the error norms of
the right and the left hand. LexDynBFGS has a final error
of 1.86 m, LexDynAH of 1.87 m and WLS of 1.9 m. The
lower graph shows the differences of the error norms of
the different methods. The data of LexDynAH and WLS is
synchronized with the one of LexDynBFGS.

Fig. 4: Exp. 1, LexDynBFGS, joint velocities

The WLS method shows the worst convergence (see
fig. 3). Especially during the first motion the robot fails
to lift both its arms up due to conflict with the posture
reference task. The joint velocities are very smooth but slow
(see fig. 10) which is behaviour typically seen for the LM
algorithm. Consequently, there are less active set iterations

Fig. 5: Exp. 1, LexDynBFGS, map of activity (light gray)
and Newton’s method (dark gray)

Fig. 6: Exp. 1, LexDynBFGS, computation times and num-
ber of active set iterations. LexDynBFGS peaks at 376 µs,
LexLSI at 3.55 ms and overall at 4.23 ms. The maximum
number of active set iterations is 17 iterations.

than seen for LexDynBFGS and LexDynAH due to less
abrupt motion changes.

The computation times for LSSOL for a single iteration are
a multiple of the ones of LexLSI. However, it only increases
slightly with a higher number of active set iterations. Reason
is that LSSOL cheaply updates decomposition factors for the
current active set which have been computed for the previous
one (see Fig. 11).

Figure 12 shows a comparison of the computed joint
torques for LexDynBFGS and WLS. They are approximately
of the same magnitude and show the validity of our approach



Fig. 7: Exp. 1, LexDynAH, joint velocities

Fig. 8: Exp. 1, LexDynAH, map of activity (light gray) and
Newton’s method (dark gray)

Fig. 9: Exp. 1, LexDynAH, computation times and number
of active set iterations. LexDynAH peaks at 1.55 ms, LexLSI
at 2.96 ms and overall at 4.75 ms. The maximum number of
active set iterations is 15.

Fig. 10: Exp. 1, WLS, joint velocities.

of forward integrating the accelerations in the equation of
motion. The joint torques for LexDynAH are very similar

Fig. 11: Exp. 1, WLS, computation times and number of
active set iterations. LSSOL peaks at 3.76 ms and overall at
4.46 ms with 4 active set iterations.

(a) Exp. 1, LexDynBFGS, joint torques.

(b) Exp. 1, WLS, joint torques.

Fig. 12: Comparison of the joint torques between Lex-
DynBFGS and WLS. They are of similar magnitude.

to the ones of LexDynBFGS and are therefore not depicted
here.

Figure 13 shows a comparison of the computed and
measured ground reaction forces and torques of the left
foot for LexDynBFGS and WLS. They are approximately
of the same magnitude and again show the validity of
our approach of forward integrating the accelerations in
the equation of motion. The discrepancy between measured
and sensed values comes to a large extent from the un-
modelled elasticity of the ankle pitch joints but is consistent
for LexDynBFGS and WLS. The ground reaction forces
and torques for LexDynAH are very similar to the ones of
LexDynBFGS and therefore are not depicted here.

B. Experiment 1 without or badly-tuned augmentation

For reference we show the robot joint behaviour for exp. 1
in the case of the pure GN algorithm without the switch to
Newton’s method in case of singularities.



(a) Exp. 1, LexDynBFGS, left foot ground reaction forces and
torques, measured (sens) and computed (calc).

(b) Exp. 1, WLS, left foot ground reaction forces and torques,
measured (sens) and computed (calc).

Fig. 13: Exp. 1, comparison of the ground reaction forces
and torques of the left foot between LexDynBFGS and WLS.
They are of similar magnitude.

Fig. 14: Exp. 1 without or badly-tuned augmentation, joint
velocities. The pure GN algorithm suffers from important
joint oscillations while WLS with only 1/1000 of the original
weight for the posture reference task fails completely at
25.9 s.

Since singular behaviour would be highly harmful to the
robot we conducted this experiment only in simulation.

The robot is clearly unstable on joint level (see Fig. 14)
and sways heavily (see video). Reason is that joint torque
limits are reached repeatedly (see Fig. 15) since the joint
oscillations require very high motor torques.

Fig. 15: Exp. 1 without or badly-tuned augmentation, joint
torques. Upper graph: the joint oscillations require high
motor torques. Lower graph: Joint torques for WLS with
a weight of 1e−6 for the posture reference task.

Additionally, exp. 1 is conducted with WLS where the
reference posture task is weighted with only 1/1000 of its
original weight. The weight used is then 1e−6. While there
are no joint oscillations the robot sways slightly until LSSOL
fails completely at around 26 s with numerically high joint
velocities due to approaching a singular configuration.

C. Experiment 2

The second experiment (exp. 2, see Fig. 16) is designed
in such a way that a third contact between the left hand and
a rigid pole must be established in order to prevent falling.
This contact is not a friction contact but a fixed contact such
that we only need to define one contact point here (overall
nc = 9). Also, the bound γ > 0 needs to be omitted for this
contact since we allow negative contact forces if the robot
is ‘hanging’ from the pole.

In the following we describe the experiment for Lex-
DynBFGS.

At first, the robot moves its left hand in front of a vertical
metal pole which is supposed to be grabbed at approximately
[0.5, 0.25, 1] m. The exact pole position is determined via
marker based vision provided by the whycon library [55].
During the movement, the CoM task on level 8 constrained
to the bounding box [±0.03,±0.1,±∞] m gets activated.
The right hand on the next level 9, which must remain at its
current position, is therefore in conflict and starts to move
slightly backwards. This is a purely algorithmic singularity
and triggers the switch to Newton’s method. Figure 19 shows
the activation of the CoM task and the augmentation of the
right hand position task and the chest orientation task at
around 8 s.

The left gripper is closed and the left-hand-to-pole
contact is added to the equation of motion. Then we
open up the CoM bounding box in x-direction from
[±0.03,±0.1,±∞] m to [±0.2, 0.05 ± 0.05,±∞] m since
we have increased the support area of the robot in the
sagittal plane due to the additional contact (see Fig. 21).
However, the robot requires several control iterations with
a high number of active set iterations to adjust the robot



Fig. 16: Pictures of HRP-2Kai performing exp. 2, LexDynAH, from left to right: 1.: The left hand has grabbed the pole
while the right hand task on level 9 is in conflict with the CoM task on level 8. 2.: The CoM on level 8 switched from
box 1 to box 2 and is not in conflict with the right hand task any more The right hand task on level 9 is not augmented
any more 3.: HRP-2Kai is in full forward stretch. 4.: The robot moves its right hand to the back. 5.: HRP-2Kai is in full
backward stretch. 6.: The robot during its second forward stretch.

Fig. 17: Exp. 2, comparison of the error norm of the
right hand tracking the swinging target during forward (for.)
and backward (back.) stretch. The lower graph shows the
differences of the error norms of the different methods. The
data of LexDynAH and WLS is synchronized with the one
of LexDynBFGS.

state. In Fig. 20 at the 32 s mark, it can be seen that within
28 control iterations, peaks of 1× 52 and 5× 30 active set
iterations occur. Figure 19 shows that at the instant of the
CoM release at around 32 s both CoM tasks at level 8 and
10 are activated and shortly after deactivated again. Similar
behaviour is seen for the collision constraint between the left
elbow and the torso.

Furthermore, the upper graph of Fig. 18 shows how the
velocity suddenly increases from zero to maximum velocity
0.5 s during the CoM release. This requires large joint
torques of around 150 Nm as can be seen from the lower
graph of Fig. 26a. The corresponding dynamic effects need
to be adjusted for in the trust region and the contact force
constraints (with interplay) which leads to the large number
of active set iterations.

Note that without the active set iteration limitation method
presented in section VIII-B the active set iteration count
might easily go up to 200 or more.

At around 36 s the augmentation of the level 9 position
task stops as the right hand arrives back at its prescribed

Fig. 18: Exp. 2, LexDynBFGS, joint velocities. The upper
graph shows the moment when the CoM is released and the
52 active set iterations occur (followed by 5 occurrences of
30 iterations until 32.7 s). The middle one shows the moment
when the right hand stretches to the right and starts being
augmented. The lower graph shows the joint velocities when
the robot stretches to the back and crouches.

Fig. 19: Exp. 2, LexDynBFGS, map of activity (light gray)
and Newton’s method (dark gray)

position (see Fig. 19).
The right hand then first tries to reach [0,−1.5, 1] m

and continues to follow a target swinging from the front



Fig. 20: Exp. 2, LexDynBFGS, computation times and num-
ber of active set iterations. LexDynBFGS peaks at 1.11 ms,
LexLSI at 9.66 ms and overall at 10.75 ms. The maximum
number of active set iterations is 52 iterations. At around
105 s and for the duration of a few seconds there is a
computational artefact from the robot controlling PC.

Fig. 21: Exp. 2, LexDynBFGS, CoM movement. The CoM
starts at the black dot and moves until it arrives at the white
dot, first being constrained in box 1 and then in box 2.

Fig. 22: Exp. 2, LexDynAH, map of activity (light gray) and
Newton’s method (dark gray)

[3,−1.5, 2] m to the back [−3,−1.5, 0] m of the robot. This
target is always out of reach.

From Fig. 27a it can be seen that during the forward
stretches from 62 s and from 125 s the robot pushes its left
hand against the pole with more than 100 N. This shows the
necessity of this contact to prevent falling.

In Fig. 21, the CoM moves from the black to the white

Fig. 23: Exp. 2, LexDynAH, computation times and number
of active set iterations. LexDynAH peaks at 2.63 ms, LexLSI
at 8.03 ms and overall at 11.16 ms. The maximum number
of active set iterations is 52 iterations.

Fig. 24: Exp. 2, WLS, joint velocities.

Fig. 25: Exp. 2, WLS, computation times and number of
active set iterations. In the time segment from 0 s to 56
s (excluding the computational artefact from the controller
PC, but including the active set peak), LSSOL peaks at 2.20
ms and overall at 2.94 ms with 34 active set iterations.
Again, there are some computational artefacts on the robot
controlling PC from 56 s and from 110 s.

dot. During the stretch motions it is well outside the support
polygon of the feet which covers about [±0.1,±0.2,±∞] m.
The CoM at level 8 is first constrained to box 1 and then to
box 2. Note that the CoM constraint at the white dot is also
activated in y-direction. This is due to the velocity damper
which starts to act 0.02 m before the actual bounding box
edge. The continuous augmentation of the right hand and the
chest task at level 9 occupies all joints. Therefore, the CoM



(a) Exp. 2, LexDynBFGS, joint torques. The upper graph shows the
whole experiment while the lower graph only shows the moment
when the CoM is released and the 52 active set iterations occur
(followed by 5 occurrences of 30 iterations until 32.7 s). The
maximum torque is -152.8 Nm.

(b) Exp. 2, WLS, joint torques. The maximum joint torque is -71
Nm.

Fig. 26: Comparison of the joint torques between Lex-
DynBFGS and WLS.

constraint on level 10 has no influence and is therefore not
shown here.

Figure 17 shows the norms of the tracking error of the
right hand during the stretch motions. Especially during the
second forward stretch LexDynBFGS gets over 0.05 m closer
to the target than WLS due to fully stretching its arm into
kinematic singularity. Overall, most of the time the error
norm difference ErrWLS − ErrLexDynBFGS > 0 and shows the
better convergence of LexDynBFGS compared to WLS.

While LexDynAH also allows limbs to be fully stretched
into kinematic singularities, it has a higher error norm than
WLS especially during the backward stretch (see Fig. 17).
This is despite the fact that the robot crouches more than
seen for WLS (see video). The reason is partly due to
local minima created by joint limits. However, at forward
stretches LexDynAH performs better than WLS (ErrWLS −
ErrLexDynAH > 0).

In Fig. 23 it can be seen that the average overall com-
putation time ‘All’, which includes the calculation time of
the analytic Hessian, increases by about 1.5 ms compared to
the ones of LexDynBFGS in Fig. 20. An additional increase
can be observed at 40 s for ‘LexDynAH’ when the CoM
task on level 10 requires augmentation too (see Fig. 22).
Now two expensive SVD decompositions for the Higham

(a) Exp. 2, LexDynBFGS, left hand reaction forces and torques,
measured (sens) and computed (calc).

(b) Exp. 2, WLS, left hand reaction forces and torques, measured
(sens) and computed (calc).

Fig. 27: Comparison of the reaction forces and torques of
the left hand grabbing the pole between LexDynBFGS and
WLS

regularizations of the hierarchical analytic Hessian on level 9
and 10 are required.

In general, LexDynAH behaves very similar to Lex-
DynBFGS and shows the capabilities of the BFGS algorithm
to provide a valid approximation of the analytic hierarchical
Hessian. Therefore, the joint velocities, CoM motion, ground
and pole reaction forces and joint torques are not shown since
they are very similar to the ones of LexDynBFGS.

As for WLS, it shows again the worst convergence (see
Fig. 17) with very smooth joint velocities (see Fig. 24). Es-
pecially during the forward stretches the robot does not fully
stretch its right arm. Also during the backward stretch the
robot crouches to a lesser extent than seen for LexDynBFGS
and LexDynAH (see video).

Since there are no jerky movements the joint torques do
not show high peaks (see 26b). What is quite interesting
is that there is still a peak of 32 active set iterations (see
Fig. 25) during the first forward stretch at 55 s. However,
the computation time only increases by a fraction due to
updating factorizations in LSSOL.

D. Experiment 3

With the last experiment (exp. 3) we show the importance
of handling kinematic and algorithmic singularities automat-



Fig. 28: Exp. 3, LexDynBFGS, right hand task error. The
upper graph shows the actual right hand position in x, y and
z direction and the desired ones xd, yd and zd. The lower
graph shows the error norm of the right and left hand. The
error of the left hand holding the rail can be considered zero
once the contact is created at around 20 s.

Fig. 29: Exp. 3, LexDynBFGS, map of activity (light gray)
and Newton’s method (dark gray).

ically.
This experiment is set up similarly to exp. 2, except

that the robot right hand follows a target tracked by a
motion capture system (10 Krestel cameras from Motion
Analysis). Typical applications could be human to robot
hand-overs. In such situations, and especially for a humanoid
robot with multi-level prioritized constraints, it is difficult
to determine the robot workspace beforehand. Here our
proposed methods LexDynBFGS and LexDynAH allow to
only have approximate knowledge or no knowledge at all
of the robot workspace while still enabling safe control
for the robot. A hand-over could happen at the border
of the workspace with the end-effector being in kinematic
singularity or being in algorithmic conflict with a stability
task like the CoM task on a higher priority level. At the
same time, the whole possible workspace is used without
restricting it artificially for example with a badly tuned LM
algorithm. Thereby, a non-adaptive LM algorithm can always
be considered badly tuned. The LM algorithm needs to be
tuned with a certain overhead in order to ensure non-singular
behaviour over a range of robot configurations. This leads to
bad convergence in singularity-free configurations where no
damping is required.

Since the end-effector target is defined by user input, for
the lack of comparability we only conducted the experiment
with LexDynBFGS.

In order to prevent too fast motions we set the right hand
proportional task gain to kp = 0.5 instead of kp = 1 in the
two previous experiments. Additionally, the CoM bounding
box 2 is chosen a bit more conservatively as [±0.1, 0.05 ±
0.05,±∞] m instead of [±0.2, 0.05±0.05,±∞] m in exp. 2.

The right hand tracking error is given in Fig. 28. At around
10 s the left hand moves towards the pole before closing the
gripper and adding the contact to the equation of motion.
At around 35 s the CoM constraint changes from box 1 to
box 2. The right hand stops being in algorithmic conflict with
the CoM constraint and moves to its original position (see
Fig. 29 at around 42 s, the right hand is not augmented any
more). From around 50 s onwards, the right hand is following
the position of the middle marker of a wand with 3 markers
tracked by the motion capture system. The provided position
xd, yd and zd is filtered by a 3 s moving average filter (see
dotted lines in upper graph of Fig. 28). We first move the
marker outside of the approximate workspace of the robot
(until 100 s). The right arm is in kinematic singularity and in
conflict with the CoM constraint on level 8. We then continue
to move the marker within the workspace of the robot. The
CoM task at level 8 gets deactivated. However, the right
hand switches from Newton’s method to the GN algorithm
only for a short period from 108.5 s to 109 s and from
109.75 s to 110.25 s before being augmented again. Note
that the task error e does not necessarily need to be zero
for this to happen. Our switching method only indicates that
within the context of our linearized model we can (more or
less) numerically stably provide the error velocity prescribed
by the PD control emulated in velocity. Hence, there is no
conflict with the kinematic restrictions of the robot or other
constraints with the same or higher priority. The switching
method could be tuned to be less sensitive although this could
increase the risk that a singular task might not get augmented
in certain situations. A good middle ground needs to be
found in tuning the parameter ν of our switching method.
Future work could also include the implementation of more
accurate switching methods for example by observing the
matrix rank of the constraint Jacobians or their projections
onto the Jacobians of higher priority tasks.

E. Performance comparison

The overall performance of LexDynBFGS and LexDynAH
(in combination with LexLSI) and WLS (in combination with
LSSOL) in the three experiments is compiled comprehen-
sively in table I.

LexDynBFGS and LexDynAH both performed best in
the category ‘Error convergence’. The performance of WLS
is highly dependent of the level of chosen damping. Its
behaviour can only be considered acceptable at best since
determining ‘perfect’ damping without proper adaptation
methods seems intractable.

The same holds for the ‘stability’ and ‘smoothness’ of
the joint trajectories. If the damping weights for the posture



LexDyn LexDyn WLS
BFGS AH

Error convergence + + o / –
Joint stability + + + / –
Joint smoothness o o + / –
Easiness of use + + o
Computation time + / – o / – o
Lexico. separation + + o
Handling of infeas. ctr. + + –
Handling of inequ. ctr. + + o

TABLE I: Comprehensive overview of the performance of
LexDynBFGS, LexDynAH (in combination with LexLSI)
and WLS (in combination with LSSOL) in the three ex-
periments. The symbols +, o, – indicate best, acceptable
and worst performance in the corresponding evaluation cri-
teria. Criteria solely dependent on the respective solver are
coloured in grey.

reference task of WLS are too low, the behaviour will be
unstable and therefore not smooth. If the damping weights
are too high we are at the other end of the spectrum with
very smooth joint trajectories but bad error convergence.
LexDynBFGS and LexDynAH is a very stable alternative
with smooth joint trajectories. Especially, there is no need for
damping tuning which makes it very easy to use (‘Easiness
of use’).

As mentioned in sec. VIII-B, the ‘computation times’ for
LexLSI can be very large depending of the number of active
set iterations. However, with only a few active set iterations
the computation times are a magnitude smaller than the ones
seen for LSSOL. However, LexDynAH requires the expen-
sive SVD decomposition for the Higham regularization of the
analytic hierarchical Hessian which makes its computation
time only acceptable at best.

Further advantages of LexLSI compared with LSSOL are
the possibility of introducing more hierarchy levels (‘lexico-
graphical (lexico.) separation’). This allows clear distinction
between feasibility, safety and stability constraints. LexLSI
is also able to handle ‘infeasible constraints’ (infeas. ctr.)
and ‘inequality constraints’ (inequ. ctr.) on any priority level
which is not possible with LSSOL.

X. CONCLUSION

In this paper we extended our work [27] on handling
kinematic and algorithmic singularities in kinematic robot
control to dynamically feasible kinematic robot control. We
showed that it enables the robot to approach and reach
singular configurations smoothly and without the high veloc-
ities typically seen for unresolved singularities. Thereby, our
approach consisting of forward integrating the accelerations
proved viable to shift second-order motion controllers and
the equation of motion into the velocity domain.

Evaluated in three experiments on the position controlled
HRP-2Kai robot, our method supersedes classical damping
methods in terms of accuracy and error norm reduction. At
the same time the notion of hierarchy enables formulating
problems with strict safety prioritizations. Some cases of

jerky joint movements are handled easily by adding a small
damping term.

Also, we introduced the possibility of augmenting the
problem using the analytic hierarchical Hessian. Like the
BFGS algorithm, the computational effort for the Hessian
calculation is in O(n2). However, the Hessian can become
indefinite if not close to the solution. This requires an
expensive SVD decomposition of order O(mn2) in order to
enforce semi-positive-definiteness of the Hessian using the
Higham regularization.

Model inaccuracies are accounted for with a trust region
adaptation method which is customized for constrained op-
timization. Also, we slow down particular joints by ma-
nipulating the BFGS approximation of the Hessian as a
result of observing the joint accelerations. For future work
it is desirable to properly handle cases of negative definite
curvature in order to prevent slowing down convergence by
augmenting with the last positive definite update.

Computation times of the hierarchical least squares solver
are a limiting factor of our approach of augmentation with
the BFGS Hessian as well as the analytic Hessian. Without
important dynamic effects, the active set iteration count is
limited to a few iterations. However, situations where several
torque, trust region and contact force constraints become
active are more challenging for the active set search. Our
future work needs to focus on handling these situations
cheaply, for example by factorization updates in the solver
by [2] or a more effective active set search.

In future work we would like to extend our work to inverse
dynamics control including force control and validate our
results on torque controlled robots.

XI. ACKNOWLEDGEMENT

We would like to deeply thank the Inria team of Pierre-
Brice Wieber and Dimitar Dimitrov for providing us with the
code for LexLSI [2] which was indispensable for this work.
Furthermore, we would like to acknowledge that sec. III is
the result of fruitful discussions with Pierre-Brice Wieber.

REFERENCES

[1] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic
programming: Fast online humanoid-robot motion generation,” The
International Journal of Robotics Research, vol. 33, no. 7, pp. 1006–
1028, 2014.

[2] D. Dimitrov, A. Sherikov, and P.-B. Wieber, “Efficient resolution
of potentially conflicting linear constraints in robotics,” Aug. 2015,
submitted to IEEE TRO. [Online]. Available: https://hal.inria.fr/
hal-01183003

[3] Y. Nakamura and H. Hanafusa, “Inverse Kinematic Solutions With
Singularity Robustness for Robot Manipulator Control,” J. Dyn. Sys.,
Meas., Control, vol. 108, no. 3, pp. 163–171, 1986.

[4] B. Siciliano and J.-J. E. Slotine, “The general framework for managing
multiple tasks in high redundant robotic systems,” in International
Conference on Advanced Robotics, 1991, pp. 1211 – 1216 vol.2.

[5] Y. Abe, M. da Silva, and J. Popović, “Multiobjective control with
frictional contacts,” in Eurographics/ACM SIGGRAPH Symposium on
Computer Animation, San Diego, California, 2-4 August 2007, pp.
249–258.

[6] J. Vaillant, A. Kheddar, H. Audren, F. Keith, S. Brossette, A. Escande,
K. Bouyarmane, K. Kaneko, M. Morisawa, P. Gergondet, E. Yoshida,
S. Kajita, and F. Kanehiro, “Multi-contact vertical ladder climbing
with an HRP-2 humanoid,” Autonomous Robots, vol. 40, no. 3, pp.
561–580, 2016.



[7] K. Nishiwaki and S. Kagami, “Online walking control system for
humanoids with short cycle pattern generation,” The International
Journal of Robotics Research, vol. 28, no. 6, pp. 729–742, 2009.
[Online]. Available: https://doi.org/10.1177/0278364908097883

[8] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal,
“Learning, planning, and control for quadruped locomotion over
challenging terrain,” The International Journal of Robotics Research,
vol. 30, no. 2, pp. 236–258, 2011. [Online]. Available: https:
//doi.org/10.1177/0278364910388677

[9] S. Mason, N. Rotella, S. Schaal, and L. Righetti, “Balancing and
walking using full dynamics lqr control with contact constraints,”
in IEEE-RAS 16th International Conference on Humanoid Robots
(Humanoids), Nov 2016, pp. 63–68.

[10] V. Bonnet, K. Pfeiffer, P. Fraisse, A. Crosnier, and G. Venture,
“Self-Generation of Optimal Exciting Motions for Identification of
a Humanoid Robot,” International Journal of Humanoid Robotics,
vol. 15, no. 6, p. 1850024, Dec. 2018. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-02048085

[11] K. Bouyarmane, K. Chappellet, J. Vaillant, and A. Kheddar, “Quadratic
programming for multirobot and task-space force control,” IEEE
Transactions on Robotics, vol. 35, no. 1, pp. 64–77, Feb 2019.

[12] O. Kanoun, F. Lamiraux, and P.-B. Wieber, “Kinematic control of
redundant manipulators: generalizing the task priority framework to
inequality tasks,” IEEE Trans. on Robotics, vol. 27, no. 4, pp. 785–
792, 2011.

[13] A. Herzog, N. Rotella, S. Mason, F. Grimminger, S. Schaal,
and L. Righetti, “Momentum control with hierarchical inverse
dynamics on a torque-controlled humanoid,” Autonomous Robots,
vol. 40, no. 3, pp. 473–491, Mar 2016. [Online]. Available:
https://doi.org/10.1007/s10514-015-9476-6

[14] A. A. Maciejewski and C. A. Klein, “Numerical filtering for the
operation of robotic manipulators through kinematically singular con-
figurations,” Journal of Robotic Systems, vol. 5, no. 6, pp. 527–552,
1988.

[15] T. Shamir, “The singularities of redundant robot arms,” The
International Journal of Robotics Research, vol. 9, no. 1,
pp. 113–121, 1990. [Online]. Available: https://doi.org/10.1177/
027836499000900105

[16] V. D. Tourassis and J. Marcelo H. Ang, “Identification and analysis
of robot manipulator singularities,” The International Journal of
Robotics Research, vol. 11, no. 3, pp. 248–259, 1992. [Online].
Available: https://doi.org/10.1177/027836499201100307

[17] W. Khalil and E. Dombre, “Chapter 5 - direct kinematic model
of serial robots,” in Modeling, Identification and Control of
Robots, W. Khalil and E. Dombre, Eds. Oxford: Butterworth-
Heinemann, 2002, pp. 85 – 115. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/B9781903996669500051

[18] S. Chiaverini, “Singularity-robust task-priority redundancy resolution
for real-time kinematic control of robot manipulators,” IEEE Transac-
tions on Robotics and Automation, vol. 13, no. 3, pp. 398–410, 1997.

[19] A. A. Maciejewski and C. A. Klein, “The singular value
decomposition: Computation and applications to robotics,” The
International Journal of Robotics Research, vol. 8, no. 6,
pp. 63–79, 1989. [Online]. Available: https://doi.org/10.1177/
027836498900800605

[20] S. Chiaverini, B. Siciliano, and O. Egeland, “Review of the damped
least-squares inverse kinematics with experiments on an industrial
robot manipulator,” IEEE Transactions on Control Systems Technol-
ogy, vol. 2, no. 2, pp. 123–134, June 1994.

[21] P. Baerlocher and R. Boulic, “An inverse kinematics architecture en-
forcing an arbitrary number of strict priority levels,” Visual Computer,
vol. 20, no. 6, pp. 402–417, 2004.

[22] S. R. Buss and J.-S. Kim, “Selectively damped least squares for
inverse kinematics,” Journal of Graphics Tools, vol. 10, no. 3, pp.
37–49, 2005. [Online]. Available: https://doi.org/10.1080/2151237X.
2005.10129202

[23] T. Sugihara, “Solvability-unconcerned inverse kinematics by the lev-
enberg–marquardt method,” IEEE Transactions on Robotics, vol. 27,
no. 5, pp. 984–991, October 2011.

[24] P. Harish, M. Mahmudi, B. L. Callennec, and R. Boulic, “Parallel
inverse kinematics for multithreaded architectures,” ACM Trans.
Graph., vol. 35, no. 2, pp. 19:1–19:13, Feb. 2016. [Online].
Available: http://doi.acm.org/10.1145/2887740

[25] J. E. Dennis, Jr., D. M. Gay, and R. E. Walsh, “An adaptive
nonlinear least-squares algorithm,” ACM Trans. Math. Softw.,

vol. 7, no. 3, pp. 348–368, Sep. 1981. [Online]. Available:
http://doi.acm.org/10.1145/355958.355965

[26] A. S. Deo and I. D. Walker, “Adaptive non-linear least squares for
inverse kinematics,” in IEEE International Conference on Robotics
and Automation, vol. 1, May 1993, pp. 186–193.

[27] K. Pfeiffer, A. Escande, and A. Kheddar, “Singularity resolution in
equality and inequality constrained hierarchical task-space control
by adaptive nonlinear least squares,” IEEE Robotics and Automation
Letters, vol. 3, no. 4, pp. 3630–3637, Oct 2018.

[28] C. G. Broyden, “The Convergence of a Class of Double-rank Miniza-
tion Algorithms,” Journal of the Mathematics and its Applications,
vol. 6, pp. 76–90, 1970.

[29] R. Fletcher, “A new approach to variable metric algorithms,” The
Computer Journal, vol. 13, no. 3, pp. 317–322, 01 1970. [Online].
Available: https://doi.org/10.1093/comjnl/13.3.317

[30] D. Goldfarb, “A family of variable-metric methods derived by
variational means,” Mathematics of Computation, vol. 24, no. 109, pp.
23–26, 1970. [Online]. Available: http://www.jstor.org/stable/2004873

[31] D. F. Shanno, “Conditioning of quasi-newton methods for function
minimization,” Mathematics of Computation, vol. 24, no. 111,
pp. 647–656, 1970. [Online]. Available: http://www.jstor.org/stable/
2004840

[32] D. N. Nenchev, Y. Tsumaki, and M. Uchiyama, “Singularity-consistent
parameterization of robot motion and control,” The International
Journal of Robotics Research, vol. 19, no. 2, pp. 159–182, 2000.
[Online]. Available: https://doi.org/10.1177/02783640022066806

[33] F. Caccavale, S. Chiaverini, and B. Siciliano, “Second-order kinematic
control of robot manipulators with jacobian damped least-squares
inverse: theory and experiments,” IEEE/ASME Transactions on Mecha-
tronics, vol. 2, no. 3, pp. 188–194, Sep. 1997.

[34] J. Wang, Y. Li, and X. Zhao, “Inverse kinematics and control of
a 7-dof redundant manipulator based on the closed-loop algorithm,”
International Journal of Advanced Robotic Systems, vol. 7, no. 4,
p. 37, 2010. [Online]. Available: https://doi.org/10.5772/10495

[35] B. Siciliano and O. Khatib, Springer Handbook of Robotics. Berlin,
Heidelberg: Springer-Verlag, 2007.

[36] M. de Lasa, I. Mordatch, and A. Hertzmann, “Feature-based locomo-
tion controllers,” ACM Transactions on Graphics, vol. 29, no. 4, p. 1,
2010.

[37] L. Saab, O. E. Ramos, F. Keith, N. Mansard, P. Soueres, and J. Y.
Fourquet, “Dynamic whole-body motion generation under rigid con-
tacts and other unilateral constraints,” IEEE Transactions on Robotics,
vol. 29, no. 2, pp. 346–362, 2013.

[38] F. Flacco and A. De Luca, “Discrete-time velocity control of redun-
dant robots with acceleration/torque optimization properties,” in IEEE
International Conference on Robotics and Automation (ICRA), May
2014, pp. 5139–5144.

[39] F. Udwadia and R. E. Kalaba, “A new perspective on constrained
motion,” Proceedings of The Royal Society A: Mathematical, Physical
and Engineering Sciences, vol. 439, pp. 407–410, 11 1992.

[40] F. Udwadia and A. Schutte, “Equations of motion for general con-
strained systems in lagrangian mechanics,” Acta Mech, vol. 213, 08
2010.

[41] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New
York, NY, USA: Springer, 2006.

[42] K. Erleben and S. Andrews, “Inverse kinematics problems with exact
hessian matrices,” 11 2017, pp. 1–6.

[43] N. J. Higham, “Computing a nearest symmetric positive semidefinite
matrix,” Linear Algebra and its Applications, vol. 103, pp. 103 –
118, 1988. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/0024379588902236

[44] N. Higham, “Computing the polar decomposition – with applications,”
SIAM Journal on Scientific and Statistical Computing, vol. 7, no. 4,
pp. 1160–1174, 1986. [Online]. Available: https://doi.org/10.1137/
0907079

[45] A. Conn, N. Gould, and P. L Toint, “Testing a class of methods for
solving minimization problems with simple bounds on the variables,”
Mathematics of Computation, vol. 50, pp. 399–430, 04 1988.

[46] A. R. Conn, N. I. M. Gould, and P. L. Toint, “Convergence of
quasi-newton matrices generated by the symmetric rank one update,”
Mathematical Programming, vol. 50, no. 1-3, pp. 177–195, 1991.

[47] H. Khalfan, R. Byrd, and R. Schnabel, “A theoretical and
experimental study of the symmetric rank-one update,” SIAM Journal
on Optimization, vol. 3, no. 1, pp. 1–24, 1993. [Online]. Available:
https://doi.org/10.1137/0803001



[48] B. Faverjon and P. Tournassoud, “A local based approach for
path planning of manipulators with a high number of degrees
of freedom,” INRIA, Tech. Rep. RR-0621, Feb. 1987. [Online].
Available: https://hal.inria.fr/inria-00075933

[49] P. E. E. Gill, S. J. Hammarling, W. Murray, M. A. Saunders, and M. H.
Wright, “User’s guide for lssol (version 1.0): a fortran package for
constrained linear least-squares and convex quadratic programming,”
Standford University, Standord, California 94305, Tech. Rep. 86-1,
January 1986.

[50] C. Collette, A. Micaelli, C. Andriot, and P. Lemerle, “Dynamic balance
control of humanoids for multiple grasps and non coplanar fric-
tional contacts,” in IEEE/RAS International Conference on Humanoid
Robots, Pittsburgh, PA, November 29 - December 1 2007, pp. 81–88.

[51] K. Bouyarmane and A. Kheddar, “Using a multi-objective controller
to synthesize simulated humanoid robot motion with changing contact
configurations,” IEEE International Conference on Intelligent Robots
and Systems, pp. 4414–4419, 2011.

[52] S. Feng, X. Xinjilefu, W. Huang, and C. G. Atkeson, “3d walking
based on online optimization,” in IEEE-RAS International Conference
on Humanoid Robots (Humanoids), Oct 2013, pp. 21–27.

[53] S. Kuindersma, F. Permenter, and R. Tedrake, “An efficiently solvable
quadratic program for stabilizing dynamic locomotion,” in IEEE
International Conference on Robotics and Automation (ICRA), May
2014, pp. 2589–2594.

[54] K. Pfeiffer, A. Escande, and A. Kheddar, “Nut fastening with a
humanoid robot,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Sep. 2017, pp. 6142–6148.

[55] M. Nitsche, T. Krajnı́k, P. Čı́žek, M. Mejail, and T. Duckett, “WhyCon:
an efficient, marker-based localization system,” in IEEE/RAS IROS
Workshop on Open Source Aerial Robotics, 2015.


