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ABSTRACT
Human beatboxing is a vocal art making use of speech organs to produce vocal drum sounds and imi-
tate musical instruments. Beatbox sound classification is a current challenge that can be used for auto-
matic database annotation and music-information retrieval. In this study, a large-vocabulary human-
beatbox sound recognition system was developed with an adaptation of Kaldi toolbox, a widely-used
tool for automatic speech recognition. The corpus consisted of eighty boxemes, which were recorded
repeatedly by two beatboxers. The sounds were annotated and transcribed to the system by means of
a beatbox specific morphographic writing system (Vocal Grammatics). The recognition-system ro-
bustness to recording conditions was assessed on recordings of six different microphones and settings.
The decoding part was made with monophone acoustic models trained with a classical HMM-GMM
model. A change of acoustic features (MFCC, PLP, Fbank) and a variation of different parameters of
the beatbox recognition system were tested : i) the number of HMM states, ii) the number of MFCC,
iii) the presence or not of a pause boxeme in right and left contexts in the lexicon and iv) the rate
of silence probability. Our best model was obtained with the addition of a pause in left and right
contexts of each boxeme in the lexicon, a 0.8 silence probability, 22 MFCC and three states HMM.
Boxeme error rate in such configuration was lowered to 13.65%, and 8.6 boxemes over 10 were well
recognized. The recording settings did not greatly affect system performance, apart from recording
with closed-cup technique.

1. Introduction
Human beatboxing emerged as a vocal practice in the

’80s in the Bronx, a borough of New York City. It became
part of hip-hop culture. It consists in reproducing all kinds of
sounds with one’s vocal instrument, especially drum sounds
or imitations of musical instruments such as trumpet or elec-
tric guitar [13]. Human beatboxers use the same articulators
as those of speech. If beatboxing is primarily an outstand-
ing vocal performance, it can also be used as an indexing
tool for music information retrieval [5], as a control tool for
voice-controlled applications [4] or as the basis of exercises
in speech therapy and voice pedagogy.

Very few studies have explored the question of human-
beatbox sound classification, whereas its technological and
clinical uses grow fast. Good classification rates were ob-
tained with an ACE-based system1 on a limited range of
sound classes, i.e. five main beatbox sounds bass drum,
open hi-hat, closed hi-hat, k-snare and p-snare drums [12,
3]. To the best of our knowledge, automatic recognition of
beatbox sounds using a speech recognition system has only
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been explored by [8]. Their training database consists of iso-
lated beatbox drum sounds (five classes cymbal, hi-hat, kick,
rimshot and snare) and instrumental imitations (8 classes).
Performance was poor for imitated sounds (best recognition
error rate of 41%), yet good performance was demonstrated
for limited beatbox sound classes (best recognition error rate
of 9%).

The approach promoted in our study is based on auto-
matic speech recognition systems (ASR). Indeed, most of the
work on automatic beatbox recognition is based on classifi-
cation systems that are independent of the continuous aspect
of the signal and/or its rhythmic representation. On the basis
of past studies [11, 7], we postulate that human beatbox be
considered as a musical language composed of sound units
that we call boxemes with reference to speech phonemes.
Boxemes are co-articulated in beatbox musical phrases. The
rhythmic representation can be integrated into the model-
ing/recognition of beatbox sound production : acoustic com-
ponents will be based on boxemes and, in the long term, lin-
guistic model will represent the rhythmic aspects. The well-
known and widely-used Kaldi ASR toolkit [9] was chosen
for this purpose. This toolkit provides state-of-the-art tools
in automatic speech recognition.

Can such a commonly-used speech-recognition tool be
adapted to build an automatic beatbox-sound recognition sys-
tem ? This question is addressed in the present study, in an
attempt to design an efficient and reliable automatic beatbox
sound recognition system that would handle a great number
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Characteristics
Beatboxers Adrien (amateur), Andro (professional)
Date 2019
Recording total dura-
tion

∼206 min

Vocabulary size 80
Number of recorded
boxemes per beat-
boxer

Adrien: 56/80, Andro: 80/80

Writing system used
for transcription

Vocal Grammatics

Microphones 5 recorded simultaneously, 1 recorded separately (using closed-cup technique)
Recording parameters 44100 Hz, 16 bits, mono, wav

Microphones
Microphone reference Label Type Distance from

the mouth
Usage

Brauner VM1 braun Condenser 10 cm with pop filter
DPA 4006 ambia Condenser ambient 50 cm
DPA 4060 tie Condenser 10 cm tie microphone
Shure SM58 sm58p Dynamic 10 cm
Shure SM58 sm58l Dynamic 15 cm
Shure beta 58 beta Dynamic 1 cm with closed-cup technique

Table 1
Recap chart of the beatbox-VG2019 corpus

of sound classes and enable the recognition of subtle sound
variants. The number of sound categories in human beatbox
is constantly growing. A system that would take into account
more boxemes than the 13 classes of [8]’s study is a current
challenge. In addition, this work was made with a view to
creating an interactive artistic setup that would provide vi-
sual feedbacks during boxeme production. It was intended
to be used by professional beatboxers as well as amateurs
or beginners. This practical purpose raised the questions
of corpus recording condition and robustness to microphone
differences. These questions will also be addressed in the
present study.

The paper is structured as follows. Section 2.1 presents
the training and test databases. The recognition system is
presented in Section 2.2. Different experiments are described
in Section 2.3 and their results are given in Section 3. Sec-
tions 4 and 5 provide a discussion and conclusion to the pa-
per, along with guidelines for future works.

2. Material and Methods
2.1. Corpus, Annotation and Recording Set-up

A dedicated beatbox sound corpus was recorded and na-
med beatbox-VG2019. It is composed of 80 different box-
emes, which is a large vocabulary corpus compared to pre-
vious corpora. The beatboxer population is predominantly
male, so we chose to focus on male voice for the present
study and leave gender balance in the recognition system for

next step. Two male beatboxers participated in the record-
ings : a professional beatboxer (fifth author, stage name An-
dro) and an amateur one (fourth author). Only the profes-
sional beatboxer recorded samples of all 80 requested box-
emes. The amateur beatboxer did not have the ability to per-
form all boxemes at a good level, so he recorded only 56 box-
emes out of 80. The protocol consisted of sequences where
boxemes were repeated several times with a pause in be-
tween (referred to as isolated sounds in the paper) and addi-
tional rhythmic sequences where boxemes were co-articula-
ted in beatbox musical phrases. Only isolated sounds are
considered here. Rhythmic sequences will be the target of
future studies.

An articulatory-basedmorphographicwriting system de-
veloped by the fourth author and called Vocal Grammatics
[1] was used for annotation. In this system, the glyphs are
composed of two pieces of information : the place of artic-
ulation (bilabial, glottal, ...), and the manner of articulation
(plosive, fricative, ...). Fig. 1 illustrates this writing system
in the case of a bilabial plosive with a morphological glyph
representing two lips and a cross-shaped glyph symbolising
plosion.

The recording session took place in a professional stu-
dio. Five microphones were used to record simultaneously
the beatboxer’s sound production. The microphones differed
in terms of specificities (e.g. condenser vs dynamic) and
settings. In addition, a separate recording was done with a
sixth microphone using a closed-cup technique commonly
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Figure 1: Representation of a bilabial plosive with Vocal Gram-
matics morphographic writing system

found in human-beatbox practice, where one or two hands
cover the microphone capsule. Figure 2 shows the setups
of all microphones. A DPA 4060 lavalier microphone (tie)
was attached to the beatboxer, at 10cm from his mouth. Two
identical Shure SM58microphones were placed respectively
at 10cm (SM58p) and 15cm (SM58l) from the mouth. A
Brauner VM1 condenser microphone (braun) with a pop fil-
ter was placed at same distance than SM58l dynamic mi-
crophone. An DPA 4006 ambient condenser microphone
(ambia) was placed behind all these microphones, at 50cm
away from the beatboxer’s face. Finally, a hand helded Shure
Beta 58, with the hand leaning on the face, was used for the
recording with closed-cup technique.

Figure 2: Placement of all microphones : tie, Braun, SM58
at 10cm and 15 cm, ambiant at 50 cm, and Beta SM58 with
closed-cup technique

Table 2.1 is a recap chart which provides full details on
the corpus and recording conditions. The different micro-
phones and placements are described. All audio signals were
sampled at 44.1 kHz on 16 bits.

The slight acoustic differences betweenmicrophonic record-
ings are illustrated in Figure 3 in the case of a bilabial plosive
sound followed by an apico-velar fricative sound
(bilabial_explosif_apico-alvéolaire_fricatif sound). The
recorded acoustic signals differ from one microphone to the
other, due to mouth distance, microphone surroundings and

transducer proper characteristics. Beta SM58 microphone
also differ by the grip technique and the fact that it was not
used simultaneously to the other microphones.
2.2. Recognition System

The main goal of our work is to assess whether the auto-
matic recognition of beatbox sounds is possible via a speech-
dedicated recognition system. In ASR systems, words are
cut into smaller units (e.g. phonemes, syllables) that allow
to define a lexicon associating each word with its represen-
tation in the form of atomic units. Acoustic models are then
trained to recognize these units. Here, we postulate that hu-
man beatbox is a musical language that could be similarly
structured with distinctive sound units. In support of this
assumption, past studies have demonstrated that speech ar-
ticulators are used to produce beatbox sound units that can be
distinguished from each other and that have a specific musi-
cal meaning for the beatboxer [11, 7]. These sound units are
named boxemes here, in reference to the speech phonemes
[7]. Yet in the current implementation, boxemes are alto-
gether the counterpart of speech phonemes and of words.

Two elements are considered distinctly in human beat-
boxing : acoustic production and linguistic coherence. It
lead us to divert a continuous ASR system for the purpose
of beatbox sound recognition. Another advantage of contin-
uous ASR system is the ability to work with a lexicon that
lists all the words that can be produced. Figure 4 shows the
overall operation of an ASR system. It is composed of the
following components:

• The acoustic model is trained from sounds associated
with their annotations. The acoustic model is trained
to recognize basic units (phonemes or boxemes in our
case). In our experiments, the acoustic modeling is
performed using HMM-GMM models.

• The language model is used to define a probable se-
quence of events that may occur. A lexicon associates
the word and its transcription into phonemes or box-
emes. In our case, these words correspond to the dif-
ferent boxemes, considered to be already atomic.

• The role of the decoder is to find the transcription that
maximizes the probability of the differentmodels know-
ing the pronounced sound.

Currently, state-of-the-art implementations for ASR sys-
tems are based on Deep Neural Networks (DNN) [2], like
ESPnet [15], with either end-to-end or hybrid approaches
[10]. End-to-end approaches learn to transcribe a signal di-
rectly to its textual transcription. In these systems, DNN
learn both acoustic and linguistic representations. Hybrid
approaches use Hidden Markov Models (HMM) where tran-
sition states are learned via DNN. All these approaches work
very well but require quite large amounts of data. Our cor-
pus represents relatively small amounts of data. This led us
to use HMM-GMM speech recognition approach. In this ap-
proach, acoustic observation likelihoods are computed from
a Gaussian Mixture Model (GMM). Due to the assumptions
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Figure 3: Waveforms and spectrograms of a bilabial_explosif_apico-alvéolaire_fricatif
500-ms sound recorded with the six microphones. Audio samples are provided as supple-
mentary material.

Figure 4: Basics of an automatic speech recognition system,
as applied to beatbox sound recognition.

of the HMM-GMM framework, distributions are most accu-
rately modeled for acoustic features that are relatively low-
dimensional and somewhat decorrelated. Although this ap-
proach is no longer considered to be state-of-the-art in speech,
it is at the heart of continuing research efforts, and has been
considerably optimized. One advantage of this approach is
that it allows acoustic-model estimation with small amounts
of data and an easy integration of an expert language model.
Another crucial aspect of HMM-based approaches is that
they explicitly differentiate the acoustic model from the lin-
guistic one. In our work, this distinction is a necessary re-
quirement.

This first-step work focused on isolated sounds recog-
nition. Co-articulation phenomenon and frontiers between

boxeme were discarded, while constraints of noise process-
ing and inter- and intra-beatboxer variability were kept.

The ASR system used to transcript beatbox was trained
with the Kaldi speech recognition toolkit [9], widely used in
ASR. Several acoustic models were trained on the recorded
database :

• different sizes of markov models : the hypothesis is
that complex boxemes are difficult to represent with 3-
states HMMs that are widely used in automatic speech
recognition.

• different resolutions of Mel Frequency Cepstral Co-
efficient (MFCC) parameters : Features are based on
MFCC acoustic features. They are based on human
peripheral auditory system [14] and are widely used
in ASR.

We focused on monophone-type models. Indeed, the
collected corpus presents short pauses between sounds, which
suppresses coarticulation effects. A monophone model is an
acoustic model that does not include any contextual infor-
mation about the preceding or following phone. In classic
ASR systems, monophones are used as building block for
the triphone models, which do make use of contextual infor-
mation.

In the present work, each boxeme was associated with
an entry in the lexicon. In addition, each entry was associ-
ated with a HMM. However, as the amounts of data were too
small, a speaker adaptation system was not set up.

Another aim of our study was to link Vocal-Grammatics
pictographic writing and our beatbox recognition system.
Vocal-Grammatics vocabulary is composed of glyphs. The
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glyphs were transcripted to text using an analogy with artic-
ulatory phonetics. That is how Figure 1 can be described as
a "bilabial plosive". Corpus annotation was based on these
textual transcriptions. Reversely, the textual transcriptions
can be converted back to glyphs as the output of the beatbox
sound recognition system.
2.3. Evaluation Methods

The beatbox-VG2019 corpus was split into two parts.
Recordings for the five microphones used simultaneously
constituted a first subset. A second subset was constituted
with acoustic output of beta microphone. Indeed, the latter
was recorded separately from the other microphones in a ses-
sion on its own, and the microphone grip peculiar to closed-
cup technique (covering the cupwith one or two hands)meant
a very different acoustic result for each boxeme (see an illus-
tration in Figure 3).

The performances of the recognition system were eval-
uated by computing a boxeme error rate (BER). Such eval-
uation metric is inspired from the word error rate (WER),
main metric applied to ASR evaluation. It is calculated as
the total number of error cases (summation of number of
substitutions, insertions and deletions) divided by the num-
ber of boxemes in the reference. The better the recognition,
the lower the BER value.

A second evaluationmetric, the correct boxeme rate (CBR),
was used to rate well-recognized boxemes. It is calculated
as the total number of well-recognized boxemes divided by
the number of boxemes in the reference.
2.3.1. Recognition robustness and Recording Settings

Thismain subset with fivemicrophoneswas used to eval-
uate the robustness of recognition according to acoustic record-
ing conditions (variability in microphone placement and mi-
crophone sensitivity). We aimed to classify the microphones
from the less efficient to the most efficient one, and to see
whether the use of one of them could really degrade the
recognition results. For each microphone, recordings were
split into two sets : a train set (with 6 repetitions per boxeme)
and a test set (with 7 repetitions per boxeme on average).
Both sets are detailed in Table 2.

Then, several configurations of the beatbox recognition
system were trained for the purpose of testing different pa-
rameters. First, we conducted a comparison on the type of
features, namely MFCC, PLP and Fbank. This comparison
(see Table 5 in the results part) lead us to select MFCC fea-
tures for our system. Additional parameters were then varied
: i) the number of HMM states, ii) the number of MFCC, iii)
the presence or not of a pause boxeme in right and left con-
texts in the lexicon and iv) the rate of silence probability. A
default configuration as proposed by Kaldi system was cho-
sen : 13 MFCC, 3 HMM states, no pause, 0.5 silence prob-
ability rate. For varying the number of MFCC, the choice
was based on [8], who found their best results for 22 MFCC
parameters. The following configurations of the recognition
system were tested :

• Features experiment : 3 HMM states, 13 MFCC or

Raw train set
microphone number of

boxemes
repetitions
per box-
eme

recording
time

ambia 810 6 00:15:18
braun 810 6 00:15:15
tie 804 6 00:15:16
sm58l 810 6 00:15:19
sm58p 810 6 00:15:21

Raw test set
microphone number of

boxemes
avarage
repeti-
tions per
boxeme

recording
time

ambia 952 7 00:19:10
braun 952 7 00:19:08
tie 948 7 00:18:39
sm58l 952 7 00:18:56
sm58p 952 7 00:18:51

Table 2
Details for train and test sets for assessing recognition robust-
ness to acoustic recording conditions (five microphones)

13 PLP or 40 FBANK parameters + delta + cmvn , 0.5
silence probability, no pause boxeme in the lexicon ;

• Configuration A : 3 HMM states, 13 MFCC parame-
ters + delta + cmvn , 0.5 silence probability, no pause
boxeme in the lexicon ;

• Configuration B : 3 HMM states, 13 MFCC parame-
ters + delta + cmvn, 0.8 silence probability, addition
of a pause boxeme in the lexicon;

• Configuration C : same as B configuration, yet with
22 MFCC parameters;

• Configuration D : same as B configuration, yet with
5 HMM states.

The number of Gaussians was 1000 for 3-HMM config-
urations and 1500 for 5-HMM configuration.

Table 2 shows that more than 4000 independent sounds
were recorded for train and test. However, various problems
were encountered : artifacts, noisy sounds, mispronounced
sounds,... We therefore manually filtered out problematic
sounds to clean the corpus. Only the correctly-pronounced
boxemes were kept, as given in Table 3. The choice of us-
ing the five microphones for the training was based upon the
results of microphone performance testing.

The lexicon of a speech recognition system associates a
word to its phonetic transcription : ’word : phonetic_trans-
cription’. In our approach, boxemes take both the place of
words and phonemes. The pause boxemewe sometimes added,
depending on the system configuration, transforms the lexi-
con this way : ’boxeme : pause boxeme pause’. This pause
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Mic. Config. num. of
boxemes

rep. per
boxeme

recording
time

Train set
ambia,
braun,
tie,
sm58l,
sm58p

A,B,C,D 1344 2 00:26:11

Test set
sm58p A,B,C,D 542 4 00:09:51

Table 3
Details of train and test sets for decodings with different con-
figurations of the system

is present in the lexicon only. It is not found in the manual
transcription of the train and test corpora, so it does not ap-
pear in the decoding hypothesis. Therefore, the denominator
value of BER is the same for all configurations.
2.3.2. Recognition Evaluation for Closed-cup

Technique
The closed-cup technique is widely used by beatboxers

on stage. We aimed at checking the recognition efficiency of
a training and decoding with such particular sounds which
have stronger low frequencies. The details of train and test
sets for beta microphone are given in Table 4. First, the A
configuration was experimented with no pause in the lexi-
con. Silence probability, number of HMM states and MFCC
parameters were set to Kaldi’s default. Then, the configura-
tion in 2.3.1 that gave the best results was chosen to check
whether our best configuration for the decoding of the SM58p
microphone would also improve the results for beta one.

Microphone num. of
boxemes

repetitions
per box-
eme

recording
time

Train set
beta 810 6 00:15:07

Test set
beta 968 7 00:19:14

Table 4
Details of train and test sets for beta microphone

3. Results
3.1. Recognition Robustness for Training with

5-microphones Sub-corpus
Figures 5 to 7 give BER for decoding performances in

the case of a training with all recordings of the five micro-
phones (see Table 2). The "goal" line on horizontal axis
represents our objective to obtain a 10% BER or less, set to
guarantee an interesting use of our system by a beatboxers’
audience.

Figure 5 shows the performances in decoding for the five
microphones with monophone acoustic models. BER val-
ues were found to be high for all microphones, meaning low
recognition performances. Similar BER were computed for
ambia, tie microphone and sm58 ones, either placed close
(sm58p) or far (sm58l) from the beatboxer’s mouth : respec-
tively 53.93%, 51.63%, 54.46% and 50.68%. Worse recogni-
tion rates with highest BER were found for recordings with
braun microphone, a condenser microphone with pop-up fil-
ter, leading to a 67.47% BER.
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Figure 5: BER obtained with monophone acoustic models for
the five microphones

Selecting the sm58p microphone for test set (Table 3),
we first tested three different types of acoustic features (MFCC,
PLP and Fbank), before exploring different configurations of
the beatbox recognition system.

Table 5 shows the results for MFCC, PLP and Fbank
features. We observe that MFCC features outperform other
ones. PLP features demonstrate a slightly lower recognition
quality thanMFCC, as already found by [8]. As far as Fbank
parameters are concerned, the results aremore surprising be-
cause they do not seem adapted to the beatbox. We experi-
mented with several numbers of filters (30, 40 and 60) and
the best scores are obtained with 40 filters, but the recogni-
tion rates remain poor. We assume that there is less covari-
ance between MFCC coefficients than between Fbank out-
puts : that is important to fit a Gaussian probability density
function to the data. Moreover, Fbanks are more efficient
when used with neural models, learned from larger amounts
of data.

MFCC PLP FBANK
CBR 81.55% 71.96% 59.03%
BER 22.88% 33.58% 42.23%

Table 5
Comparison of MFCC, PLP and Fbank features

Then, the four configurations described in Section 2.3.1
were explored. First, silence probability ratewas varied from
0.5 (Kaldi’s default) to 0.9 with a step set to 0.1. As the si-
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lence probability rate had to be lower than 1, the limit of 0.99
was also tested. Figure 6 shows the evolution of BER results
as a function of silence probability, with (red square mark-
ers) or without (blue circle markers) adding a pause boxeme
in the lexicon (configuration B).

0.5 0.6 0.7 0.8 0.9 0.99
0

20

40

goal

20

30

40

Silence probability

B
E
R
in

%

without pause
with pause

Figure 6: Evolution of BER as a function of silence probability,
with or without addition of a pause boxeme in lexicon

With no pause boxeme in lexicon, the greater the silence
probability, the lower the BER. A silence probability rate of
0.9 gave the lowest BER of 26,94%.

When adding a pause boxeme to the lexicon (as men-
tioned in Configurations B, C and D), improvements were
obtained with best results for a silence probability rate of 0.8.
The BER value was lowered down to 17.16% (configuration
B).

Figure 7 shows the recognition results in terms of BER
for the four considered configurations. Our best model was
achieved for the configuration C, with a BER of 13.65%.
Configurations B and D demonstrated slightly worse results
with a BER of 17.16% and 15.13% respectively.

A B C D
0
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Figure 7: Evolution of the BER for A, B, C and D configura-
tions

A : 3-HMM + mfcc / B: prob. silence=0.8 + pause /
C: B + MFCC=22 / D: B + HMM states=5

So as to better understand the system capabilities, Ta-
ble 6 provides details about substitutions, insertions, dele-
tions and correct boxeme rates. It shows that each change in
parametrisation was beneficial for substitutions, insertions,

deletions and correct boxeme rates as it lowered them. The
most obvious benefitwas obtained for the insertion ratewhich
came close to zero for B, C and D configurations. The 22
MFCCparameters in configurationC appeared to be themost
beneficial to substitution rate, as errors dropped to 9.78%.
Correct boxeme rate reached its highest value of 86.53%with
configurationC,meaning that 8.6 boxemes over 10werewell
recognized.

A B C D
Substitutions 14.58% 12.18% 9.78% 11.25%
Insertions 4.43% 0.74% 0.18% 0.37%
Deletion 3.87% 4.24% 3.69% 3.51%
CBR 81.55% 83.58% 86.53% 85.24%
BER 22.88% 17.16% 13.65% 15.13%

Table 6
Percentage of insertions, substitutions and deletions in box-
emes’ recognition for configurations A, B, C,D, together with
corresponding Correct Boxeme Rate (CBR) and Boxeme Error
Rate (BER)
A : default, B: 0.8 silence probability + pause, C: B + 22
MFCC, D: B + 5 HMM

3.2. Recognition Robustness for Training with
Beta-microphone Sub-corpus

Training and decoding done on beta-recordings sub-corpus
with configuration A gave a poor recognition performance
with a BER of 70.79% (see Figure 8). We then selected
the configuration C that gave us the best results on the five-
microphone sub-corpus. A BER of 38.91% was obtained
with this configuration, which is 1.8 times lower.

A C
0

20

40
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80

goal
20

40

60

80

B
E
R
in

%
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Figure 8: BER values for beta microphone and configuration
A and C

Table 7 gives detailed results for insertions, substitutions,
deletions, and CBR/BER rates for these two configurations
A and C. Similarly to the observed decrease obtained for the
number of insertions for the decodings on the SM58p, there
was a great improvement of 9.18% reflected on BER. The
number of substitutions is also greatly reduced as it low-
ers from 45.92% to 23.12%, leading to a 22.8 BER points
drop. The CBR indicates that 6.6 words over 10 are well
recognized, which is still less than for the previous tests with
sm58p microphone.
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A C
Substitutions 45.92% 23.12%
Insertions 14.65% 5.47%
Deletion 10.22% 10.32%
CBR 43.86% 66.56%
BER 70.79% 38.91%

Table 7
Percentage of insertions, substitutions, deletions, Correct Box-
eme Rate (CBR) and BER (Boxeme Error Rate) for A and C
configurations on beta microphone

4. Discussion
Our results demonstrate the feasibility of using a speech-

dedicated recognition system to decode human-beatbox sounds.
Our bestmodel achieved a 13.65%BER (BoxemeError Rate)
and 86.53% CBR (Correct Boxeme Rate), meaning that 8.6
boxemes over 10 are well recognized. These results allow
an interesting use of our system for artistic purposes.

With parameters set to no pause in the lexicon, 0.5 si-
lence probability, 3 HMM states and 13 MFCC, our system
performed a 22.88% BER. We also tested PLP and Fbank
features, but they proved to be worse than MFCC. The addi-
tion of a pause in the lexicon and the increase of silence prob-
ability rate appeared to be very helpful for isolated sounds
recognition, giving a 17.16% BER which is much less than
the default system. This could be explained by the fact that
speech recognition has evolved and that decoding full sen-
tences is now the focus of attention. Being a state-of-the-art
toolbox, Kaldi is configured for sentence recognition, and
not for isolated words. This is why the addition of a pause
in the lexicon and the increase of silence probability helped
the system to decode better. By doing so, we intensified the
fact that we are working on isolated sounds recognition. The
improvement being significant, we chose to make this ver-
sion of our system a basis for the tests on the number of
MFCC and HMM states. As for the other parameters, we
observed a slight improvement among our different config-
urations when the resolution of MFCC is increased. This
gave us our best model, with a 13.65% BER. Improvement
from default configuration is smaller when the number of
HMM states is increased, giving a 15.13% BER. Increasing
the MFCC resolution may allow us to capture more finely
beatbox-specific signal elements. We thought that increas-
ing the number of HMM states would have a greater impact.
Overall, we see that increasing the number of states some-
times degrades the results and improves them in other places.
It means that the HMM topology might need to be adapted
to beatbox sound types, with 3 states for short sounds and 5
states for more complex ones. Another hypothesis about this
result is simply that the amount of data is too small to result
in a larger number of states. This will be analyzed in further
studies.

Recording settings did not impact much the recognition
capabilities of the system. One microphone, Brauner VM1,
provided worse results than the other condenser microphone

in our test (DPA 4060). As shown in Figure 3, its acous-
tic signature differed much from the other ones for the same
boxeme. Additional pop filter may be a reason for such dif-
ference. Indeed, plosive beatbox sounds are produced with
strong bursts. The pop filter is supposed to soften them. If
we compare the number of substitutions and deletions for
plosive boxemes in the results of braun and sm58p testing
performances (see table 8), brauner microphone seems to
perform slightly worse on those sounds. But if we do the
ratio, we see that no conclusion can be drawn. Indeed, the
two microphones have the same error rate on those sounds.

Substitutions rate Deletions rate
brauner 200/361 55% 68/182 37%
sm58p 173/322 53% 26/81 32%

Table 8
Plosive boxeme substitutions and deletions comparison be-
tween brauner and sm58p

Finally, the Shure beta 58 gave bad results especially
when used with a default configuration of the system. We
assume that it is independent of the type of microphone,
but that it may be due to how this microphone is held. The
closed-cup technique may affect the performances of the mi-
crophone. This technique emphasizes low frequencies, which
may not be optimal for recognition purpose. Nevertheless,
we could observe a much better BER rate when the beta mi-
crophone recordings were decoded with the C configuration
of our system.

5. Conclusion and Perspectives
Our system demonstrates the possibility of using a speech-

dedicated recognition system to recognize human-beatbox
sounds. 80 classes were discriminated. To the best of our
knowledge, we present the first system able to differentiate
such an amount of beatbox sound classes.

So far, our best model was obtained with an increase of
the silence probability (0.8 instead of 0.5), a silent boxeme
’pause’ being added in right and left contexts in the lexicon,
3 HMM states and 22 MFCC parameters instead of 13. The
best obtained BER is 13.65% which appears to be close to
our goal of 10%, set for an interesting use of our system by
beatboxers during their performances. The CBR indicates
that 8.6 boxemes over 10 are well recognized which is quite
satisfactory for demonstration purposes. We assume that di-
viding the corpus depending on boxeme sound duration and
adapting the number of HMM states could improve the sys-
tem, with 3-states HMM applied to short sounds and 5-states
HMM to longer ones.

The recording settings, in particular different types of
microphone, did not seem to have any influence on the sys-
tem performance. The difference in efficiency seems to de-
pend more on their use (with or without closed-cup tech-
nique, with or without a pop filter) than on the type of mi-
crophone or on their distance to the mouth. Poor results ob-
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tainedwith closed-cup recordings, yet commonly used in hu-
man beatboxing, call for further studies.

Our corpus is composed of simple and complex sounds.
Dividing each sound in smaller chunks, as it is done for lan-
guages with phonemes or syllables, is also a perspective.
Indeed, as the corpus vocabulary increases, the memory is
more and more in demand with word-based speech recog-
nition. Having a boxeme-based model would decrease the
number of models needed by the system and enable the treat-
ment of coarticulation. By doing so, our term boxeme would
be a real inspiration of the speech phoneme andwould be dis-
tinguishable from the word level which could be composed
of many boxemes.

Also, there are still rhythmic sequences recognition to
explore. For that purpose, a language model would have to
be trained in order to help the system determine the strong
probability or not of a row of boxemes. Co-articulationwould
be studied too. However, we would have to record another
corpus with much more beatboxers to have a real represen-
tation of the ’beatboxing language’. Only male beatboxers
were used for the training set. In order to improve the ro-
bustness of the recognition system and its applicability to all
genders, female beatboxers should be recorded and added to
training corpus.

In terms of more technical perspectives, once we have a
larger corpus, we plan to use beatbox recognition methods
based on newer technologies, such as deep neural networks.
These technologies have made great progress in many areas,
but require relatively large amounts of data. One possibility
would be to make artificial data augmentation [6] such as in
automatic speech recognition. We would also like to explore
multimodal approaches, where sensors related to the beat-
boxer’s breathing would complement the automatic beatbox
recognition system.
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