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Abstract In this paper, we propose proximal splitting-type algorithms for sampling from distributions whose densities
are not necessarily smooth nor log-concave. Our approach brings together tools from, on the one hand, variational analysis
and non-smooth optimization, and on the other hand, stochastic diffusion equations, and in particular the Langevin diffu-
sion. We establish in particular consistency guarantees of our algorithms seen as discretization schemes in this context.
These algorithms are then applied to compute the exponentially weighted aggregates for regression problems involving
non-smooth penalties that are commonly used to promote some notion of simplicity/complexity. Some popular penalties
are detailed and implemented on some numerical experiments.

Keywords Langevin diffusion ·Monte-Carlo · Non-smooth distributions · Proximal splitting · Exponentially Weighted
aggregation

1 Introduction

1.1 Problem statement

We consider the linear regression problem

y = Xθ0 + ζ, (1)

where y ∈ Rn is the vector of observations, X ∈ Rn×p is the design matrix, ζ is the vector of errors, and θ0 ∈ Rp is
the unknown regression vector we wish to estimate. X ∈ Rn×p can be seen as the sensing or degradation operator in
inverse problems raising in, e.g., signal and image processing, or the design matrix for a regression problem in statistics
and machine learning. Generally, problem (1) is either under-determined (p > n), or determined (p = n) but X is
ill-conditioned. In both cases, (1) is ill-posed.

The idea of aggregating elements in a dictionary has been introduced in machine learning to combine different
techniques (see (Vovk, 1990; Littlestone and Warmuth, 1994)) with some procedures such as bagging (Breiman, 1996),
boosting (Freund, 1995; Schapire, 1990) and random forests (Amit and Geman, 1997; Breiman, 2001; Biau et al, 2008;
Biau and Devroye, 2010; Genuer, 2010; Biau, 2012). In the recent years, there has been a flurry of research on the use
of low-complexity regularization/penalties (among which sparsity and low-rank are the most popular) in various areas
including statistics and machine learning in high dimension.The idea is to promote vectors θ0 that conform to some notion
of simplicity. Namely, it has either a simple structure or a small intrinsic dimension. This makes it possible to build an
estimate Xθ̂ with good provable performance guarantees under appropriate conditions. In literature, two families of
estimators have been considered in this context: Penalized Estimators and Exponentially Weighted Aggregates (EWA).
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1.2 Variational/Penalized Estimators

This class of estimators are obtained by solving the optimization problem

θ̂
PEN
n ∈ Argmin

θ∈Rp

{
V (θ)

def
= F (Xθ,y) + Jλ(θ)

}
, (2)

where F : Rn×Rn → R is a general loss function assumed to be differentiable, Jλ : Rp → R is the regularizing penalty
promoting some specific notion of simplicity/low-complexity which depends on a vector of parameters λ. Regularization
is now a central theme in many fields including statistics, machine learning and inverse problems. A prominent member
covered by (2) is the Lasso (Chen et al, 1999; Tibshirani, 1996; Osborne et al, 2000; Donoho, 2006; Candès and Plan,
2009; Bickel et al, 2009; Bühlmann and van de Geer, 2011) and its variants such the analysis/fused Lasso (Rudin et al,
1992a; Tibshirani et al, 2005) or group Lasso (Bakin, 1999; Yuan and Lin, 2006; Bach, 2008; Wei and Huang, 2010;
Chesneau and Hebiri, 2008). Another example is the nuclear norm minimization for low rank matrix recovery motivated
by various applications including robust PCA, phase retrieval, control and computer vision (Recht et al, 2010; Candès
and Recht, 2009; Fazel et al, 2001; Candès et al, 2013). See (Negahban et al, 2012; Bühlmann and van de Geer, 2011;
van de Geer, 2014; Vaiter et al, 2015b) for generalizations and comprehensive reviews.

1.3 Exponential Weighted Aggregation (EWA)

An alternative to the variational estimator (2) is the aggregation by exponential weighting which combines all of candidate
solutions with the aggregators promoting the prior information. The aggregators are defined via a probability distribution
supported on Θ ⊂ Rp, having the density with respect to the Lebesgue measure

µ̂(θ) =
exp (−V (θ)/β)∫

Θ
exp (−V (ξ)/β)dξ

, (3)

where β > 0 is the temperature parameter, and V defined in (2) is supposed to be a measurable function such that∫
Θ

exp (−V (ξ)/β)dξ < +∞. Typically V should grow sufficiently fast for the latter to hold (this will be made precise
later). If all θ are candidates to estimate the true vector θ0, then Θ = Rp. The aggregate is thus defined by

θ̂
EWA
n =

∫
Rp
θµ̂(θ)dθ. (4)

Aggregation by exponential weighting has been widely considered in the statistical and machine learning literatures, see
e.g. (Dalalyan and Tsybakov, 2007, 2008, 2009, 2012; Nemirovski, 2000; Yang, 2004; Rigollet and Tsybakov, 2007;
Lecué, 2007; Guedj and Alquier, 2013; Duy Luu et al, 2016) to name a few.

1.4 The Langevin diffusion

In this paper, we focus on the computation of EWA. Computing θ̂
EWA
n in (4) corresponds to an integration problem

which becomes very involved to solve analytically or even numerically in high-dimension. A classical alternative is to
approximate it via a Markov chain Monte-Carlo (MCMC) method which consists in sampling from µ̂ by constructing an
appropriate Markov chain whose stationary distribution is µ̂, and to compute sample path averages based on the output
of the Markov chain. The theory of MCMC methods is based on that of Markov chains on continuous state space. As
in (Dalalyan and Tsybakov, 2012), we here use the Langevin diffusion process; see (Roberts and Tweedie, 1996). Note
that there are other Monte Carlo approaches to compute estimators such as θ̂

EWA
n , see for example the recent survey

paper (Pereyra et al, 2016) and references therein.

Continuous dynamics A Langevin diffusion L in Rp, p ≥ 1 is a homogeneous Markov process defined by the stochastic
differential equation (SDE)

dL(t) =
1

2
ρ(L(t))dt+ dW (t), t > 0, L(0) = l0, (5)

where ρ = ∇ log µ, µ is everywhere non-zero and suitably smooth target density function on Rp,W is a p-dimensional
Brownian process and l0 ∈ Rp is the initial value. Under mild assumptions, the SDE (5) has a unique strong solution and,
L(t) has a stationary distribution with density precisely µ (Roberts and Tweedie, 1996, Theorem 2.1). L(t) is therefore
interesting for sampling from µ. In particular, this opens the door to approximating integrals

∫
Rp f(θ)µ(θ)dθ, where

f : Rp → R, by the average value of a Langevin diffusion, i.e., 1
T

∫ T
0
f(L(t))dt for a large enough T . Under additional

assumptions on µ, the expected squared error of the approximation can be controlled (Xuerong, 2007).
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Forward Euler discretization In practice, in simulating the diffusion sample path, we cannot follow exactly the dynamic
defined by the SDE (5). Instead, we must discretize it. A popular discretization is given by the forward (Euler) scheme,
which reads

Lk+1 = Lk +
δ

2
ρ(Lk) +

√
δZk, t > 0, L0 = l0,

where δ > 0 is a sufficiently small constant discretization step-size and {Zk}k are iid ∼ N (0, Ip). The average value
1
T

∫ T
0
L(t)dt can then be naturally approximated via the Riemann sum

δ

T

∑bT/δc−1
k=0 Lk, (6)

where bT/δc denotes the integer part of T/δ. It is then natural to approximate θ̂
EWA
n by applying this discretization

strategy to the Langevin diffusion with µ as the target density. However, quantitative consistency guarantees of this dis-
cretization require µ (hence ρ) to be sufficiently smooth. For a comprehensive review of sampling by Langevin diffusion
from smooth and log-concave densities, we refer the reader to e.g. (Dalalyan, 2014).

1.5 Contributions and relation to prior work

Our main goal in this paper is to propose a provably consistent estimator of EWA by efficiently sampling from a distri-
bution with the density µ̂ in (3), where V is given in (2), and the latter is not necessarily smooth nor convex. In (Pereyra,
2016; Durmus et al, 2016), the authors proposed proximal-type algorithms to sample from non-smooth log-concave
densities µ using the forward Euler discretization applied to a smooth version of µ involving the Moreau-Yosida reg-
ularization/envelope; see Definition 2. In (Pereyra, 2016), − log µ is replaced with its Moreau envelope. However, the
author applied it to problems where − log µ = L + H assuming the Moreau envelope of this sum is available. But the
gradient of the Moreau envelope of a sum, which amounts to computing the proximity operator of − log µ does not have
an easily implementable expression even if those of L and H do. He then suggested an approximation reminiscent of the
forward-backward splitting strategy that we propose, albeit without consistency guarantees. In (Durmus et al, 2016), it
is assumed that − log µ = L + H , L is convex Lipschitz continuously differentiable, and H is a proper closed convex
function replaced by its Moreau envelope. The authors then derived non-asymptotic bounds on the mixing time of the
Markov chain Lk in total variation with a markedly different dependence of these bounds on the dimension. Proximal
steps within MCMC methods have been proposed for some simple (convex) signal processing problems (Chaari et al,
2014), though without any guarantees.
In all these works, however, convexity is of paramount importance, for instance to get non-asymptotic bounds with poly-
nomial dependence on the dimension. We here propose to cope with both the lack of smoothness and convexity at the
same time, which allows to cover distributions that are beyond the current state of the art as covered in (Dalalyan and Tsy-
bakov, 2012; Pereyra, 2016; Durmus and Moulines, 2015; Durmus et al, 2016). One of our key tools is the Moreau-Yosida
regularization/envelope, but extended to the non-convex setting, which necessitate to invoke arguments from variational
analysis. We first show in Proposition 1 that under mild assumptions, the smoothed distribution is well-defined and con-
verges in total variation to the distribution µ. We also show in Proposition 3 that the Langevin diffusion based on the
smoothed density is well-posed. We then turn to discretizing such an SDE. We describe two approaches in Section 4
that yield two fast and easy to implement algorithms that are reminiscent of the forward-backward proximal splitting
popular in non-smooth optimization. For these algorithms, we prove in Theorem 1 theoretical consistency guarantees by
showing convergence of the ergodic average to the EWA. However, given that we do not assume not even log-concavity,
proving non-asymptotic bounds on convergence of the distribution of Lk to its stationary distribution as in (Durmus
et al, 2016), is far more challenging. We believe it is an important direction to pursue that we leave to a future work. We
finally exemplify our proposed algorithms to compute EWA estimators with several popular penalties in the literature,
and illustrate their performance on some numerical problems.

1.6 Paper organization

Some preliminaries, definitions and notations are introduced in Section 2. Section 3 establishes key properties of a
Moreau-Yosida regularized version of µ under mild assumptions of the latter. In turn we will consider the SDE (5) with
such a smoothed density. Well-posedness of this SDE and consistency guarantees for its discrete approximations are
proven in Section 4. Section 5 provides a large class of functions, namely prox-regular functions, for which the previous
theoretical analysis applies. From this analysis, two algorithms are derived in Section 6 and applied in Section 7 to
compute the EWA estimator with several penalties. The numerical experiments are described in Section 8. The proofs of
all results are collected in Section 9.
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2 Notations and Preliminaries

Before proceeding, let us introduce some notations and definitions.

Vectors and matrices For a d-dimensional Euclidean space Rd, we endow it with its usual inner product 〈·, ·〉 and as-
sociated norm ‖·‖2. Id is the identity matrix on Rd. For r ≥ 1, ‖·‖r will denote the `r norm of a vector with the usual
adaptation for r = +∞.

Let M ∈ Rd×d symmetric positive definite, we denote 〈·, ·〉M = 〈·,M ·〉 and ‖·‖M its associated norm. For a
matrix M , we denote σmin(M) its smallest singular value and |||M ||| its spectral norm. Of course, ‖·‖M and ‖·‖2 are
equivalent.

Let x ∈ Rd and the subset of indices I ⊂ {1, . . . , d}. We denote xI the subvector whose entries are those of x
indexed by I. For any matrixM ,M> denotes its transpose.

Sets For a set C, denote IC its characteristic function, i.e., 1 if the argument is in C and 0 otherwise, and ιC its indicator
function, i.e., 0 if the argument is in C and +∞ otherwise. For an index set I,

∣∣I∣∣ is its cardinality.

Functions We will denote (·)+ = max(·, 0) the positive part of a real number. For a function f : Rd → R∪{−∞,+∞},
its effective domain is dom(f) =

{
x ∈ Rd : f(x) < +∞

}
and f is proper if f(x) > −∞ for all x and dom(f) 6= ∅

as is the case when it is finite-valued. A function f : Rd → R ∪ {−∞,+∞} is lower semi continuous (lsc) at x0 if
lim infx→x0 f(x) ≥ f(x0). A function f : Rd → R ∪ {+∞} is level-coercive if it is bounded below on bounded sets
and satisfies

lim inf
‖x‖2→+∞

f(x)

‖x‖2
> 0.

For a differentiable function f , ∇f is its (Euclidean) gradient. Define C1,+(Rd) (resp. C1,1(Rd)) the set of differ-
entiable functions in Rd whose gradient is locally (resp. globally) Lipschitz continuous. We also define C̃1,+(Rd) def

={
f ∈ C1,+(Rd) : ∃K > 0, ∀x ∈ Rd, 〈x,∇f(x)〉 ≤ K(1 + ‖x‖22)

}
. The following lemma shows that C1,1(Rd) ⊂

C̃1,+(Rd).

Lemma 1 Assume that f : Rd → Rd is Lipschitz continuous, then there exists K > 0 such that

〈f(x),x〉 ≤ K(1 + ‖x‖22), ∀x ∈ Rd.

Let us also consider some definitions and properties of variational analysis. A more comprehensive account on vari-
ational analysis in finite-dimensional Eudlidean spaces can be found in (Rockafellar and Wets, 1998).

Definition 1 (Subdifferential) Given a point x ∈ Rd where a function f : Rd → R∪{+∞} is finite, the subdifferential
of f at x is defined as

∂f(x) =
{
v ∈ Rd : ∃xk → x, f(xk)→ f(x),v ← vk ∈ ∂F f(xk)

}
,

where the Fréchet subdifferential ∂F f(x) of f at x, is the set of vectors v such that

f(w) ≥ f(x) + 〈v,w − x〉+ o
(∥∥w − x∥∥

2

)
.

We say that f is subdifferentially regular at x if and only if f is locally lsc there with ∂f(x) = ∂F f(x).

Let us note that ∂f(x) and ∂F f(x) are closed, with ∂F f(x) convex and ∂F f(x) ⊂ ∂f(x) (Rockafellar and Wets, 1998,
Theorem 8.6). In particular, if f is a proper lsc convex function, ∂F f(x) = ∂f(x) and f is subdifferentially regular at
any point x where ∂f(x) 6= ∅.

Definition 2 (Proximal mapping and Moreau envelope) LetM ∈ Rd×d symmetric positive definite. For a proper lsc
function f and γ > 0, the proximal mapping and Moreau envelope in the metricM are defined respectively by

proxMγf (x)
def
= Argmin

w∈Rd

{
1

2γ

∥∥w − x∥∥2

M
+ f(w)

}
,

M ,γf(x)
def
= inf
w∈Rd

{
1

2γ

∥∥w − x∥∥2

M
+ f(w)

}
,

proxMγf here is a set-valued operator since the minimizer, if it exists, is not necessarily unique. WhenM = Ip, we simply
write proxγf and γf .
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Operators For a set-valued operator S : Rd ⇒ Rd, its graph is gph(S) =
{

(x,v) : v ∈ S(x)
}

.

Definition 3 (Hypomonotone and monotone operators) A set-valued operator S : Rd ⇒ Rd is hypomonotone of
modulus r > 0 if 〈

x′ − x,v′ − v
〉
≥ −r

∥∥x′ − x∥∥2

2
, ∀(x,v) ∈ gph(S), (x′,v′) ∈ gph(S).

It is monotone if the inequality holds with r = 0.

3 Moreau-Yosida regularization

In our framework, the target density µ is defined as

µ(θ) = Z−1 exp
(
−
(
L(θ) +H ◦D>(θ)

))
, (7)

where L ∈ C̃1,+(Rp), D ∈ Rp×q and H : Rq → R, and Z =
∫
Rp exp

(
−(L(ξ) +H ◦D>(ξ))

)
dξ is the partition

function.
Moreover,H is assumed neither differentiable nor convex. To overcome these difficulties, we invoke arguments from

variational analysis (Rockafellar and Wets, 1998). Namely, we will replace H by its Moreau envelope and state the
following assumptions to exploit some key properties of the latter. To avoid trivialities, from now on, we assume that
Argmin(H) 6= ∅.

(H.1) H : Rq → R is lsc and bounded from below.
(H.2) proxMγH is single valued.
(H.3) Either one of the following holds:

(a) L is bounded below, H is level-coercive andD is surjective.
(b) L+H ◦D> is level-coercive and H is Lipschitz continuous.

As we will see shortly in Proposition 1, assumption (H.3) is crucial to ensure that Z < +∞ and that the densities µ
and µγ (see (8)) are well-defined.

Let us start with some key properties of the Moreau envelope.

Lemma 2 LetM ∈ Rq×q depending on γ ∈]0, γ0[ with γ0 > 0, we denote itMγ , such thatMγ is symmetric positive
definite for any γ ∈]0, γ0[, and γ 7→

∥∥θ∥∥
Mγ

, ∀θ ∈ Rq , is a decreasing mapping on ]0, γ0[. Assume that (H.1) holds.

(i) prox
Mγ

γH (x) are non-empty compact sets for any x, and

x ∈ Argmin(H)⇒ x ∈ prox
Mγ

γH (x).

(ii) Mγ ,γH(θ) is finite and depends continuously on (x, γ) ∈ Rq×]0, γ0[, and
(
Mγ ,γH(x)

)
γ∈]0,γ0[

is a decreasing

net. More precisely,
Mγ ,γH(x)↗ H(x) for all x as γ ↘ 0.

The fixed points of this proximal mapping include minimizers of H . They are not equal however in general, unless
for instance H is convex.

Lemma 3 LetMγ ∈ Rq×q symmetric positive definite, assume that (H.1) and (H.2) hold. Then prox
Mγ

γH is continuous
on (x, γ) ∈ Rq×]0, γ0[, and Mγ ,γH ∈ C1(Rq) with gradient

∇Mγ ,γH = γ−1Mγ

(
Iq − prox

Mγ

γH

)
.

In plain words, Lemma 3 tells us that under (H.1)-(H.2), the Moreau envelope is a smooth function, hence the name
Moreau-Yosida regularization. Moreover, the action of the operator prox

Mγ

γH is equivalent to a gradient descent on the
Moreau envelope of H in the metricMγ with step-size γ.

Remark 1 When the metric matrix does not depend on γ, Lemmas 2 and 3 hold with γ0 = +∞.
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Let us now define the smoothed density

µγ(θ) = Z−1
γ exp

(
−
(
L(θ) + (M ,γH) ◦D>(θ)

))
, (8)

where

Zγ =

∫
Rp

exp
(
−
(
L(ξ) + (M ,γH) ◦D>(ξ)

))
dξ.

The following proposition answers the natural question on the behaviour of µγ − µ as a function of γ. Recall that for
two probability measures on Rd which have densities µ and ν with respect to the Lebesgue measure, the total variation
between them is defined as ∥∥µ− ν∥∥

TV
=

∫
Rd

∣∣µ(θ)− ν(θ)
∣∣dθ.

Proposition 1 Let γ > 0 and M be symmetric positive definite with σmin(M) > 0 uniformly in γ. Assume that (H.1)
and (H.3) hold. Then, Z,Zγ < +∞ uniformly in γ, and

∥∥µγ − µ∥∥TV
→ 0 as γ → 0.

4 Langevin diffusion with Moreau-Yosida regularization

Let us define the following SDE with the Moreau-Yosida regularized version of H

dL(t) = ψ(L(t))dt+ dW (t), t > 0,

where ψ : θ ∈ Rp 7→ −1

2
∇
(
L+ (M ,γH) ◦D>

)
(θ),

(9)

ψ is the drift coefficient.
Recall that (H.1) and (H.2) were mild assumptions required to establish key properties of Moreau-Yosida regulariza-

tion, which in turn allow computation of ∇M ,γH by exploiting the relation between ∇M ,γH and proxMγH as stated in
Lemma 3. Now, to guarantee well-posedness (existence and uniqueness) and discretization consistency of the SDE (9),
we will also need the following assumptions.

(H.4) proxMγH is locally Lipschitz continuous.
(H.5) There exists C > 0 such that

〈
D>θ,proxMγH(D>θ)

〉
M
≤ C(1 + ‖θ‖22), ∀θ ∈ Rp.

4.1 Well-posedness

We start with the following characterization of the drift ψ.

Proposition 2 Assume that (H.1), (H.2), (H.4) and (H.5) hold. Then,

〈ψ(θ),θ〉 ≤ K(1 + ‖θ‖22), for some K > 0, (10)

and

ψ is locally Lipschitz continuous. (11)

The following proposition guarantees the well-posedness of the SDE (9).

Proposition 3 Assume that (H.1)-(H.5) hold. Then, for every initial point L(0) such that E
[
‖L(0)‖22

]
<∞,

(i) there exists a unique solution to the SDE (9) which is strongly Markovian, and the diffusion is non-explosive, i.e.,
E
[
‖L(t)‖22

]
<∞ for all t > 0,

(ii) L admits an (unique) invariant measure having the density µγ in (8).

6



4.2 Discretization

4.2.1 Approach 1

Inserting the identities of Lemma 3 into (9), we get the SDE

dL(t) = −1

2

(
∇L+ γ−1DM

(
Iq − proxMγH

)
◦D>

)
(L(t))dt+ dW (t), L(0) = l0, t > 0. (12)

Consider now the forward Euler discretization of (12) with step-size δ > 0, which can be rearranged as

Lk+1 = Lk −
δ

2
∇L(Lk)− δ

2γ
DM

(
D>Lk − proxMγH(D>Lk)

)
+
√
δZk, t > 0, L0 = l0. (13)

Note that by Lemma 3, and without the stochastic term
√
δZk, (13) amounts to a relaxed form of gradient descent on L

and the Moreau envelope of H in the metricM with step-size δ.
From (13), an Euler approximate solution is defined as

Lδ(t)
def
= L0 −

1

2

∫ t

0

(
∇L(L(s))− γ−1DM

(
D>L(s)− proxMγH(D>L(s))

))
ds+

∫ t

0

dW (s),

whereL(t) = Lk for t ∈ [kδ, (k+1)δ[. Observe thatLδ(kδ) = L(kδ) = Lk, henceLδ(t) andL(t) are continuous-time
extensions to the discrete-time chain {Lk}k.

Mean square convergence of the pathwise approximation (13) and of its first-order moment can be established as
follows.

Theorem 1 Assume that (H.1)-(H.5) hold and E
[
‖L(0)‖r2

]
<∞ for any r ≥ 2. Then∥∥∥E[Lδ(T )

]
− E [L(T )]

∥∥∥
2
≤ E

[
sup

0≤t≤T

∥∥∥Lδ(t)−L(t)
∥∥∥

2

]
−→
δ→0

0. (14)

The convergence rate is of order δ1/2 when proxMγH is globally Lipschitz continuous.

4.2.2 Approach 2

Assume now that the metric also depends on γ ∈ (]0, γ0[ with γ0 > 0, and we emphasize this by denoting it Mγ .
We assume that Mγ is symmetric positive definite for any γ ∈]0, γ0[ with σmin(M) > 0 uniformly in γ, that for each
θ ∈ Rq , the mapping γ 7→

∥∥θ∥∥
Mγ

is decreasing on ]0, γ0[, and that Mγ →
γ→0

Iq (such a choice is motivated by the
scheme described in Section 6.1). One can consider an alternative version of the SDE (9), i.e.,

dL(t) = −1

2
∇
((
L+ (Mγ ,γH) ◦D>

)
◦Mγ

−1/2
)

(L(t))dt+Mγ
1/2dW (t), t > 0. (15)

Denote the drift coefficient of (15) by φ, we get that

〈φ(θ),θ〉 = 〈ψ(u),u〉,

whereu = Mγ
−1/2θ. Therefore, it is easily seen thatφ also satisfies (10) and (11) under assumptions (H.1), (H.2), (H.4)

and (H.5). Moreover, arguing exactly as in the proof of the first part of Proposition 1, (H.3) and that det(Mγ) →
γ→0

1

allow to show that
θ 7→ Z−1

γ exp
(
−
(
L+ (Mγ ,γH) ◦D>

)
◦Mγ

−1/2(θ)
)
, (16)

is a well-defined uniformly in γ, where Zγ =
√

det(Mγ)
∫
Rp exp

(
−
(
L+ (Mγ ,γH) ◦D>

)
(ξ)
)
dξ < +∞. In turn,

Proposition 3 applies to (15) to show that the diffusion L is unique, non explosive and admits an unique invariant mea-
sure whose density is precisely (16). In addition, applying again the same reasoning as in the proof of the last part of
Proposition 1, we also deduce that µγ converges to µ in total variation as γ → 0.

By the change of variable U(t) = Mγ
−1/2L(t), we get the following SDE

dU(t) = −1

2
Mγ

−1∇
(
L+ (Mγ ,γH) ◦D>

)
(U(t))dt+ dW (t), t > 0. (17)

In an analogous way to (13), the forward Euler discretization of (17) has a deterministic part which is a relaxed gradient
descent in the metricMγ

−1. In turn, mean square convergence of the Euler discretizations of both (15) and (17) and of
their first-order moments can be established exactly in the same way as in Theorem 1. We omit the details here for the
sake of brevity.
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5 Prox-regular penalties

We now present a large class of penalties, namely prox-regular functions, which satisfy the key assumptions (H.2) and
(H.4).

Roughly speaking, a lsc function f is prox-regular at x̄ ∈ dom(f) if it has a “local quadratic support” at x̄ for
all (x,v) ∈ gph(∂f) close enough to (x̄, v̄) ∈ gph(∂f) with f(x) nearby f(x̄). This is formalized in the following
definition.

Definition 4 (Prox-regularity) Let f : Rd → R∪ {+∞}, given a point x̄ ∈ dom(f). f is prox-regular at x̄ for v̄, with
v̄ ∈ ∂f(x̄) if f is locally lsc at x̄, there exist ε > 0 and r > 0 such that

f(x′) > f(x) + (x′ − x)>v − 1

2r

∥∥x′ − x∥∥2

2
,

when
∥∥x′ − x̄∥∥

2
< ε and

∥∥x − x̄∥∥
2
< ε with x′ 6= x and

∥∥f(x) − f(x̄)
∥∥

2
< ε while

∥∥v − v̄∥∥
2
< ε with v ∈ ∂f(x).

When this holds for all v̄ ∈ ∂f(x̄), f is said prox-regular at x̄. When f is prox-regular at every x ∈ dom(f), f is said
prox-regular.

Example 1 The class of prox-regular functions is large enough to include many of those used in statistics. For instance,
here examples where prox-regularity is fullfilled (see (Rockafellar and Wets, 1998, Chapter 13, Section F) and (Poliquin
et al, 2000)):
(i) Proper lsc convex functions.
(ii) Proper lsc lower-C2 (or semi-convex) functions, i.e., f is such that f + 1

2r

∥∥ · ∥∥2

2
is convex, r > 0.

(iii) Strongly amenable functions, i.e., f = g ◦R,R : Rd → Rq ∈ C2(Rd) and g : Rq → R∪ {+∞} proper lsc convex.
(iv) A closed set C ⊂ Rd is prox-regular if, and only if, ιC is a prox-regular function. This is also equivalent to: for any

x ∈ Rd and for any γ > 0,

PC(x) = Argmin
v∈Rd

{
1

γ

∥∥x− v∥∥2

2
+ ιC(v)

}
= proxγιC (x)

is single valued and continuous, or equivalently, to

d2
C = min

v∈Rd

{
1

γ

∥∥ · −v∥∥2

2
+ ιC(v)

}
= γιC ∈ C1,+(Rd).

The following lemma summarizes a fundamental property of prox-regular functions.

Lemma 4 ((Poliquin and Rockafellar, 1996, Theorem 3.2)) When f : Rd → R ∪ {+∞} is locally lsc at x̄ ∈ Rd, the
following are equivalent

(i) f is prox-regular at x̄ for v̄ ∈ ∂f(x̄).
(ii) v̄ is a proximal subgradient to f at x̄, i.e., there exist r > 0 and ε > 0 such that

f(x) ≥ f(x̄) + 〈v̄,x− x̄〉 − r

2
‖x− x̄‖22 , ∀x such that

∥∥x− x̄∥∥
2
< ε.

Moreover, there exist r > 0 and an f -attentive ε-localization (with ε > 0) of ∂f around (x̄, v̄) defined by

Tfε,x̄,v̄(x) =

{{
v ∈ ∂f(x) : ‖v − v̄‖2 < ε

}
if ‖x− x̄‖2 < ε and ‖f(x)− f(x̄)‖2 < ε,

∅ otherwise,

such that Tfε,x̄,v̄ + rId is monotone.

Let us consider a prox-regular function satisfying (H.1). Owing to the following lemma, such type of functions also
fullfills (H.2) and (H.4).

Lemma 5 Let M ∈ Rp×p symmetric positive definite and γ small enough, assume that H : Rp → R is prox-regular
and satisfies (H.1). Then proxMγH is single-valued and locally Lipschitz continuous.

Lower-C2 (or semi-convex) functions, see Example 1-(ii), satisfy the global counterpart of Lemma 4-(ii). For a lower-
C2 penalty H satisfying (H.1), the following lemma shows that proxMγH is globally Lipschitz continuous with a proper
choice of γ which in turn implies directly (H.5) according to Lemma 1.

Lemma 6 Assume that H is lower-C2 (with constant r) satisfying (H.1) and γ ∈]0, rσmin(M)[, proxMγH is single-

valued and Lipschitz continuous with constant |||M |||
σmin(M)

(
1− γ

rσmin(M)

)−1

. In turn, (14) holds with the optimal rate

δ1/2.
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6 Forward-Backward type LMC algorithms

Let us now deal with our main goal: computing the EWA estimator in (4) by sampling from µ̂. Recall that

µ̂(θ) = Z−1 exp

(
−F (Xθ,y) + Jλ(θ)

β

)
,

where F : Rn × Rn → R is a general loss and Jλ : Rp → R is the penalty, and Z =
∫
Rp exp

(
−F (Xξ,y)+Jλ(ξ)

β

)
dξ.

Assume that F (X·,y) ∈ C̃1,+(Rp) and the penalty takes the form Jλ = Wλ ◦ D>. Let us impose the following
assumptions on Wλ.

(H.1’) Wλ : Rq → R is lsc and bounded from below.
(H.2’) proxγWλ is single valued.
(H.3’) Either one of the following holds:

(a) F is bounded below, Wλ is level-coercive andD is surjective.
(b) F (X·,y) + Jλ is level-coercive and Wλ is Lipschitz continuous.

(H.4’) proxγWλ is locally Lipschitz continuous.
These assumptions are specializations of those in Section 3 to the density µ̂. In particular, assumption (H.3’) is

instrumental to ensure that µ̂ and its smoothed version are well-defined. Note that (H.3’) is also known to ensure existence
of the variational/penalized estimator θ̂

PEN
n .

To lighten notation, we will write Fβ
def
= F (X·,y)/β. This section aims to describe our Forward-Backward type

Langevin Monte-Carlo (LMC) algorithms to implement (4). These algorithms are based on wise specializations of the
results reported in Section 4.

6.1 Forward-backward LMC (FBLMC)

In (7), we set D = Ip (hence Jλ = Wλ), L ≡ 0, and H = Fβ + Jλ/β, where F is a quadratic loss, i.e., Fβ(θ) =∥∥y − Xθ∥∥2

2
/β. Observe that H satisfies (H.1) owing to assumption (H.1’). Also (H.3’) implies that (H.3) holds. In

the particular, (H.3’)(a) is true if Wλ is level-coercive (since Fβ is non-negative), which in turn implies (H.3’)(b). The
converse is, however, not true. To check (H.2), (H.4) and (H.5), we need to design a metric in which proxMγH is expressed
as a function of proxγJλ/β . This idea is formalized in the following lemma.

Lemma 7 Assume that (H.1’) holds and 0 < γ ≤ β/(2|||X|||2)(1− δ) with δ]0, 1[. Define Mγ
def
= Ip − (2γ/β)X>X.

ThenMγ is symmetric positive definite with σmin(Mγ) ≥ δ > 0. Moreover,

prox
Mγ

γH = proxγJλ/β ◦
(
Ip − γ∇Fβ

)
. (18)

In view of Lemma 18, (H.2’) and (H.4’), it is immediate to check that (H.2) and (H.4) are satisfied.
It remains now to verify (H.5) which is fulfilled by imposing the following assumption on Wλ (or Jλ).

(H.5’-FB) There exists C′FB > 0 such that〈
proxγWλ/β ◦

(
Ip − γ∇Fβ

)
(θ),θ

〉
Mγ

≤ C′FB(1 + ‖θ‖22), ∀θ ∈ Rp.

By Lemma 1, a sufficient condition for (H.5’-FB) to hold is that the proximal mapping of Wλ is Lipschitz continuous.
From Lemmas 3 and 7, we get

∇Mγ ,γH = γ−1Mγ

(
Ip − prox

Mγ

γH

)
= γ−1Mγ

(
Ip − proxγJλ/β(Ip − γ∇Fβ)

)
.

With this expression at hand, the forward Euler discretization of the SDE (9), specialized to the current case, reads

Lk+1 = Lk −
δ

2γ
Mγ

(
Lk − proxγJλ/β(Lk − γ∇Fβ(Lk))

)
+
√
δZk, t > 0, L0 = l0. (19)

Similarly, the forward Euler discretization of the SDE (17) is given by

Uk+1 = (1− δ
2γ )Uk +

δ

2γ
proxγJλ/β(Uk − γ∇Fβ(Uk)) +

√
δZk, t > 0, U0 = l0. (20)

The familiar reader may have recognized that the deterministic part of (20) is nothing but the relaxed form of the so-called
Forward-Backward proximal splitting algorithm (Bauschke and Combettes, 2011). This terminology reflects that there
is a forward Euler discretization on Fβ and a Euler backward discretization on Jλ.
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6.2 Semi-Forward-Backward LMC (Semi-FBLMC)

The main limitation of (19) is that the proximal mapping of Jλ must be easy to compute. This may not be true even if
the proximal mapping of Wλ is accessible as, for for example, when D does not have orthogonal rows (Bauschke and
Combettes, 2011). Our goal now is to overcome this difficulty.

Toward this goal, in (7), consider now L = Fβ , H = Wλ/β and M = Iq . Owing to (H.1’)-(H.4’), one can check
that (H.1)-(H.4) are fulfilled. Assumption (H.5) is verified by imposing the following assumption on Wλ.

(H.5’-SFB) There exists C′SFB > 0 such that
〈

proxγWλ/β(u),u
〉
≤ C′SFB(1 + ‖u‖22), ∀u ∈ Rq .

From Lemma 3, we obtain

∇
(

(γH) ◦D>
)

(θ) = γ−1D(D>θ − proxγWλ/β(D>θ)).

Thus, the forward Euler discretization of SDE (9) now reads

Lk+1 = Lk −
δ

2
∇Fβ(Lk)− δ

2γ
D
(
D>Lk − proxγWλ/β(D>Lk)

)
+
√
δZk, t > 0, L0 = l0. (21)

In the case whereD = Ip, Fβ and Wλ are convex, we recover the scheme studied in (Durmus et al, 2016).

7 Applications to penalties in statistics

In this section, we exemplify our LMC sampling algorithms for some popular penalties in the statistical and machine
learning literature. Our goal is by no means to be exhaustive, but rather to be illustrative and show the versatility of our
framework. For each penalty, we aim at checking that assumptions (H.1’)-(H.4’), (H.5’-FB) and (H.5’-SFB) hold, and
to compute proxγWλ/β . In turn, this allows to apply our algorithms (20) and (21) to compute EWA with such penalties.

7.1 Analysis group-separable penalties

We first focus on a class of penalties where Jλ is analysis group-separable, i.e.,

Jλ(θ) = Wλ(D>θ) where Wλ(u) =
∑L
l=1wλ

(
‖uGl‖2

)
, (22)

for wλ : R+ → R, and some uniform partition (Gl)l∈{1,...,L} of {1, . . . , q}, i.e., ∪Ll=1Gl = {1, . . . , q} and Gl ∩ Gl′ ,
∀l 6= l′.

Remark 2 It is worth mentioning that separability of Wλ does not entail that of Jλ. In fact, overlapping groups can
be easily taken intro account as any overlapping-group penalty can be written as the composition of Wλ with a linear
operator, sayB, such thatB>B is diagonal, andB acts as a group extractor, see (Peyré et al, 2011; Chen et al, 2010).

A first consequence of separability is that proxγWλ/β is also separable under the following mild assumptions onwλ.

(W.1) wλ is bounded from below on ]0,+∞[.
(W.2) wλ is a non-decreasing function on ]0,+∞[.

Lemma 8 Assume that assumptions (W.1) and (W.2) hold, and wλ is continuous on ]0,+∞[. For any u ∈ Rq and
γ > 0, we have

proxγWλ/β(u) =


proxγwλ/β

(
‖uG1‖2

) uG1

‖uG1‖2
...

proxγwλ/β
(
‖uGL‖2

) uGL
‖uGL‖2

 .

Our aim is now to design a family of penalties that will allow to establish (H.1’)-(H.4’), (H.5’-FB) and (H.5’-
SFB), while involving a form of shrinkage which is ubiquitous in low-complexity regularization. Inspired by the work
of (Antoniadis and Fan, 2001), we make the following assumptions on wλ.

(W.3) wλ is continuously differentiable on ]0,+∞[ and the problem mint∈[0,+∞[{t+ γ
βwλ

′(t)} has a unique solution at
0 for a given γ.

Under these assumptions, proxγwλ/β has indeed a convenient shrinkage-type form.
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Lemma 9 ((Antoniadis and Fan, 2001, Theorem 1)) Assume that (W.1), (W.2) and (W.3) hold for some γ > 0. Then,
proxγwλ/β is a single-valued continuous mapping on R, and satisfies, for t ∈ [0,+∞[,

proxγwλ/β(t) =

{
0 if t ≤ γ

βwλ
′(0+),

t− γ
βwλ

′
(

proxγwλ/β(t)
)

if t > γ
βwλ

′(0+).
(23)

Let us turn to check our assumptions. (H.1’), (H.2’) and (H.4’) are fulfilled thanks to (W.1), (W.2) and (W.3). To
comply with (H.3’), it is sufficient to impose that:

(W.4) Either one of the following holds:
(a) F is bounded below, wλ is level-coercive on ]0,+∞[, andD is surjective.
(b) F (·,y) is level-coercive, wλ is level-coercive on ]0,+∞[ and ker(X) ∩ ker(D>) = {0}.

Sufficiency of the first condition is immediate. For the second, the argument is standard. It is easy to see that by level-
coercivity, we indeed have the existence of of a > 0 and b ∈ R such that for all θ outside ker(X) ∩ ker(D>),

F (Xθ,y) + Jλ(θ) ≥ a
∥∥θ∥∥

2
+ b.

It remains to check (H.5’-FB) and (H.5’-SFB). This is the subject of the following lemma.

Lemma 10 Assume that (W.1), (W.2) and (W.3) hold for some γ > 0, then (H.5’-FB) and (H.5’-SFB) also hold.

We now discuss some popular penalties wλ that satisfy (W.1)-(W.4).

7.2 Examples

`1 penalty Take wλ : t ∈ R+ 7→ λt. This entails the analysis group Lasso penalty

Jλ(θ) = λ
∑L
l=1

∥∥[D>θ]Gl
∥∥

2
.

Clearly,wλ is a continuous positive convex function which verifies (W.1)-(W.3) for any γ > 0, and its proximal mapping
corresponds to soft-thresholding, i.e.,

proxγwλ/β(t) = (t− γλ/β)+, ∀t ≥ 0.

The `1 penalty is obviously level-coercive and thus (W.4) is verified if either F is bounded below andD is surjective, or
F is level-coercive and ker(X) ∩ ker(D>) = {0}.

FIRM penalty The FIRM penalty is given by (Gao and Bruce, 1997)

wλ(t) =

{
λ
(
t− t2

2µ

)
if 0 ≤ t ≤ µ,

λµ
2 if t > µ.

(24)

which entails the corresponding analysis group FIRM penalty Jλ.
Since wλ′(t) = λ

(
1− t

µ

)
+
≥ 0, wλ is non-decreasing and bounded from below by wλ(0) = 0 on ]0,+∞[.

Thus, wλ satisfies (W.1) and (W.2). Assumption (W.3) also holds for any γ < βµ/λ. The operator proxγwλ/β can be
constructed from (Woodworth and Chartrand, 2015, Definition II.3). Its formula is defined as

proxγwλ/β(t) =


0 if 0 ≤ t ≤ α,
µ

µ−α (t− α) if α < t ≤ µ,
t if t > µ,

(25)

where α = γλ/β. The formula (25) can also be found using Lemma 9. Observe that the FIRM shrinkage (25) interpolates
between hard- (see (Woodworth and Chartrand, 2015, Definition II.2)) and soft-thresholding. In particular, (25) coincides
with soft-thresholding when µ→∞.
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SCAD penalty The SCAD penalty, proposed in (Fan and Li, 2001) is parameterized by λ = (λ, a) ∈]0,+∞[×]2,+∞[
as

wλ(t) =


λt if 0 ≤ t ≤ λ,
− t

2−2aλt+λ2

2(a−1) if λ < t ≤ aλ,
(a+1)λ2

2 if t > aλ,

(26)

The following lemma establishes the validity of wλ and computes proxγwλ/β .

Lemma 11 Let wλ defined in (26), and κ = γ/β. For any γ < (a− 1)β,

(i) wλ satisfies (W.1) - (W.3),
(ii) The proximal mapping of the SCAD penalty is given by the shrinkage

proxγwλ/β(t) =


(t− κλ)+ if 0 ≤ t ≤ (κ+ 1)λ,
(a−1)t−kaλ
a−1−κ if (κ+ 1)λ < t ≤ aλ,

t if t > aλ.

(27)

Since a > 2, one can set κ = 1. In this case, (27) specializes to (Fan and Li, 2001, Equation (2.8)).

`∞ penalty The `∞ norm penalty is convex and continuous but is not separable, unlike the previous ones. It is a suitable
prior to promote flat vectors, and has found applications in several fields (Jégou et al, 2012; Lyubarskii and Vershynin,
2010; Studer et al, 2012). It entails the following penalty Wλ:

Jλ(θ) = Wλ(D>θ) where Wλ(u) = λ max
l∈{1,...,L}

{∥∥[u]Gl
∥∥

2

}
, (28)

where λ = λ > 0. Since Wλ is not separable, Lemma 8 is not applicable. Nevertheless, the proximal mapping of Wλ
can still be obtained easily from the projector on the `1 unit ball, i.e.,

proxγWλ/β(u) = u− P{
x :

∑
l‖xGl‖2≤

β
λγ

}(u). (29)

This projector can be obtained from (Fadili and Peyré, 2011, Proposition 2) (see also references therein). One can see
that (H.1’), (H.2’) and (H.4’) hold. Since Wλ is level-coercive, (H.3) can be fulfilled under the same assumptions as
for the `1 norm discussed before. We report the verification of (H.5’-FB) and (H.5’-SFB) in the proof of the following
lemma.

Lemma 12 Let Wλ in (28). Then (H.5’-FB) and (H.5’-SFB) hold.

8 Numerical experiments

In this section, some numerical experiments are conducted to illustrate and validate our LMC algorithms. Following the
philosophy of reproducible research, all the code implementing our sampling algorithms and reproducing the experiments
of this paper are made publicly available for download at https://github.com/luuduytung/LMCToolbox.

8.1 Image processing experiments

Let θ0 is a 2-D image which is a matrix in R128×128. Let us denote vec : R
√
p×√p → Rp the vectorization operator, i.e.

the operator which stacks the columns of its arguments. We then consider the following linear regression problem

y = X vec(θ0) + ζ. (30)

Here p = 1282 and ζ ∼ N (0, σ2In). The noise level σ is chosen according to the simulated θ0 through the signal-to-
noise ratio SNR, i.e. σ = n−1/2

∥∥Xθ0

∥∥
2
/10SNR/10. In our experiments, we take SNR = 5.

The goal is estimating θ0 by computing the EWA estimators via the penalties proposed in Section 7. Three types
of problems are considered: compressed sensing, inpainting and deconvolution whose regression function described in
what follows.

– Compressed sensing: in this caseX is drawn from a random ensemble. In our experiments,X is drawn uniformly at
random from the Rademacher ensemble, i.e., its entries are iid Rademacher random variables. We also set n = 9p/16.
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– Inpainting In this case,X acts as a masking operator. LetM⊂ {1, . . . , p} be the set indexing masked pixels. Thus

X vec(θ0) =
(
vec(θ)j∈{1,...,p}\M

)
.

In our numerical experiments, we mask out 20% of the pixels, and thus n = p − b20%pc where bpc the stands of
integer part of p. The masked positions are chosen randomly from the uniform distribution.

– Deconvolution In this caseX is the convolution operator with a Gaussian kernel with periodic boundary conditions,
such that X is diagonalized in the discrete Fourier basis. In this experiment, the standard deviation of the kernel is
set to 1.

Assuming that the targeted image is piecewise smooth, a popular prior is the so-called isotropic total variation (Rudin
et al, 1992b). To cas this into our framework, define Dc : R

√
p×√p → R

√
p×√p and Dr : R

√
p×√p → R

√
p×√p the

finite difference operators along, respectively, the columns and rows of an image, with Neumann boundary conditions.
We defineDTV as

DTV : θ ∈ R
√
p×√p 7→ vec

(
(vec(Dr(θ)),vec(Dc(θ)))

>
)>
∈ R2p.

With this notation, our prior penalty Jλ reads

Jλ(θ) =

p∑
l=1

wλ

(√
vec(Dr(θ))2

l + vec(Dc(θ))2
l

)
= Wλ(DTVθ), (31)

which clearly has the form (22) with p blocks of equal size 2.
To estimate θ0 from (30), we employ the EWA estimator (4) with F (Xθ,y) = ‖y −X vec(θ)‖22 and Jλ in (31).

For each problem instance (compressed sensing, inpainting or deconvolution), we tested wλ as the `1, SCAD and FIRM
penalties. Observe that (W.4) holds in this setting for `1 as soon as ker(X) does not contain constants. The corresponding
EWA estimators are denoted respectively EWA-`1, EWA-SCAD and EWA-FIRM. Because of the presence of the analysis
operator DTV, which is not unitary, we applied Semi-FBLMC scheme (21) to compute EWA with β = 1/(pn), γ =
β, and δ =

{
5β/103, 5β/102, 5β/106

}
respectively associated to inpainting, deconvolution and compressed sensing

problems. The results are depicted in Figure 1.

8.2 Signal processing experiments

Here we consider reconstructing a piecewise flat 1D signal from compressed sensing measurements using EWA. For
this, we create a p = 128 sample signal whose coordinates are valued in {−1, 1} and compute the observations (30)
whereX is drawn from the Rademacher ensemble with n > p 1. We set F (Xθ,y) = ‖y −Xθ‖22, Jλ(θ) = ‖θ‖∞, i.e.
D = Ip and the size of groups is 1. All required assumptions are again verified in this setting, including (W.4) as Jλ is
level-coercive. We can then use the FBLMC scheme (20), where we choose β = 1/(pn), γ = β, and δ = 5/102. The
results are shown in Figure 2.

9 Proofs

Proof of Lemma 1 Let x∗ ∈ C, a bounded subset of Rd. Using Young and Jensen inequalities as well as K̃-Lipschitz
continuity of f , we obtain

〈f(x),x〉 ≤ ‖f(x)‖22 /2 + ‖x‖22 /2

≤
∥∥f(x)− f(x∗)

∥∥2

2
+
∥∥f(x∗)

∥∥2

2
+ ‖x‖22 /2

≤ K̃
∥∥x− x∗∥∥2

2
+
∥∥f(x∗)

∥∥2

2
+ ‖x‖22 /2

≤
(

2K̃ + 1/2
)
‖x‖22 +

(
2K̃
∥∥x∗∥∥2

2
+
∥∥f(x∗)

∥∥2

2

)
≤ K(1 + ‖x‖22),

withK ≥ max
{

2K̃ + 1/2, 2K̃ ‖x∗‖22 + ‖f(x∗)‖22
}

. Recalling that f is bounded on bounded sets concludes the proof.
ut

1 The overdetermined regime is known to yield good performance for the `∞ penalty (Vaiter et al, 2015a).
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Fig. 1 (a): Original image. (b,c) Observed masked and blurry images. (d, e, f): EWA-`1 estimated images from masked image, compressed
sensing measurements, and blurry image. (g, h, i): EWA-FIRM estimated images from masked image, compressed sensing measurements, and
blurry image. (j, k, l): EWA-SCAD estimated images from masked image, compressed sensing measurements, and blurry image.

14



Fig. 2 Compressed sensing with EWA using the `∞ penalty. ′∗′ is the original signal and ′◦′ is the the estimated one.

Proof of Lemma 2

(i) In view of (H.1), H is prox-bounded by (Rockafellar and Wets, 1998, Exercise 1.24) for any γ ∈]0, γ0[, and then
for any x, 1

2γ

∥∥x − ·∥∥2

Mγ
+ H is proper lsc and level-bounded uniformly in (x, γ) ∈ Rq×]0, γ0[. This entails that

the set of minimizers of this function, i.e. prox
Mγ

γH (x), is a non-empty compact set. For the last claim, suppose that
x ∈ Argmin(H) 6= ∅ and bounded but x /∈ prox

Mγ

γH (x). Thus, for any p ∈ prox
Mγ

γH (x), we have p 6= x and

H(p) <
1

2γ

∥∥p− x∥∥2

Mγ
+H(p) ≤ H(x),

leading to a contradiction with x is a minimizer of H .
(ii) The continuity and finiteness properties follow from (Rockafellar and Wets, 1998, Theorem 1.17(c)) (see also(Rockafellar

and Wets, 1998, Theorem 1.25)), where we use (H.1). For the second claim, we have ∀x ∈ Rq

−∞ < inf H ≤Mγ ,γH(x) ≤ H(x).

Moreover, let p ∈ prox
Mγ

γH (x). Then, ∀δ > γ,

Mδ,δH(x) = inf
w∈Rq

1

2δ

∥∥w − x∥∥2

Mδ
+H(w)

≤ 1

2δ

∥∥p− x∥∥2

Mδ
+H(p)

≤ 1

2γ

∥∥p− x∥∥2

Mγ
+H(p)

= Mγ ,γH(x).

This together with continuity concludes the proof of Assertion (ii).
ut

Proof of Lemma 3 By virtue of Lemma 2-(i) and (H.2), prox
Mγ

γH is clearly non-empty and single valued. The continuity
property follows from (Rockafellar and Wets, 1998, Theorem 1.17(b)) (see also (Rockafellar and Wets, 1998, Theo-
rem 1.25)) and single-valuedness. By Lemma 2-(ii), Mγ ,γH(θ) is finite. Since (H.1) holds, H is prox-bounded with
threshold∞ by (Rockafellar and Wets, 1998, Exercise 1.24). Invoking (Rockafellar and Wets, 1998, Example 10.32), we
get that −Mγ ,γH is locally Lipschitz continuous, subdifferentially regular and

∂
(
−Mγ ,γH

)
(θ) =

{
γ−1Mγ

(
prox

Mγ

γH (θ)− θ
)}
, ∀θ ∈ Rp.
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Combining this with (Rockafellar and Wets, 1998, Theorem 9.18) applied to −Mγ ,γH , we obtain that Mγ ,γH is differ-
entiable and its gradient is precisely as given. ut

Proof of Proposition 1 In view of (Rockafellar and Wets, 1998, Theorem 3.26(a)), assumption (H.3)(a) entails that there
exists a > 0 and b ∈ R such that for all θ ∈ Rp

L(θ) +H ◦D>(θ) ≥ a
∥∥D>θ∥∥

2
+ b ≥ aσmin(D>) ‖θ‖2 + b,

where σmin(D>) > 0 by injectivity. Thus,

Z ≤ e−b
∫
Rp

exp
(
−aσmin(D>) ‖θ‖2

)
dθ < +∞.

In addition,

L(θ) + (M ,γH) ◦D>(θ) = L(θ) + min
w∈Rq

{
1

2γ

∥∥w −D>θ∥∥2

M
+H(w)

}
≥ b+ min

w∈Rq

{
1

2γ

∥∥w −D>θ∥∥2

M
+ a
∥∥w∥∥

2

}
≥ b+ min

w∈Rq

{
σmin(M)

2γ

∥∥w −D>θ∥∥2

2
+ a
∥∥w∥∥

2

}
.

The solution to the above minimization problem is the well-known soft-thresholding operator

w? = D>θ

(
1− aγ

σmin(M)
∥∥D>θ∥∥

2

)
+

.

Replacing in the above inequality, we get

L(θ) + (M ,γH) ◦D>(θ) ≥ b+

{
σmin(M)

2γ

∥∥D>θ∥∥2

2

∥∥D>θ∥∥
2
≤ aγ

σmin(M)

a
∥∥D>θ∥∥

2
− a2γ
σmin(M) otherwise.

≥ b+

{
σmin(D>)2σmin(M)

2γ

∥∥θ∥∥2

2

∥∥D>θ∥∥
2
≤ aγ

σmin(M)

aσmin(D>)
∥∥θ∥∥

2
− a2γ
σmin(M) otherwise.

Hence,

lim inf
‖θ‖2→+∞

L(θ) + (M ,γH) ◦D>(θ)

‖θ‖2
= aσmin(D>) > 0,

or equivalently, that L + (M ,γH) ◦ D> is level-coercive uniformly in γ and M . Arguing as for Z, we then get that
Zγ < +∞ uniformly in γ.
Let us consider now the case of assumption (H.3)(b). This assumption is equivalent to the existence of a > 0 and b ∈ R
(possibly different from those above) such that, for all θ

L(θ) +H ◦D>(θ) ≥ a
∥∥θ∥∥

2
+ b.

We then have Z < +∞. It remains to show that Zγ < +∞ in this case. As H is β-Lipschitz continuity, we get

L(θ) + (M ,γH) ◦D>(θ) = L(θ) + inf
w∈Rq

{
1

2γ

∥∥w −D>θ∥∥2

M
+H(w)

}
≥ L(θ) +H ◦D>(θ) + min

w∈Rq

{
1

2γ

∥∥w −D>θ∥∥2

M
+ (H(w)−H(D>θ))

}
≥ L(θ) +H ◦D>(θ) + min

w∈Rq

{
1

2γ

∥∥w −D>θ∥∥2

M
− β
∥∥w −D>θ∥∥

2

}
≥ L(θ) +H ◦D>(θ) + min

w∈Rq

{
1

2γ

∥∥w −D>θ∥∥2

M
− β√

σmin(M)

∥∥w −D>θ∥∥
M

}

= L(θ) +H ◦D>(θ) + min
t≥0,

∥∥w−D>θ
∥∥
M

=t

{
1

2γ
t2 − β√

σmin(M)
t

}

= L(θ) +H ◦D>(θ) + min
t≥0

{
1

2γ
t2 − β√

σmin(M)
t

}
.
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The minimization problem has a unique solution u? = γβσmin(M)−1/2, and thus

L(θ) + (M ,γH) ◦D>(θ) ≥ L(θ) +H ◦D>(θ)− γβ2σmin(M)/2.

Thus level-coercivity of L+H ◦D> transfers to L+ (M ,γH) ◦D> whence Zγ < +∞ follows immediately.

Overall, we have shown that both µ and µγ are well-defined uniformly in γ under assumption (H.3) via the fact that
Z < +∞ and there exists a > 0 and b ∈ R (a is independent of γ andM ) such that

exp
(
−(L(θ) + (M ,γH) ◦D>(θ))

)
≤ eb exp

(
−a
∥∥θ∥∥

2

)
.

This means that the function e− ◦ (L+ (M ,γH) ◦D>) is dominated by an integrable function. This together with the
pointwise convergence provided by Lemma 2(ii), allow to apply the dominated convergence theorem to conclude that
Zγ → Z as γ → 0. Combining this with Lemma 2(ii) again yields that µγ converges to µ pointwise. We conclude using
Scheffé(-Riesz) theorem (Scheffe, 1947; Kusolitsch, 2010). ut

Proof of Proposition 2 In view of Lemma 3, the drift term reads

ψ(θ) = −1

2
∇(L+ (M ,γH) ◦D>)(θ) = −1

2
∇L(θ)− 1

2γ
DMD>θ +

1

2γ
DMproxMγH(D>θ).

Since L ∈ C̃1,+(Rp) and (H.5) holds, there exist K1 > 0 and K2 > 0 such that

〈ψ(θ),θ〉 = −1

2
〈∇L(θ),θ〉 − 1

2γ

∥∥D>θ∥∥2

M
+

1

2

〈
proxMγH(D>θ),D>θ

〉
M

≤ K1(1 + ‖θ‖22) + |||D|||2|||M |||/(2γ) ‖θ‖22 +K2(1 + ‖θ‖22)

≤ K(1 + ‖θ‖22),

where K ≥ K1 + K2 + |||D|||2|||M |||/(2γ). Moreover, under (H.4), (M ,γH) ◦ D> is locally Lipschitz continuous
by virtue of Lemma 3, which applies thanks to assumptions (H.1)-(H.2). Clearly (M ,γH) ◦D> ∈ C̃1,+(Rp). Since
C̃1,+(Rp) is closed under addition, we conclude the proof. ut

Proof of Proposition 3 First observe that by Proposition 1, µγ is well-defined for any γ under (H.3). Claim (i) follows
by combining Proposition 2 and (Xuerong, 2007, Theorem 3.6, Chapter II). Claim (ii) is a consequence of Proposition 2
and (Roberts and Tweedie, 1996, Theorem 2.1). ut

Proof of Theorem 1 Again, µγ is well-defined for any γ thanks to Proposition 1. Thus by virtue of Proposition 2 and
(Xuerong, 2007, Theorem 4.1, Chapter II), we get that the r-th moments of L(t) are bounded for any r ≥ 2 and t ≥ 0.
A similar reasoning also entails that the r-th moments of the continuous-time extension Lδ are also bounded. Moreover,
according to Proposition 2, the drift ψ is locally Lipschitz continuous. The claim then follows from (Higham et al, 2003,
Theorem 2.2) and Jensen’s inequality. In the globally Lipschitz continuous case, we get the claimed rate by putting
together Lemma 1, Jensen’s inequality and (Xuerong, 2007, Theorem 7.3, Chapter II) or (Kloeden and Platen, 1995,
Theorem 10.2.2 and Remark 10.2.3). ut

Proof of Lemma 5 The proof of Lemma 5 is based on the one of (Rockafellar and Wets, 1998, Proposition 13.37) and
generalizes to the proximal mapping in metricM for anyM ∈ Rp×p symmetric positive definite.

Without loss of generality, we prove the claim on a neighbourhood of x̄ where H is lsc. Let x̄ ∈ Rp, v̄ ∈ ∂H(x̄),
since H is prox-regular at x̄ for v̄ and H is prox-bounded, owing to (Bernard and Thibault, 2005, Lemma 4.1), there
exist ε > 0 and λ0 > 0 such that

H(x′) > H(x) +
〈
v,x′ − x

〉
− 1

2λ0

∥∥x′ − x∥∥2

2

> H(x) +
〈
v,x′ − x

〉
− 1

2λ0σmin(M)

∥∥x′ − x∥∥2

M
, (32)

for any x′ 6= x and (x,v) ∈ gph THε,x̄,v̄ . Let γ0 = λ0σmin(M), γ ∈]0, γ0[ and u = x+ γM−1v, (32) becomes

H(x′) +
1

2γ

∥∥x′ − u∥∥2

M
> H(x) +

1

2γ
‖x− u‖2M .
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Therefore, proxMγH(u) = x where (x,v) ∈ gph THε,x̄,v̄ . That yields proxMγH(x̄+ γM−1v̄) = x̄.
SinceH is lsc, proper and prox-bounded, from (Rockafellar and Wets, 1998, Theorem 1.17(c)) (see also (Rockafellar

and Wets, 1998, Theorem 1.25)), we have

x ∈ proxMγH(u),u→ x̄+ γM−1v̄ =⇒

{
x→ proxMγH(x̄+ γM−1v̄) = x̄,

H(x) = M ,γH(u)− 1
2γ ‖x− u‖

2
2 → H(x̄).

(33)

For any x ∈ proxMγH(u), by Fermat rules we get

v =
M

γ
(u− x) ∈ ∂H(x). (34)

For any γ ∈]0, γ0[, owing to (33) and (34), there exists Nγ,x̄,v̄ a neighbourhood of x̄ + γM−1v̄ such that for any
u ∈ Nγ,x̄,v̄ , ‖x− x̄‖2 ≤ ε, ‖H(x)−H(x̄)‖2 ≤ ε and ‖v − v̄‖2 ≤ ε. We get then

proxMγH(u) = x =⇒ v =
M

γ
(u− x) ∈ THε,x̄,v̄(x).

So that
proxMγH = (M + γTHε,x̄,v̄)−1 ◦M = (M + δ−1S)−1 ◦ (γδ)−1M ,

where δ = 1/γ−1/γ0, S = THε,x̄,v̄+1/γ0M . From (32), S is maximal monotone, the latter operator is well defined as a
single valued operator (see (Bauschke et al, 2003, Proposition 3.22 (ii)(d))). Let p = proxMγH(x) and p′ = proxMγH(x′).
It then follows that

Mx− γδMp ∈ γS(p) andMx′ − γδMp′ ∈ γS(p′),

and monotonicity of S yields〈
p′ − p,M(x′ − x)

〉
≥ γδ

∥∥p′ − p∥∥2

M
≥ γδσmin(M)

∥∥p′ − p∥∥2

2
.

Using Cauchy-Schwarz’s inequality, we obtain∥∥p′ − p∥∥
2
≤ K

∥∥x′ − x∥∥
2
,

where K−1 = γδσmin(M)/|||M ||| =
(
1− γ/γ0

)
σmin(M)/|||M |||.

Let us note that when γ decrease, Inequality (32) can be hold for a larger ε that enlarges Nγ,x̄,v̄ and x̄ + γM−1v̄

concentrate to x̄ for any v̄. Thus, when γ is small enough, there exists a neighbourhood x̄ that includes inNγ,x̄,v̄ for any
v̄ ∈ ∂H(x̄). That concludes the proof of Lemma 5. ut

Proof of Lemma 6 From (Rockafellar and Wets, 1998, Example 12.28(b)), ∂H is hypomonotone of modulus 1
r . In turn

S = ∂H + 1
γ0
M = ∂

(
H + 1

2γ0

∥∥ · ∥∥2

M

)
is monotone with γ0 = rσmin(M), or equivalently that H + 1

2γ0

∥∥ · ∥∥2

M
is

convex (Rockafellar and Wets, 1998, Example 12.28(b)). Let δ = 1
γ −

1
γ0

andW (w,θ) = H(w) + r′

2

∥∥w−θ∥∥2

M
. Thus

H(w) +
1

2γ

∥∥w − θ∥∥2

M
= W (w,θ) +

δ

2

∥∥w − θ∥∥2

M
.

W (·,θ) is a convex function on Rp and δ > 0 as γ < γ0. Altogether, this entails that W (·,θ) + δ
2

∥∥ · −θ∥∥2

M
is strongly

convex uniformly in θ and γ complying with γ < γ0. It then follows that proxMγH is single-valued. We have

M + γ∂H = γ(δM + S) = γδ
(
M + δ−1S

)
.

By Fermat’s rule, we then get

proxMγH = (M + γ∂H)−1 ◦M =
(
M + δ−1S

)−1

◦ (γδ)−1
M ,

and the latter operator is well-defined as a single-valued operator since S is maximal monotone; see (Bauschke et al,
2003, Proposition 3.22 (ii)(d)). Let p = proxMγH(θ) and p′ = proxMγH(θ′). It then follows that

Mθ − γδMp ∈ γS(p) andMθ′ − γδMp′ ∈ γS(p′),
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and monotonicity of S yields〈
p′ − p,M(θ′ − θ)

〉
≥ γδ

∥∥p′ − p∥∥2

M
≥ γδσmin(M)

∥∥p′ − p∥∥2

2
.

Using Cauchy-Schwartz inequality, we then obtain∥∥p′ − p∥∥
2
≤ κ

∥∥θ′ − θ∥∥
2
,

where κ−1 = γδσmin(M)
|||M ||| = σmin(M)

|||M |||

(
1− γ

γ0

)
= σmin(M)

|||M |||

(
1− γ

rσmin(M)

)
. That concludes the proof of Lemma 6.

Since proxMγH is globally Lipschitz continuous, the optimal convergence rate in (14) is of order δ1/2 in view of
Theorem 1. ut

Proof of Lemma 7 The fact that Mγ is symmetric definite positive with a spectrum bounded below by δ is immediate.
We now have

prox
Mγ

γH (θ) = Argmin
w∈Rp

1

2γ

∥∥w − θ∥∥2

Mγ
+H(w)

= Argmin
w∈Rp

1

2

∥∥w − θ∥∥2

2
− γ

β

∥∥X(w − θ)
∥∥2

2
+
γ

β

∥∥y −Xw∥∥2

2
+
γ

β
Jλ(w).

By the Pythagoras relation, we then get

prox
Mγ

γH (θ) = Argmin
w∈Rp

1

2

∥∥w − θ∥∥2

2
+
γ

β

(
1

2

∥∥y −Xθ∥∥2

2
− 〈X(θ −w),Xθ − y〉

)
+
γ

β
Jλ(w)

= Argmin
w∈Rp

1

2

∥∥w − θ∥∥2

2
− γ

β

〈
w − θ,XT (y −Xθ)

〉
+
γ

β
Jλ(w)

= Argmin
w∈Rp

1

2

∥∥w −(θ − 2γ

β
XT (Xθ − y))∥∥2

2
+
γ

β
Jλ(w)

= proxγJλ/β(θ − γ∇F (θ)).

We conclude the proof of Lemma 7. ut

Proof of Lemma 8 This is a probably known result, for which we provide a simple proof. Since Wλ is separable and wλ
is continuous and lower-bounded, we have

min
w∈Rq

1

2
‖w − u‖22 +

γ

β
Wλ(w) =

L∑
l=1

min
v∈RG

1

2
‖v − uGl‖

2
2 +

γ

β
wλ(‖v‖2),

and thus, ∀l ∈ {1, . . . , L}, [
proxγWλ/β(u)

]
Gl

= Argmin
v∈RG

1

2
‖v − uGl‖

2
2 +

γ

β
wλ(‖v‖2). (35)

If uGl = 0, then as wλ is an increasing function,
[
proxγWλ/β(u)

]
Gl

= 0. For uGl 6= 0, by isotropy of problem (35),
we can write

min
v∈RG

1

2
‖v − uGl‖

2
2 +

γ

β
wλ(‖v‖2) = min

t≥0

γ

β
wλ(t) +

(
min
‖v‖2=t

1

2
‖v − uGl‖

2
2

)
. (36)

The inner minimization problem amounts to solving for the orthogonal projector on the `2 sphere in RG of radius t,
which is obviously v = t

uGl
‖uGl‖2

since uGl 6= 0. Inserting this into (36) and rearranging the terms, (35) becomes

[
proxγWλ/β(u)

]
Gl

=
uGl
‖uGl‖2

Argmin
t≥0

1

2

(
t− ‖uGl‖2

)2
+
γ

β
wλ(t) =

uGl
‖uGl‖2

proxγwλ/β(‖uGl‖2),

where we used even-symmetry of wλ. ut
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Proof of Lemma 10 In view of (W.2), wλ′/β is positive on ]0,+∞[. According to Lemma 9 we get that, for any t ≥ 0,
proxγwλ/β(t) = 0 if t ≤ γ

βwλ
′(0) and proxγwλ/β(t) = t− γ

βwλ
′(proxγwλ/β(t)) ≤ t otherwise. Hence for any t ≥ 0,

0 ≤ proxγwλ/β(t) ≤ t, ∀t ≥ 0. (37)

Set u = D>θ, from Lemma 8 and (37), we get that

〈
proxγWλ/β(u),u

〉
=
∑L
l=1

〈
[proxγWλ/β(u)]Gl ,uGl

〉
=
∑L
l=1

proxγwλ/β
(
‖uGl‖2

)
‖uGl‖2

‖uGl‖
2
2 ≤ ‖u‖

2
2 .

According to the fact that ‖u‖22 =
∥∥∥D>θ∥∥∥2

2
≤ |||D|||2 ‖θ‖22, assumption (H.5’-SFB) holds.

Set v = 2γX>y/β and tθ = θ − γ∇Fβ(θ) = Mγθ + v, by Young’s inequality, we obtain that

〈
proxγWλ/β(tθ),θ

〉
Mγ

=
〈
MγproxγWλ/β(tθ),θ

〉
≤ 1

2
|||Mγ |||2

∥∥∥proxγWλ/β(tθ)
∥∥∥2

2
+

1

2
‖θ‖22 .

Moreover, owing to Lemma 8 and (37), we get that

∥∥∥proxγWλ/β(tθ)
∥∥∥2

2
=

∥∥∥∥∑L
l=1

proxγWλ/β(‖[tθ]Gl‖2)

‖[tθ]Gl‖2
[tθ]Gl

∥∥∥∥2

2

≤
(∑L

l=1

∣∣proxγWλ/β(‖[tθ]Gl‖2)
∣∣)2

≤
(∑L

l=1 ‖[tθ]Gl‖2
)2

≤ L ‖tθ‖22

≤ 2L
(
|||Mγ |||2 ‖θ‖22 + ‖v‖22

)
.

Thus, assumption (H.5’-FB) holds which concludes the proof. ut

Proof of Lemma 11

(i) Observe that wλ is continuously differentiable on ]0,+∞[ with

wλ
′(t) = κλ

(
I(t ≤ λ) +

(aλ− t)+

(a− 1)λ
I(t > λ)

)
≥ 0,

wλ is then non decreasing and bounded from below by wλ(0) = 0 on ]0,+∞[. Thus, wλ satisfies (W.1) and (W.2).
Let us check (W.3). Let u(t) = t+ κwλ

′(t), we obtain that
– u(0) = κλ,
– if 0 < t ≤ λ, u(t) = t+ κλ > κλ,
– if λ < t ≤ aλ, since a− 1 > κ > 0, u(t) = t+ κ(aλ−t)

a−1 = κλ+ a−1−κ
a−1 t+ κλ

a−1 > κλ,
– if t > aλ, since a− 1 > κ, u(t) = t > aλ > κλ.

Thus, t = 0 is the unique mimimum in [0,+∞[ of t+ p′λ(t). In other words, wλ satisfies (W.3).
(ii) For the sake of simplified notation, we denote p = proxγwλ/β(t). Owing to Lemma 9, we obtain that

p =

{
0 if t ≤ κλ,
t− κλ

(
I(p ≤ λ) + (aλ−p)+

(a−1)λ I(p > λ)
)

otherwise.
(38)

From (38), we get the following assertions when t > κλ,
– if p ≤ λ, p = t− κλ, and t = p+ κλ ≤ (κ+ 1)λ,
– if λ < p ≤ aλ, p = t − κ(aλ − p)/(a − 1) implies that p = (a−1)t−κaλ

a−1−κ . Since λ < p ≤ aλ, κ < a − 1 and
a > 2, we also get that

(1 + κ)λ < t =
a− 1− κ
a− 1

p+
κaλ

a− 1
≤ aλ,

– if p > aλ, p = t, and t > aλ.
That concludes the proof of (ii), Lemma 11. ut

20



Proof of Lemma 12 Set u = D>θ, α = γλ/β and pu = P{
x : α

∑
l‖xGl‖2≤1

}(u). Owing to (29) and Young’s
inequality, we obtain that〈

u,proxγWλ/β(u)
〉

= 〈u,u− pu〉 ≤ ‖u‖
2
2 + ‖u‖2 ‖pu‖2 ≤

3

2
‖u‖22 +

1

2
‖pu‖

2
2 ≤

3

2
‖u‖22 +

1

2α2
.

According to the fact that ‖u‖22 =
∥∥∥D>θ∥∥∥2

2
≤ |||D|||2 ‖θ‖22, (H.5’-SFB) holds.

Set v = 2γX>y/β, tθ = θ−γ∇Fβ(θ) = Mγθ+v and ptθ = P{
x : α

∑
l‖xGl‖2≤1

}(tθ). By Young’s inequality,
we obtain that〈

proxγWλ/β(tθ),θ
〉
Mγ

=
〈
MγproxγWλ/β(tθ),θ

〉
≤ 1

2
|||Mγ |||2

∥∥∥proxγWλ/β(tθ)
∥∥∥2

2
+

1

2
‖θ‖22 .

Moreover, owing to (29), we get that∥∥∥proxγWλ/β(tθ)
∥∥∥2

2
=
∥∥tθ − ptθ∥∥2

2
≤ 2 ‖tθ‖22 + 2

∥∥ptθ∥∥2

2
≤ 4|||Mγ |||2 ‖θ‖22 +

(
4 ‖v‖22 +

2

α2

)
.

Thus, Assumption (H.5’-FB) holds and we conclude the proof of Lemma 12. ut
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- Paris XI, URL https://tel.archives-ouvertes.fr/tel-00550989

Guedj B, Alquier P (2013) Pac-bayesian estimation and prediction in sparse additive models. Electron J Statist 7:264–291,
DOI 10.1214/13-EJS771, URL http://dx.doi.org/10.1214/13-EJS771

Higham D, Mao X, Stuart A (2003) Strong convergence of euler-type methods for nonlinear stochastic differential equa-
tions. SIAM J Numer Anal 40(3):1041–1063

Jégou H, Furon T, Fuchs JJ (2012) Anti-sparse coding for approximate nearest neighbor search. In: IEEE ICASSP, pp
2029–2032

Kloeden PE, Platen E (1995) Numerical solution of stochastic differential equations. Stochastic Modelling and Applied
Probability, Springer

Kusolitsch N (2010) Why the theorem of scheffé should be rather called a theorem of riesz. Periodica Mathematica
Hungarica 61(1):225–229
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Peyré G, Fadili J, Chesneau C (2011) Group sparsity with overlapping partition functions. In: EUSIPCO, Barcelona,

Spain
Poliquin RA, Rockafellar RT (1996) Prox-regular functions in variational analysis. Transactions of the American Math-

ematical Society 348(5):1805–1838
Poliquin RA, Rockafellar RT, Thibault L (2000) Local differentiability of distance functions. Transactions of the Amer-

ican mathematical Society 352:5231–5249
Recht B, Fazel M, Parrilo PA (2010) Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm

minimization. SIAM review 52(3):471–501
Rigollet P, Tsybakov A (2007) Linear and convex aggregation of density estimators. Mathematical Methods of Statistics

16(3):260–280, DOI 10.3103/S1066530707030052, URL http://dx.doi.org/10.3103/S1066530707030052

Roberts GO, Tweedie RL (1996) Exponential Convergence of Langevin Distributions and Their Discrete Approximations.
Bernoulli 2(4):341–363, URL http://www.jstor.org/stable/3318418

Rockafellar RT, Wets R (1998) Variational analysis, vol 317. Springer Verlag
Rudin L, Osher S, Fatemi E (1992a) Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear

Phenomena 60(1-4):259–268
Rudin LI, Osher S, Fatemi E (1992b) Nonlinear total variation based noise removal algorithms. Phys D 60(1-4):259–268,

DOI 10.1016/0167-2789(92)90242-F, URL http://dx.doi.org/10.1016/0167-2789(92)90242-F

Schapire RE (1990) The strength of weak learnability. Mach Learn 5(2):197–227, DOI 10.1023/A:1022648800760, URL
http://dx.doi.org/10.1023/A:1022648800760

Scheffe H (1947) A useful convergence theorem for probability distributions. Ann Math Statist 18(3):434–438
Studer C, Yin W, Baraniuk RG (2012) Signal representations with minimum `∞-norm. In: 50th Annual Allerton Con-

ference on Communication, Control, and Computing,
Tibshirani R (1996) Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society Series B

Methodological 58(1):267–288
Tibshirani R, Saunders M, Rosset S, Zhu J, Knight K (2005) Sparsity and smoothness via the fused Lasso. Journal of the

Royal Statistical Society: Series B (Statistical Methodology) 67(1):91–108
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