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Recently, renewable energy resources such as, wind and solar energy, have become integral parts of electric grids as clean energy alternatives to fossil fuels. However, the quality of production of such resources of energy depends on different uncertain factors, for instance, weather conditions. Therefore, dealing with the intermittent nature of renewable energy resources (e.g. wind and solar energy) is one of the main challenges when using them on a larger scale.

A possible solution to reduce the effects of energy resources intermittency on energy production and grid's stability, is to use energy storage technologies. Pump Hydro Storage plants (PHS) seem to be the unique clean storage alternative that can be used to counteract the intermittent nature of wind and solar energy and thus stabilizes the grid. PHS make use of reversible pumps-turbines which run as pumps that convert excess electric energy in the grid to potential energy by storing water in a reservoir. In addition when more electric energy is needed, reversible pumps-turbines can operate as turbines to convert the stored potential energy into rotational kinetic energy, and then to electric energy by using a generator. This helps in stabilizing the grid by storing the excess of energy generated and providing more energy when demand rises.

Main Objectives

We emphasis in this work on the start-up operating condition to properly synchronize the PHS to the electric grid, even though our proposed solution can be adopted to start-up different types of hydraulic power plants. In PHS, the startup operating condition is usually visited multiple times, as a result of switching back and forth between pumping and turbine modes. Thus, enhancing the performance of the speed governors used for starting-up becomes more important when dealing with PHS to enable a rapid voltage recovery.

According to General Electric (GE), in order to successfully synchronize the hydraulic power plant to the grid, three criteria need to be met [START_REF] Mesnage | Nonlinear Model-Based Control for Minimum-Time Start of Hydraulic Turbines[END_REF]:

1. The rotational speed (N ) needs to be within ±0.2% of the desired value N d , in other words:

|N -N d | ≤ 0.002 • N d ; N d = 60 • f /p
where p is the number of poles of electric machine and f (Hz) is the frequency of the electric grid. 2. The phase between the output voltage of the electric machine and the grid voltage needs to be within ±5 • .

3. The amplitude of the output voltage of the electric machine should be equal to the grid voltage amplitude.

In this contribution, only the first criterion is addressed, where the other two criteria are usually tackled on a shorter time scale using independent controllers.

The main control objective when starting-up turbines is achieving a fast startup, while taking into account the risk of exciting torque and flow rate oscillations, that result from operating at the turbine's unstable modes known as the 'S-zones' (in the turbine's characteristic curves known as 'Hill charts'), which makes the plant's synchronization to the grid impossible [START_REF] Zuo | S-shaped characteristics on the performance curves of pump-turbines in turbine mode -a review[END_REF] and can easily damage the turbine. Thus, a controller that is capable of achieving a fast start-up in addition to stabilizing the turbine at the S-zone is crucial.

In this paper, a controller architecture that takes into account the computational limitations of microcontrollers used at existing power plants, is proposed.

It provides a solution to the problem of fast turbine start-up, while avoiding the excitation of sharp pressure oscillations. Furthermore, a simulator is developed for hydraulic power plants and used to test the proposed controller. The simulator is made up of a system of continuous differential equations, which systematically model the behavior of the different components of the hydraulic power plant such as, penstocks, tunnels, reservoirs and surge tanks. In addition, the nonlinear behavior and unstable regions 'S-characteristics' of hydraulic turbines, modeled by Hill charts, are successfully taken into consideration. Moreover, the actuator's nonlinear dynamics are included in the overall continuous mathematical model.

This paper is divided as follows: Section 2 discusses hydraulic components modeling and speed control techniques used for turbine start-up available in the literature. Section 3 details the complete mathematical model of hydraulic power plant developed. Then, section 4 presents the controller architecture. Open-loop and closed-loop simulations results are presented in section 5. Finally, section 6 concludes the paper and discusses possible further investigation.

State of the Art

There exist different approaches to model water dynamics in penstocks, to begin with two coupled partial differential equations (PDEs) as shown in [START_REF] Lucero Tenorio | Hydro turbine and governor modelling: Electrichydraulic interaction[END_REF] can be used to accurately represent water dynamics in penstocks. However, simpler representations are usually derived, they range from using first order Taylor expansion of the solution of the coupled PDEs as in [START_REF] Mesnage | Nonlinear Model-Based Control for Minimum-Time Start of Hydraulic Turbines[END_REF], or deriving a simplified linear model as in [START_REF] Chen | Nonlinear dynamical analysis of hydro-turbine governing system with a surge tank[END_REF], to using finite difference methods to discretize the coupled PDEs as detailed in [START_REF] Chaudry | Applied Hydraulic Transient[END_REF] or electrical equivalent circuit analogy as in [START_REF] Souza | Study of hydraulic transients in hydropower plants through simulation of nonlinear model of penstock and hydraulic turbine model[END_REF]. An alternative is to use the Method Of Characteristics (MOC) to approximate the solution of the coupled PDEs as in [START_REF] Izquierdo | Mathematical modelling of hydraulic transients in simple systems[END_REF], which gives a more accurate representation. Thus, in our work we will use the MOC to build the model of the penstocks.

Using MOC to model a single penstock utilizes the wave travel time (given by ∆ := 2L p /v) of the penstock in order to compute the sampling period (τ := ∆/m), where m ∈ Z + . Systems with multiple penstocks have different values of ∆ i , where i is the index of the penstock considered. Therefore, in order to represent multiple penstocks as a system of differential equations using MOC, the sampling period needs to be a common divisor of all ∆ i , namely τ := ∆ i /m i , where m i ∈ Z + . Since, this is practically not possible, therefore approximations are needed [START_REF]Hydraulic turbine and turbine control models for system dynamic studies[END_REF]. Thus, in our contribution we extend the preliminary results obtained in [START_REF] Mensage | Modèlisation et contrôle avancé pour les centrales de turbinage de moyenne et haute chute[END_REF] to have a systematic approach of modeling multiple penstocks while using an arbitrary sampling period. This improvement allows us to model systems with any penstocks characteristics on the upstream and downstream sides, in addition to systems with surge tanks on either sides of the turbine, using a set of continuous differential equations.

In order to preserve the continuity of the mathematical model developed, a continuous model of hydraulic turbine needs to be constructed. Turbine dynamics are commonly represented by static curves called 'Hill charts'. They are measurements that show how the static values of the flow rate and hydraulic torque vary when rotational speed and guide vanes and/or pitch angle (depending on the type of the turbine) vary. The most commonly used modeling approach of Francis turbines; which are considered in this paper, is to use a nonlinear model that is linearized in the vicinity of the operating-point. This results in operating point-dependent coefficients, which are computed using linear interpolation of data points on the Hill charts [START_REF] Strah | Speed and active power control of hydro turbine unit[END_REF], resulting in a discrete model. Another approach is to use regression models in order to get a continuous representation of the Hill charts as in [START_REF] Mensage | Modèlisation et contrôle avancé pour les centrales de turbinage de moyenne et haute chute[END_REF]. Our contribution is based on regression models, which has been successfully applied to Francis turbines, where a simpler approach is used that results in models of lower complexity than those in [START_REF] Mensage | Modèlisation et contrôle avancé pour les centrales de turbinage de moyenne et haute chute[END_REF], thus enabling faster simulation times.

Finally, when considering starting-up hydraulic turbines fast enough while limiting the excitation of sharp pressure oscillations, different solutions already exist. For instance, the control algorithm most widely used for start-up (according to engineers at GE) runs in open-loop mode till the turbine's speed is close to the synchronization speed. Then, the loop is closed using a proportional-integral (PI) controller. This allows the stabilization of the speed around it's desired value by controlling the guide vanes opening. Note that this algorithm does not take into account the actual state of the machine, so that recovering after a high disturbance is not intuitive. A set of parameters are fixed at the installation of the machine and remain unchanged whatever, for example, the pressure head at which the turbine works, where the oscillations are not explicitly stabilized.

Therefore, a new control law has been proposed in [START_REF] Mesnage | Hydraulic-turbine start-up with " S-shaped " characteristic[END_REF], where flow rate trajectories suitable for fast start-up that are compatible with the system constraints, are computed offline while taking into consideration the Hill charts of the turbine and the dynamics inside the penstocks. Then, a gain-scheduling based tracking of the computed trajectory is proposed, where the computation of the gain profile is obtained through finite horizon predictive control, that computes offline the time-varying components of the feedback gain. When comparing the controller we propose to the controller used in [START_REF] Mesnage | Hydraulic-turbine start-up with " S-shaped " characteristic[END_REF], it is important to note that the explicit use of the Hill charts is avoided. Instead, the model-free design with provable stability proposed in [START_REF] Mohamed | Robust Output Feedback Controller For a Class of Nonlinear Systems with Actuator Dynamics[END_REF] is used, where a control design of highly uncertain system is proposed together with the stability proof and an estimation of the asymptotic tracking error upper bound. Nevertheless, the validation of the closed-loop performance and/or the feasibility of the proposed control obviously needs the Hill charts for the sake of simulation and the certification.

In addition, our proposed approach can be easily accepted, implemented and tuned by practitioners due to it's simplicity and resemblance to controllers in use, unlike the controller proposed in [START_REF] Mesnage | Hydraulic-turbine start-up with " S-shaped " characteristic[END_REF].

Mathematical Model

In this section, we present the overall mathematical model of the system. This model considers different components of hydraulic power plants, and it is developed in a way that simply links these different components, which makes adding more components to the mathematical model an easy task. The mathematical model is made up of a system of continuous differential equations. This is particularly useful when designing advanced controllers that need continuous mathematical models. The hydraulic system as shown in Figure 1 consists of the following main parts:

1. Penstocks and reservoirs 2. Hydraulic turbine

Actuator

Our focus in this section is on modeling penstocks and hydraulic turbines while accommodating surge tanks. This section is organized as follows: Section 3.1 shows the detailed derivation of the set of differential equations of the penstocks and surge tanks, then section 3.2 presents the approach we propose to construct continuous mathematical models of hydraulic turbines, afterwards GE's actuator is presented in section 3.3. Finally, in sections 3.4 we bring all differential equations together to form the complete mathematical model.

Upstream and Downstream Penstocks

Water dynamics inside the penstocks can be described using hyperbolic partial differential equations involving the flow rate Q and the pressure head H, derived using the continuity and momentum equations as in [START_REF] Chaudry | Applied Hydraulic Transient[END_REF]. The mathematical model developed in this section is valid under the following assumptions:

1. The fluid is slightly compressible and unidimensional 2. The penstock walls are slightly deformable and is proportional to the pressure (Hooke's law) 3. There is no cavitation in the penstocks Using these assumptions, the following PDEs are obtained as in [START_REF] Chaudry | Applied Hydraulic Transient[END_REF]:

∂Z(t, x) ∂t + Ā ∂Z(t, x) ∂x = -F Q(t, x)|Q(t, x)| (1) 
where:

Z(t, x) := Q(t, x) H(t, x) ; Ā = 0 b a 0 ; F = F p 0 a = v 2 gSp ; b = gS p g is the gravitational acceleration (m/sec 2 )
S p is the cross-sectional area of the penstock (m 2 ) v is the pressure wave speed (m/sec) which depends on the Bulk's modulus of elasticity and mass density of the fluid, in addition to elastic properties of the penstock [START_REF] Chaudry | Applied Hydraulic Transient[END_REF] F p is the penstock's friction coefficient As mentioned above, our objective is to represent water dynamics inside the penstocks and surge tanks available on both sides of the turbine by a set of continuous differential equations, thus we aim at representing equation (1) in the following form:

ẋh (t) = A c x h (t) + B c Q(t) (2) 
δh(t) = C c x h (t) + D c Q(t) (3) 
where:

x h ∈ R n h is the internal states vector of the penstocks, surge tanks and reservoirs.

The net pressure head H n (t) = H b + δh(t) is the pressure head at the side of the turbine. It is the sum of the gross pressure head

H b = H (u) b -H (d) b
shown in Figure 1, which is considered constant, and the pressure head oscillations δh at the side of the turbine.

The matrices A c , B c , C c and D c are the system's matrices to be derived based on the components available in the system

The first step in deriving equations ( 2)-( 3) is to derive the following system of difference equations:

x h (t + τ ) = A d x h (t) + B d Q(t) (4) 
δh(t) = C d x h (t) + B d Q(t) (5) 
Then, the equivalent continuous form given by ( 2)-( 3) corresponding to the system of equations ( 4)-( 5) can be obtained using routines similar to Matlab's (d2c) routine.

Penstocks Modeling Using MOC

The first step in deriving equations ( 4)-( 5) is to use MOC and algebraic manipulations to get the evolution of the pressure head and flow rate at the boundaries of an arbitrary penstock of length L p [see Figure 2]. This results in the following equations (derived in [START_REF] Mensage | Modèlisation et contrôle avancé pour les centrales de turbinage de moyenne et haute chute[END_REF]):

H 2 (t) = κ[Q 2 (t) -Q 2 (t -∆)] -H 2 (t -∆) + 2H 1 (t -∆/2) (6) Q 1 (t) = - 1 κ [H 1 (t) -H 1 (t -∆)] -Q 1 (t -∆) + 2Q 2 (t -∆/2) (7) 
where:

∆ 0 := L p v ; ∆ := 2∆ 0 ; κ := S p g v (8 
)

x = 0 x = L p H(t, x) Q(t, x) Q 2 (t) = Q(t, 0) H 2 (t) = H(t, 0) Q 1 (t) = Q(t, L p ) H 1 (t) = H(t, L p ) Figure 2: Schematic of penstock.
Thus, equations ( 6)-( 7) can be also written in a matrix form:

M 1     H 1 (t) Q 1 (t) H 2 (t) Q 2 (t)     = M 2     H 1 (t -∆/2) Q 1 (t -∆/2) H 2 (t -∆/2) Q 2 (t -∆/2)     + M 3     H 1 (t -∆) Q 1 (t -∆) H 2 (t -∆) Q 2 (t -∆)     (9)
where:

M 1 := 0 0 1 -κ 1 κ 1 0 0 ; M 2 := 2 0 0 0 0 0 0 2 ; M 3 := 0 0 -1 -κ 1 κ -1 0 0
Re-writing equation ( 9) at instant t + τ leads to:

M 1     H 1 (t + τ ) Q 1 (t + τ ) H 2 (t + τ ) Q 2 (t + τ )     = M 2     H 1 (t -∆/2 + τ ) Q 1 (t -∆/2 + τ ) H 2 (t -∆/2 + τ ) Q 2 (t -∆/2 + τ )     + M 3     H 1 (t -∆ + τ ) Q 1 (t -∆ + τ ) H 2 (t -∆ + τ ) Q 2 (t -∆ + τ )     (10) 
In order to proceed with the derivation of equations ( 4)-( 5), the following notations need to be introduced for any quantity denoted by 's':

x s (t) :=      s(t) s(t -σ) . . . s(t -2mσ)      ∈ R (2m+1) (11) 
where

s ∈ {H 1 , Q 1 , H 2 , Q 2 }
Using linear interpolation for τ := σµ we can get the following difference equation for a given value of σ:

x(t + τ ) = I 4 ⊗ A (µ) 1 x(t) + I 4 ⊗ B 1 v b (t + τ ) (12) 
where:

µ ∈ (0, 1) ; σ := ∆ 2m s.t. m ∈ N x :=     x H1 x Q1 x H2 x Q2     ∈ R 4(2m+1) ; v b (t) :=     H 1 (t) Q 1 (t) H 2 (t) Q 2 (t)     ∈ R 4
x H1 , x Q1 , x H2 and x Q2 follow the notations given by equation ( 11)

A (µ) 1
and B 1 are first order interpolation matrices

I 4 ∈ R 4×4
is the identity matrix

I 4 ⊗ V =     V 0 0 0 0 V 0 0 0 0 V 0 0 0 0 V     ∈ R 4mv×4nv s.t. V ∈ R mv×nv
The derivation of ( 12) is given in Appendix A.

Thus, for multiple penstocks with different dimensions, a unique sampling period τ := σµ can be chosen, by having different values of σ and µ for each penstock. This takes us a step further towards equations ( 4)-( 5).

Using the following approximations which hold ∀m and for a given choice of σ:

s(t -∆ + τ ) ≈ [C (µ) 0 (m)]x s (t) (13) 
s(t -∆/2 + τ ) ≈ [C (µ) 1/2 (m)]x s (t) (14) 
where:

[C (µ) 0 (m)] := A (µ) 1 (2m + 1, :) ; [C (µ) 1/2 (m)] := A (µ) 1 (m + 1, :) whereas, A (µ) 
1 (k, :) stands for the k-th line of the matrix

A (µ) 1 210
They can be combined with the definitions of x, x s and s given by (A.2) and ( 11) respectively, to get the following:

    H 1 (t -∆/2 + τ ) Q 1 (t -∆/2 + τ ) H 2 (t -∆/2 + τ ) Q 2 (t -∆/2 + τ )     ≈ [I 4 ⊗ C (µ) 1/2 ]x (15) 
    H 1 (t -∆ + τ ) Q 1 (t -∆ + τ ) H 2 (t -∆ + τ ) Q 2 (t -∆ + τ )     ≈ [I 4 ⊗ C (µ) 0 ]x (16) 
Therefore, combining equations ( 10), ( 15) and ( 16) results in the following:

M 1 v b (t + τ ) ≈ M 23 x(t) (17) 
where:

M 23 := M 2 [I 4 ⊗ C (µ) 1/2 ] + M 3 [I 4 ⊗ C (µ) 0 ] v b (t) := H 1 (t) Q 1 (t) H 2 (t) Q 2 (t)
T Note that the vector v b (t) gathers the values at the boundaries of the penstock.
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To summarize the results we have so far, we obtained two main equations that describe the water dynamics in an arbitrary penstock for a given choice of σ:

x(t + τ ) = I 4 ⊗ A (µ) 1 x(t) + I 4 ⊗ B 1 v b (t + τ ) (18) M 1 v b (t + τ ) = M 23 x(t) (19) 
where

M 1 ∈ R 2×4 .
Therefore, to completely describe the dynamics and get an invertible matrix M 1 to derive equations ( 4)-( 5), boundary conditions are needed. Different boundary conditions are considered (reservoirs, turbines and surge tanks on the downstream and the upstream) as shown in the following sections.

Single Downstream Penstock (No Surge Tank)

In this section, we will derive the difference equation that describes the dynamics inside a penstock on the downstream side connected to a reservoir and a turbine.

By combining the boundary conditions shown in Figure 3 and equation ( 19), we get:

v (d) b (t + τ ) = M ext 1 -1 M ext 23 x (d) (t) + L 1 H (d) b + L 2 Q(t + τ ) (20) 
where:

M ext 1 :=   M 1 1 0 0 0 0 0 0 1   ∈ R 4×4 ; M ext 23 := M 23 0 2×4(2m+1) ∈ R 4×4(2m+1) L 1 := 0 0 1 0 T ∈ R 4 ; L 2 := 0 0 0 1 T ∈ R 4
whereas the turbine is assumed to be the source of the flow rate denoted by Q as shown in Figure 3. Combing equations ( 12) and (20) and denoting x by x (d) (when considering downstream penstock) lead to the following dynamical states equation:

H (d) 1 (t + τ ) = H (d) b Q (d) 2 (t + τ ) = Q(t + τ ) Q (d) 2 (t) H (d) 2 (t) Q (d) 1 (t) H (d) 1 (t) H (d) b L (d) p Q
x (d) (t + τ ) = A (d) x (d) (t) + B (d) c Q(t + τ ) + B (d) h H (d) b (21) 
where:

A (d) := I 4 ⊗ A (µ) 1 + I 4 ⊗ B 1 M ext 1 -1 M ext 23 B (d) c := I 4 ⊗ B 1 M ext 1 -1 L 2 B (d) h := I 4 ⊗ B 1 M ext 1 -1 L 1
Moreover, the pressure head at the downstream side of the turbine can be computed as follows:

H (d) 2 (t) = C (d) x (d) (22) 
where

C (d) = 0 1×(4m+2) 1 0 1×(4m+1) 240
A good rule of thumb to choose m given ∆ is given by:

m ≥ 10∆ × f max (23)
where f max is the bandwidth of the excitation signal u p .

Single Upstream Penstock (No Surge Tank)

By following the same procedure used to derive equations ( 21)-( 22), we can derive the following equations for the upstream penstock:

x (u) (t + τ ) = A (u) x (u) (t) + B (u) c Q(t + τ ) + B (u) h H (u) b (24) 
H (u) 2 (t) = C (u) x (u) (25) 

Combining Upstream and Downstream Penstocks Equations

In this section, we finally get to represent a system of a penstock on the upstream side and another on the downstream side, connected to their respective 245 reservoirs with a turbine in between [as shown in Figure 1] in the form given by ( 4)-( 5). This is done by firstly computing the steady states under [Q(t + τ ) ≡ 0] of systems ( 21) and (24) denoted by x , which gives us:

x (d) d := I -A -1 B h H (d) b =     1 (2m+1,1) 0 (2m+1,1) 1 (2m+1,1) 0 (2m+1,1)     H (d) b (26) x (u) d := I -A -1 B h H (u) b =     1 (2m+1,1) 0 (2m+1,1) 1 (2m+1,1) 0 (2m+1,1)     H (u) b (27) 
Then, by combining the dynamical equations ( 21) and (24) with the steady states given by ( 26)-( 27), we get the dynamic evolution of the error states x h which is written as:

x h (t + τ ) := A d x h (t) + B d Q(t + τ ) (28) 
where:

x h := x (u) -x (u) d x (d) -x (d) d ; A d := A (u) 0 0 A (d) ; B d := B (u) c B (d) c
Since Q(t) does not change abruptly and for small τ , we can safely assume that:

Q(t) = Q(t + τ )
Thus, equation (28) becomes:

x h (t + τ ) = A h x h (t) + B d Q(t) (29) 
The output δh is computed as follows:

δh(t) = H (u) 2 (t) -H (d) 2 (t) (30) 
Thus, by combining ( 22), ( 25), (30) and the definition of x h (t), we get:

δh(t) = C d x h (t) (31) 
where C h := C (u) -C (d) . Thus, equations (29)-(31) are in form given by ( 4)-( 5) for (D d = 0).

As discussed previously in [START_REF]Hydraulic turbine and turbine control models for system dynamic studies[END_REF], the value of τ for systems with multiple penstocks was required to be a common divisor of ∆ of each penstock. Otherwise, approximations were required in order to construct a linear system as (29). Using our approach, it is now possible to choose τ freely and systematically, by simply choosing a different µ ∈ (0, 1) and σ for each penstock.

Therefore, after introducing our systematic approach to modeling multiple penstocks on different sides of the turbine, the approach is extended to include multiple penstocks with a surge tank in between as presented in Appendix B.

This ends the discussion on how we manage to systematically represent a system of multiple penstocks into the system of differential equations ( 2)-( 3), which allows considering configurations where surge tanks are available, while systematically choosing the sampling period of the system. This shows how our proposed simulator can be used to model larger systems by simply extending the states vectors on the upstream and the downstream sides of the turbine.

The next step is to get the differential equations that model the dynamics of the hydraulic turbine, which should provide us with an expression for Q(t) that excites the system (2)-( 3) as indicated on Figure 3. This is the subject of the following section, where Francis turbines are considered.

Hydraulic Turbines

In this section, the dynamical behavior of a Francis turbine represented by it's Hill charts data is modeled. This is done using least squares regression to fit a mathematical model to the available Hill charts data.

Hydraulic turbines models usually make use of the Hill charts to describe the steady-state relationships among rotational velocity N (rpm), net pressure head H n (m), flow rate Q (m 3 /sec) at the turbine, turbine's mechanical torque T (N.m) and guide vanes opening γ (degrees).

The aim of this section is to present a systematic approach of getting smooth mathematical representations of the Hill charts of Francis turbines which is augmented to the system of differential equations given by ( 2)-( 3). An example of Hill charts of a Francis turbine is shown in Figure 4. They are represented using unitary variables N 11 , Q 11 and T 11 , where:

N 11 := N D √ H n ; Q 11 := Q D 2 √ H n ; T 11 := T D 3 H n (32) 
where D (m) is the diameter of the turbine. Having a mathematical representation of the Hill charts is necessary in order to have an expression of the input variable to the system (2)-(3), namely Q(t).

However, the function that describes Q(t) is an implicit nonlinear algebraic equation that can be written as follows:

Q(t) = f 1 (Q(t), N (t), H n (t), γ(t)) (33) 
which describes the dynamics of Q given by the Hill charts shown in Figure 4.

Thus, solving equation (33) numerically to get Q every time step in order to simulate the behavior of the system, is computationally expensive. Therefore, we will solve instead the following differential equation:

Q(t) = λ q [f 1 (Q(t), N (t), H n (t), γ(t)) -Q(t)] (34) 
which maintains the difference (Q -f 1 ) equal to zero for λ q > 0, thus approximates (Q = f 1 ) for high values of λ q .

In order to be able to solve equation (34), we need to have expressions that describe the evolution of N , H n and γ. To begin with, the expression of H n (t) is given by:

H n (t) = H (u) b -H (d) b + δh(t) (35) 
where H are the gross pressure heads at the upstream and downstream reservoirs respectively as shown in Figure 1, while δh is given by equation (3).

As for the dynamics of γ, which is the output of the actuator, it is discussed in section 3.3. Finally, the dynamical equation of the turbine's rotational speed is given by:

Ṅ = 30 Jπ [T -T e -c f N ] (36) 
where J (kg.m 2 ) is the moment of inertia of the runner, ( 30 π ) is used to convert the rotational speed from rad/sec to rpm, T e (N.m) is the torque of the electric machine which is set to zero in our contribution, since only start-up scenarios are considered, c f is the friction coefficient and T is given by:

T (t) = f 2 (Q(t), N (t), H n (t), γ(t)) (37) 
which describes the dynamics of T 11 given by the Hill charts shown in Figure 4.

Different modes of operation that occur after connecting the power plant to the grid such as, load rejection can be modeled using our generic modeling approach as electric torque disturbance by setting the value of (T e = 0). Usually this is a fast control problem when compared to start-up (T e = 0). In addition, GE has a different set of fast controllers to deal with this issue as in [START_REF] Guo | Ladrc applied to variable speed micro-hydro plants: Experimental validation[END_REF]. Therefore, it is outside the scope of this paper. Our proposed controller is dedicated to start-up before grid connection.

Thus, to have a complete mathematical model of our hydraulic system, we need to find the expressions (33) and (37). This can be achieved by finding the following regression models, namely F 1 and F 2 that approximate the Hill charts shown in Figure 4, thus approximating the expressions (33)-(37):

Q11 = F 1 (N 11 , γ) ; T11 = F 2 (N 11 , γ) (38) 
However, since as shown in Figure 4 for some values of N 11 , there exist multiple values of Q 11 and T 11 , making it impossible to find a good regression model. Therefore, a change of variables inspired by the suterian representation [START_REF] Dörfler | neo-suterian' pump-turbine characteristics and their benefits[END_REF] is used, where we get the corresponding Hill charts shown in Figure 5. Hence, now we try to find the following regression models:

Q11 = w 1 (θ, γ) ; T11 = w 2 (θ, N 11 , γ) (39) 
where θ := atan Q11+Qs N11 for a constant value Q s > 0 to be chosen.

Thus, by combining (32) and (39), we end up with:

Q = Q11 (θ, γ)D 2 H n ; T = T11 (θ, N 11 , γ)D 3 H n (40) 
which can be completely defined once the functions w 1 and w 2 are obtained using least squares regression that fit mathematical models given by (39) to the Hill charts data.

By substituting the expressions (40), that approximate the dynamics of the functions f 1 and f 2 , into equations ( 34) and (36), we get:

Q(t) = λ q [ Q11 D 2 H n -Q(t)] (41) Ṅ = 30 Jπ [ T11 D 3 H n -T e -c f N ] ( 42 
)
which are used to model the behavior of the turbine represented by the Hill charts. In the next section, we complete the discussion of the simulator, by defining the actuator's dynamical model. This gives the evolution of γ needed in equations ( 34) and (36) to simulate the evolution of Q and N .

Actuator

The complete nonlinear model of the actuator used by GE is shown in Figure 6. The actuator considered incorporates a local proportional-integral (PI) controller with saturation which controls the guide vanes opening γ once given γ c .

In addition, saturation limits on γ and γ are included, where the saturation limits on γ are dependent on the value of γ and whether γ is increasing or decreasing.

Thus, the dynamical equation of the actuator in use shown in Figure 6 is given by (if we ignore the saturation blocks):

γ γ c = 1 1 + T s s + T s T d s 2 (43)
where: The nonlinear dynamics of the actuator in the following general form:

γ c is
ẋa = f a (x a , γ c , T d , T s ) ; γ = C a x a (44) 
where x a and C a are given by: 

x a = γ γ T ∈ R 2 ; C a = 1 0 + + 1 T d s 1 Tss -1 -1 γ γ c

Overall System

Finally, we have all the necessary components of our hydraulic simulator given by the following system of differential equations, which have been derived in the previous sections:

Q = λ q Q11 (N, Q, γ)D 2 H n -Q (45) Ṅ = 30 Jπ T11 (N, Q, γ)D 3 H n -c f N (46) ẋh = A c x h + B c Q (47) ẋa = f a (x a , γ c , T d , T s ) (48) δh = C c x h + D c Q (49) H n = H (u) b -H (d) b + δh (50) γ = C a x a (51)

Controller Architecture

The controller proposed here is inspired by the framework proposed in [START_REF] Alamir | Output Feedback Control of a Class of Uncertain Systems Under Control-derivative dependent disturbances[END_REF] and 335 [START_REF] Mohamed | Robust Output Feedback Controller For a Class of Nonlinear Systems with Actuator Dynamics[END_REF]. The proposed configuration involves three cascaded sub-controllers C γc , C Q ref and C Q d as shown in Figure 7. The philosophy behind it is to find a reference flow rate trajectory Q ref , which when tracked by controlling the guide vanes opening set-point γ c , the rotational speed N reaches the desired value N d such that the synchronization of the power plant to the grid is possible, while damping pressure head oscillations δh.

The choice of the parameters of the controller in Figure 7 is made to ensure the system's asymptotic stability, in addition to minimizing the output tracking error fast enough to achieve a satisfactory system response when starting up the turbine. This is done by taking into account the complete nonlinear dynamics of the hydraulic system given by the system of equations ( 45)-( 51) when selecting the parameters. Controller parameters tuning is carried out manually in this contribution, however it can be done systematically to guarantee asymptotic stability and minimize the upper bound on tracking error which is left for future contributions. Moreover, the controller's parameters can be selected to make sure that smoother start-up scenarios are obtained by respecting limits on the maximum torque used, which are considered in future contributions.

C Q d C Q ref C γc Q N d Q d δh Q ref N γ c z 2 xh z 1
In the following sections, we explain the different control laws used for each of the sub-controllers shown in Figure 7, which give us the controller parameters to tune.

Controlling the speed: The controller C Q d

To begin with, usually the turbine is required to rotate at a certain speed before synchronizing it to the grid, thus the desired rotational speed N d is given to the controller C Q d , which in turn gives the flow rate desired trajectory Q d that would derive the measurement N to ±0.2% of N d .

The proposed controller C Q d (N d ) takes the following form:

Q d = S(λ N [N d -N ] + z 2 ) ; ż2 = λ N f [Q d -z 2 ] (52) 
where λ N and λ N f are the controller's gains and S(.) is the saturation function to guarantee

Q d is kept within it's bounds [Q min , Q max ].
However, in order to limit initial large tracking error which can result in high Qd that excites high pressure oscillations δh, a filter of order n f is used on N d signal:

N D f ilt (s) = N D (s) 1 1 + τ f s n f (53)
where τ f changes the response time of the filter, N D (s) and N D f ilt (s) are the Laplace transform of N d (t) and N d f ilt (t) respectively. Thus, Q d in equation (52) becomes:

Q d = S(λ N [N d f ilt -N ] + z 2 ) (54) 
The generated reference signal Q d is then fed to the controller C Q ref (see Figure 7) to get a flow rate Q ref that stabilizes the internal dynamics of the penstocks as detailed the next section. The pressure oscillations dynamics are described by ( 2), thus for some desired flow rate Q d , one can compute the steady state vector:

x st h (Q d ) := -A -1 c B c Q d (55) 
and therefore, the stabilizing state-feedback takes the following form:

Q ref = Q d -K[x h -x st h (Q d )] (56) 
should the state x h be completely known. K is a linear quadratic gain that can be computed using standard tools such as Matlab's lqr subroutine, where the matrices Q lqr and R lqr used in Matlab's lqr are to be tuned.

Note that when tuning the matrices Q lqr and R lqr , we need to take into consideration the trade-off between getting Q ref that is not so different from Q d that steers N towards N d , and getting Q ref that sufficiently damps out δh.

The control expression (56) cannot be effectively applied as the whole state vector x h is not available. Rather, a reconstructed version xh of it has to be obtained through a linear state observer, whose discussion is skipped here. This leads to the dynamic output feedback given by:

Q ref = Q d -K[x h -x st h (Q d )] (57) ẋh = [A c -LC c ]x h + [B c -LD c ]Q + Lδh ( 58 
)
where L is the observer gain that can be computed using standard tools. Note that the resulting reference signal Q ref is then fed to the controller C γ d (see Figure 7) to be tracked as shown in the following section. The objective of this controller is to use the set-point γ c on the guide vane opening, in order to track a given reference Q ref of the flow rate Q. It is assumed that Q can be measured or at least estimated. The proposed controller C γc takes the following form:

γ c = S(λ 1 [Q ref -Q] + z 1 ) ; ż1 = λ 1 f [γ c -z 1 ] (59) 
where λ 1 and λ 1 f are controller's gains and S(.) is the saturation function to guarantee γ c is kept within it's bounds [γ min , γ max ].

Complete Speed Controller

By combining all equations that describe the behavior of the proposed controller in Figure 7, the complete solution for speed control is given by:

ż2 = λ N f [Q d -z 2 ] (60) ż1 = λ 1 f [γ c -z 1 ] (61) 
N D f ilt (s) = N D (s) 1 1 + τ f s n f (62) γ c = S(λ 1 [Q ref -Q] + z 1 ) (63) 
Q d = S(λ N [N d f ilt -N ] + z 2 ) (64) 
Q ref = Q d -K[x h -x st h (Q d )] (65) 
The controller parameters to be tuned in order to achieve the desired closed-loop behavior are:

λ 1 , λ 1 f , Q lqr , R lqr , λ N , λ N f , Q min , Q max , n f and τ f .

Simulation Results

Open-loop Simulations

In order to assess the validity of our simulator given by ( 45)-( 51), an open-loop simulation is run and compared with the results obtained using Simsen software [START_REF] Nicolet | High-order modeling of hydraulic power plant in islanded power network[END_REF]. The models are built for a hydraulic power plant, which has long penstocks, a surge tank on the upstream side and a single Francis turbine as illustrated in Figure 8.

Simsen [START_REF] Nicolet | High-order modeling of hydraulic power plant in islanded power network[END_REF] is the simulator used by GE to simulate hydraulic power plants. It uses electrical circuits analogy to construct a system of differential equations that represents penstocks and surge tanks. In addition, the turbine is modeled by interpolating the Hill charts data points.

Simsen is a commonly used simulation software for hydraulic power plants for industrial and research purposes. Huge companies as GE use Simsen to design and validate their different controllers. Also, Voith Hydro as in [START_REF] Koutnik | The integration of pumped storage stations in the brazillian national integrated system: Electrical system behavior analysis[END_REF] uses Simsen to simulate a brazillian pump hydro storage power plant (Frades II) dynamics which helps them designing pump hydro storage units both with fixed and variable speed units. In addition, Simsen is used in [START_REF] Nicolet | New surge tank commissioning at the hongrin-léman pumped-storage plant by real time simulation monitoring[END_REF] to validate the pump hydro storage power plant transient response when a new surge tank is commissioned at the Hongrin-Léman pump hydro storage plant in Switzerland. Furthermore, Supergrid uses Simsen in [START_REF] Lima | Nonlinear Control of a Fully-Fed Variable Speed Pumped Storage Plant[END_REF] to validate their proposed controllers of variable speed pump hydro storage plants.

Setting γ c = 15, Figure 9 shows the results obtained using our proposed simulator for the values of the parameters in Table 1, where the same value of m (used to build equation ( 12)) is chosen for the different penstocks present in the system. The same sampling period τ and γ c are used for Simsen's simulation results shown in Figure 10, while using GE's recommended values of Simsen's parameters. Generally, the choice of the sampling period depends on several parameters like propagation of wave and the elasticity of the penstocks material. The value pf τ used in the shown open-loop and closed-loop simulations is chosen to match the value used by the engineers at General Electric (GE) while simulating the actual power plant. Therefore, this choice is made based upon GE's engineers knowledge. The aim is to increase the credibility of the simulation results obtained using our proposed simulator when using values chosen by GE.

λ q m τ a c n h 70 6 0.005 50 0.85 157 Table 1: Chosen values of the parameters used in the open-loop simulations results shown in Figure 9.

Figure 9 shows that the proposed hydraulic simulator is capable of capturing the unstable behavior of the turbine, when operating in the S-zone of the Hill charts. Simsen is known for its numerical instabilities during start-up when operating at the S-zone (see Figure 10). These instabilities show up as very fast short oscillations of the pressure head (H) and flow rate (Q). On the other hand, the results obtained using our simulator seem more numerically stable (see Figure 9) as they do not show such fast short oscillations, and is therefore more suitable for control-oriented study. 

Closed-loop Simulations

In this section we show closed-loop simulation results, in order to show how the proposed controller is actually capable of stabilizing the system, namely N converges towards N d .

By bringing together the system's equations ( 45)-( 51) and the controller's equations (60)-(65), we get the closed-loop behavior shown in Figure 11. The values of the controller's parameters are in Table 2, which are manually tuned. A systematic tuning approach is proposed in future contributions.

It is important to note that simulations in this section do not consider the observer's dynamics given by ( 58), thus we assume that x h is available.

Note that the matrices Q lqr and R lqr used in Matlab's lqr to compute K are tuned such that we get asymptotically stable internal dynamics of the penstocks given by equation ( 2), in other words an exponentially decaying δh as shown in Figure 11, where:

Q lqr = ρ lqr C T c C c + I n h (66) 
whereas I n h is the identity matrix of size n h , for which n h is the length of x h , while ρ lqr and R lqr are chosen as shown in Table 2.

Even though, the controller parameters given in Table 2 are tuned to guarantee a fast start-up while asymptotically stabilizing the pressure oscillations. The sense of optimality is absent in this choice of the controller parameters λ 1 , λ 1 f , λ N , λ N f , which means that different values can be chosen such that faster start-up is obtained while still guaranteeing the asymptotic stability of the pressure oscillations. Table 2: Chosen values of the parameters used for the closed-loop simulation in Figure 11.

λ 1 λ 1f λ N λ Nf τ f n f R lqr ρ lqr Q min Q max γ min
is firstly satisfied at t = 20.5 sec and it takes 44 seconds to achieve a stable synchronization. However, an overshoot is noticed in the speed trajectory, so in order to avoid such an overshoot, equation ( 64) is modified as follows:

Q d = S(λ N [N d f ilt -N p ] + z 2 ) ( 67 
)
where N p is a prediction of N , which can be computed as follows:

N p = N + τ p 30 πJ T11 (N, Q, γ)D 3 H n (68) 
The reason behind this choice is that as shown in Figure 11, it takes the actuator some time to respond to the controller signal γ c and reach a value of γ that results in a negative torque T and thus decrease the rotational speed N , therefore eliminating the overshoot. Hence, in order to overcome this issue, the predictor (68) is implemented, so that the value of γ at which N starts decreasing can be reached faster which results in a more responsive behavior, thus avoiding overshoot as shown in Figure 12.

Thus, by choosing τ p = 4 sec, the overshoot of N can be eliminated as shown in Figure 12. However, the time needed to get a stable synchronization increases to 47 seconds, which is a bit longer than that when prediction is not used in Figure 11. Thus, reducing overshoot comes at the cost of slowing down the system response.

However, an advantage of avoiding overshoot is that a smoother control profile is obtained which helps in minimizing the pressure head oscillations peaks at the transient state.

Conclusion

In this work, a simulator has been developed for hydraulic power plants. The simulator involves a system of continuous differential equations, which systematically model the behavior of the different components of the hydraulic power plant. This includes, penstocks, tunnels, reservoirs and surge tanks. In addition, the nonlinear behavior and unstable regions 'S-characteristics' of hydraulic turbines, usually modeled by Hill charts, were successfully taken into consideration. Moreover, The actuator's nonlinear dynamics were included in the overall mathematical model. The simulator has been validated by comparing it to Simsen for start-up scenario of hydraulic turbines. Furthermore, a controller architecture has been proposed whose capability of stabilizing the system, when starting-up, has then been shown by manually tuning the controller parameters.

In future contributions, systematic tuning approaches are proposed to minimize the time needed to obtain a stable grid synchronization, while respecting maximum torque limitations when imposed.

By recalling the definition of x:

x := x H1 x Q1 x H2 x Q2 T (A.2)

and after some manipulations, we get equation [START_REF] Mohamed | Robust Output Feedback Controller For a Class of Nonlinear Systems with Actuator Dynamics[END_REF].

Appendix B. Two Penstocks With Intermediate Surge Tank

For the systems where surge tanks exist on either sides of the turbine, they can be systematically incorporated in the dynamical equations ( 29) and (31).

x (t)

x r (t) where H u s represents the additional state component which is the water's pressure head at the surge tank of cross-sectional areas S u s for the upstream side of the turbine, that obey the simple equations:

Ḣ(u) s (t) = 1 S (u) s Q (u) s1 (t) -Q (u) s2 (t) (B.3)
which can be discretized to get:

H (u) s (t + τ ) = H (u) s (t) + τ S (u) s Q (u) s1 (t) -Q (u) s2 (t) = A (u) s x (u) (t) (B.4)
whereas the state vector of the upstream systems x (u) is defined as follows:

x (u) := x where the vectors x (u) and x (u) r denote the states of the penstocks on the left and the right of the surge tank on the upstream side respectively. Note that they make use of the definition of x given by (A.2). It is important to note that, none of the penstocks considered need to have similar dimensions. The difference equation given by (29) can be updated to include equation (B.6) whenever a surge tank is available on the upstream side of the turbine. This is done by following the same procedure as in section 3.1.4, by firstly computing and subtracting the corresponding steady state expressions of (B.6), then updating (29) correspondingly. The same approach can be followed to model a surge tank on the dowstream side.

H (u) 1 (t + τ ) = H (u) b ; Q (u) 2 (t + τ ) = Q(t + τ ) H (u) s (t + τ ) = A s x (u) (t) Q (u) 1 (t) H (u) 1 (t) Q (u) s1 (t) H (u) s1 (t) Q (u) s2 (t) H (u) s2 (t) Q (u) 2 (t) H

1 .

 1 Pump Hydro Storage Plants (PHS)
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 1 Figure 1: Schematic of hydraulic side of pump hydro storage plant (PHS).
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 3 Figure 3: Penstock boundary conditions on the downstream side.
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 4 Figure 4: (Left) Q 11 vs. N 11 for different values of γ. (Right) T 11 vs. N 11 for different values of γ.
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 5 Figure 5: (Left) Q 11 vs. θ for different values of γ for (Qs = 0.3). (Right) T 11 vs. θ for different values of γ for (Qs = 0.3).

  the set-point of the guide vanes opening T s and T d represent time constants of the actuator which include the gains of the local PI controller
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 6 Figure 6: Schematic of the oleo-hydraulic actuator considered.
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 7 Figure 7: Schematic of speed controller with N d as the input and γc as the output to be realized by the actuator. It makes use of measurements or estimated values of N , δh and Q. It has the internal state variables z 1 , z 2 and xh
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 2 Damping the pressure wave: The controller C Q ref As mentioned earlier, arbitrary dynamics of Q may induce high oscillations on δh, thus C Q ref is designed to correct the signal Q d given by (52), such that the pressure head oscillations are damped, which gives us the reference flow rate trajectory Q ref to be tracked. In other words, it results in asymptotically stabilizing the internal dynamics of the penstocks which are marginally stable in theory.
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 3 Tracking Q ref by γ c : The controller C γc
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 8 Figure 8: Schematic of the power plant considered.
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 9 Figure 9: Open-loop simulation using our simulator given by equations (45)-(51) for a constant γc = 15. (Top) Rotational speed N . (Middle) Flow rate Q. (Bottom) Net pressure head Hn.
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 10 Figure 10: Open-loop simulation for a constant γc = 15 using Simsen. (Top) Rotational speed N . (Middle) Flow rate Q. (Bottom) Net pressure head Hn.
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 14 Figure B.14: Schematic of 2 penstocks with an intermediate surge tank.
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 15 Figure B.15: Penstocks and surge tank on the upstream sides.

x

  (u) (t + τ ) = A (u) x (u) (t) + B
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Using the definition of x s given by ( 11), we derive the τ -translated system x s (t + τ ) given by:

where:

Thus, the first order interpolation matrix A (µ) 1

obviously gives a Hurwitz matrix, as it's spectrum radius is equal to (1 -µ) ∈ (0, 1).