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Introduction

Physical activity improves the general well-being [START_REF] Kubota | Physical Activity and Lifetime Risk of Cardiovascular Disease and Cancer[END_REF]. However, for an efficient physical activity program, the optimal physical activity intensity has to be determined. Planning adequate physical activity and then prescribing an optimal intensity for those is a challenge for health care policies (WHO, 2010). The relevance of on-body sensors to monitor physical activity is wellestablished [START_REF] Marschollek | Associations between sensor-based physical activity behaviour features and healthrelated parameters[END_REF]) and inertial measurement units (IMUs) have become a popular technical solution [START_REF] Rault | A survey of energy-efficient context recognition systems using wearable sensors for healthcare applications[END_REF] within their constraints [START_REF] Kerr | Comparison of Accelerometry Methods for Estimating Physical Activity[END_REF].

Although multiple studies have dealt with physical activity monitoring [START_REF] Fradet | Classification of physical activities based on body-segments coordination[END_REF], there has been little investigation of the mathematical and technical rationale regarding the methodology used to establish the correspondence between the inertial sensors signal (commonly acceleration) and the physical activity measure itself. The technical rationale or the mathematical background are most of the time superficial, not demonstrated and, in most cases, only a final output without any technical background is provided. In addition, as far as the technical implementation is concerned, there is no consensus as to sensor placement or input data prerequisites [START_REF] Nez | Identification of Noise Covariance Matrices to Improve Orientation Estimation by Kalman Filter[END_REF]. Often various positions are suggested for the use of the sensor [START_REF] Sandroff | Accelerometer measured physical activity and the integrity of the anterior visual pathway in multiple sclerosis[END_REF] even though the hip is already recognized as providing better results than the wrist (Cleland et al. 2013). Hardware heterogeneity [START_REF] Sandroff | Accelerometer measured physical activity and the integrity of the anterior visual pathway in multiple sclerosis[END_REF] is another well-known issue, potentially causing different results [START_REF] Nez | Comparison of calibration methods for accelerometers used in human motion analysis[END_REF]). An example is the varying sampling rate according to the hardware of the sensor (Yang 2010) and the difference between continuous and intermittent data collection. Some recent studies have demonstrated the influence of sampling frequency on PA estimation [START_REF] Brønd | Sampling frequency affects the processing of Actigraph raw acceleration datato activity counts[END_REF].

Regarding the mathematical background, the most common outputs are "activity count", identified over a specific period of time [START_REF] Yang | A review of accelerometry-based wearable motion detectors for physical activity monitoring[END_REF]. However, the exact calculation of such parameters is often missing, and leaves room for speculation. Most of the time, this activity count derives from acceleration measurements of the IMU and analytical approaches have been proposed (Chen et al. 2005). The acceleration signal is rectified and integrated by a user-defined epoch. An "activity" is counted once the resulting signal exceeds a certain threshold. However, this threshold is often undocumented.

To quantify movement performance various metrics based on IMU have been proposed in the literature [START_REF] Lepetit | Optimized scoring tool to quantify the functional performance during the sit-to-stand transition with a magneto-inertial measurement unit[END_REF]. Some are easy to determine, such as the vector magnitude minus one (Van Hees 2013 ), others, however, require numerous calculi [START_REF] Fradet | Classification of physical activities based on body-segments coordination[END_REF]. After this metric computation, regression equations are proposed to estimate energy expenditure [START_REF] Rothney | Validation of the ActiGraph tworegression model for predicting energy expenditure[END_REF] or cut-points are proposed for sedentary time and physical activity intensity classification [START_REF] Migueles | Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations[END_REF]. The level of activity as "light", "moderate" or "vigorous" is based on Metabolic Equivalent of Task (MET) [START_REF] Ainsworth | Compendium of Physical Activities: a second update of codes and MET values[END_REF] even though the relationship between IMU based metrics and MET is questionable [START_REF] Yang | A review of accelerometry-based wearable motion detectors for physical activity monitoring[END_REF].

Previous elements showed that the use of a single IMU to qualify and classify the intensity of physical activity did not find consensus in terms of set up and mathematical rationale for IMU deduced metrics. Consequently, IMU's users are faced with multiple options to place the IMU on the body as well as with various calculations to score the level of activity. In addition, in some propriety systems, this calculation is hidden. In this context, the aim of this paper is (i) to provide direct comparison of the efficiency of various IMU deduced metrics according to IMU localization to quantify and differentiate light-moderate-vigorous physical activities, and (ii) to assess the relationship between those metrics and the MET.

Material and Methods

147 participants (108 females and 39 males; age: 21.0 years (SD 2.0 y.), body mass index: 21.7 kgm -2 (SD 2.6 kgm -2 ) voluntarily participated in the experiment after signing a statement of informed consent pertaining to the experimental procedure as required by the Helsinki declaration. Data were collected (figure 1) in two sessions: one when the IMU (Opal, APDM) was located at the wrist and the second one when the IMU was located at the ankle. All sensors were calibrated before each session to avoid sensor drift or offsets according to the manufacturer's procedure. The sample rate was 128 Hz. Participants were asked to maintain a standing posture for 2 minutes, followed by self-pace walking (466 m), followed by another 2 minutes standing, followed by a self-pace run over (700 m).

The session ended in a quiet standing position.

According to the physical activity classification (WHO 2010), the standing position was defined as light physical activity (L), walking as moderate physical activity (M) and running as a vigorous one (V).

In order to individually quantify the level of the physical activity, the corrected MET was computed according to the physical activity, age, gender, height, weight and the locomotion speed [START_REF] Ainsworth | Compendium of Physical Activities: a second update of codes and MET values[END_REF].

The post processing of the IMU's measurements was computed in five steps and this study focuses specifically on the accelerometer data (Figure 2):

a) Accelerations deduced from IMU's measurements

According to the hardware of the sensors, IMU measurements are finite data with a frequency of herz . Consequently, if the session time is T in seconds, we obtained data with n measurements (eq. 1).

= .

(eq. 1)

In a second step, three different accelerations were computed: raw accelerations, IMU accelerations and body accelerations.

The raw sensor acceleration data is expressed in the reference frame of the sensor, named at each measure ∈ 1, , it corresponds to a vector in ℝ according to the values on the 3 axis of the sensors in the case of 3D accelerometers (eq. 2).

= (eq. 2)

As the sensor is an inertial measurement unit including a 3D gyroscopes and a 3D magnetometers it is possible to determine the orientation matrix
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For each measure describing the orientation of the IMU relative to the laboratory frame using data fusion algorithms [START_REF] Nez | Identification of Noise Covariance Matrices to Improve Orientation Estimation by Kalman Filter[END_REF].

The accelerations were then expressed in the laboratory reference frame %&' (eq. 3). Classically, the

x axis and y axis of the laboratory are in the horizontal plane and the z axis is vertical (eq. 4).

%&'

= %&' (eq. 3)

%&' = %&' %&' %&'
(eq. 4)

Due to the microelectromechanical components, the measure of the acceleration includes the acceleration of the rigid body (i.e. the IMU) and the gravity [START_REF] Tamura | Chapter 2.2 Wearable Inertial Sensors and Their Applications in book Wearable Sensors : Fundamentals, Implementation and Applications[END_REF]. Accordingly the z axis of the laboratory reference frame is vertical such as the gravitational component ( (1 ( = 9.806 ms -2 ) can be subtracted ( eq. 5 ). We deduced then the acceleration of the rigid body in the laboratory reference frame, named $)* ( eq. 6 )

$)* = %&' -( = %&' %&' %&' -( (eq. 5) $)* = $)* $)* $)* (eq. 6) b)

Physical activities metrics calculation

To quantify the intensity of physical activities at each i-th measurement, various parameters deduced from the accelerations previously obtained are proposed in the literature.

Van Hees (2013) and [START_REF] Hildebrand | Age group comparability of raw accelerometer output from wrist-and hip-worn monitors[END_REF] proposed the "vector magnitude minus one" named ENMO i (eq. 7).

1234 = 5 6 + 6 + 6 -( (eq. 7)

Vähä-Ypyä (2015) proposed to compute the "amplitude deviation" named AD (eq 8).

:
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Based on $)*

, Taruma (2014) suggested the use of the" vertical acceleration", named VA (eq. 9).

C: = $)*
(eq. 9)

VanHees (2011) identified the "vector magnitude" of the acceleration named VM (eq.10) as an indicator of the intensity of the physical activity.

C3 = D E$)* 6 + E$)* 6 + E$)* 6
(eq.10)

Chen (1997) suggested a direct estimation of the energy expenditure named EEact ) (eq. 11) based on the magnitude of the horizontal acceleration and vertical acceleration. For each subject (S), and for the wrist (W) and ankle session (A), sensor data were segmented to extract the metric MPA from L, M and V physical activity [START_REF] Fradet | Classification of physical activities based on body-segments coordination[END_REF]. At this stage, MPA is a ℝ " vectors. In addition, is subject dependent because duration walking and running sessions were selfpaced.
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Hammerla (2013) suggest analyzing the quantile function of the metric M PA. The quantile function a I is defined as the inverse of the empirical cumulative distribution. a I is a strict monotonically increasing function which associates a cumulative probability c from zero to one with the level of the value of the metric MPA [START_REF] Gilchrist | Interpreting regression models in clinical outcome studies[END_REF]. Consequently, c = 0 would be associated with min MPA , and c = 1 with max MPA (figure 4). Then, a I was linearly interpolated (0 to 1 with a step of 0.1). We obtained discrete quantile function d & ef as ℝ AgA vector for a metrics MPA associated at a subject, a sensor localization and session.

c) Data reductions

Data reduction consist in reducing data dimension. It consisted in reducing MPA which is ℝ " vectors to ℝ h vector with i < .

Usually in literature, data reduction of a metric 3 kl ∈ ℝ " to a single value in ℝ is concerned, authors suggest to determine the mean value (MEAN) (Vähä-Ypyä 2015) and the root mean square (RMS) value (Taruma 2014).

For the data reduction of a quantile function, L-moments method as higher order descriptive statistical tool is used (Karvanen 2005) and computed as follows: First, λ-coefficients and L-moments are computed with numerical integration performed by rectangle rule. 
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L-moments analogous to the coefficient of variation (CV), the skewness of the distribution and the coefficient of kurtosis could be deduced (Karvanen 2005):

t uv = m 6 m A (eq .18) t #w! "!## = m m 6
(eq .19) To quantify the similarity of the inter-subject of the quantile curves, the coefficient of multi correlation (CMC) on the quantile functions d & ef of all parameters for all subjects and for each physical activity and sensor's positions was computed in order to analyze the inter-subject reliability of this analysis (Kabada 1989). CMC scores the similarity between curves by a value between 0 (very different) to 1 (very similar) (Kabada 1989).

t
Finally, the relationship between data reductions MEAN and RMS and MET values of the subject was investigated by a linear regression model with a robust linear least mean square method. The relevance of the linear regression model by the coefficient of determination R 2 was reported [START_REF] Draper | Applied regression analysis[END_REF]. All computation and statistics analyses were performed in Matlab (R2016a, The Mathworks Inc, Natick, MA).

Results

Based on the Kruskal-Wallis test, we noticed no significant difference between the wrist and ankle sensor for the mean values of the ENMO, the RMS values of the ENMO and AD metrics for only for the light physical activities (Figures 3). Consequently, for all other parameters, we noticed a significant difference according to the localization of the sensor and the level of the physical activities (Figure 3). When the sensor is located on the wrist, we noticed that the box plots for all data reductions during light and moderate activities were close, which means that ranges of data reductions for light activity were close to that during a moderate one. These observations presented a lower differentiation ability. On the contrary, box plots for data reductions during vigorous activity were more clearly separated from those occurring during light and moderate ones, which suggests that vigorous level of physical activity could easily be differentiated.

For the quantile function of all metrics (Figure 4), we found a CMC value from 0.74 to 0.98 which demonstratred as a good to very good inter-subject reliability [START_REF] Rezgui | On the imitation of CP gait patterns by healthy subjects[END_REF]. The values of less than 0.80 were obtained for a light level of physical activity at the wrist localization for the AD, VM and EEact metrics and at the ankle localization for the VA and EEact metrics. High level of CMC ( > 0.9) for the three levels of activity were obtained for the quantile function of the metrics ENMO when the sensor is located at the wrist or ankle, and only for the ankle localization for the quantile function of metrics AD, VA and VM at moderate and vigorous physical activities.

Figure 5 showed results for L-CV, L-Skewness and L-Kurtosis of the quantile function of all metrics.

We noticed no significant difference between the wrist and ankle sensor for the L-CV of VA and EEact at light activity,and for L-Skewness of VM and L-Kurtosis of ENMO and EEact at vigorous activity .

We also found no significant difference between the light and the moderate activities for the L-CV of ENMO at the ankle, and between the moderate and vigorous activities for the L-CV of AD and VM at the wrist, for the L-CV of AD at the ankle, and for the L-Skewness of AD and EEact of the ankle. We also noticed the box plots for L-Skewness and L-Kurtosis of light level are more clearly separated from moderate and vigorous ones, which suggests that light level of physical activity could easily be differentiated from the moderate and vigorous ones using these metrics.

Good to very good linear relationship between the MEAN and RMS of all parameters with the MET values has been shown with values of the coefficient of determination R 2 from 0.78 to 0.97 (Figure 6). Indeed, based on the wrist sensor data, 97% of the linear relationships between the mean values and AUC of the AD and VM with the MET values has been accounted for. For the ankle sensor data, 97% of the linear relationships between the mean values of the ENMO with the MET. We also noticed visible difference on the slope obtained for wrist and ankle based data for MEAN-Met linear function of the metrics ENMO and VM (figure 6).

Discussion

The purpose of this study was to highlight the influence of IMU deduced metrics to quantify three levels of physical activity intensity and to compare between sensor locations. Our findings demonstrate that the five data reductions (MEAN, RMS, L-CV, L-Skewness and L-Kurtosis) of five metrics ENMO, AD, VA VM ,EEact) at the two localizations (wrist and ankle) could mainly differentiate between three levels of physical activity (light, moderate or vigorous). The second purpose was to test the relationship between those metrics and the MET, for which we found strong correlations and high coefficients of determination.

Research on post-processing methods of IMU based accelerometer data to quantify and classify physical activity is abundant [START_REF] Fradet | Classification of physical activities based on body-segments coordination[END_REF]) , but no standard procedure or reference data are available to test the reliability and the robustness of these methods. While some metrics like ENMO (eq. 7) and AD (eq. 8) are easy to compute (only based on 3D accelerations), obtaining metrics for VA (eq. 9) and VM (eq. 10) require additional sensors (e.g. gyroscope / magnetometer) and an additional sensor fusion algorithm [START_REF] Nez | Identification of Noise Covariance Matrices to Improve Orientation Estimation by Kalman Filter[END_REF]. Concerning the MET modeling, the metric EEACT (eq. 11) links the IMU measures and the metabolic energy using nonlinear equations. Non-linear equations present a computational cost and their generalizability to the whole population remains questionable.

Our results show a strong relationship between the MET estimation and the computed metrics (R 2 >0.8) and are consistent with previous research (Hamilton et al. 2015). This emphasizes the relevance of acceleration based metrics when estimating the level of activity [START_REF] Crouter | Estimating energy expenditure using accelerometers[END_REF] even though reliability might be low (Hargen et al. 2017). The low reliability is due to the counts.min -1 (cpm) is a common metric to quantify physical activity based on the acceleration (Aspvik.et al. 2016).

Cpm values represent the number of how many times the magnitude of acceleration reaches a defined threshold [START_REF] Migueles | Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations[END_REF]) and consequently does not allow to quantify the level of acceleration. This metric is often a proprietary format by the IMU manufacturers and exact calculation and processing is unknown [START_REF] Paul | Comparison of two different physical activity monitors[END_REF] leading to a heterogeneity of the cpm values [START_REF] Alhassan | Accuracy of accelerometer regression models in predicting energy expenditure and METs in children and youth[END_REF]. This emphasizes the importance of metric based computations that include the magnitude of the acceleration to quantify the intensity of physical activity (van Hees 2011). We also noticed a higher correlation with the metrics based on the wrist sensor, which could be linked to the relation between the swinging of the arms and the energy efficiency of the locomotion [START_REF] Arellano | The effects of step width and arm swing on energetic cost and lateral balance during running[END_REF] We focused our investigation on the IMU located on the wrist and ankle. The rational of this choice is the "wearability" [START_REF] Gemperle | Design for Wearability, Digest of Papers[END_REF] of the wrist and ankle, which are convenient for the subject and easy to fix an IMU with adjustable belt. Concerning the sensor location, the computed metrics showed different values and emphasized the importance of the sensor location [START_REF] Yang | A review of accelerometry-based wearable motion detectors for physical activity monitoring[END_REF] depending on the type of physical activity investigated [START_REF] Altini | Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning[END_REF]. The current study excluded the waist localization due to the risk of wobbling mass i.e. soft tissue artifacts [START_REF] Camomilla | A Human movement analysis: The soft tissue artefact issue[END_REF] affecting the acceleration measurement.

The data reduction techniques in this study ranged from rather descriptive parameters (MEAN, RMS) to quantile function. The quantile function presents the advantage to preserve the whole distribution of the accelerations, which is valuable for physical activity recognition [START_REF] Hammerla | On preserving statistical characteristics of accelerometry data using their empirical cumulative distribution ISWC '13[END_REF]. In order to describe this distribution, we used the L-moment formalism [START_REF] Hosking | L-moments_ analysis and estimation of distributions using linear combinations of order statistics[END_REF] which is known for its robustness. L-moments such as skewness and kurtosis are part of the high-order statistics (HOS) parameters [START_REF] Karvanen | Estimation of quantile mixtures via L-moments and trimmed L-moments[END_REF]) and allow for the description of the statistical shape distribution (Boudaoud et al. 2009). In addition, they could be used as parameters in a classification procedure [START_REF] Jones | Do changes in feature selection parameters influence the classification of knee rehabilitation exercises when using body worn accelerometer data?[END_REF]. We refrained from computing as data reduction the integral per unit time [START_REF] Bouten | Assessment of energy expenditure for physical activity using a triaxial accelerometer[END_REF][START_REF] Tsurumi | Estimation of Energy Expenditure during Sedentary Work with Upper Limb Movement[END_REF][START_REF] Sandroff | Accelerometer measured physical activity and the integrity of the anterior visual pathway in multiple sclerosis[END_REF] or the quadratic integral per unit time [START_REF] Lu | Sports biomechanics infomation acquisition and analysis based on Miniature Inertial Measurement[END_REF] as the numerical integration by rectangle rule is associated at a summation meaning that the integral per unit time is homogenous to the mean value and the quadratic integral to the RMS. Our result suggested that, on the one hand MEAN and RMS data reductions of all metrics present a better ability to largely discriminate between vigorous level of physical activity as opposed to low and moderate ones, on the other hand, L-skewness and L-kurtosis are more efficient to differentiate between low-level against moderate and vigorous activity. The combination of these observations could be a perspective to better segment low, moderate and vigorous levels during a continuous physical activity.

Our study also presented limitations. The reliability of the measurement of accelerations is a limitation as the calibration and sensor shift can have a dramatic effect on the accuracy [START_REF] Ricci | On the Orientation Error of IMU: Investigating Static and Dynamic Accuracy Targeting Human Motion[END_REF], Nez et al. 2017). However as the duration of the measurements was relatively short (less than 20min), we expected that the effect of such phenomena are limited and longer measurements will require drift correction (Nez et al. 2017). The investigation of walking and running as moderate and vigorous physical activities could be questionable, especially as numerous other moderate and vigorous physical activities do exist. However, walking and running are the most common and accessible physical activities for a large part of the population (WHO 2010) and way of monitoring physical activity is still controversial [START_REF] Aadland | Reproducibility of objectively measured physical activity: Reconsideration needed[END_REF]). In addition, our population is homogeneous in terms of age and health status, which cannot reflect all variations in walking and running matters. Our study reflected an "ideal situation" and could be seen as a baseline for further specific investigation of a more heterogeneous population, including children and senior citizens, as well as a pathological population.

Conclusion

When it comes to quantifying a physical activity, there is currently a lot of heterogeneity in terms of computation cost and output, namely as far as metrics and data reduction approaches are concerned. Our findings suggest a good method for differentiation applied to standing, walking, and running, all three popular physical activities of a larger population. According to the various metrics available to quantify and analyze physical activity and differences between them, our recommended "best practice" would be to fully document methods of calculation and set-up. Our results also suggest that MEAN and RMS data reductions are more suitable to discriminate between a vigorous level of physical activity as opposed to low and moderate ones. On the other hand, L-skewness and Lkurtosis are better at differentiating between low-level versus moderate or vigorous activities. These findings can be implemented in classification algorithms.

To conclude, wearable devices as a preview of "mobile monitoring of neuro-musculoskeletal performance" confirm a high ability for monitoring biomechanical behaviours of healthy subjects during their daily activities, but need rigorous methods and practice to develop fully their potential. 

  Kolmogorov-Smirmov tests were performed on all data reductions. All null hypotheses of a standard normal distribution at the 5% significance level were rejected. It motivated to do the Kruskal-Wallis test, a non-parametric version of the classical one-way ANOVA to compare data between each other.Then, a Kruskal-Wallis test between the data reductions (MEAN, RMS, L-CV, L-Skewness and L-Kurtosis) of the metric MPA of a single localization (wrist or ankle) was performed to compare the significant difference between the level of activity. A p-values of less than 0.001 were rejected as the null hypothesis. The null hypothesis is defined when median values of the data reduction of the metric MPA for L and M levels , or, for M and V levels of physical activity are equal.
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 5 Figure 5 : Descriptive statistics of the L-CV, L-Skewness and L-Kurtosis values of all metrics. The sign "≠" refers to no significant difference between the pointed values.
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 6 Figure 6 : Graph of the relationship between the MEAN and RMS values of all metrics with the MET evaluation of the standing, walking and running activities.

  At this stage, five PA metrics are available; ENMO, AD, VA, VM and EEact which are ℝ " vectors were defined as indicators of the level of physical activity based on accelerations measured or deduced by IMU. The metric MPA is one of the five PA metrics: MPA ∈{ ENMO, AD, VA VM ,EEact }
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