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Supplementary document information

• Video 1: Image sequences of raw experimental data for 55 nm-radius fluorescent
particles advected in a pressure driven flow of pure water along a microchannel with
geometry described in the text, and with an incident 488 nm-laser angle of 64 ◦.
The videos were taken with pressure drops imposed as noted, and each frame has a
width of 23 µm.

• Video 2: Identical to Video 1 but with particle trajectories superimposed.

• Video 3: Animations of particle trajectories obtained from Langevin simulations im-
posing ‘dot’, ‘half-line’ and ‘line’ initial conditions (indicated by the black regions,
see main text for definitions), with diffusion along the vertical and shear flow advec-
tion along the horizontal. The animation is displayed during a dimensionless time
range 0 ≤ τ/τz ≤ 0.1 in the lab frame.

• Video 4: [Left] Identical to Video 3, but in the reference frame of the center of mass
for the fluid and for a dimensionless time range 0 ≤ τ/τz ≤ 10. The horizontal black-
outlined bar in the middle panel indicates the entire observation zone at τ/τz = 10,
and the observed region at a given instant is highlighted in red. [Right] For the
three different conditions of the right panels, progression of the reduced dispersion
coefficient.

• TaylorDispersion.html : Python/Jupyter notebook describing the overdamped Langevin
simulations of Section 7, in particular reproducing Figs. S3 and S4.
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1 Notations used in the main text

Coordinates

x streamwise
coordinate, direction
of flow

y transverse
coordinate,
flow-invariant

z wall-normal
coordinate

Times

t particle observation
time

τ lag time
τz channel exploration

time
τC early-time ‘line-dot’

crossover time
Diffusion
coefficients
and
dispersions

D0 bulk isotropic
diffusion coefficient

Dy diffusion coefficient
in flow-invariant
direction

Dx dispersion coefficient
in the flow direction

D〈n〉 dispersion coefficient
in the flow direction
averaged over a
fraction, n of H

Dτmax D〈1/2〉 at late
experimental times

F〈n〉 reduced
dimensionless
analogue of D〈n〉

Statistical
quantities

P probability
distribution
functions

〈z0〉 first moment of
P0(z0)

〈z2
0〉 second moment of

P0(z0)
σ[] standard deviation

of quantity []

Experimental
parameters

a particle radius
η fluid viscosity
ρ fluid density
h channel height
w channel width
` channel length
H observation domain

size
n fraction of observed

flow domain
∆P pressure drop across

channel length
vx flow speed along the

x-direction
γ̇ near-wall shear rate
U average flow speed

in Poiseuille flow
Re Reynolds number
Pe Péclet number
α Taylor’s geometric

dispersion factor
λ illumination laser

wavelength
nf index of refraction:

fluid
ng index of refraction:

glass substrate
θ incident laser angle
θc critical incident

angle
Π evanescent wave

penetration length
I particle fluorescence

intensity
I0 particle fluorescence

intensity at the
solid/liquid interface
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2 Intensity distribution and mean velocity profiles

This section provides additional information about how the observed signal intensity dis-
tributions (SIDs after Zheng and coworkers [1], denoted PSID) and the corresponding
velocity profiles can be quantitatively described simultaneously. As also described by Li
and coworkers [2], fluorescent nanoparticles detected have a limited range of intensities
affected by several factors, the most important ones being, and as discussed in turn: i)
electrostatic interactions which determine the probability that a particle of a given radius
is found at a certain distance from the wall according to a Boltzmann distribution; ii)
particle size distribution; and iii) the optical setup which, given the position and size of
the particle, finally determines its intensity. We now discuss each of these elements in
detail.
–i– The glass surface exerts an electrostatic repulsion on the particles according to the fact
that both surfaces are negatively charged; the details of such a repulsion are understood
within the Derjaguin-Landau-Verwey-Overbeek (DLVO) framework [3, 4]. This electro-
static interaction potential, φel, describing the electric double-layer repulsion between a
particle with radius R and a flat wall [5] is given by:

φel (zc) = 16εR

(
kBT

e

)2

tanh

(
eψp

4kBT

)
tanh

(
eψw

4kBT

)
exp

(
−zc −R

lD

)
. (S1)

Here, zc, ε, e, ψp, ψw and lD are respectively the position of the center of the particle, liquid
permittivity, elementary charge, particle and wall electrostatic potentials and the Debye
length. This interaction determines the particle concentration C at thermal equilibrium
through the Boltzmann distribution

C(zc) ∝ exp

(
−φel (zc)

kBT

)
. (S2)

As already observed in TIRFM experiments, the van der Waals interaction can be ne-
glected for pure water [1, 2]. Consequently, the typical distance between the bottom
surface (located at z = 0) and the particles is mainly determined by the Debye length.
–ii– All the particles do not have the same radius R. The radius distribution is usually
described by a Gaussian probability function

PR (R) =
1√

2πσ 2
R

exp

(
−(R− a)2

2σ 2
R

)
, (S3)

where a is the mean radius and σR its standard deviation.
–iii– The fluorescence intensity, I, of an individual particle is determined by the optical
parameters of the TIRFM setup and the particle’s size, with I ∝ R3. The evanescent
wave has a penetration depth Π characterizing the exponential decrease of excitation.
The observed fluorescence intensity is also sensitive to the finite depth of field, df , of
the microscope objective. In our experiments, the depth of field has a value of 415 nm,
meaning that if particles are not located on the focal plane at zf (typically 400-500 nm from
the glass-liquid interface), they will be detected with a relatively low intensity. Putting
these elements together, the observed fluorescence intensity for an individual particle is
predicted [1] as

I (R, zc)

I0
=

(
R

a

)3

exp

(
−zc −R

Π

)[
1 +

(
zc −R− zf

df

)2
]−1

, (S4)

where I0 is the intensity for a particle with radius R = a located at the bottom surface
zc = a and with the focal plane at the wall (zf = 0).

Using a home-made Matlab interface, we combine Eqs. S1-S4 to generate theoretical
SIDs numerically. Practically, we determine the fraction of particles having an altitude zc
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Figure S1: (a) Comparison between experimental and theoretical signal intensity distri-
butions (SIDs). (b) Comparison between experimental and theoretical streamwise mean
velocity profiles. The experimental data is for 55 nm-radius particles for a pressure drop
of 30 mbar across the microchannel.

and a radius R given by the weight W (zc, R) = C(zc)PR(R), and compute the associated
intensity given by Eq. S4. This procedure gives a list of weighted intensities forming
the blue line shown in Fig. S1(a) using a DLVO prefactor 16aε(kBT/e)

2 tanh(eΨp/4kBT )
tanh(eΨw/4kBT ) = 1.4 × 10−21 J, lD = 60 nm, σR = 5.5 nm, a = 55 nm and the optical
parameters as described above, along with the experimental histogram (red).

In addition, we also quantitatively describe the mean streamwise velocity profile, which,
as noted before [2], is not perfectly linear when using the apparent altitude z = zc − a =
Π ln (I0/I) defined in the main article. We assume that a particle located at an altitude zc

has a mean streamwise velocity vx given by vx (z) = fBγ̇z, where γ̇ is the shear rate and fB

the “Brenner factor” [6]. This factor provides the hydrodynamic correction induced by the
finite size of the spherical particle, when the latter is advected by a linear shear flow near a
wall. For large zc/R, the Brenner factor can be expressed as fB ' 1−(5/16) (zc/R)−3. For
55 nm-radius particles typically located at distances larger than 200 nm due to electrostatic
repulsion, the deviation from the linear velocity profile is less than 1%.

Using the proposed particle velocity profile in conjunction with the intensity-altitude-
probability relations (Eqs. S1-S4), we follow Zheng et al. [1] and predict the particle’s
mean streamwise velocity as a function of log(I0/I). Such a prediction is made with γ̇
adjusted simultaneously to the physical and optical parameters of Eqs. S1-S4. The result is
shown together with the experimental results in Fig. S1(b), showing good agreement and
capturing the main nonlinear features of the experimental data. The shear-rate values
obtained with this SID method are approximately 15% smaller than the ones directly
obtained using a linear regression of the velocity profiles of Fig. 1(c) using the apparent
altitude. This discrepancy is mainly due to the particle polydispersity and to the finite
depth of field of the microscope objective, and since it is only a constant factor (verified)
across all experiments it does not change the main conclusions of the article.

3 Medium viscosity and particle diffusion

In Fig. 1(c), we show the streamwise velocity profiles for 55 nm-radius particles in a
water flow obtained by total internal reflection fluorescence microscopy (TIRFM). In the
corresponding inset, we show the associated shear rate γ̇ (obtained from a linear regression
on a given velocity profile) as a function of the pressure drop ∆P across the channel.
Similar measurements were done for the 100 nm-radius particles in water and water-
glycerol mixtures presented in the main article, see Figs. 3 and 4. Corresponding to these
shear rate measurements, we can compute the stress, Σ = h∆P/2`, from the pressure
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Figure S2: (a) Comparison for stresses Σ versus shear rate γ̇ between TIRFM (circles)
and rheology measurements (lines) for 100 nm-radius particles, see inset of Fig. 1(c) for
a = 55 nm particles in water. For TIRFM, the stress is calculated as Σ = h∆P/2` where
∆P is the pressure gap in the channel, h and ` are the channel height and length. (b) Bulk
diffusion coefficient D0, measured from the plateau values of local transverse mean square
displacements, versus the theoretical values calculated using the viscosity measured with a
rheometer, for all particle sizes and water-glycerol mixtures. The black dashed line shows
the linear relation with unit prefactor.

drop across the rectangular channel using a geometric prefactor (height h = 18 µm, width
w = 180 µm, length ` = 8.8 cm). The stress Σ is plotted as a function of the shear rate γ̇
in Fig. S2(a) and compared with bulk rheology measurements carried out in a Couette cell
(see Methods). First, the resulting linear power laws show that all the solutions remain
Newtonian for shear rates up to 1000 s−1. Second, the viscosity defined as η = Σ/γ̇ is
consequently constant for a given solution, and it increases with the glycerol proportion.
The results show a good agreement with the rheology measurements, validating both the
shear rate and viscosity values obtained by TIRFM.

The viscosity values obtained further allow us to verify that the bulk diffusion coeffi-
cients measured with TIRFM are consistent with the Stokes-Einstein relation. As shown
in Fig. 3(a) in the main article, the bulk diffusion coefficient D0 is obtained from the
plateau value of the local transverse diffusion coefficient Dy, calculated from the trans-
verse mean-square displacement σ2

∆y, through: Dy = σ2
∆y/2τ , where τ is the lag time.

In Fig. S2(b) is shown a comparison between the experimental results and the prediction
given by the Stokes-Einstein relation [7]: D0 = kBT/6πηa, after having used the inde-
pendent, rheologically measured viscosity. The good agreement validates the statistical
method to obtain the bulk diffusion coefficient.

4 Taylor dispersion for a linear shear flow in a channel with
a rectangular section: long times

Here, we justify the expression (see Eq. 1 of the main article) of the dispersion coefficient
for a linear shear flow in the long-time limit:

Dx = D0

(
1 +

1

120

γ̇2H4

D2
0

)
, τ � τz . (S5)

The classical Taylor dispersion coefficient is typically calculated for a channel with either
a circular or a rectangular section and for a Poiseuille flow [8]. To interpret the results
described in Figs. 3 and 4 in the main article, we revisit its derivation for a linear shear flow.
First, we consider a population of identical spherical colloids, in a rectangular channel of
heightH, subjected to a linear shear flow vx (z) = γ̇z along the x-axis, where γ̇ is a constant
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shear rate and where 0 6 z 6 H. Thus, the mean velocity along x is 1
H

∫ H
0 vx (z) dz =

γ̇H/2. We assume invariance in the y-direction which is valid in the experiments. We also
neglect hydrodynamic interactions with the walls, which would introduce a z-dependence
of the diffusion coefficients in both the streamwise and wall-normal directions. Therefore,
all the colloids are assumed to have the same, bulk diffusion coefficient D0. The colloidal
concentration field c (x, z, t) evolves with time t, from both advection by the imposed flow
and diffusion, as described by the advection-diffusion equation:

∂tc+ vx∂xc = D0

(
∂2
xc+ ∂2

zc
)
. (S6)

Introducing the streamwise length scale L, a concentration scale c0, the dimensionless vari-
ables Z = z/H, X = x/L, T = tD0/H

2, C (X,Z, T ) = c (x, z, t) /c0, V (Z) = vx (z) /γ̇H,
the Péclet number Pe = γ̇H2/D0 and the aspect ratio ε = H/L, Eq. (S6) becomes:

∂TC + εPeV (Z)∂XC = ε2∂2
XC + ∂2

ZC. (S7)

We decompose the concentration profile through:

C (X,Z, T ) = C̄ (X,T ) + C ′ (X,Z, T ) , (S8)

with C̄ (X,T ) =
∫ 1

0 C(X,Z, T ) dZ the thickness-averaged concentration and C ′ the devi-
ation from the latter. Inserting this decomposition into Eq. (S7), one obtains:

∂T C̄ + ∂TC
′ + εPeV (Z)∂XC̄ + εPeV (Z)∂XC

′ = ε2∂2
XC̄ + ε2∂2

XC
′ + ∂2

ZC
′. (S9)

Averaging further over Z leads to:

∂T C̄ + εPe
1

2
∂XC̄ + εPeV ∂XC ′ = ε2∂2

XC̄ + ε2∂2
XC
′, (S10)

where we assumed no normal colloidal flux at the channel boundary. Subtracting the two
last equations with one another gives:

∂TC
′+ εPe

(
V − 1

2

)
∂XC̄+ εPe

(
V ∂XC

′ − V ∂XC ′
)

= ε2
(
∂2
XC
′ − ∂2

XC
′
)

+∂2
ZC
′. (S11)

Invoking now the long-time condition proposed by Taylor [8], T � 1, the concentration
field becomes nearly homogeneous along Z leading to C ′ � C̄. In addition, we have ε� 1.
All together, Eq. (S11) can be simplified into:

∂2
ZC
′ ' εPe

(
V − 1

2

)
∂XC̄. (S12)

Since the thickness-averaged concentration field C̄ does not depend on Z, a first integration
gives:

∂ZC
′ = εPe∂XC̄

(
Z2

2
− Z

2

)
+ c1, (S13)

where c1 is a constant. Due to the impermeability of the channel walls, the no-flux
boundary conditions are ∂ZC

′ |Z=0= 0 and ∂ZC
′ |Z=1= 0 giving c1 = 0. Thus, the second

integration gives:

C ′ = εPe∂XC̄

(
Z3

6
− Z2

4
+ c2

)
. (S14)

By definition, the thickness average of the deviation field C ′ is zero, leading to:

C ′ = εPe∂XC̄

[
Z3

6
− Z2

4
+

1

24

]
. (S15)
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Invoking the found relation between C ′ and C̄, Eq. (S10) becomes:

∂T C̄ +
1

2
εPe∂XC̄ = ε2

(
1 +BPe2

)
∂2
XC̄, (S16)

with B a dimensionless factor given by:

B = −
1∫

0

dZ Z

(
Z3

6
− Z2

4
+

1

24

)
=

1

120
. (S17)

Putting back the dimensions and adding the definition c̄ = c0C̄, we obtain the final
equation for the long-time limit:

∂tc̄+
γ̇H

2
∂xc̄ = Dx∂2

xc̄, (S18)

with the dispersion coefficient Dx = D0

(
1 +BPe2

)
where B = 1/120. Therefore, at

long times, the thickness-averaged colloidal concentration field is advected with the mean
velocity γ̇H/2 and diffuses with the effective diffusion coefficient:

Dx = D0

(
1 +

1

120

γ̇2H4

D2
0

)
, τ � τz. (S19)

5 Taylor time in a channel with a rectangular section

Here, we justify that the relaxation of an initial concentration profile in a rectangular
channel takes place over the time scale τz/π

2 where the Taylor time is τz = H2/D0.
This quantity corresponds to the time beyond which the dispersion coefficient, Eq. (S19),
calculated above becomes valid. According to Taylor [8], this time scale corresponds
additionally to the duration needed to have a homogenous concentration field along z.
This phenomenon is only due to the diffusion along z, leading us to solve:

∂tc = D0∂
2
zc, (S20)

where c(z, t) is the concentration field, the other spatial dependencies being irrelevant. We
assume an initial concentration field c(z, t = 0) = c0(z) and solve the diffusion equation
on a domain z ∈ [0, H] along with impermeability boundary conditions: ∂zc(z, t) = 0 at
z = 0 and z = H. This problem can be solved exactly using the spectral decomposition:

c(z, t) = c̄+

∞∑
k=1

ak(t) cos

(
kπz

H

)
, (S21)

where c̄ denotes the thickness-averaged concentration, and the coefficients ak follow the
linear ordinary differential equations: ∂tak = −D0(kπ/H)2ak. The general solution of this
diffusion problem is

c(z, t) = c̄+
∞∑
k=1

ak,0 cos

(
kπz

H

)
exp

(
− k2π2D0t

H2

)
, (S22)

where ak,0 = ak(0) = (2/H)
∫ H

0 c0(z) cos(kπz/H) dz. As a result, the slowest decaying
mode k = 1 has a typical decay time H2/π2D0 = τz/π

2 as desired.
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6 Taylor dispersion in a linear shear flow at short times for
different initial particle distributions: short times

In this section, we first provide the derivation of the short-term dispersion coefficient
for a general distribution of initial particle altitudes in free space, before addressing the
particular case of uniform distributions. A central assumption of the model presented
in the main article is that the short-time Taylor dispersion in a channel, behaves in the
same way as for an infinitely-extended medium. It is supported by the fact that the wall-
normal diffusion of a particle in the channel is not affected by the presence of the walls
at short times. Therefore, this assumption is valid only for time scales much shorter than
the typical time τz = H2/D0 for diffusion over the channel height, as introduced in the
previous section.

6.1 General distribution of initial particle altitudes in free space

In this subsection, we justify how the short-time dispersion coefficient for a unique particle
in a linear shear flow [9, 10, 11, 12, 13] Dx = D0

(
1 + γ̇2τ2/3

)
, is modified by considering

a group of particles leaving from different altitudes z. The single-particle expression,
analogous to the ‘dot’ condition in the main article, is neither valid in our experiments
nor in the general case. Thus, we consider particles that are advected in a shear flow after
having started at x = 0, from different initial altitudes z0 described by the probability
density function (PDF) P0 (z0). The particles are assumed to diffuse in an infinite space
along z. We stress that the hydrodynamic and electrostatic interactions with the wall,
which are present in the experiments, are neglected here. We will discuss their effects on
the Taylor dispersion in the next section, using Langevin simulations.

The calculation of the dispersion coefficient Dx = σ2
∆x/2τ requires the variance σ2

∆x =〈
∆x2

〉
−〈∆x〉2 of the streamwise displacement ∆x (τ) = x (t+ τ)−x (t). We assume here a

linear shear flow, with a velocity vx (z) = γ̇z along x. We do not consider the streamwise
Brownian motion since it is not correlated to the advection and can be superimposed
afterwards by linearity. Besides, the experimental time scale is much larger than the
typical cross-over time between ballistic and diffusive motion (approximately 1 ns) so that
we consider the overdamped dynamics. Therefore the governing equation in the streamwise
direction is ∂tx = γ̇z. Upon integration, one gets:

∆x (τ) = γ̇

τ∫
0

dt z (t) . (S23)

The mean value of the displacement is thus:

〈∆x (τ)〉 = γ̇

τ∫
0

dt 〈z (t)〉 . (S24)

In this model, the vertical motion is purely Brownian and is described by the overdamped
Langevin equation: ∂tz =

√
2D0ξ (t), where ξ(t) is a Gaussian white noise. The corre-

sponding one-dimensional Brownian propagator is:

Pz (z, t|z0, t0) =
1√

2πD0 (t− t0)
exp

[
− (z − z0)2

2D0 (t− t0)

]
. (S25)

Pz (z, t|z0, t0) represents the density of probability per unit length for the particle to be
located at altitude z at time t, under the condition that the particle was located at z0 at
time t0. From Pz and Eq. (S24), one obtains 〈∆x〉 = γ̇ 〈z0〉 τ .
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Moving to the calculation of the second moment, we have the general form:

〈
∆x2 (τ)

〉
= γ̇2

τ∫
0

dt1

τ∫
0

dt2 〈z (t1) z (t2)〉 , (S26)

which can be calculated from the propagator Pz. We note that the averaged quantity
〈z (t1) z (t2)〉 is the product of the particle altitude at time t1 and the particle altitude at
time t2 for a unique trajectory, and consequently:

〈z (t1) z (t2)〉 6=
∫

dz1

∫
dz2 z1Pz (z1, t1|z0, t0) z2Pz (z2, t2|z0, t0) . (S27)

Assuming t1 < t2, the correct expression is provided by the Markovian properties of
Brownian motion and reads:

〈z (t1) z (t2)〉 =

∫
dz1

∫
dz2 z1Pz (z1, t1|z0, t0) z2Pz (z2, t2|z1, t1) . (S28)

Knowing that
∫

dz2 z2Pz (z2, t2|z1, t1) = z1 and choosing t0 = 0, we have:

〈z (t1) z (t2)〉 =

∫
dz1 z

2
1Pz (z1, t1|z0, t0) = z2

0 + 2D0t1. (S29)

Without the assumption t1 < t2, the latter expression is generalized as:

〈z (t1) z (t2)〉 = z2
0 + 2D0min (t1, t2) , (S30)

and we note here that t = t1 = t2 leads to the classical result
〈
z2 (t)

〉
− 〈z (t)〉2 = 2D0t.

In the case of an initial assembly of spatially-distributed identical particles, according
to the PDF P0 (z0), the latter equation is replaced by its average over z0:

〈z (t1) z (t2)〉 =
〈
z2

0

〉
+ 2D0min (t1, t2) . (S31)

By inserting this expression in Eq. (S26), one gets:

〈
∆x2 (τ)

〉
= γ̇2

τ∫
0

dt1

τ∫
0

dt2
[〈
z2

0

〉
+ 2D0min (t1, t2)

]
. (S32)

Invoking the decomposition
∫ τ

0 dt2 =
∫ t1

0 dt2 +
∫ τ
t1

dt2, it follows:

〈
∆x2 (τ)

〉
= γ̇2

〈
z2

0

〉 τ∫
0

dt1

τ∫
0

dt2︸ ︷︷ ︸
τ2

+2γ̇2D0

τ∫
0

dt1

( t1∫
0

dt2 t2︸ ︷︷ ︸
t21/2

+

τ∫
t1

dt2 t1

︸ ︷︷ ︸
(τ−t1)t1

)
, (S33)

and thus: 〈
∆x2 (τ)

〉
= γ̇2

〈
z2

0

〉
τ2 +

2

3
γ̇2D0τ

3. (S34)

From the above expressions of the average and mean-squared displacements, and adding
further the independent contribution due to streamwise Brownian motion, the variance of
the streamwise displacement becomes:

σ2
∆x (τ) = 2D0τ + γ̇2

(〈
z2

0

〉
− 〈z0〉2

)
τ2 +

2

3
γ̇2D0τ

3. (S35)

Therefore, the dispersion coefficient can be finally expressed as:

Dx = D0 + γ̇2

〈
z2

0

〉
− 〈z0〉2

2
τ +

1

3
γ̇2D0τ

2. (S36)
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The quadratic dependance in lag time τ predicted by the term γ̇2D0τ
2/3 is known and

is in agreement with several theoretical [9, 10, 11, 12, 13] and experimental [14, 15,
16] works. The role of the different initial altitudes appears in the additional term

γ̇2
(〈
z2

0

〉
− 〈z0〉2

)
τ/2. This term is linear in lag time and dominates for time scales smaller

than the crossover time τC = 3
(〈
z2

0

〉
− 〈z0〉2

)
/2D0, which corresponds to a typical time

needed to diffuse over the standard deviation of the initial distribution P0 in altitudes z0.

6.2 Application to uniform distributions of initial altitudes

We focus now on the particular case of uniform distributions of initial particle altitudes. In

practice, we specify further the central term γ̇2
(〈
z2

0

〉
− 〈z0〉2

)
τ/2 obtained in the previous

subsection.
The simplest situation, used to obtain the classical formula Dx = D0

(
1 + γ̇2τ2/3

)
, is

to consider that all the particles leave from a unique initial altitude zi. This corresponds
to the PDF P0 (z0) = δ (z0 − zi), where δ is the Dirac distribution. From the latter, it
follows that 〈z0〉2 =

〈
z2

0

〉
= z2

i , leading to the vanishing of the linear term in lag time in
the dispersion coefficient.

A more general situation arises by considering that the particles are initially uniformly
distributed over a vertical segment of length nH and centred at altitude zi, where n is
the dimensionless fraction of the typical vertical length H. Note that, when comparing
with experimental data (see Fig. 4 in the main article), H denotes the thickness of the
observation zone. This situation is described by the PDF:

P0 (z0) =

{
0 if |z0 − zi| > nH/2
1/nH if |z0 − zi| 6 nH/2

. (S37)

Thus, the additional term γ̇2
(〈
z2

0

〉
− 〈z0〉2

)
τ/2 due to the initial distribution of altitudes,

can be calculated explicitly by expressing the average initial altitude:

〈z0〉 =

H∫
0

dz0 P0 (z0) z0 =
1

nH

zi+nH/2∫
zi−nH/2

dz0 z0 = zi, (S38)

and the variance in initial altitude:

〈
z2

0

〉
=

H∫
0

dz0 P0 (z0) z2
0 =

1

nH

zi+nH/2∫
zi−nH/2

dz0 z
2
0 = z2

i +
(nH)2

12
. (S39)

Consequently, Eq. (S36) becomes:

Dx (τ) = D0 + γ̇2 (nH)2

24
τ +

1

3
γ̇2D0τ

2, (S40)

where the weight of the linear term in lag time depends solely on the spatial extent of the
initial distribution, but not on the average initial altitude zi itself. Note that this bulk
result is expected to be modified in presence of confinement and interfacial effects. Finally,
by invoking the time scale τz = H2/D0 as in the main article, we obtain the dimensionless
equation: (

Dx
D0
− 1

)
(γ̇τz)

−2 =
n2

24

τ

τz
+

1

3

(
τ

τz

)2

. (S41)

We recall that this expression is valid for short lag times τ compared to the Taylor time
τz/π

2. Interestingly, this single expression allows us to consider various initial uniform
distributions, from the classical “dot condition” (n = 0) to a complete “line condition”
(n = 1). As shown in the main article, this equation is in good agreement with our
experiments in the short-time limit.
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7 Simulation of Langevin equations

In this section, we provide details on the simulations of the Langevin equations, corre-
sponding to the results shown in the main article (see Fig. 4) for comparison with our
experimental results and with the analytical models described in the previous sections.

7.1 General Langevin model

For a single Brownian particle of position coordinates xi, with i the coordinate index,
advected in an external flow field characterized by the fluid velocity components vi, the
discrete overdamped Langevin equations read in the Ito convention [17]:

xi (t+ δt) = xi (t) + viδt+
Di (t)Fi (t)

kBT
δt+ ∂xiDi |xi(t) δt+

√
2Di (t) δt S (0, 1) , (S42)

where the diffusion coefficients Di are non-isotropic and space-dependent in the general
case, as a consequence of hydrodynamic interactions with the walls. Here, kB denotes the
Boltzmann constant, T the absolute temperature, S (m,σ) a Gaussian distribution with
mean value m and standard deviation σ, and Fi the components of the external force
exerted on the particle.

More specifically, we consider the bidimensional problem of a Brownian particle ad-
vected along x by a linear shear flow near a wall. Gravity is neglected such that the only
external force considered is the electrostatic force Fel exerted by the wall in the normal
direction z. The fluid velocity profile is given by vx (z) = γ̇z, with γ̇ a constant shear rate.
Eq. (S42) thus becomes:

x (t+ δt) = x (t) + γ̇z (t) δt+
√

2Dx(z (t))δt S (0, 1) , (S43)

z (t+ δt) = z (t) + ∂zDz |z(t) δt+
Dz(z (t))Fel(z (t))

kBT
δt+

√
2Dz(z (t))δt S (0, 1) . (S44)

For a particle with a radius R, the bulk diffusion coefficient is given by D0 = kBT/6πηR,
with η the dynamic shear viscosity of the liquid. We introduce the dimensionless variable
Z = z/R. Due to the hydrodynamic interactions with the wall, the streamwise and wall-
normal diffusion coefficients are modified as Di = D0βi [18, 2], with:

βx (Z) = 1− 9

16
Z−1 +

1

8
Z−3 − 45

256
Z−4 − 1

16
Z−5 +O

(
Z−6

)
, (S45)

βz (Z) =
6(Z − 1)2 + 2(Z − 1)

6(Z − 1)2 + 9(Z − 1) + 2
. (S46)

Finally, the electrostatic force is given by Fel = −∂zφel, where φel is the repulsive electro-
static potential due to the double layer [1] (see section 2). In the simulations, the van der
Waals interactions are neglected.

7.2 Taylor dispersion for tracer particles

We numerically integrate Eqs. (S43) and (S44) with a home-made Python program, see
the associated Jupyter notebook (TaylorDispersion.html). In order to discuss the main
assumption of section 6, we first focus on the simple case of Brownian tracer particles (i.e.
βx (Z) = βz (Z) = 1) that are advected in a linear shear flow, within in a closed channel of
thickness H, and in the absence of any electrostatic repulsion (Fel = 0). We generate 104

particle trajectories leaving from initial altitudes described by the uniform distributions
defined in the previous section. As such, we consider that the particles are initially located
on a line of spatial extent nH. The numerical time step is typically δt = 0.001τz, and the
total duration is approximately 10τz. Reflective boundary conditions are used at the two
walls, i.e. at z = 0 and z = H. The simulations are performed for the dot (n = 0), half-line
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Figure S3: Reduced dispersion coefficient as a function of dimensionless lag time, from
Langevin simulations in free space (circles) and in a confined channel (diamonds), for
different initial conditions: dot (blue), half-line (red) and line (green). The coloured plain
lines and black dashed line respectively show the theoretical predictions for the short-time
(Eq. (S41)) and long-time (Eq. (S19)) limits.

(n = 1/2) and line (n = 1) conditions. To highlight the relative effect of confinement on
the dispersion, we also performed reference simulations in free space (i.e. without walls).
In all cases, the dispersion coefficient Dx is calculated from the mean-squared displacement
(see section 6) and shown in Fig. S3.

For all conditions, the free-space reduced dispersion coefficient continuously increases
with time and is in agreement at all times with the predictions of Eq. (S41). In particular,
we clearly observe the expected crossover from the linear to the quadratic behaviours in
lag time for particles that are initially broadly distributed in altitudes (n = 1).

Furthermore, the Langevin simulation results of the Taylor dispersion in a finite-sized
channel are also plotted in Fig. S3. The reduced dispersion coefficients are found to first
increase at times shorter than τz, following Eq. (S41) as in the free-space case. In contrast
to the latter, in the long-time limit, the reduced dispersion coefficient saturates and reaches
the constant value predicted by Eq. (S19) no matter the initial particle distribution.

7.3 Effects of hydrodynamic and electrostatic interactions

The previous simulations have been performed without hindered diffusion and electrostatic
interactions, which are physical effects that may impact the experiments and that are
inherent to nanofluidic settings. We thus performed additional Langevin simulations,
including the interactions between the finite-size colloids and the glass wall located at z =
0. Simple reflective boundary conditions are maintained at the other boundary, located
at z = H. The electrostatic parameters were chosen as those that give agreement between
the experimental and theoretical SID. Specifically, the particle-wall interaction, φel, is
exponentially decaying with magnitude 1.4 × 10−21 J, Debye length 60 nm and thermal
energy 4.1 × 10−21 J for input to Eq. S1. Furthermore, at the initial time, the particles
are placed in the segments (dot, half-line, line) of the previous section also following the
Boltzmann distribution C(zc) ∝ exp(−φel(zc)/kT ). As described by Eqs. (S45) and (S46),
we also incorporate non-trivial, hydrodynamic interactions with the wall.

In Fig. S4, we display in red the reduced dispersion coefficients obtained from the
Langenvin simulations incorporating electrostatic and hydrodynamic interactions with the
wall. These are shown as a function of dimensionless time, using τz = H2/D0, for all initial
conditions. The rescaled dispersion coefficients are found to be systematically smaller than
the ones for tracer molecules in finite-sized channels.
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Figure S4: Reduced dispersion coefficient from (red) Langevin simulations in a channel,
including electrostatic repulsion and hindered diffusion induced by the wall located at z = 0.
These are plotted for three different initial conditions (a,b,c) as a function of dimensionless
time. For comparison, we plot the same data (orange) with time on both axes rescaled
by the modified time scale τz = (0.75H)2 /D0, and the simulation data of Fig. S3 for
(blue) tracer particles in a channel with no interactions with the wall. The lines indicate
the asymptotic limits for (horizontal dashed) long times and short times (sloping solid);
respectively, a constant value of 1/120 and Eq. 3 in the main paper.

To justify the difference between tracers and finite-sized, interacting particles, we par-
ticularly note that electrostatic forces repel the colloids from the wall, and therefore re-
duce the area accessible to them. As a secondary effect, the hydrodynamic interactions
are thus also reduced since those are maximal at the wall; we will thus assume in the
following that D0 is not modified even while the effect may be slightly operative. As a
result of the effectively reduced channel size, the associated timescale should be modified.
Therefore, we replot in Fig. S4 the reduced dispersion coefficients versus the dimensionless
time by modifying τz, using rather 0.75H, giving a smaller, empirical diffusion time scale
τz = (0.75H)2/D0. We find that the simulation results in the presence of interactions
with the wall in an effectively smaller channel of size 0.75H agree well with the simulation
results for tracer particles in the original channel of size H, whatever the initial altitude
distributions. This result indicates that the combined effect of electrostatic interactions
and hindered diffusion mainly lead – in our experimental range – to a reduced effective
time scale τz without significantly altering the time dependence itself.
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